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Abstract
Effects of the viscosity, Earth rotation, and sphericity (beta-effect) on the long-wave dynamics are investigated based on the linear
model. The basic equation for the complex amplitudes of gravitational long waves is obtained. It is shown that the viscosity plays
a significant role in the long-wave dynamics. Stokes’ layer thickness is the criterion which separates two regimes of long-wave
evolution: low viscosity and viscous flows. Two Stokes’ layers occur in the rotating fluid. The thickness of the first approaches to
infinity as the frequency tends to inertial frequency. Considering the role of the Stokes’ layer as a criterion of viscosity influence,
we can conclude that for the waves of the near-inertial frequency, viscosity always plays a significant role irrespective of ocean
depths. The beta-effect leads to the planetary drift velocity occurrence in the equation. The planetary drift velocity can have either
eastward or westward direction depending on the wave frequency. Thus, Earth sphericity causing the planetary drift plays a major
role in the asymmetry of the eastward and westward directions in wave dynamics. Friction is another reason for the asymmetry of
the eastward and westward directions in wave dynamics. Damping decrements of the westward and eastward waves differ with
the biggest difference for waves with the near-inertial frequencies. Group velocities of eastward and westward waves are
nonsymmetrical too.Moreover, in a certain range of the near-inertial frequencies, group velocities of both westward and eastward
waves are directed exceptionally eastward. Thus, the beta-effect and fluid viscosity can be the reasons for the asymmetry of
western and eastern bays in the tidal wave dynamics.
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1 Introduction

Long waves in an ocean rotating without friction were de-
scribed by many authors (Taylor 1922; Defant 1961; Le
Blond and Mysek 1978; Gill 1982; Pedlosky 1982). Long
waves in an infinite ocean of a uniform depth on a beta-
plane were discussed by LeBlond, Mysak (Le Blond and
Mysek 1978). However, at shallows, bottom friction starts to
significantly influence the propagation of long waves, and the
inviscid fluid approximation becomes inappropriate. The ap-
plicability criterion of ideal fluid approximation is the Stokes’
layer thickness. If the depths are less than the Stokes’ layer
thickness, the turbulent friction becomes significant and can-
not be neglected (Zyryanov and Chebanova 2016; Zyryanov
and Chebanova 2017a).

For the first time, a viscous damping effect in the sea cur-
rent dynamics was studied by Ekman (1905), then by
Welander (1957), Platzman (1963), Jelesnianski (1970), and
Jordan and Baker (1980). Mofjeld (1980) also investigated the
influence of vertical viscosity on the propagation of barotropic
Kelvin wave.

The effect of turbulent friction on the propagation of long
gravity waves was studied in detail in Kakutani (Kakutani and
Matsuuchi 1975). The effect of friction is shown to largely
depend on the magnitude relation between a turbulent analog
of the Reynolds number ReT =HU/A and the dimensionless
wave number α =H k (Н is the thickness of the unperturbed
liquid layer, U is gravity wave velocity, А is the coefficient of
vertical turbulent exchange, k is wave number). At O (α−5) <
ReT, friction is insignificant and wave propagation can be
described by Korteweg de Vries (KdV) equation. At O (α−1)
< ReT ≤O (α−5), friction becomes significant, and it is re-
quired to pass to the KdV–Burgers equation to take it into
account. An interesting case is O (α−5) ≈ReT, when the geo-
metric and viscous dispersions are in a balance. This case was
studied in detail by Djordjevic (1980). Finally, at ReT <
O (α−1), the complex phase velocity becomes purely
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imaginary, implying that there are no free wave motions and
the dynamics of the free surface is described by a nonlinear
diffusion equation of parabolic type (Djordjevic 1983). An
analog of such equation was first obtained by Nakaya (1974)
in a study of drop spreading over a horizontal plane.

The condition ReT <O (α−1) imposes a restriction on the

depth of the liquid in the form of H < O
ffiffiffiffiffiffiffiffiffiffi
A=ω

p� �
(ω is

wave frequency). On the other hand, the propagation of wave
perturbations with frequencyω in a viscous liquid is known to
be accompanied by the formation at a free surface of a Stokes

boundary layer with a thickness of hSt∼
ffiffiffiffiffiffiffiffiffiffi
A=ω

p
. The Stokes

layer is the diffusion depth of the vorticity from the free sur-
face within the wave period (Lighthill 1978). For example, in
the case of an open flow and semidiurnal tidal wave M2, the
depth hSt is 12–15 m at a characteristic value A= 102 cm2/s,
and for a flowwith ice cover, hSt is twice as large as that. Thus,
the coastal zones of seas and many reservoirs fall within the
Stokes layer. At depths less than Stokes layer thicknessH < hSt
(supercritical depth zones) in flows with characteristic time
variations T, the turbulent friction and pressure gradient are
comparable accurate to O (Fr2)(Fr ¼ U=

ffiffiffiffiffiffiffi
gH

p
) (Zyryanov

1995), and the flow regime becomes gradient–viscous. In this
case, the terms with turbulent friction in the momentum equa-

tion are of the order of unit: Fr2Re−1T =α≈O 1ð Þ. The evolu-
tionary equation changes from hyperbolic to parabolic. Thus,
friction itself not only manifests in viscous damping but also
influences the dispersion relations.

The tidal wave propagation in shallow zones without
Coriolis acceleration has been studied by Proudman (1925,
1953), Perroud (1959), Dronkers (1964), Hunt (1964), Ippen
(1966), Bowden (1988), Prandle and Rahman (1980), Prandle
(1985, 2009), Jay (1991), Lanzoni and Seminara (1998,
2002), Savenije (1992, 2005), Friedrichs and Aubrey (1994),
Savenije and Veling (2005), and Van Rijn (2011). The follow-
ing assumptions are usually made: the wavelength is greater
than estuary depth; the tidal amplitude is small in comparison
to the depth; the acceleration is supposed to be small; thus, the
convective terms can be neglected and the equation of motion
is linearized; and with a single t idal const i tuent
predominating, tide is supposed to be a simple harmonic. To
obtain a general wave picture, the frictional term can also be
neglected. Great attention is given to the shape of the estuary
as a factor determining the natural period of oscillations in the
water basin. Classical solutions for a narrow rectangular chan-
nel without friction are described by Dronkers (1964), Hunt
(1964), Ippen (1966), LeBlond (Le Blond 1978), and Prandle
(2009). A frictionless channel of a variable cross-section is
discussed by Proudman (1925) and Ippen (1966), and the
solution presented by the authors gives an option to find a
resonant oscillation period for bays of a nonrectangular shape.
A necessary condition is a weak change in channel cross sec-
tion, which allows neglecting it within the wavelength. Such

frictionless solutions have a number of limitations. In friction-
less channels, the amplitude near the vertex will increase ex-
ponentially due to Green’s law. So, it is obvious that the fric-
tional forces play a significant role in shallow water and
should be taken into account when studying estuaries.
According to Le Blond (1978), the frictional force dominates
the acceleration term over most of the tidal cycle. There are a
number of studies (Perroud 1959; Hunt 1964; Ippen 1966;
Prandle and Rahman 1980; Prandle 1985; Jay 1991;
Lanzoni and Seminara 1998, 2002; Savenije 1992; Savenije
and Veling 2005) in which solutions for channels of the vari-
able shape are obtained. Perroud (1959) presented a linearized
solution for variable channels with a slowly changing cross
section based on the linear friction. In Ippen (1966), Harleman
(1966), and Bowden (1988), the authors gave expressions for
the amplitudes and velocities in a semi-enclosed rectangular
channel. Proudman (1925) addressed a channel with a para-
bolic cross section. Prandle and Rahman (1980) gave an ana-
lytical solution for a channel with both width and depth vary-
ing with powers of distance. In Hunt (1964), Ippen (1966),
Prandle (1985), Jay (1991), Savenije (1992, 2005), Lanzoni
and Seminara (1998, 2002), and Savenije and Veling (2005),
an analytical solution is given for an estuary with exponential-
ly varying width and depth. Expressions for resonant channels
and criteria for increasing/decreasing tidal amplitude were ob-
tained by Hunt (1964), Ippen (1966), Prandle (1985), and
Savenije (2005). Savenije (1992) introduced a quasi-
nonlinear approach with the nonlinear friction term based on
the envelope method. Friedrichs and Aubrey (1994) presented
a first-order analytical solution for strongly convergent estu-
aries. They showed that the dominant effects are friction, the
slope of the surface, and the rate of convergence. Van Rijn
(2011) presented analytical and numerical solutions for con-
verging tidal channels. The convergence is found to be dom-
inant in deep converging channels, whereas bottom friction is
generally dominant in shallow converging channels.

In Zyryanov and Chebanova (2016, 2017a), the hydrody-
namic effects of convergence and friction on the tidal wave
amplitude in the funnel-shaped estuaries were investigated for
a homogeneous fluid based on the linear model with friction.
Analytical solutions are given for convergent estuaries of uni-
form and variable depths. The estuaries are approximated by a
sector of a circle. It is shown that the Stokes diffusion layer
plays a significant role in the formation of the regimes of a
tidal wave transformation. It is shown that the spatial modu-
lation of the tide amplitude in bays, gulfs, and estuaries is
caused by the phenomenon of the dissipative-convergent in-
termittency developing under competitive effects of the con-
vergence and turbulent friction. In the inlet to an estuary, the
tidal wave amplitude can initially decrease due to the effect of
friction, but then, as the wave moves deeper in the estuary, the
effect of the convergence begins to prevail and the tidal wave
amplitude can start to increase. In the other case, it can initially
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increase and then decrease and increase again near the estuary
head as it takes place in the Delaware estuary. This is the
essence of the dissipative-convergent intermittency effect.

The effect of the dissipative-convergent intermittency is
most strongly manifested in strange bays with mean water
depths of the order of the Stokes layer thickness. As shown
by Zyryanov and Chebanova (2017a), the spatial distribution
of the tidal wave amplitude has a minimum in a convergent
channel. If the minimum point lies beyond the estuary, then
the effect of the convergence predominates and the wave
height increases towards the vertex. If the minimum point lies
in the neighborhood of an estuary head, then the effect of the
turbulent friction predominates along the entire bay length and
the wave height decreases towards the bay vertex. Finally, if
the minimum point finds itself in the middle part of an estuary,
then the case of a strange bay arises, namely, in such bays, the
wave height decreases up to the minimum point and then
begins to increase again after its passage. The local increase
in the tidal wave amplitude can be manifested further at the
mouth of the river.

In Perroud (1959), Hunt (1964), Ippen (1966), Harleman
(1966), Prandle and Rahman (1980), Prandle (1985), Jay
(1991), Lanzoni and Seminara (1998, 2002), Savenije and
Veling (2005), Savenije (1992, 2005), Friedrichs and Aubrey
(1994), van Rijn (2011), Zyryanov and Chebanova (2016),
and Zyryanov and Chebanova (2017a), Earth rotation was
not taken into account. In Zyryanov (1995), it is shown that
the contribution of the Coriolis acceleration to the evolution-
ary equation for waves in supercritical depth zones is small
and can be neglected. In this case, the conditions in bays open
to the east or to the west will be symmetrical. But on the Earth,
zonal bays are asymmetrical. A simple analysis shows that the
majority of the bays with significant tides (Penzhina bay,
Mezen bay, the bay of Fundy, etc.) are open to the west. A
question arises as to whether the asymmetry of western and
eastern bays can be connected with planetary effects: Earth
rotation and sphericity. As the bays and gulfs are shallow,
the viscosity, i.e., turbulent friction, should also play a signif-
icant role. The objective of this paper is to investigate the
effects of the viscosity, as well as Earth rotation and sphericity
on the zonal long-wave dynamics in an unbounded ocean.

2 Viscous waves

Assuming the water density constant and neglecting the non-
linear terms in the equations of momentum, the equations of
motion and continuity for homogenous rotating fluid can be
written as follows:

∂u
∂ t

−fv ¼ −
1

ρ0

∂P
∂x

þ Az
∂2u
∂z2

ð1Þ

∂v
∂ t

þ fu ¼ −
1

ρ0

∂P
∂y

þ Az
∂2v
∂z2

ð2Þ

gρ0 ¼
∂P
∂ z

ð3Þ

∂u
∂x

þ ∂v
∂y

þ ∂w
∂ z

¼ 0 ð4Þ

where u, v are the horizontal components of flow velocity
along the axes X, directed to the east along a parallel, and Y,
respectively, to the north along a meridian; w is the vertical

component of flow velocity; f ¼ 2Ωsin~ϕ is the Coriolis pa-

rameter;Ω is the angular velocity of Earth; ~ϕ is the latitude; P
is the water pressure; g is the acceleration of gravity; ρ0 is the
density of sea water (constant); and Az is the vertical eddy
viscosity (constant). The Z axis is directed vertically down-
ward. The origin of coordinates is located on the unperturbed
surface of the water body.

The boundary conditions are specified as:
at the sea surface (z = ζ(x, y, t)) zero wind stress:

∂u
∂z

z¼ς

¼ ∂v
∂z

�����
�����
z¼ς

¼ 0 ð5Þ

and the kinematic condition:

wjz¼ς ¼
∂ζ
∂ t

þ u
z¼ς

∂ζ
∂x

þ v

�����
�����
z¼ς

∂ζ
∂y

on the seabed (z =H(x, y)), no-slip conditions:

ujz¼H ¼ v z¼H ¼ wj jz¼H ¼ 0 ð6Þ

If we have a shoreline boundary of a water body (L(x, y) =
0), then the total discharge (total flow) normal to the boundary
is assumed zero on it:

S
!
; n!

� �
¼ 0 where S

!¼ ∫
H

ς
U
!
dz; U

!¼ u; vð Þ ð7Þ

Note that such formulation of the problem fails to allow us to
specify more rigid boundary conditions for the horizontal veloc-
ity (no-slip conditions or zero normal velocity component) on
the side boundaries of a water body due to the absence of hor-
izontal derivatives of velocity components in Eqs. (1) and (2).

Integrating the hydrostatic Eq. (3) from the upper boundary
of the liquid z = ζ(x, y, t) to the horizon z yields an equation for
pressure in the liquid:

P x; y; z; tð Þ ¼ Pa þ gρ0 z−ζð Þ ð8Þ
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where Pa is the atmospheric pressure at the sea surface,
which is constant (Pa= const) due to no wind stress.
Substituting (8) into (1) and (2) yields.

∂u
∂ t

−fv ¼ g
∂ζ
∂x

þ Az
∂2u
∂z2

ð9Þ

∂v
∂ t

þ fu ¼ g
∂ζ
∂y

þ Az
∂2v
∂z2

ð10Þ

Wave solutions for the system of Eqs. (9) and (10) are
sought for in the form

u ¼ ueiω t; v ¼ veiω t; ς ¼ ςeiωt ð11Þ

where u, v, and ς are the amplitudes of wave variations of
velocity and elevation, respectively,ω is the wave frequency,
and i is the imaginary unit.

Substituting (11) into (9) and (10) yields:

iωu− f v ¼ g
∂ζ
∂x

þ Az
∂2u
∂z2

ð12Þ

iωvþ f u ¼ g
∂ς
∂y

þ Az
∂2v
∂z2

ð13Þ

A particular solution to the system (12), (13), not depend-
ing on z, will satisfy the following system of equations

iωu0− f v0 ¼ g
∂ζ
∂x

ð14Þ

iωv0þ f u0 ¼ g
∂ζ
∂y

ð15Þ

From (14) and (15), we obtain

u0 ¼ g

f 2−ω2
iωζx þ f ζy
� � ð16Þ

v0 ¼ g

f 2−ω2
iωζy− f ζx
� � ð17Þ

Let us introduce notations u
0 ¼ u−u0, v

0 ¼ v−v0. In view of

(14) and (15), we obtain a system of equations for u
0
and v

0
:

Az
∂2

∂z2
u

0

v
0

� 	
¼ M u

0

v
0

� 	
ð18Þ

where M is a matrix:

M ¼ iω − f
f iω

� 	
ð19Þ

To find a solution to the system (18), we form a diagonal
matrix from the matrix М. Let us obtain the eigenvalues and
eigenvectors of the matrix М. Numbers λ1, 2 satisfying

jM−λEj ¼ iω−λð Þ2 þ f 2 ¼ 0 ð20Þ

are the eigenvalues of the matrix М.
From here, we have λ1, 2 = i(ω ± f). Form amatrixB, where

the eigenvectors corresponding to each eigenvalue λ1, 2 are
written as columns.

В ¼ i 1
1 i

� 	
ð21Þ

It is useful to introduce new functions u″, v″, satisfying:

u
0

v
0

� 	
¼ B u″

v″

� 	
ð22Þ

Substituting (22) into (18) and taking into account the prop-
erty of eigenvectors’ matrix, we obtain

Az
∂2

∂z2
u″

v″

� 	
¼ B−1MB u″

v″

� 	
¼ λ1u″

λ2v″

� 	
ð23Þ

where B−1 is the inverse Hermitian self-adjoint matrix of B.
The solutions of the system of Eq. (23) are the functions:

u″ ¼ C1eμ1z þ C2e−μ1z ð24Þ
v″ ¼ C3eμ2z þ C4e−μ2z ð25Þ

where

μ1 ¼
ffiffiffiffiffiffi
λ1

Az

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i ωþ fð Þ

Az

s
; μ2 ¼

ffiffiffiffiffiffi
λ2

Az

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i ω− fð Þ
Az

s
ð26Þ

which implies, in view of (21), that the functions u
0
, v

0
are:

u
0 ¼ i C1eμ1z þ C2e−μ1zð Þ þ C3eμ2z þ C4e−μ2zð Þ ð27Þ

v
0 ¼ C1eμ1z þ C2e−μ1zð Þ þ i C3eμ2z þ C4e−μ2zð Þ ð28Þ

and u and v are:

u ¼ u0 þ u
0 ¼ g

f 2−ω2
iωζx þ f ζy
� �

þ i C1eμ1z þ C2e−μ1zð Þ
þ C3eμ2z þ C4e−μ2zð Þ ð29Þ

v ¼ v0 þ v
0 ¼ g

f 2−ω2
iωζy− f ζx
� �þ C1eμ1z þ C2e−μ1zð Þ

þ i C3eμ2z þ C4e−μ2zð Þ

ð30Þ

The constants C1, C2, C3, C4 are sought for with the use of
the boundary conditions (5) and (6). Free-surface boundary
conditions are linearized, i.e., satisfied at the unperturbed level
z = 0. Substituting (29) and (30) into boundary conditions (5)
and (6) yields
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u ¼ u0 þ 2iC1ch μ1zð Þ þ 2C3ch μ2zð Þ ð31Þ

v ¼ v0 þ 2C1ch μ1zð Þ þ 2iC3ch μ2zð Þ ð32Þ

where

C1 ¼ −
g

f þ ωð Þ
ζx þ iζy
� �
2ch μ1Hð Þ ;C3 ¼ −

g
f −ωð Þ

ζy þ iζx
� �
2ch μ2Hð Þ ð33Þ

It follows from (31) and (32) that it is impossible to get
correct boundary condition for the level ς, if we use the con-
dition of zero normal velocity components instead of zero
integral discharge normal to the shoreline boundary (7).

Let us now derive a governing equation for the elevation.
Integrating the continuity Eq. (4) with respect to z from z = ζ to
z =H with boundary conditions and the conditions at the sea
surface (5), (6), yields a continuity equation in total fluxes:

∂ζ
∂ t

¼ ∂S xð Þ
∂x

þ ∂S yð Þ
∂y

ð34Þ

or for amplitudes in view of (11)

iωζ ¼ ∂S xð Þ
∂x

þ ∂S yð Þ
∂y

ð35Þ

where

S xð Þ ¼ ∫
H

ζ
udz; S yð Þ ¼ ∫

H

ζ
vdz ð36Þ

Substituting (31) and (32) into (36) and integrating, we
obtain

S xð Þ ¼ ζxð giHω

f 2−ω2
þ ig

2μ1 f þωð Þ thμ1H−
ig

2μ2 f −ωð Þ thμ2HÞþ
þζy

gHf

f 2−ω2
−

g
2μ1 f þωð Þ thμ1H−

g
2μ2 f −ωð Þ thμ2H

� 	

ð37Þ

S yð Þ ¼ −ζx
gHf

f 2−ω2
−

g
2μ1 f þωð Þ thμ1H−

g
2μ2 f −ωð Þ thμ2H

� 	
þ

þζy
giHω

f 2−ω2
þ ig

2μ1 f þωð Þ thμ1H−
ig

2μ2 f −ωð Þ thμ2H
� 	

ð38Þ

It is useful to introduce:

F1 ¼ giHω

f 2−ω2
þ ig
2μ1 f þωð Þ thμ1H−

ig
2μ2 f −ωð Þ thμ2H ð39Þ

G1 ¼ gHf

f 2−ω2
−

g
2μ1 f þωð Þ thμ1H−

g
2μ2 f −ωð Þ thμ2H ð40Þ

Then, we obtain

S xð Þ ¼ F1ζx þ G1ζy; S yð Þ ¼ −G1ζx þ F1ζy ð41Þ

Substituting (41) into the continuity Eq. (35) yields the
governing equation for the complex amplitudes of the water
level elevation in the water body:

iως ¼ ∂
∂x

F1ζx
� �

þ ∂
∂y

F1ζy
� �

þ J G1; ζ
� �

ð42Þ

where J G1; ζ
� � ¼ ∂G1

∂x
∂ς
∂y −

∂G1
∂y

∂ς
∂x is Jacobian. In the com-

pact form,

iως ¼ ∇; F1∇ς
� �

þ J G1; ς
� �

ð43Þ

where (…, …) is the scalar product, ∇ is the Hamilton
operator (gradient).

Note that the boundary condition for the level ς in a rotating
fluid will be a condition with a directional derivative, as it
follows from the expressions for total flows (37) and (38)
and the boundary condition (7). The solvability of the bound-
ary value problem for an elliptical equation with a directional
derivative (Poincare problem (Poincare 1910)) depends on the
boundary index. Depending on the boundary index, this prob-
lem can have no solutions or not a unique solution (Maz’ya
1972). In the sea current problems, the directional derivative is
very close to the normal derivative; that is why the Neumann
problem can replace the Poincare problem. Such a replace-
ment is appropriate in stationary sea current problems and
does not lead to the loss of effects, but in the theory of waves
it can result in the loss of amphidromic systems in the basin.

With regard toG1being the function ofH and f and with the
use of the β-plane approximation for the Coriolis parameter,
we obtain:

J G1; ζð Þ ¼ ∂G1

∂H
J H ; ζð Þ− ∂G1

∂ f
βζx ð44Þ

where β ¼ ∂ f
∂y is the beta-effect.

Now the governing equation for the complex amplitudes of
the water level elevation in a water body becomes:

iως ¼ ∂
∂x

F1ζx
� �

þ ∂
∂y

F1ζy
� �

þ ∂G1

∂H
J H ; ζ
� �

−
∂G1

∂ f
βζx ð45Þ

As can be seen from (45), the longitudinal change in the
water body depth and beta-effect has an impact on the zonal
asymmetry.

Let us now consider a particular case of (45) without taking
into account Earth rotation. Assuming f = 0 yields μ1 =μ2 = μ
and
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F1 ¼ −
ig
ω

~H ; G1 ¼ 0 ð46Þ

where

~H ¼ H−
1

μ
th μHð Þ ð47Þ

is the reduced depth, introduced by Zyryanov and
Chebanova (2016).

Therefore, the governing equation for the complex ampli-
tudes of the water level elevation in a water body (45) becomes:

−ω2ς ¼ ∂
∂x

g ~H ζx
� �

þ ∂
∂y

g ~H ζy
� �

ð48Þ

Equation (48) has been obtained by Zyryanov and
Chebanova (2016) for the waves in a water body without
taking into account Earth rotation.

The parameter μ in (47) is

μ ¼
ffiffiffiffiffiffi
iω
Az

s
¼

ffiffiffiffiffiffiffiffi
ω
2Az

r
1þ ið Þ ¼ α 1þ ið Þ; α ¼

ffiffiffiffiffiffiffiffi
ω
2Az

r
ð49Þ

The quantity inverse to α is the Stokes layer thickness

hSt ¼
ffiffiffiffiffiffiffiffi
2Az

ω

r
ð50Þ

To relate the frequency, the wave number and the attenua-
tion factor, we isolate the real and imaginary parts in the ex-

pression for ~H in (47). With the use of (50), we obtain

th μHð Þ ¼ th αHð Þ þ i tg αHð Þ
1þ i tg αHð Þ th αHð Þ ð51Þ

where tg is the trigonometric tangent.
Figure 1 gives plots of the real and imaginary parts of the

reduced depth ~H as functions of the real depth H. The plots

show that at H > 15m, the dependence of the real part Real
~H

� �
on H is almost linear and the imaginary part Im ~H

� �
at

H > 15m asymptotically tends to a constant. The depth
H~15m is equal to the Stokes layer thickness for semidiurnal
tidal wave (Zyryanov 1995), and it actually separates two
regimes of the tidal wave evolution: atH > > 15m, the regime
of the wave motion is low viscosity, while at H < 15m, the
turbulent friction dominates.

To understand the effect of the reduced depth in wave evo-
lution, let us consider a one-dimensional analog of Eq. (48) for
the case of a constant depth of a sea:

∂
∂x

Real ~H
� �

þ iIm ~H
� �� � ∂ς

∂x

" #
þ ω2

g
ς ¼ 0 ð52Þ

Let us find a wave solution of Eq. (52). Substituting ς∼eikx

into (52), we obtain a dispersion relationship

k2 ¼ ω2

g Real ~H
� �

þ iIm ~H
� �� � ð53Þ

At the depth of the sea H > > 15m, we have an estimate

Im ~H
� �

Real ~H
� � << 1 ð54Þ

and, therefore, from (53) it follows

k ¼ � ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gReal ~H

� �r 1−i
Im ~H

� �
2Real ~H

� �
0
@

1
A ð55Þ

As th μ ~H
� �

∼1 at great depth H, an expression for the re-
duced depth becomes

~H≈H−
1

μ
¼ H−

ffiffiffiffiffiffiffi
A
2ω

r
þ i

ffiffiffiffiffiffiffi
A
2ω

r
ð56Þ

Thus, for greatH, the turbulent friction also has its effect on
the wave evolution through a decrease in the real depth by half

of the Stokes layer thickness hSt∼
ffiffiffiffi
2A
ω

q
. As seen from (56), at

great H, an asymptote to the imaginary part of the reduced

depth ~H is equal to half the Stokes layer thickness.
As seen from (26), two Stokes’ layers occur in the rotating

fluid. The thickness of the first layer approaches infinity as the
frequency tends to the inertial frequency. Taking into account
the role of the Stokes’ layer as a criterion of the viscosity
influence, we can conclude that for the waves with the near-
inertial frequency, the viscosity always plays a significant role,
irrespective of ocean depths. The criterion showing when we
need to take into account the viscosity arises from the expres-
sion H ≤ [2Az/(f − ω)]1/2.

As can be seen from (26), the thicknesses of both Stokes’
layers tend to the Ekman layer thickness, when the frequen-
cies are small, and to the classical Stokes’ layer for the non-
rotating fluid, when the frequencies are high.

3 Zonal viscous waves on a beta-plane

In Zyryanov and Chebanova (2016), Earth rotation was not
taken into account. In this case, there is no difference between
the western and eastern directions for waves. Let us now
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investigate the influence of sphericity on the asymmetry in the
long-wave dynamics.

Neglecting the surface elevation in the meridional direction
along Y-axis and supposing H = const, we obtain from (45) an
equation:

iως ¼ ∂
∂x

F1ςx
� �

−
∂G1

∂ f
βςx ð57Þ

where

∂G1

∂ f
¼ g

4 f þωð Þ2
3

μ1
thμ1H−

H

ch2μ1H

� 	
þ

þ g

4 ω− fð Þ2
3

μ2
thμ2H−

H

ch2μ2H

� 	
−
gH f 2 þω2

� �
f 2−ω2

� �2
ð58Þ

The general solution of (57) is

ζ xð Þ ¼ C1exp k1xð Þ þ C2exp k2xð Þ ð59Þ
where

k1;2 ¼
∂G1

∂ f
β�

ffiffiffiffi
D

p

2F1
; D ¼ −

∂G1

∂ f
β

� 	2

þ 4iωF1 ð60Þ

The expression (60) gives dispersion relationships k1, 2(ω)
for zonal viscous waves on the β-plane.

3.1 Extreme cases

Equation (45) can be simplified for several extreme cases.

3.1.1 Inviscid fluid

Consider an inviscid liquid on a beta-plane. Assume Az = 0,
then μ1 = μ2 =∞. Now we have

F1 ¼ giHω

f 2−ω2
ð61Þ

∂G1

∂ f
¼ −

gH f 2 þω2
� �
f 2−ω2

� �2 ð62Þ

∂F1

∂ f
¼ −

2fgiHω

f 2−ω2
� �2 ð63Þ

So that the governing Eq. (45) reduces to

iωζ ¼ giHω

f 2−ω2
Δζ−

2fgiHω

f 2−ω2
� �2 βζy þ gH f 2 þω2

� �
f 2−ω2

� �2 βζx ð64Þ

Solutions to (64) are sought in the form:

ζ ¼ ζ0e
−i kxþlyð Þ ð65Þ

Substituting (65) into (64) we obtain:

ω ¼ −
gHω

f 2−ω2
k2 þ l2
� �

−
2fgiHω

f 2−ω2
� �2 βl− gH f 2 þω2

� �
f 2−ω2

� �2 βk

ð66Þ

In inviscid fluidsω, k and l have to be real, then from (66),
we obtain the equation

ω ¼ −
gHω

f 2−ω2
k2 þ l2
� �

−
gH f 2 þω2

� �
f 2−ω2

� �2 βk ð67Þ

Fig. 1 Plots of (1) the Real ~H
� �

and (2) imaginary Im ~H
� �

parts of

the reduced depth ~H (47) as
functions ofH for the semidiurnal
tidal wave at Az = 10

2cm2/s

Ocean Dynamics (2019) 69:427–441 433



which gives us a dispersion relationship for linear waves on
the β-plane. For zonal waves, we have an explicit relationship
between k and ω

k1;2 ¼ −~B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~B
2
þ 4~Aω

q
2~A

ð68Þ

where

~B ¼ −
∂G1

∂ f
β; ~A ¼ iF1 ð69Þ

Let us now consider the frequencies less than f (ω<<f). In
this case, it follows from (67) that (Grimshaw et al. 1998)

ω ¼ −
gHω

f 2
k2 þ l2
� �

−
gH

f 2
βk ð70Þ

For mesoscale motions in the ocean, L is ~ 100 km, which
implies that

ω <<
gHωk2

f 2
ð71Þ

Therefore, the left part of (70) can be neglected. This leads to
the dispersion relation for Rossby waves:

−ω k2 þ l2
� �

−βk ¼ 0 ð72Þ

So, there is an evident zonal asymmetry for the barotropic
Rossby waves (72): their phase speed is directed westward,
while the group speed is directed eastward.

Let us now assume that ω>> f. From (67) it follows that

ω2 ¼ gH k2 þ l2
� �

−
gH
ω

βk ¼ 0 ð73Þ

This leads to the dispersion relation for long zonal gravity
waves on the β-plane.

ω
k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH 1−

β
kω

� 	s
ð74Þ

As can be seen from (74), the beta-effect reduces the length
of short-period waves, but its influence is negligible. For ex-
ample, for semidiurnal tidal waves β/kω~2.4 ⋅ 10−3, i.e., the
quantity is small in comparison to 1.

The relation (74) shows that the beta-effect decreases the
phase speed of long gravity waves. Therefore, Eq. (45) re-
duces to an equation describing gravity and Rossby waves if
the turbulent exchange is neglected.

3.1.2 Viscous fluid

The expression (74) has been derived in the absence of friction
(for an inviscid case). Let us now examine the role of friction
and incorporate the viscous term into (74) for ω>>f. In this
case, we have

μ1 ¼ μ2 ¼
ffiffiffiffiffiffi
iω
Az

s
¼ μ ð75Þ

Therefore,

F1 ¼ −
giH
ω

þ ig
μω

thμH ¼ −
ig
ω

H−
1

μ
thμH


 �
;G1 ¼ −

gHf
ω2

ð76Þ

Similarly to (73), we have

ω2

gH
¼ 1−

1

μH
thμH

� 	
k2 þ l2
� �

−
βk
ω

ð77Þ

which yields the dispersion relation for zonal waves (l = 0)
similar to (74) but with friction.

ω
k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH 1−

1

μH
thμH−

β
kω

� 	s
ð78Þ

As can be seen from (78), viscosity leads to the introduc-
tion of a reduced depth in (78) instead of H. As the reduced
depth is always less than the real depth, the viscosity always
decreases the length of short-period waves.

It follows from (78) in view of (75) that in this case the
wave number k becomes complex and we obtain a damping
decrement in the wave evolution. In the viscid case, it is useful
to consider two cases—shallow and deep water.

In deep water:

jμ1H j >> 1; jμ2H j >> 1 ð79Þ

Thus, we have

F1 ¼ giω

f 2−ω2
H þ μ2 f −ωð Þ−μ1 f þωð Þ

2μ1μ2ω


 �
ð80Þ

∂F1

∂ f
¼ 2fgiω

f 2−ω2
� �2 H−

3

8

μ2 ω− fð Þ2 þ μ1 ωþ fð Þ2
fωμ1μ2

" #
ð81Þ

∂G1

∂ f
¼ −

g f 2 þω2
� �
f 2−ω2

� �2 H−
3

4

μ2 ω− fð Þ2 þ μ1 ωþ fð Þ2
f 2 þω2

� �
μ1μ2

" #
ð82Þ
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As a result, we obtain an equation for waves similar to (66)
but with complex depth correction.

In shallow water,

jμ1H j << 1; jμ2H j << 1 ð83Þ

A second-order Taylor expansion of hyperbolic tangent
yields

F1 ¼ gH3

3Az
;G1 ¼ 0 ð84Þ

from which it follows that the governing equation becomes

iωζ ¼ g
3Az

∂
∂x

H3ζx
� �

þ ∂
∂y

H3ζy
� �
 �

ð85Þ

or in the compact form

iωζ ¼ g
3Az

∇;H3∇ζ
� �

ð86Þ

where ∇ is the Hamilton operator (gradient), brackets ( , )
denote the scalar product.

Equation (86) is a linearized version of the nonlinear equa-
tion of the viscous flow motion at a depth less than the Stokes
layer obtained by Zyryanov (1995, 2014):

∂ζ
∂t

¼ g
3Az

∇; H−ζð Þ3∇ζ
� �

ð87Þ

3.1.3 Viscous seiches on a beta-plane

It is interesting to study seiches in view of Earth rotation and
sphericity. We consider a zonal channel with a uniform depth.
Let us find a wave solution of (57) in view of the Neumann
boundary condition on the borders of the channel:

dζ
dx

x¼L

¼ dζ
dx

�����
�����
x¼0

¼ 0 ð88Þ

As we have seen, the boundary condition (7) with respect
to (41) for the total flow will end up in the Poincare problem

with the directional derivative for the level ζ on the channel
boundary. If we use such problem setting for seiches in a
channel, then a system of waves with amphidromic points
can occur and it can result in additional difficulties when
searching for analytical solutions. The problem can be simpli-
fied in two ways. Firstly, we can deal with water objects with
frequencies of seiches being much greater than the inertial
frequency f. In this case, we can use expressions (76) for F1

andG1. It is seen from (76), that ifω > > f, thanG1 < < F1.

From (41), it follows thatS xð Þ∼ζx; S yð Þ∼ζy, and the Poincare

problem with the directional derivative can be approximately

replaced by the Neumann problem with boundary conditions
(88). Secondly, we can deal with a zonal channel with a width
being less than Rossby deformation radius. In this case,
Kelvin and Poincare waves transform into general zonal
waves without the formation of amphidromic points
(Hydrodynamics of Lakes 1984).

Wave solutions are sought for in the form ζ ~eikx.
Substituting this into (57), we derive an equation for k

iω ¼ −F1k2−
∂G1

∂ f
βik ð89Þ

The roots of the Eq. (89) are

k1;2 ¼ A� B ð90Þ

where

A ¼ ∂G1

∂ f
β

� 	
=2iF1 β ¼ ∂G1

∂ f
β

� 	2

þ 4iF1ω

" #1=2

=2iF1

ð91Þ

Substituting a general solution ζ xð Þ ¼ C1exp ik1xð Þ þ C2

exp ik2xð Þ in the boundary conditions (88) yields

exp ik1Lð Þ−exp ik2Lð Þ ¼ 0 ð92Þ

Thus, we obtain a dispersion relation for seiches spectrum
in view of viscosity, rotating and beta-effect:

L⋅Re Bð Þ ¼ kπ; k ¼ 1; 2; 3::: ð93Þ

If the depths are greater than the Stokes’ layer thickness,
then viscosity can be neglected and the expression (93) can be
rewritten in the explicit form.

gH f 2 þω2
k

� �
β

f 2−ω2
k

� �2
" #2

−
4gHω2

k

f 2−ω2
k

8<
:

9=
;

1=2

¼ 2kπgHωk

ω2
k− f

2
� �

L
ð94Þ

With f = 0 and β = 0 (nonrotating fluid), we have from (94)
the Merian’s formula for periods of seiches

Tk ¼ 2L
k

ffiffiffiffiffiffiffi
gH

p ; k ¼ 1; 2; 3 ð95Þ

From (94), we obtain the following expression for periods
of seiches on the f-plane (f ≠ 0, β = 0)

Tk ¼ 2πLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2π2gH þ L2 f 2

p ; k ¼ 1; 2; 3 ð96Þ

It can be seen, that the periods of seiches depend on the
latitude. Therefore, we get a correction to the Merian’s formu-
la (95) for rotation. Rotation decreases the periods of seiches.
For example, in the channel with a depth of H= 20 m and a
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length of L = 100 km at the latitude of 60о, the first mode of
the longitudal seiche calculated by Merian’s formula is 3 h
58 m and the same mode corrected for rotation is 3 h 48 m.

The condition H<<hst yields

iωζ ¼ g
3Az

H3ζxx ð97Þ

and for periods of seiches in shallow basin, we obtain

Tk ¼ 3AzL2

πk2gH3
; k ¼ 1; 2; 3 ð98Þ

Calculation of seiches’ periods for the viscous rotating flu-
id by (93) gives a lesser value of the relevant mode of seiche
other than calculation by the Merian’s formula for the nonvis-
cous nonrotating fluid.

4 Zonal asymmetry of westward and eastward
waves

4.1 Planetary drift

From (57), it follows that the term with the first-order deriva-
tive gives an asymmetry of eastward and westward directions.

The coefficient ∂G1
∂ f β at the first-order derivative in (57) has

the dimensions of velocity. Let us introduce a notation

Ud ¼ −
∂G1

∂ f
β ð99Þ

It follows from (58) and (99) that Ud depends on the
Coriolis parameter f(ϕ), wave frequency ω, and beta-effect.

For the limit values of Ud, we obtain
for ω>>f from (76):

Ud ¼ −
∂G1

∂ f
β ¼ gH

ω2
β ð100Þ

for ω<<f from (82):

Ud ¼ −
∂G1

∂ f
β ¼ g

f 2
H−

3

2
hE

� 	
β ð101Þ

where hE ¼ A
2 f

� �1=2 is the Ekman layer thickness.

In deep water, when hE < <H, from (99), we obtain

Ud ¼ gH

f 2
β ¼ Ro2β ð102Þ

where Ro ¼
ffiffiffiffiffi
gH

p
f – is the Rossby outer radius of

deformation.

As it is seen from (102), the velocity Ud for long-period
waves in deep water depends only on the planetary parameters
f and β, therefore, let us call it the planetary drift.

Figure 2 shows the dependence of Ud on the wave frequen-
cyω. It is shown that there are critical frequenciesω1 andω2

for given latitude and forω1<ω <ω2, when the planetary drift
is negative. Out of this interval, the planetary drift is positive.

Dispersion relation for zonal waves in the case (102) fol-
lows from (66).

ω ¼ −
Ro2βk

1þ Ro2k2
ð103Þ

As seen from (103), waves move to the west, but its group
velocities have the eastward direction.

dω
dk

¼ −
Ro2β 1−Ro2k2

� �
1þ Ro2k2
� � > 0 ð104Þ

for wave numbers k > 1/Ro .
So, as seen above, Earth sphericity is a reason for an asym-

metry in the tidal wave dynamics which results in the plane-
tary drift origin. It is obvious that on the f -plane, the planetary
drift does not exist and zonal waves are symmetrical.

The intervals of positive and negative values of the plane-
tary drift depend on the latitude.

In Fig. 3, the graphs ofUd for latitudesφ =30°, 40°, 50° are
given. For these latitudes, the values of ω= f corresponding to

semidiurnal tides are marked. One can see that the planetary
drift for semidiurnal tides forφ < 60° is positive, i.e., it has an
eastward direction. Ud approaches largest extremum around
φ = 45°–55°. It is interesting that the bays with the highest
tides are located at these latitudes and are open to the west.
Therefore, the planetary drift for semidiurnal tides can be the
reason for zonal asymmetry of western and eastern bays.

4.2 Dispersion relations for eastward and westward
waves

Let us go back to the dispersion relation (60). It follows from
(59) that Im(k1) and Im(k2) give dispersion relations for east-
ward and westward waves, and Re(k1) and Re(k2) are the cor-
responding decrements for these waves. For eastward waves in
k1 in (60), the discriminant is taken with a sign plus, i.e.,

k1 ¼ ∂G1
∂ f βþ ffiffiffiffi

D
p� �

=2F1, and for westward waves, the dis-

criminant is taken with a sign minus.
Let us introduce notations:

ki1 ¼ Im k1ð Þ; ki2 ¼ Im k2ð Þ; kR1 ¼ Re k1ð Þ; kR2 ¼ Re k2ð Þ ð105Þ

Figure 4 gives dispersion relation plots for h = 50m, A =
10−2 m2/sec, φ= 60°, β=2·10−11m−1· sec1 for

k ¼ ki1 ω= fð Þ; k ¼ ki2 ω= fð Þ ð106Þ
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Besides that, it also gives dispersion relation plots for
Rossby waves k2 = −β/ω, for long gravity waves without
viscosity kg ¼ �ω=

ffiffiffiffiffiffiffi
gH

p
and for viscosity adjusted through

Stokes layer ks ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g H−hstð Þp

long gravity waves for high
frequencies. One can see that for high frequencies, the disper-
sion relations for westward waves (negative k) and for east-
ward waves (positive k) are symmetrical. The asymmetry oc-
curs when the frequency approaches the critical value ωcr = f
and whenω <ωcr. Moreover, the length of the wave traveling

in a westward direction is larger than the length of the east-
ward traveling wave of the uniform frequency.

The dispersion relation for Rossby waves is in good agree-
ment with the expression for viscous waves for 0:2 < ω= f

< 0:7 for given depth h = 50m, but in the area of low frequen-
cies for ω= f < 0.2, it is just the other way round: for Rossby

waves, the wave number is growing, while for viscous waves
the wave number is decreasing due to the Stokes layer thick-
ness increase and the growing role of viscosity.

Fig. 2 Planetary drift velocity Ud

(m/s) for the latitudeφ ¼ π=3 and
depth H = 35m

Fig. 3 Planetary drift velocity Ud

(m/s) for depth H = 35m and
latitudes φ= (1) – 30°, (2) – 40°,
(3) – 50°, (4) – 60°. The numbers
(5) – (8) are the frequencies of
semidiurnal tides for φ= (5) –
30°, (6) – 40°, (7) – 50°, (8) – 60°
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Note that without sphericity, i.e., at β = 0, the dispersion

curves ki1 and ki2 become fully symmetrical.

4.3 Damping decrement and group velocity

As it is noted in Sect. 3.2, the damping decrements are deter-
mined by functions, RE (ω) = Re (k1), RW (ω) =Re (k2), RE – for
eastward waves and RW − for westward waves, respectively.

Figure 5 gives graphs of RE (ω) and RW (ω) at latitude
φ = 60° for a water object with h = 50m. The figure shows
that the decrements for the eastern and western waves differ
whenω < 0.5 f, and in the area of the critical frequencyωcr =
fwith the biggest difference between decrements.

Figure 5 shows that the damping decrement of the westward
waves can be 3–4 times larger than the decrement of the east-
ward waves for waves with similar critical frequencies. This
frequency domain is 0.8 <ω < 1.2. At the latitude of 45°, waves

Fig. 4 Dispersion relations for
viscous waves for h = 50m, A =
10−2m2/sec, φ = 60°,
β = 2 10−11m−1 ⋅ sec−1. (1)
ki1 ¼ Im g f βþ ffiffiffi

D
p

2F1

� �
; (2)

ki2 ¼ Im g f β−
ffiffiffi
D

p
2F1

� �
; (3) k = −β/

ω (zonal Rossby waves); (4) k ¼
ω=

ffiffiffiffiffiffiffi
gH

p
(linear gravitational

waves); (5)
k ¼ �ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g H−hStð Þp

Fig. 5 Damping decrements of
zonal viscous waves: (1)
westward waves RW(ω) = Re(k2);
(2) eastward waves
RE(ω) = Re(k1)
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of periods 11 h < T <16 h belong to this interval, e.g., semidiur-
nal tides. At the latitude of 65°, the ratio of damping decrements
RЕ/RW in the area of the critical frequency is RE/RW ~ 3 ÷ 4.

From Sect. 2.1, it follows that viscous waves on the beta-
plane are dispersive; therefore, the energy and mass transfer in
the zonal directions has group velocity V = ∂ω/∂k.
Differentiating (60) with respect to ω, we obtain reciprocal

quantities 1
V 1ð Þ
g
¼ ∂ki1

∂ω for eastwardwaves and 1
V 2ð Þ
g
¼ ∂ki2

∂ω for west-

wardwaves. The graphs of 1
�
V 1ð Þ
g
and 1

�
V 2ð Þ
g
and in Fig. 6 show

the asymmetry of waves with westward and eastward group
velocities. The asymmetry is particularly obvious in the area
near the critical frequency ωcr = f and for frequencies ω < f.
Note that positive group velocities correspond to the eastward
transfer; and negative, to the westward transfer. Moreover, as
seen from Fig. 6, there are areas of frequencies near f, where
waves traveling both eastward and westward have only east-
ward group velocities, and transfer energy and mass only in
the eastward direction.

5 Conclusions

As seen above, viscosity plays a significant role in the long-
wave dynamics. Stokes’ layer thickness is a criterion, which
separates two regimes of the wave evolution: low-viscosity
and viscous flows. When the depths are less than the Stokes’
layer thickness, the turbulent friction prevails for waves of
given frequency. Turbulent friction also changes dispersion
relations. An important result of viscosity in the long-wave
dynamics is the occurrence of the reduced depth. The reduced
depth is always lesser than the real depth.

The basic equation for the complex amplitudes of gravita-
tional waves obtained in the paper also describes the extreme
regimes of long-wave propagation—Rossby waves and vis-
cous waves at the depth less than the Stokes’ layer thickness.
Two Stokes’ layers occur in rotating fluid. The thickness of
the first approaches infinity as the frequency tends to inertial.
Considering the role of the Stokes’ layer as the criterion of the
viscosity influence we can conclude that for the waves of the
near-inertial frequency, the viscosity always plays a signifi-
cant role irrespective of ocean depths.

It is shown that the beta-effect is the reason for the asym-
metry of western and eastern directions in wave dynamics.
The sphericity of the Earth, causing the planetary drift, plays
a major role in the asymmetry of the eastward and westward
directions in wave dynamics. The planetary drift velocity de-
pends on the latitude, wave frequency, and ocean depth. A
range of near-inertial frequencies existed for any frequency,
within which the velocity of the planetary drift is directed
westward. Out of this range, the velocity has an eastward
direction.

Another reason for the asymmetry of the eastward and
westward directions in wave dynamics is friction. Friction
was found to affect eastward and westward waves through
the damping decrement in different ways. For waves with
the near-inertial frequencies, the damping ratio of westward
waves can be 5–6 times greater than that for eastward waves.

The asymmetry of the eastward and westward waves man-
ifests itself in the behavior of the group velocity of the wave
energy transfer. In a certain range of near-inertial frequencies
(in the middle latitudes, the frequency of the semidiurnal tidal
wave falls within such interval) the group velocity for both
westward and eastward waves is directed only eastward.

Fig. 6 Quantities reciprocal to
group velocities: (1) for waves
running eastward (curve 1 in Fig.
4); (2) for waves running west-
ward (curve 2 in Fig.4)
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It is shown that the asymmetry of the eastward and west-
ward directions in wave dynamics is the reason for the asym-
metry of western (open to the west) and eastern bays (open to
the east), which can be seen in different amplitude changes. As
it follows from the theory, the amplitude of the semidiurnal
tide in a western bay is greater than that in an eastern bay,
other conditions being the same.

The viscosity and Earth rotation and sphericity influence
seiches in enclosed water objects. The equation describing
tidal-wave dynamics in a rectangular zonal channel allows get-
ting a dispersion relation for seiches with regard to viscosity and
beta-effect. If we neglect the viscosity and Earth rotation, the
expression reduces to Merian’s formula. Earth rotation reduces
seiches’ periods compared to a nonrotating fluid. The calcula-
tion of the seiche periods for a viscous rotating fluid gives a
lesser value of the relevant seiches’ period than the calculation
by the Merian’s formula. Moreover, in view of the rotation, the
periods of seiches become dependable on the latitude. The vis-
cosity, in its turn, enhances the periods due to a decrease in the
length of gravity waves. The joint influence of these factors can
cause an effect similar to the dissipative-convergent intermit-
tency in the tidal wave dynamics in shallow estuaries described
by Zyryanov and Chebanova (2017a).

Returning to the problem of bays with giant tides, we
can make a conclusion based on the results of this paper
that the asymmetry of eastern and western bays caused by
the planetary drift and beta-effect exists, but at the scales of
bays, it is insignificant and cannot account for the giant
tides observed in some bays. The viscosity and local fac-
tors, such as the effect of the curvature of convergent bays,
can have much greater influence on the asymmetry of east-
ern and western bays, than the planetary effects. The paper
(Zyryanov and Chebanova 2017b) presents the results of
laboratory modeling of the Earth rotation impact on the
asymmetry of tidal wave evolution in curvilinear conver-
gent bays with the right bend (against the earth rotation
direction) and with the left bend (in the direction of the
earth rotation). Comparative analysis of bays shows that
the majority of all bays with significant tides have a right
bend (against the earth rotation direction). The explanation
given in the paper is based on the potential vorticity con-
servation law. Due to the conservation of the potential vor-
ticity, a water column gets the cyclonic vorticity when en-
tering a convergent bay. As a consequence, water column
height increases. This results in the lateral shear stress
growth in the right bays and its decrease in the left bays.
That is why, the dissipation of a tidal energy in the right
bays is lower and the amplitude of a tide is higher approx-
imately 1.5 times than that in the left bays.

In this paper we use the Btraditional approximation,^ i.e.,
the horizontal component of the Earth’s rotation is not taken
into account (Eckart 1960; Gerkema and Shrira 2005). We
think it is reasonable, as, in the near-inertial range of

frequencies, nontraditional effects in the stratified fluids act
as a singular perturbation (Gerkema and Shrira 2005).
Moreover, according to the paper (Gerkema and Shrira
2005), in a linear setting the ‘traditional approximation’works
well for waves outside the inertial range. In our case, the fluid
is homogeneous and the problem is linear. A detailed review
of the hydrodynamic effects in the geophysical fluid dynamics
beyond the traditional approximation is given by Gerkema
et al. (2008).

Acknowledgments The authors are grateful to the anonymous reviewer
for the detailed analysis of our paper and very useful comments and
discussions.

Funding This work was supported by the Russian Foundation for Basic
Research (RFBR project 16-05-00209 А).

References

Bowden KF (1988) Physical oceanography of coastal waters. Ellis
Horwood Ltd, New York

Defant A (1961) Physical oceanography. Pergamon, New York
Djordjevic VD (1980) On the dissipation of interfacial and internal long

gravity waves. J of Appl Math Phys(ZAMP) 31:318–331
Djordjevic VD (1983) On the effect of viscosity on some nonwave mo-

tions of liquids with the free surface. Acta Mech 48:219–226
Dronkers J J (1964) Tidal computations in rivers and coastal waters.

Amsterdam
Eckart C (1960) Hydrodynamics of oceans and atmospheres. Pergamon
Ekman VW (1905) On the influence of the Earth’s rotation on ocean

currents. Aroh math astron fhs 2:1–53
Friedrichs CT, Aubrey DG (1994) Tidal propagation in strongly conver-

gent channels. J Geophys Res 99:3321–3336
Gerkema T, Shrira VI (2005) Near-inertial waves in the ocean: beyond the

‘traditional approximation’. J Fluid Mech 529:195–219
Gerkema T, Zimmerman JTF, Maas LRM, Van Haren H (2008)

Geophysical and astrophysical fluid dynamics beyond the traditional
approximation. Rev Geophys 46:RG2004

Gill AE (1982) Atmosphere-Ocean Dyn. Academic, NewYork
Grimshaw RHJ, Ostrovsky LA, Shrira VI, Stepanyants YA (1998) Long

nonlinear surface and internal gravity waves in a rotating ocean.
Surv Geophys 19:289–338

Harleman DRF (1966) Tidal dynamics in estuaries, part II: Real estuaries.
In: Estuary and Coastline Hydrodynamics, edited by A.T. Ippen.
McGraw-Hill, New York

Hunt JN (1964) Tidal oscillations in estuaries. Geophys J R Astron Soc 8:
440–455

Hydrodynamics of Lakes (1984), Kolumban Hutter, Ed., Wien: Springer
Verlag. 341 p. ISBN: 978–2–211-81812-1

Ippen AT (1966) Estuary and coastline hydrodynamics. McGraw Hill,
New York

Jay DA (1991) Green’s law revisited: tidal long-wave propagation in
channels with strong topography. J Geophys Res 96:20585–20598

Jelesnianski CP (1970) Bottom stress time-history in linearized equations
of motion for storm surges. Mon Weather Rev 98:462–478

Jordan TP, Baker JR (1980) Vertical structure of time-dependent flow
dominated by friction in a well-mixed fluid. J Phys Oceanogr 10:
1091–1103

Kakutani T, Matsuuchi K (1975) Effect of viscosity on long gravity
waves. J Phys Soc Jpn 39:237–246

440 Ocean Dynamics (2019) 69:427–441



Lanzoni S, Seminara G (1998) On tide propagation in convergent estuar-
ies. J Geophys Res 103:30793–30812

Lanzoni S, Seminara G (2002) Long-term evolution and morphodynamic
equilibrium of tidal channels. J Geophys Res 107:1–13

Le Blond PH (1978) On tidal propagation in shallow rivers. J Geophys
Res 83:4717–4721

Le Blond PH, Mysek LA (1978) Waves in the ocean. Elsevier,
Amsterdam

Lighthill J (1978) Waves in fluids. Univ. Press, Cambridge
Maz’ya VG (1972) On a degenerating problem with directional deriva-

tive. Math USSR-Sb 16(3):429–469
Mofjeld HO (1980) Effects of vertical viscosity on Kelvin waves. J Phys

Oceanogr 10:1039–1050
Nakaya C (1974) Spread of fluid drops over a horizontal plane. J Phys

Soc Jpn 37:539–543
Pedlosky J (1982) Geophysical fluid dynamics. Springer-Verlag, New

York
Perroud P (1959) The Propagation of tidal waves into channels of grad-

ually varying cross section. Technical memorandum. Beach Erosion
Board. Washington, D. C. 112

Platzman GW (1963) The dynamical prediction of wind tides on Lake
Erie. The dynamical prediction of wind tides on Lake Erie.
American Meteorological Society, Boston, MA, pp 1–44

Poincare H. (1910) Lecons de Mecanique celeste. III. Paris
Prandle D (1985) Classification of tidal response in estuaries from chan-

nel geometry. Geophys J R Astron Soc 80:209–221
Prandle D (2009) Estuaries. Dynamics, mixing, sedimentation and mor-

phology. Univ. Press, Cambridge
Prandle D, Rahman M (1980) Tidal response in estuaries. J Phys

Oceanogr 10:1552–1573

Proudman J (1925) Tides in a channel. Philos Mag (49)6:465
Proudman J (1953) Dynamical oceanography. London
Savenije HHG (1992) Lagrangian solution of St. Venant's equations for

an alluvial estuary. J Hydraul Eng 118:1153–1163
Savenije HHG (2005) Salinity and tides in alluvial estuaries. Elsevier,

Amsterdam
Savenije HHG, Veling EJM (2005) The relation between tidal damping

and wave celerity in estuaries. J Geophys Res 110:1–10
Taylor GI (1922) Tidal oscillations in gulfs and rectangular basins. Proc

Lond Math Soc 20:148–181
Van Rijn LC (2011) Analytical and numerical analysis of tides and salin-

ity in estuaries. Pt I. Tidal wave propagation in convergent estuaries.
Ocean Dyn 61:1719–1741

Welander P (1957)Wind action on a shallow sea: some generalizations of
Ekman’s theory. Tellus 9:45–52

Zyryanov V N (1995) Topographic eddies in sea current dynamics.
Moscow (in Russian)

Zyryanov VN (2014) Nonlinear pumping in oscillatory diffusive process-
es: the impact on the oceanic deep layers and lakes. Commun
Nonlinear Sci Numer Simul 19:2131–2139

Zyryanov VN, ChebanovaMK (2016) Hydrodynamic effects at the entry
of tidal waves into estuaries. Water Res 43:621–628

Zyryanov VN, Chebanova MK (2017a) Dissipative-convergent intermit-
tency in dynamics of tidal waves in estuaries. Fluid Dynamics 52:
722–732

Zyryanov VN, Chebanova MK (2017b) Experimental studies of the right
and left bays asymmetry in the tidal waves dynamics. Process Geo-
media 1(10):410–418

Ocean Dynamics (2019) 69:427–441 441


	Viscous waves on a beta-plane and its zonal asymmetry
	Abstract
	Introduction
	Viscous waves
	Zonal viscous waves on a beta-plane
	Extreme cases
	Inviscid fluid
	Viscous fluid
	Viscous seiches on a beta-plane


	Zonal asymmetry of westward and eastward waves
	Planetary drift
	Dispersion relations for eastward and westward waves
	Damping decrement and group velocity

	Conclusions
	References


