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Abstract
Wind-induced mixing forms the surface mixed layer (ML) above the stratified interior oceans. The ML depth (MLD), a key
quantity for several upper ocean processes such as the air-sea interaction and primary production of phytoplankton biomass,
is often scaled as U∗/

√
Nf , where U∗ is the friction velocity, N is the Brunt-Väisälä frequency, and f is the Coriolis

parameter. Here, we performed large-eddy simulations (LESs) to evaluate this scaling. It was found that the ML deepens
rapidly until one-half inertial period (0.5Tf ) by which the MLD becomes 1.6 − 1.7U∗/

√
Nf . Thereafter, the ML deepening

slows down but never stops, and the MLD keeps increasing gradually. The MLDs at Tf , 1.5Tf , and 5Tf become greater than
those at 0.5Tf by 6.2 %, 16 %, and 40 %, respectively. Therefore, time-dependent scaling of the MLD is necessary for more
quantitative estimates than the classical theory. LESs performed with several U∗, N , and f showed that the deepening rate
of the ML depends on the Rossby number and the Froude number. The present study proposes time-dependent scalings of
the ML deepening rate and the MLD as a function of the Rossby number and the Froude number, which cover the classical
scaling but can be extended even after 0.5Tf .
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1 Introduction

Shear-driven turbulence induced by wind erodes the
stratified oceans to form and deepen the surface mixed layer
(ML). The ML deepening has a large impact on the air-
sea interaction processes (e.g., Bender et al. 1993; Emanuel
et al. 2004; Kataoka et al. 2019), since it causes sea surface
cooling through the entrainment of colder water to the ML.
The deepening also plays critical roles in the blooming of
phytoplankton biomass by supplying nutrients from below
the ML (e.g., Obata et al. 1996; Bulusu et al. 2002; Martinez
et al. 2000). Thus, quantitative understanding of the ML
deepening is important to better understand such upper
ocean processes.

The ML deepening is affected by Earth’s rotation
because it inhibits the wind-induced shear. Pollard et al.
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(1973) modeled the ML deepening under the rotation.
They assumed that the initial stratification (N0) is constant
from the surface, that current speed (U ) and buoyancy (B)
become uniform in the ML, and that the bulk Richardson
number Rb [≡ LMLD�B/�U2, where LMLD is the ML
depth (MLD), and �B (�U ) is a difference of B (U )
across the ML base] has a critical value (Rbc) when the
ML deepens. According to their analytical discussion, the
deepening after one-half inertial period (0.5Tf ) is arrested
by the rotation at the depth

LMLD = (8Rbc)
1/4 U∗√

N0f
= (8Rbc)

1/4LP 73, (1)

where U∗ is the friction velocity and f is the Coriolis
parameter. Here, the deepening of the ML after 0.5Tf is
ignored because of the considerable decrease in the deepen-
ing speed. This classical model and the scaling of LP 73(≡
U∗/

√
N0f ) are widely used (e.g., Zilitinkevich et al. 2002a;

Zilitinkevich et al. 2007; Lozovatsky et al. 2005). For exam-
ple, this model is used as the ocean surface ML model that
is attached to atmospheric general circulation models for
tropical cyclones (Davis et al. 2008; Nolan et al. 2009),
whose intensity and track are affected by the sea surface
temperature and hence the MLD (e.g., Bender et al. 1993).
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The scaling of LP 73 was also incorporated in a Nutrient-
Phytoplankton-Zooplankton model and used to investigate
the biological productivity in the coastal region (Botsford
et al. 2006). In these studies, it is implicitly assumed that
the ML deepening ceases after 0.5Tf . However, whether
the deepening after 0.5Tf actually ceases or whether it is
slow enough to be ignored is not well examined. Since the
ceasing of the ML deepening causes underestimates of sea
surface cooling and nutrient supply, it may affect diagnosing
and prognosing tropical cyclones and biological productiv-
ity. Therefore, in this study, we investigated the ML deepen-
ing in the stratified ocean by using large-eddy simulations
(LESs) that can reproduce realistic three-dimensional turbu-
lence and hence the ML deepening.

2 Numerical model and experimental
configurations

The LES model used in the present study is the same as
the model used in Ushijima and Yoshikawa (2019) except
for boundary and initial conditions as described later. The
governing equations are the momentum equation, continuity
equation, and advection-diffusion equation of buoyancy
under the incompressible, f -plane, Boussinesq, and rigid-
lid approximations. Sub-grid scale parameterization follows
the method described by Deardorff (1980). At the surface,
constant wind stress (ρ0U

2∗ ) is imposed while buoyancy
flux is set to zero. We also impose sub-grid scale kinetic
energy flux due to wave breaking and sub-grid scale shear
production at the surface. At the bottom, the free slip
condition and the no-buoyancy flux condition are imposed.
The lateral boundaries are periodic in both directions.
Initially, the buoyancy stratification [N0(≡ √

∂B/∂z)] is
constant with the surface buoyancy being zero, and the
ocean is at rest. Note again that all these configurations are
the same as those in Ushijima and Yoshikawa (2019) except
for zero surface buoyancy flux and nonzero initial buoyancy
stratification.

The governing equations are discretized using the
second-order finite-difference scheme and integrated using
the second-order Runge-Kutta scheme. The number of grid
cells is 128 × 128 × 128 with a uniform grid spacing
of LP 73/32, where LP 73 ≡ U∗/

√
N0f . We performed

several LESs with half grid spacing and found that these
results were similar to those with the original grid spacing
(not shown). The inertial sub-range in the kinetic energy
spectrum was clearly identified in the ML with the original
grid spacing (not shown), indicating a good performance of
the present LES model.

The integration was continued for five inertial periods
(5Tf = 10π/f ). The simulations were run with various
momentum fluxes (U2∗ = 5.0 × 10−5, 1.0 × 10−4, 2.0 ×

10−4 m2 s−2), initial stratifications (N0 = 5.0×10−3, 1.0×
10−2, 2.0 × 10−2 s−1), and the Coriolis parameters (f =
2.5 × 10−5, 3.75 × 10−5, 5.0 × 10−5, 7.5 × 10−5, 1.0 ×
10−4 s−1) (see Table 1). Note that we set the initial stratifi-
cations to be much greater than the Coriolis parameters as
seen in the realistic ocean surface layer in order to inves-
tigate the stratification effects on the MLD. [If N0 �
f unlike the present experimental design, the MLD will
become proportional to the Ekman length scale (U∗/f ).] In
the following, we defined MLD as the depth at which strati-
fication (N2), the vertical gradient of horizontally averaged
buoyancy, is the strongest. The strongest stratification cor-
responds to the buoyancy jump at the ML base of Pollard
et al. (1973).

3 Result

3.1 Time development of mixed layer

To illustrate the temporal variation of the vertical profiles
of the properties in the ML, the results of a simulation
with U2∗ = 1.0 × 10−4 m2 s−2, N0 = 1.0 × 10−2 s−1,
and f = 2.5 × 10−5 s−1 are described in detail. Note
that similar features of the temporal variation of the ML
were obtained in the other experiments. Temporal and
vertical variations in horizontally averaged current speed
and buoyancy are shown in Fig. 1. The current speed near
the surface increased at first until around 0.5Tf , and then
decreased until Tf (Fig. 1a). Thereafter, the speed oscillated
with the inertial period. A layer of the strong current
deepened rapidly until 0.5Tf . After that, the deepening
slowed down, but it did not stop. The buoyancy near the
surface decreased with time (Fig. 1b). The sea surface
buoyancy (SSB) reduced in 0.5Tf by 1.5 × 10−3 m s−2, but
the SSB reduction (�SSB) increased by 18 % (�SSB =
1.8 × 10−3 m s−2), 25 % (�SSB = 1.9 × 10−3 m s−2), and
56 % (�SSB = 2.3 × 10−3 m s−2) in Tf , 1.5Tf , and 5Tf ,
respectively. The �SSB at 5Tf corresponds to 1.2 K when
the thermal expansion coefficient and acceleration due to
gravity are assumed to be 2.0 × 10−4 K−1 and 9.8 m s−2,
respectively. As in the layer of the strong current, the MLD
increased rapidly until 0.5Tf , and then the ML deepening
slowed down, which is consistent with the results of Pollard
et al. (1973) (Fig. 1b). Though the ML deepening slowed
down, the MLD kept increasing gradually with inertial
oscillation. The MLDs at Tf (LMLD = 35 m), 1.5Tf

(LMLD = 39 m), and 5Tf (LMLD = 47 m) were greater
by 2.0 %, 15 %, and 39 %, respectively, than that at 0.5Tf

(LMLD = 34 m). Thus, the ML deepening after 0.5Tf can
be as large as the deepening during the first 0.5Tf .

Through the ML deepening, dense water was entrained
to the surface layer. This means the turbulent kinetic energy
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Table 1 Dependence of the
MLD (LMLD [m]) [normalized
MLD (LMLD/LP 73)] and
�SSB [×10−4 m s−2]
[normalized �SSB
(�SSB/N2

0 LP 73)] on
U2∗ [×10−4 m2s−2],
N0 [×10−2 s−1], and
f [×10−5 s−1]

LMLD/LP 73 �SSB/N2
0 LP 73

(U2∗ , N0, f ) LP 73 0.5Tf Tf 1.5Tf 5Tf 0.5Tf Tf 1.5Tf 5Tf

(1.0, 1.0, 2.5) 20 1.7 1.7 1.9 2.4 0.75 0.89 0.94 1.2

(1.0, 1.0, 3.75) 16 1.7 1.7 1.9 2.3 0.74 0.88 0.93 1.2

(1.0, 1.0, 5.0) 14 1.7 1.7 1.9 2.3 0.73 0.87 0.92 1.2

(1.0, 1.0, 7.5) 12 1.7 1.8 1.9 2.3 0.72 0.86 0.91 1.1

(1.0, 1.0, 10) 10 1.6 1.8 1.9 2.3 0.72 0.85 0.90 1.1

(0.5, 1.0, 2.5) 14 1.7 1.7 1.9 2.3 0.75 0.89 0.94 1.2

(0.5, 1.0, 3.75) 12 1.7 1.7 1.9 2.3 0.74 0.88 0.93 1.2

(0.5, 1.0, 5.0) 10 1.7 1.8 1.9 2.3 0.74 0.87 0.92 1.2

(0.5, 1.0, 7.5) 8.2 1.6 1.8 1.9 2.3 0.72 0.86 0.91 1.1

(0.5, 1.0, 10) 7.1 1.6 1.8 1.9 2.3 0.71 0.85 0.90 1.1

(2.0, 1.0, 2.5) 28 1.7 1.7 1.9 2.4 0.75 0.89 0.94 1.2

(2.0, 1.0, 3.75) 23 1.7 1.7 1.9 2.3 0.74 0.88 0.93 1.2

(2.0, 1.0, 5.0) 20 1.7 1.8 1.9 2.3 0.73 0.87 0.92 1.2

(2.0, 1.0, 7.5) 16 1.6 1.8 1.9 2.3 0.72 0.86 0.91 1.1

(2.0, 1.0, 10) 14 1.6 1.8 1.9 2.3 0.71 0.85 0.90 1.1

(1.0, 0.5, 2.5) 28 1.7 1.7 1.9 2.3 0.74 0.87 0.92 1.2

(1.0, 0.5, 3.75) 23 1.7 1.8 1.9 2.3 0.72 0.86 0.91 1.1

(1.0, 0.5, 5.0) 20 1.6 1.8 1.9 2.3 0.71 0.85 0.90 1.1

(1.0, 0.5, 7.5) 16 1.6 1.8 1.9 2.3 0.69 0.83 0.89 1.1

(1.0, 0.5, 10) 14 1.6 1.8 1.9 2.3 0.71 0.84 0.89 1.1

(1.0, 2.0, 2.5) 14 1.7 1.8 2.0 2.4 0.77 0.91 0.96 1.2

(1.0, 2.0, 3.75) 12 1.7 1.7 2.0 2.4 0.76 0.90 0.95 1.2

(1.0, 2.0, 5.0) 10 1.7 1.7 1.9 2.4 0.75 0.89 0.94 1.2

(1.0, 2.0, 7.5) 8.2 1.7 1.7 1.9 2.3 0.74 0.88 0.93 1.2

(1.0, 2.0, 10) 7.1 1.7 1.8 1.9 2.3 0.74 0.87 0.92 1.2

Average – 1.7 1.8 1.9 2.3 0.73 0.87 0.92 1.2

Standard deviation – 0.034 0.028 0.025 0.031 0.019 0.019 0.018 0.019

Fig. 1 Time-depth variation of
the horizontally averaged current
speed (U ) (a) and buoyancy (B)
(b) in the experiment for
U2∗ = 1.0 × 10−4 m2 s−2, N0 =
1.0 × 10−2 s−1, and
f = 2.5 × 10−5 s−1. The black
solid line is the MLD
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(TKE) was converted to potential energy. Figure 2 shows the
time series of the source and sink terms in the horizontally
averaged TKE equation (as below),

∂

∂t

(
1

2
u′

ku
′
k

)
= −u′

kw
′ ∂uk

∂z︸ ︷︷ ︸
Ps

+w′b′︸ ︷︷ ︸
Pb

− ∂

∂z

(
1

2
u′

ku
′
kw

′ + p′w′
ρ0

)

︸ ︷︷ ︸
Pt

+ε︸︷︷︸
D

. (2)

Here, xi (i = 1, 2, 3) denotes the Cartesian coordinates
(x, y, z) with z pointing upward, t is time, ui represents
the velocity components (u, υ, w) in the xi direction, b is
buoyancy, p is pressure, and ρ0(= 1.0 × 103 kg m−3)

is reference density. The prime means the anomaly from
the horizontal mean value, and the overbar represents the
horizontal average. Ps , Pb, Pt , and D represent a rate of
the shear production, buoyancy production, divergence of
vertical transport due to advection and pressure work, and
dissipation of the TKE, respectively. The dissipation rate
was calculated based on the sub-grid scale parameterization
of Deardorff (1980). Note that the negative buoyancy
production corresponds to the conversion of the TKE to

potential energy. In the ML, the shear production and the
dissipation were much greater than the buoyancy production
and the divergence of the vertical transport (Fig. 2a–d).
The shear production was larger in the upper ML than
in the lower ML (Fig. 2a). At the base of the ML, the
shear production changed rapidly in the vertical direction
to become negligibly smaller below the ML. The buoyancy
production decreased almost linearly with the depth in
the ML and became smallest at the base of the ML
(Fig. 2b). Though the depth of the smallest buoyancy
production (LBP ) changed with time at the inertial and
higher frequencies, its temporal change at frequencies lower
than the inertial frequency corresponds well with that of the
MLD (say, d〈LBP 〉/dt ≈ dLMLD/dt , where 〈 〉 means the
average over one inertial period). Figure 2e shows the ratio
of the buoyancy production rate to the shear production rate
(the flux Richardson number, Rf ≡ −Pb/Ps). The flux
Richardson number in the ML was small, but it increased
rapidly with depth at around the MLD. This indicates
the flux Richardson number has a certain critical value
at the ML base. Judging from Fig 2e, the depth of the
smallest Pb (LBP ) roughly coincided with Rf ≈ 10−0.67 =
0.22, which can be considered as the critical Richardson
number.

Fig. 2 Time-depth variation of
the shear production (Ps ) (a),
the buoyancy production (Pb)
(b), the divergence of vertical
transport due to advection and
pressure work (c), the
dissipation (d), and the flux
Richardson number (Rf ) (e) in
the experiment for
U2∗ = 1.0 × 10−4 m2 s−2, N0 =
1.0 × 10−2 s−1, and
f = 2.5 × 10−5 s−1. The black
solid line is the MLD, the
dashed line in (b) and (e) is the
depth of the smallest Pb (LBP ),
and the red solid line in (b) is
averaged LBP for over one
inertial period (〈LBP 〉)
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3.2 Parameter dependence of mixed layer
deepening

To investigate the ML deepening under parameters other
than U2∗ = 1.0 × 10−4 m2 s−2, N0 = 1.0 × 10−2 s−1,
and f = 2.5 × 10−5 s−1 and its scalings, a total of 25
experiments were performed and are shown in this sub-
section. (Parameters in these experiments were described
in Section 2 and Table 1). Figure 3 shows the time series
of the MLDs. Here, time and MLD were normalized by
Tf and LP 73, respectively. The normalized MLD in all the
experiments increased similarly with normalized time. The
MLDs gradually increased and became 6.2 %, 16 %, and
40 % larger at t/Tf = 1, 1.5, and 5 than at t/Tf = 0.5,
respectively. The ML deepening reduced the SSB, and the
SSB reduction (�SSB) from t = 0 also increased with
time (Fig. 3b). Temporal changes of �SSB, normalized by

Fig. 3 Temporal variation of the MLD (a) normalized by LP 73
(LMLD/LP 73) and the SSB reduction (b) normalized by N2

0 LP 73

(�SSB/N2
0 LP 73). Time is also normalized by the inertial period

(t/Tf ). Solid lines are the averaged value of all the experiments, and
shadings show the spread of the results (one standard deviation). The
dashed and dotted lines in (a) are the estimated MLD from Eq. 7 with
the greatest (f/N = 2.0 × 10−2) and smallest (f/N = 1.3 × 10−3)
f/N in the parameter range of this study, respectively

N2
0 LP 73, were again collapsed to a single line similar to that

of the normalized MLD. On average, the normalized �SSB
at t/Tf = 1, 1.5, and 5 increased by 19 %, 26 %, and 58 %
from that at t/Tf = 0.5, respectively. The �SSB fluctuated
with the inertial frequency as the MLD did, but its amplitude
was less than that of the MLD. This smaller amplitude
of the �SSB caused the difference in the increasing rates
from 0.5Tf between �SSB and MLD (Fig. 3). Note that if
the MLD was defined as the depth at which the buoyancy
deviated by 3.0 × 10−4 m s−2 from its values at the surface,
the amplitude of the inertial oscillation of the MLD was
smoothed and the normalized MLD at Tf , 1.5Tf , 5Tf was
greater by 22 %, 29 %, and 62 % than that at 0.5Tf , which
was almost coincided with the increase of the normalized
�SSB (not shown). The MLD and �SSB are summarized
in Table 1.

After t/Tf = 1, the low-frequency (< f ) temporal
change of the MLD (d〈LMLD〉/dt) roughly coincided with
low-frequency change of the depth of the smallest buoyancy
production (d〈LBP 〉/dt) (Fig. 2b), and the 〈LBP 〉 change
is related to the buoyancy production (Pb(〈LBP 〉)) and the
buoyancy jump (�B) at 〈LBP 〉 as shown below (Niiler and
Kraus 1977; Noh et al. 2010),

d〈LMLD〉
dt

�B ≈ d〈LBP 〉
dt

�B = 〈Pb(〈LBP 〉)〉. (3)

Here, the buoyancy jump (�B) is estimated as

�B ∼ N2
0 〈LMLD〉/2 (4)

from the mass conservation law. To estimate the scale of
〈Pb(〈LBP 〉)〉, we introduce the flux Richardson number
(Rf ) and relate Pb to the shear production (Ps), Pb =
−Rf Ps . As shown in Fig. 2e, Rf at the base of ML was
almost constant, so Pb(LBP ) is proportional to Ps(LBP ). In
general, the value of Ps(〈LBP 〉) can be scaled by U3∗ /LMLD,
but recent studies (Goh and Noh 2013; Zilitinkevich
et al. 2002b, 2005) have implied that it also depends
on the Rossby number (Ro ≡ U∗/f 〈LMLD〉) and the
Froude number (Fr ≡ U∗/N0〈LMLD〉). Figure 4a and
b show |〈Ps(〈LBP 〉)〉| and |〈Pb(〈LBP 〉)〉| normalized by
U3∗ /〈LMLD〉 as a function of the Rossby number (Ro) and
the Froude number (Fr). Here, Ps and Pb for t ≥ Tf were
only used since they showed high variability when t < Tf .
It was found that |〈Ps(〈LBP 〉)〉| and |〈Pb(〈LBP 〉)〉| depend
similarly on Ro and Fr with the Ro dependence being much
larger than Fr dependence. (Similarity of |〈Ps(〈LBP 〉)〉| and
|〈Pb(〈LBP 〉)〉| dependencies indicate constant Rf .) Thus,
we scale |〈Pb(〈LBP 〉)〉| by U3∗ /LMLDF(Ro, Fr), where
F(Ro, Fr) is nondimensional function of Ro and Fr. Using
this relation and Eqs. 3 and 4, the ML deepening rate
becomes

d〈LMLD〉
dt

≈ 〈Pb(〈LBP 〉)〉
�B

= U∗G(Ro, Fr), (5)
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Fig. 4 The Rossby number (Ro)
and the Froude number (Fr)
dependences of the absolute
values of the shear production
(|〈Ps(〈LBP 〉)〉|) (a) and
buoyancy production
(|〈Pb(〈LBP 〉)〉|) (b) normalized
by U3∗ /LMLD at the depth of the
smallest buoyancy production
(〈LBP 〉) and the deepening rate
of the ML (d〈LMLD〉/dt) (c)
normalized by U∗. d Scatter
plots between the ML deepening
rate and its scaling
(0.33U∗Ro2.0Fr2.7)

where G(Ro, Fr)[= 2Fr2F(Ro, Fr)] is a function of Ro and
Fr. Figure 4c shows the dependence of the ML deepening
rate normalized by the friction velocity (d〈LMLD〉/dt/U∗)
on the Rossby number and the Froude number. The
normalized deepening rate decreased with the Rossby
number and increased with the Froude number. From
multiple regression of Ro and Fr in the log scale, the ML
deepening rate was scaled as

d〈LMLD〉
dt

= 0.33U∗Ro2.0Fr2.7 (6)

in this study. This scaling has good agreement with LES
results (Fig. 4d). Integrating this scaling, LMLD can be
represented as

〈LMLD〉 = 1.5LP 73

(
f

N

)−2.2×10−2 (
t

Tf

)0.18

. (7)

Note that small factor (f/N)−2.2×10−2
in the above scaling

comes from small deviations of LMLD from LP 73, as shown
in Fig. 3a. This factor changes the value only by 6.4 % at
the largest value in the parameter range. Normalized MLDs
(< LMLD > /LP 73) at 0.5Tf , Tf , 1.5Tf , and 5Tf were
evaluated as 1.5 − 1.6, 1.7 − 1.8, 1.8 − 1.9, and 2.2 − 2.4
from Eq. (7), respectively, while normalized MLDs of the
LES results at 0.5Tf , Tf , 1.5Tf , and 5Tf were 1.7, 1.8, 1.9,
and 2.3, respectively (Table 1). The scaling well reproduced

the low-frequency (< f ) temporal change of the MLD
(Fig. 3a), which corresponds well with temporal change in
the SSB (Fig. 3b).

4 Conclusion

In this study, the ML deepening due to wind-induced shear-
driven turbulence in the stratified ocean, under influence of
the Earth’s rotation, was investigated through LESs. LESs
showed that the ML deepens rapidly until 0.5Tf , and then
the deepening slows down. This result is consistent with the
classical analysis of Pollard et al. (1973). Based on their
classical analysis, many previous studies used U∗/

√
f N =

LP 73, which is the MLD at 0.5Tf , as the scale of the
MLD. However, the MLD for t > 0.5Tf keeps increasing
(though the deepening speed is slower), resulting in the
MLD at Tf , 1.5Tf , and 5Tf being greater by 6.2 %,
16 %, and 40 %, respectively, than at 0.5Tf . Therefore,
time-dependent scaling of the MLD is necessary for more
quantitative estimates than the classical theory.

To evaluate the time-dependent MLD, TKE budgets were
investigated using the LES results. It was found that the
buoyancy production is proportional to the shear production
at the ML base (because the Richardson number is almost
constant there) and that these productions depend on both
the Rossby number (Ro) and the Froude number (Fr) though
Fr dependence is weak in our parameter range. We then
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related the ML deepening rate (that is proportional to the
buoyancy production) to the shear production that depends
on Ro and Fr, to obtain d〈LMLD〉/dt = 0.33U∗Ro2.0Fr2.7.
This results in 〈LMLD〉 = 1.5LP 73 (f/N)−2.2×10−2

(
t/Tf

)0.18, which explains well the simulated MLD
deepening after 0.5Tf . (Note that the validity of this scaling
is lost after the stratification effect disappears).

Some previous studies assumed that ML deepening is
arrested after 0.5Tf (e.g., Botsford et al. 2006; Davis et al.
2008; Nolan et al. 2009). This is a good approximation
as the first order, but higher-order approximation will be
necessary if more quantitative results are required. The
present scaling for t > 0.5Tf will be useful for such
cases. For example, in Botsford et al. (2006), phytoplankton
response to the MLD was calculated with the assumption
that LMLD = a + bLP 73, where a and b are constants.
The present scaling may provide more reliable calculations.
The present results may also help estimating the MLD
using the bulk Richardson number, because the present
scaling (7) and analytical discussion of Pollard et al. (1973)
(1) indicate that the critical bulk Richardson number Rbc

should change with time; Rbc ∝ (t/Tf )0.71. In fact, Rbc

used in previous studies (e.g., Price et al. 1986; Holtslag
and Boville 1993; Kiehl et al. 1998) were different. The
time-dependent feature of Rbc may be responsible for this
difference. Because the bulk Richardson number is used in
the KPP scheme (Large et al. 1994) that is widely used as
the ML scheme in ocean general circulation models (e.g.,
Belcher et al. 2012; Huang et al. 2014; Ge et al. 2017),
impacts of this time-dependent Rbc on the ML scheme need
to be investigated.

In the present study, we ignored, for the sake of
simplicity, many processes taking place in the ocean surface
boundary layer including heating/cooling at the surface,
Langmuir circulation, and temporal variation of wind stress,
which also have large impacts on the ML deepening. The
simplicity, on the other hand, allows the present results to
be applicable to the shear-driven turbulence in the bottom
boundary layers of the ocean and the atmosphere (e.g.,
Zilitinkevich et al. 2007). Note that in these planetary
boundary layers, the Coriolis parameter or the effect of
the Earth’s rotation itself can suppress the ML deepening
(Zilitinkevich et al. 2007; Yoshikawa 2015) when the
stratification is weak, although we set the stratifications to
be much greater than the Coriolis parameters in this study.
These processes need to be examined, so these will be the
focus of our future studies.
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