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Abstract
We analyze surface wave data taken in Currituck Sound, North Carolina, during a storm on 4 February 2002. Our focus
is on the application of nonlinear Fourier analysis (NLFA) methods (Osborne 2010) to analyze the data set: The approach
spectrally decomposes a nonlinear wave field into sine waves, Stokes waves, and phase-locked Stokes waves otherwise known
as breather trains. Breathers are nonlinear beats, or packets which “breathe” up and down smoothly over cycle times of
minutes to hours. The maximum amplitudes of the packets during the cycle have a largest central wave whose properties are
often associated with the study of “rogue waves.” The mathematical physics of the nonlinear Schrödinger (NLS) equation is
assumed and the methods of algebraic geometry are applied to give the nonlinear spectral representation. The distinguishing
characteristic of the NLFA method is its ability to spectrally decompose a time series into its nonlinear coherent structures
(Stokes waves and breathers) rather than just sine waves. This is done by the implementation of multidimensional, quasi-
periodic Fourier series, rather than ordinary Fourier series. To determine preliminary estimates of nonlinearity, we use the
significant wave height Hs , the peak period Tp, and the length of the time series T . The time series analyzed here have 8192
points and T =1677.72 s = 27.96 min. Near the peak of the storm, we find Hs ≈ 0.55 m, Tp ≈ 2.4 s so that for the wave
steepness of a near Gaussian process, S = (π5/2/g

)
Hs/T 2

p , we find S ≈ 0.17, quite high for ocean waves. Likewise, we
estimate the Benjamin-Feir (BF) parameter for a near Gaussian process, IBF = (π5/2/g

)
HsT/T 3

p , and we find IBF ≈ 119.
Since the BF parameter describes the nonlinear behavior of the modulational instability, leading to the formation of breather
packets in a measured wave train, we find the IBF for these storm waves to be a surprisingly high number. This is because
IBF , as derived here, roughly estimates the number of breather trains in a near Gaussian time series. The BF parameter
suggests that there are roughly 119 breather trains in a time series of length 28 min near the peak of the storm, meaning
that we would have average breather packets of about 14 s each with about 5-6 waves in each packet. Can these surprising
results, estimated from simple parameters, be true from the point of view of the complex nonlinear wave dynamics of the BF
instability and the NLS equation? We analyze the data set with the NLFA to verify, from a nonlinear spectral point of view,
the presence of large numbers of breather trains and we determine many of their properties, including the rise time for the
breathers to grow to their maximum amplitudes from a quiescent initial state. Energetically, about 95% of the NLFA compo-
nents are found to consist of breather trains; the remaining small amplitude components are sine and Stokes waves. The presence
of a large number of densely packed breather trains suggests an interpretation of the data in terms of breather turbulence,
highly nonlinear integrable turbulence theoretically predicted for the NLS equation, providing an interesting paradigm for
the nonlinear wave motion, in contrast to the random phase Gaussian approximation often considered in the analysis of data.
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1 Introduction

It is well known that random ocean waves are character-
ized to linear order by the Fourier transform for which one
has a linear superposition of sine waves with random, uni-
formly distributed Fourier phases. The central limit theorem
tells us that such a stochastic process has a Gaussian den-
sity function for the wave amplitudes. Furthermore, for a
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narrow-banded process, the envelope of a Gaussian process
has a Rayleigh distribution, a result that led Longuet-
Higgins (1952) to the conclusion that narrow-banded wave
heights are approximately Rayleigh distributed. Pierson and
Moskowitz (1962) gave a way to characterize ocean wave
spectra by a simple formula, and later on the JON-
SWAP spectrum (Hasselmann et al. 1962, 1963a, b) was
developed to extend their work to nonequilibrium wave
motion. The use of the random phase approximation in
the study of stochastic processes has been seminal to the
modern understanding of random waves from both experi-
mental and theoretical points of view (Kinsman 1965).

However, it is also well known that the Stokes wave
nonlinearity is visible by eye in many random time series.
Essentially, it is quite common to find time series that are
up/down antisymmetric such that the crests are higher than
the troughs are low (this observation has led to a very large
and separate field for the statistical properties of linear and
nonlinear ocean waves, see for example Goda (2010) for a
modern overview). The Stokes antisymmetry contrasts with
the Gaussian approximation that is up/down symmetric.

The study of randomness in nonlinear ocean waves has
naturally led to the study of weak wave turbulence, an area
of research that has many implications on the dynamics of
wind waves (Hasselmann 1962, 1963a, b; Pushkarev et al.
2003, 2004; Resio et al. 2004, 2011; Badulin et al. 2005;
Korotkevich et al. 2007; Badulin et al. 2007; Resio 2016;
Ardag and Resio 2017; Zakharov et al. 2017) providing the
modern basis of wind wave models (Komen et al. 1994;
Young 1999; Janssen 2004; Holthuijsen 2007).

Here, however, we consider the alternative additional
possibility that random ocean waves can, to leading order,
be described in terms of coherent structures or coherent
waveforms in the wave field, such as Stokes waves, solitons,
and breather trains, which are the natural basis states of the
so-called integrable, nonlinear wave equations. Integrable
systems include the Korteweg-deVries and the nonlinear
Schrödinger equations and their algebro-geometric solu-
tions in terms of Riemann theta functions (a generalization
of ordinary Fourier series) (Belokolos et al. 1994). The
theoretical formulation for finding spectral solutions to non-
linear wave equations, typically for periodic or quasiperi-
odic boundary conditions, is referred to as the periodic
inverse scattering transform (IST) in the USA (Ablowitz
and Segur 1981) and to finite gap theory (FGT) in Russia
(Belokolos et al. 1994).

In applications of integrable wave equations, one can
think of studying their solutions for high nonlinearity, for
which one has an approximation for turbulence that has been
referred to as integrable turbulence (Zakharov 1968, 1999,
2009) (El and Kamchatnov 2005). Such a paradigm, using
Riemann theta functions, requires considerable theoretical

and numerical development, which we only briefly refer to
herein (Osborne 1993, 2010, 2017). In the case of soliton
turbulence, the statistical properties of the experimentally
measured oceanic wave field are governed by a field of
densely packed solitons (Costa et al. 2014).

Herein, we discuss, again from an experimental point of
view, a similar highly nonlinear case where the nonlinear
statistical properties of the surface wave field are described
by densely distributed breather packets, a physical case
that we call breather turbulence. The properties of the
breather trains are described by the nonlinear modes of the
measured wave field found by projecting onto the nonlinear
Fourier structure of the nonlinear Schrödinger equation.
This projection process is naturally referred to herein as
nonlinear Fourier analysis (NLFA) and/or the nonlinear
Fourier transform (NLFT). Therefore, for simplicity, we are
here referring to the IST (as used in the USA) and FGT
(as used in Russia) as the NLFT. A measured wave train
is therefore constructible from Riemann theta functions
(a kind of nonlinear superposition law) using the natural
sine wave and Stokes wave basis functions, and from
phase-locked Stokes waves, which are the breather trains
themselves.

The problem of developing a nonlinear Fourier theory
for random waves influenced by the Stokes wave nonlinear-
ity historically required the additional focused study of the
Benjamin-Feir instability (Benjamin and Feir 1967;
Zakharov 1968). Given a time series of length T with
a significant wave height Hs and peak period Tp one
can compute a measure of the BF instability using the
Benjamin-Feir parameter for a near Gaussian process in
deep water (Osborne 2010) (see also Section 3.4 below):

IBF = π5/2

g

Hs

T 3
p

T (1)

An alternative form of IBF for arbitrary depth is discussed
below but it is less transparent in terms of physical wave
parameters. This global form of the BF parameter (here
“global” refers to an entire time series, not the individual
NLFA spectral components themselves, see below) derives
from the natural expression used by Yuen and Lake (1982)
(see also Osborne (2010) for a discussion in terms of
NLFA).

On the contrary the spectral BF parameter (sBF) (Eq. 36
below) characterizes nonlinearity in each component or
mode that occurs in a nonlinear random wave train governed
by the NLS equation, as seen in Table 1. Thus, the sBF
parameter, provided it is small enough for each mode,
reduces the NLFT to the linear superposition of sine
waves in the random phase approximation, with Gaussian
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Table 1 There are typically four kinds of nonlinear Fourier “modes”
or “components” in the NLFA Spectrum that depend on the spectral
BF parameter (Eq. 36)

Comp. Benjamin-Feir Type of Degree of

Num. Parameter Component Nonlinearity

1 IBF << 1 Sine waves Weak Nonl

2 IBF < 1 Stokes waves Mild Nonl

3 IBF ≥ 1 Breather packets High Nonl

4 IBF >> 1 Super breathers High Nonl

amplitudes. When the sBF parameter is of moderate size,
but less than 1, the NLFA consists of a Stokes wave
component. The surprise occurs when the sBF parameter
is greater than 1: Two Stokes wave components can pair-
wise phase lock with each other to form a breather packet:
Such a packet is essentially a nonlinear beat. The breather
packet is physically characterized by the fact that its
amplitude oscillates up and down with a regular period as
it propagates. This “breathing time” leads to the idea of the
rise time from a quiescent initial state, or half the Fermi-
Pasta-Ulam cycle time. This behavior contrasts to that of
a linear beat, which is a packet that maintains constant
amplitude as it propagates. Thus, the appearance of an
extreme wave within a breather packet that has risen to near
its maximum amplitude, generally does not remain large for
a long period of time because of the breathing cycle. For
example, suppose a breather has a rise time of 20 min. Then,
we expect the appearance of an exceptionally large wave
in a breather packet will occur for only about 3 or 4 min
of this time (see examples in Figs. 11 and 12 below). This
dynamical behavior thus limits ones exposure to “rogue
waves.”

The formation of extreme waves in a nonlinear sea state
with large global IBF is naturally described by the nonlinear
physics of densely packed, large breather states. By now,
after developments during the last 20 years, there are several
books and hundreds of papers in the literature on this subject
(Pelinovsky and Kharif 2008; Kharif et al. 2009; Osborne
2010).

A recent report from DNV-GL (Det Norske Veritas -
Germanischer Lloyd) provides a recent overview of the
use of breathers in offshore engineering (Bitner-Gregersen
and Gramstad 2015) and a solid list of additional refer-
ences: The latter paper is a pioneering work for engineering
applications and an important step because it provides a
first modern perspective on the application of breather train
dynamics to offshore structure and ship design consid-
erations. This report is the beginning of the first depar-
ture from the traditional design procedures using Gaussian
random waves (with the design wave defined as the 1/1000

wave in the one-in-one-hundred year storm) in over 50
years.

In a previous paper, we have analyzed surface wave data
in Currituck Sound and found a robust soliton spectrum
that was interpreted as the first experimental evidence for
soliton turbulence in low frequency oscillations in shallow
water ocean waves (Costa et al. 2014). These results were
based on nonlinear Fourier analysis (NLFA) methods at low
frequency in the physical regime of the Korteweg-deVries
equation.

Here, we use the NLFT to analyze the Currituck Sound
data during a storm and in so doing we find robust breather
spectra in a number of time series. The breathers are
densely packed in the time series and it is thus natural that
we give an interpretation in terms of a highly nonlinear
dense gas of breather trains that are undergoing strong
nonlinear interactions with one another. It is natural to also
refer to these dense breather trains as breather turbulence.
The nonlinear interactions of breathers result in mutually
repulsive forces and so breathers tend to remain well
separated, on the average, from one another in a measured
time series. This perspective provides a natural physical
motivation for designating highly nonlinear sea states as
being stationary and ergodic.

The NLFA method allows us to obtain the NLFT of each
of the measured time series of about 30 min in length. The
wave periods are roughly in the range of 2–3 s, so that a
typical time series has about 600–900 waves. The nonlinear
Fourier formulation computes the following information:

(1) Signatures for the different spectral components,
including sine waves, NLS Stokes waves and breather
packets

(2) The maximum amplitudes reached by individual
breather packets during their lifetimes

(3) The rise time to maximum amplitude of each packet
(4) The Stokes wave modulus of each wave component
(5) The physical shape of each breather packet
(6) The maximum steepness of each rogue wave candidate

Since the largest central waves of the breather trains at
maximum amplitude are often referred to as rogue waves,
we provide information about the extreme events in the time
series and estimate the rogue wave amplitudes and heights
that could occur in Currituck Sound.

We give a brief overview of the Currituck Sound
experiment in Section 2. Section 3 is dedicated to a
discussion of some important features of nonlinear Fourier
analysis. We discuss details of the data set taken during the
storm of 4 February 2002 in Currituck Sound in Section 4.
Section 5 is dedicated to the analysis of the Currituck Sound
data and its interpretation in terms of breather turbulence.
Finally, Section 6 gives a summary of the results.
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2 Overview of Currituck Sound experiment

The apparatus used in the Currituck Sound experiment was
placed near the U. S. Army Corp of Engineers Field Research
Facility as shown in the map of Fig. 1 (Long and Resio
2004, 2007). Figure 2 shows the geometry of the directional
array used in making the time series measurements. The
instrument has the form of two orthogonal linear arrays
with a single shared gauge in the middle. Because the
array is fully two dimensional, one has 360◦ directional
resolution. Thus, the instrument avoids the 180◦ ambiguity
that occurs for one-dimensional arrays. Each linear-array
arm was designed using the methods of (Davis and Regier
1977). The minimum gauge spacing is 0.1 m, implying that
the shortest resolvable wave has a length exceeding 0.2 m.
Maximum gauge spacing along one arm of the instrument
(a degenerate case for wave crests parallel to the arm) is
1.6 m. Reasonably good directional resolution is possible
for waves several times this length due to the fact that
directional estimates are obtained by cross-spectral phase
differences computed between pairs of gauges. Thus, the
array only needs to sample a large enough fraction of a
wave length to detect a phase difference. Beyond roughly
ten times maximum spacing (a wave length of about 16 m
or a deep-water frequency of about 0.3 Hz), the resolution
degrades to that of a low-resolution directional gauge,
capable of estimating only a few of the low moments of

Fig. 1 Map of Currituck Sound showing the U. S. Army Engineer
Field Research Facility (FRF) pier and the location of the experiment
analyzed herein (sled)

Fig. 2 Experimental design for Currituck Sound measurements.
Shown are the nine wave resistance gauges (black dots) and their
locations: The basic instrument forms a directional antenna

a directional distribution function. However, the range of
frequencies from 0.3 Hz to 2.8 Hz includes the frequencies
of interest in this study, so the array geometry is adequate
for our purposes. Prior to deployment, each of the wave rods
was statically calibrated along its sensing length to establish
a gain and offset for interpretation of its digital output. With
the exception of a few tens of centimeters at the tops and
bottoms of the wave rods, the response was very linear. The
instrument array can be seen on location in Currituck Sound
in Fig. 3. Additional details of the instrument can be found
in Long and Resio (2004, 2007). A typical power spectrum
measured in Currituck Sound is shown in Fig. 4.

3 Overview of nonlinear Fourier analysis

NLFA is a Fourier (spectral) theory of ocean waves in
which interacting NLS Stokes waves are the natural basis
functions, rather than the traditional Fourier theory of
linearly superposed sine waves. NLFA is the exact algebro-
geometric solution of the nonlinear Schrödinger (NLS)
equation: It is this formulation which is the theoretical
basis of NLFA, i. e., “Fourier analysis with Stokes waves.”
Some historical background, theoretical formulation, and
data analysis methods are given in Osborne (2010) and cited
references. The need for a nonlinear Fourier formulation
has been recognized since the beginning of modern wave
measurements when the Stokes wave nonlinearity was
first seen in measured time series. The search for such a
method has been long and difficult. It became clear early
on (Kinsman 1965) that the paradigm for ocean waves as
a linear superposition of sine waves with random phases
was quite useful, and this is the approach still most used
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Fig. 3 Photograph of instrument array on location in Currituck Sound
in 2.63 m water depth (see map in Fig. 1)

today. Here, we give an overview of the nonlinear Fourier
theory and discusses some of the reasons it too is becoming
useful for the study and enhancement of our understanding
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Fig. 4 Power spectrum averaged over nine simultaneous probe
measurements at 21:00 of the Currituck Sound storm studied in the
present paper on 4 February 2002

of nonlinear ocean waves. We now discuss NLFA and its
physical and mathematical basis.

3.1 Summary of features of the NLFT

The NLFA algorithm uses nonlinearly interacting Stokes
wave basis functions to construct the nonlinear Fourier
spectrum of the data. The NLFA method is based on the
mathematical physics and basis functions of the nonlinear
Schrödinger (NLS) equation. A time series is well known
to be approximated by a near-Gaussian random process
with significant wave height Hs , spectral peak period
Tp, and temporal length T . Deviations from an actual
Gaussian process are due to nonlinearities in the physics of
ocean waves. Two nonlinear physical effects are important
herein: The Stokes wave nonlinearity and the Benjamin-
Feir instability. The Stokes wave effect is here formulated
as an “operator” that maps solutions of the NLS equation to
the actual surface wave elevation. The Stokes operator thus
further enhances the nonlinear physical behavior already
described by the complexities of the NLS equation. NLS
physics is governed by the Benjamin-Feir (BF) instability
and is characterized by a global BF parameter. This global
modulational parameter is based on NLFA for the NLS
equation and is here extended to include near Gaussian time
series:

IBF = (π5/2/g)HsT /T 3
p

Near Gaussianity implies IBF is larger for steeper waves
and for narrower bandwidth spectra. The importance of
the near Gaussianity assumption is that (1) one insures
the physics is near that for ocean waves and that (2)
one emphasizes large amplitude modulations, rather than
the historically important small-amplitude modulations.
The behavior of the nonlinear Fourier components in the
nonlinear spectrum depends on the size of IBF :

(1) NLFA reduces to the linear superposition of sine
waves (a linear Gaussian random process) in the small-
amplitude linear limit for IBF << 1.

(2) NLFA describes interacting NLS Stokes wave basis
functions that are valid for small, but finite-amplitude
wave motion for IBF < 1.

(3) For sufficiently steep and narrow-banded wave
motion, such that IBF > 1, pairs of NLS Stokes waves
can phase lock with each other and form nonlinear
beats or breather packets.

(4) For IBF >> 1, triples, quadruples and higher NLS
Stokes couplings and/or phase locking can occur.
These wave packets we refer to as “superbreathers.”
Up to now, superbreathers have not been seen in the
ocean, but improved numerical methods and remotely
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sensed wave fields may allow their discovery in future
work.

Several observations about the NLFA method can be
made:

(1) The envelope description of ocean waves for the
NLS equation, formally developed for small amplitude
modulations, is here extended to the near Gaussian,
large amplitude case. This means that the wave
envelope of ocean waves is a near Rayleigh process
and describes large amplitude modulations. This
contrasts to the small amplitude modulations studied
classically in modulation theory.

(2) The breather trains are nonlinear packets that
“breathe” up and down during their lifetimes, some-
times reaching amplitudes up to ∼3–4 times the car-
rier wave amplitude ao of the time series (ao =√

π/32Hs for a Rayleigh process). Here ao is the aver-
age of the modulation envelope of the time series as
found by the Hilbert transform.

(3) The large solutions of the NLS equation can theoret-
ically be very high and consequently the maximum
amplitudes of the breather trains must necessarily be
limited by wave breaking.

(4) The rise time or cycle time for a breather to reach
the maximum amplitude varies from a few minutes to
several hours. It is important to characterize the time
scales of potential breather motions to help distinguish
linear dispersive wave motion and Stokes wave effects
from actual breather dynamics in the ocean.

It may well be that particular data sets of ocean surface
waves have sufficiently small BF parameter (with small Hs

and/or sufficiently large Tp) such that sine wave and/or NLS
Stokes wave basis functions are sufficient to describe their
nonlinear dynamics: In this case, breathers do not occur and
the nonlinear Fourier decomposition is purely in terms of
classical Stokes waves. In the case of the Currituck Sound
data, however, we find instead that the BF parameter is
typically so great that there are large numbers of breather
trains in all of the time series we have analyzed. In many
cases, near the peak of the storm, the number of breather
trains numbers over one hundred for a time series with a
length of about 28 min.

It is therefore natural to think in terms of breather
turbulence to describe the nonlinear dynamics of Currituck
Sound surface waves: Densely packed breather packets
mixing and interacting with one another in a fashion so
complex that a nonlinear stochastic description becomes
useful. Such a sea state is called a rogue sea, because the
large, rare extreme waves that occur at the maximum of
the breather packet cycle are often referred to as rogue
waves, since these extreme waves substantially exceed those

for a Gaussian or Rayleigh distribution. We discuss the
occurrence of rogue seas and their impact on the behavior of
nonlinear ocean waves, including the determination of the
risk level for extreme waves.

3.2 The nonlinear Schrödinger equation

The nonlinear Schrödinger equation can be written in two
ways: (1) The “space” NLS equation (sNLS) which is an
initial value problem that can be adopted for the analysis of
space series and (2) The “time” NLS equation (tNLS) which
is a boundary value problem that can be adopted to analyze
time series (the main goal of this paper).

The “Space” NLS Equation and its Relation to Space Series
Analysis We here summarize the nonlinear Schrödinger
equation, in which we use coefficients valid for arbitrary
water depth (see, for example, Zakharov 1968; Hasimoto
and Ono 1972; Whitham 1974; Yuen and Lake 1982 and
Mei 1983). The sNLS equation is given by

i(ψt + Cgψx) + μψxx + ν|ψ |2ψ = 0 (2)

The sNLS equation solves the Cauchy initial value problem:
Given ψ(x, 0), then (2) determines the solutions for all
space and time ψ(x, t). The constant, real coefficients as a
function of the water depth h of the NLS equation are given
by

Cg = ∂ωo

∂ko

= c

2

[
1 + (1 − σ 2

o )koh

σo

]
(3)

μ = 1

2

∂2ωo

∂k2
o

= (4)

= − g

8koσoωo

{[
σo−koh(1−σ 2

o )
]2+4k2

oh
2σ 2

o (1−σ 2
o )

}

ν = − k4
o

2ωo

(
c

2σo

)2
{

1

C2
g − gh

×

×
[
4c2 + 4(1 − σ 2

o )cCg + gh(1 − σ 2
o )2
]

+ (5)

+ (9 − 10σ 2
o + 9σ 4

o )

2σ 2
o

}

ω2
o = gkoσo, σo = tanh(koh) (6)

Here, ωo and ko are the carrier frequency and wavenumber,
described in more detail below for near Gaussian time
series. Here, Cg is the linear group speed of a wave
packet. The depth-dependent constant μ is the coefficient
of the second-order dispersion term in the NLS (2). The
depth dependent constant ν is the coefficient of the cubic
nonlinear term in NLS. It is well known that μν > 0 for
instabilities to be present (Whitham 1974). This idea will be
exploited later to understand the formation of breather trains
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with regard to the spectral definition for the BF parameter
(see Eq. 36 in Section 3.5 below and related text).

The linear phase speed is given by

c = ωo

ko

=
(

gσo

ko

)2

(7)

The NLS equation has the complex envelope solution

ψ(x, t) = A(x, t)e−iω′t+iφ(x,t) (8)

where A(x, t) is the real envelope and φ(x, t) is the real
phase. Here, ω′ is the nonlinear Stokes frequency correc-
tion. The associated modulated Stokes wave approximation
to the free surface elevation is given to second order by

η(x, t) = − γA2

4koσo

+ A

[
1 + CgAφx

ωo

]
cos θ+ (9)

+CgAx

ωo

sin θ + δA2

4koσo

cos 2θ + . . .

where A = A(x, t) is the real modulation envelope and

θ = θ(x, t) = kox − (ωo + ω′)t + φ(x, t) (10)

is the total phase. Here,

θo(x, t) = kox − ωot (11)

is the carrier phase and φ(x, t) is the modulation phase.
The real constants γ , δ are given by

γ = 2ωokoCg + (1 − σ 2
o )ghk2

o

gh − C2
g

(12)

δ = (3 − σ 2
o )k2

o

σ 2
o

(13)

and the nonlinear, amplitude-dependent Stokes frequency
correction is

ω′ = ν
g2Ā2

4ω2
o

(14)

The term −γA2/4koσo in the free surface elevation (9)
corresponds to slow, long wave variations referred to
as radiation stress (Longuet-Higgins and Stewart 1960).
Radiation stress depresses the mean sea level beneath a
packet of surface waves. Note that by virtue of the fact that
the dispersion parameter σo = σo(koh) is a function of the
depth means that all of the parameters for sNLS depend on
depth.

Given that Eq. 9 is a modulated Stokes wave, it is
natural to ask the question: Are modulated Stokes waves
stable? Will their amplitudes grow to large values after
an initial small-amplitude modulation? These were the
questions asked by Benjamin and Feir (1967), who found
that the Stokes wave is not stable provided that kh >

1.36 (see also Whitham). Only when a Stokes wave is
stable, kh < 1.36, can we speak of a wave train which
propagates without change of form, maintaining the typical

Stokes wave shape with high peaks and shallow troughs.
In the unstable region kh > 1.36, the envelope of a
Stokes wave train can grow exponentially for small times,
as seen in the detailed discussions below. However, the
exponential growth eventually slows, reaches a maximum
and then decreases: These solutions refer to breather packet
dynamics.

As noted above, ψ(x, 0) is the initial value of a Cauchy
solution of the sNLS equation. The important role of
ψ(x, 0) in this problem is also reflected by the fact that this
function can be thought of as a measured space series and
thus the sNLS equation is important for the NLFA of space
series. Herein, however, we are primarily interested in the
analysis of time series, as discussed in the next section.

The “Time” NLS Equation and its Relation to Time Series
Measurements For the analysis, herein, we seek to analyze
the nonlinear Fourier structure of time series. To see how to
do this first note that the leading order term for the surface
wave elevation in Eq. 9 is given by

η(x, t) = Re
{
ψ(x, t)eikox−iωot

}
(15)

For data analysis purposes, we will use the full second-
order modulated Stokes wave Eq. 64 below. As stated
above, Eq. 2 solves the Cauchy initial value problem: Given
ψ(x, 0) compute ψ(x, t) for all space and time. Given
η(x, 0), we can use Eq. 9 to compute the surface elevation
η(x, t) for all space and time.

But in the analysis of data, herein, we are instead
confronted with a time series η(0, t) for which theoretically
we should be able to compute η(x, t) for all space and
time. This later sentence is a statement of a boundary value
problem and not the initial value problem just discussed
above. How can we construct the boundary value problem
from the initial value problem (2) so that we can analyze
time series? That is the question we now answer.

To solve this problem, we must first obtain the tNLS
equation. Note that at leading order in nonlinearity in Eq. 2,
we have

ψt + Cgψx
∼= 0 (16)

so that ψx
∼= −ψt/Cg and ψxx

∼= ψtt/C2
g . When these are

used in the higher order terms in (2), we obtain the “time”
NLS equation (tNLS):

i(ψx + C′
gψt ) + μ′ψtt + ν′|ψ |2ψ = 0 (17)

where

C′
g = 1

Cg

(18)

μ′ = μ

C3
g

(19)
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ν′ = ν

Cg

(20)

The inverse scattering transform parameter used to obtain
the nonlinear spectrum has the following form:

ρ′ =
√

ν′
2μ′ = Cg

√
ν

2μ
= Cgρ, ρ =

√
ν

2μ
(21)

A measured time series η(0, t) is multiplied by ρ′ before
taking the NLFT to obtain the nonlinear spectrum as
explained in Section 3.5 below. Solutions to tNLS Eq. 17
are related to solutions of sNLS (2) by the simple
transformation

x → t, t → x, ρ → ρ′

Cg → C′
g, ν → ν′, μ → μ′ (22)

Thus, the space (2) and time (17) NLS equations are
related by a simple change of variables and parameters
(22). Physically, the tNLS Eq. 17 solves a boundary value
problem: Given the boundary value, ψ(0, t), the space/time
dynamics of Eq. 17 determine the solutions over all space
and time, ψ(x, t). Equation 17 is thus suitable for the time
series analysis of measured wave trains whose assumed
behavior is temporal and given by ψ(0, t). We are of course
using the fact that a time series is obtained by in situ
instrumentation assumed to be located at the spatial position
x = 0.

One must be careful in comparing exact solutions of
sNLS and tNLS because (1) the equations are only asymp-
totically similar and (2) the space and time coordinates have
been interchanged. This means that if we call solutions of
sNLS ψS(x, t), then we must call the solutions of tNLS
ψT (t, x) (note the interchange of x and t). It is only in this
sense that we can graphically compare solutions of sNLS
and tNLS: ψS(x, t) ≈ ψT (t, x). If one forgets, for example,
to interchange x and t in ψT then might conclude that the
solutions of the two equations are not comparable.

In the remainder of the paper, we will give mathematical
expressions in terms of the Cauchy problem, unless we
mention otherwise. The simplicity of the transformation
between sNLS and tNLS allows us to do this.

3.3 Overview of themathematical basis of nonlinear
Fourier analysis

NLFA is formally the body of mathematical methods for
solving the sNLS Eq. 2 for spatially periodic boundary
conditions and the tNLS (17) for temporally periodic
boundary conditions. Because of the simple transformation
between these two equations, the solutions to NLS are the
same within a simple interchange of variables and can be

adapted to both equations, with the proviso at the end of
Section 3.2. Many of the mathematical methods are from
the field of algebraic geometry, see for example (Belokolos
et al. 1994). We only briefly note the essential features of
the methods here.

The direct NLFT solves an eigenvalue problem and the
inverse NLFT is constructed using Riemann theta functions.
We first discuss the inverse problem and then the direct
problem.

The inverse problem: the Riemann theta functions It is well
known that the NLFT (or as it is referred to in the literature
the inverse scattering transform (see Osborne (2010) and
references) or finite gap theory (see Belokolos et al. (1994))
solves the tNLS equation for temporally periodic boundary
conditions (ψ(x, t) = ψ(x, t + T )) whose solution is given
by:

ψ(x, t) = ao

θ(x, t |τ, φ−)

θ(x, t |τ, φ+)
ei(k′x−ω′t) (23)

The solution is seen to be a ratio of Riemann theta functions
with two different sets of phases φ−, φ+ (Kotljarov and Its
1976; Tracy and Chen 1988 and Belokolos et al. 1994).
Here, k′ and ω′ are the physical Stokes wave corrections to
the dispersion relation as computed by algebraic geometry
(Osborne 2010). Their meaning is made clearer below. The
theta function is defined as the particular multidimensional
Fourier series:

θ(x, t) =
∑

n∈ZN

θnein·k x−in·ωωω t+in·φφφ (24)

where θn = exp [iπn · τττn], n is an integer vector of length
N , τττ is the period (or Riemann) matrix, k is a vector of
wavenumbers, ωωω is a vector of frequencies and φφφ is a vector
of NLFA phases. For application purposes, these functions
and their numerical computation are discussed in detail in
Osborne (2010).

Why would we want to deal with multidimensional,
quasiperiodic Fourier series like (24) rather than to use
ordinary Fourier series? Basically for two reasons. First,
because (24) can be used to solve the tNLS equation exactly
for temporally periodic boundary conditions. Second, even
though the mathematics is harder than that for linear Fourier
series, we can actually do much more from a physical point
of view. In the wave dynamics, we can explicitly account
for coherent waveforms and their nonlinear interactions.
This extends the traditional Fourier approach from “linear
superposition of sine waves with random phases” to
“nonlinear superposition of Stokes waves and breathers with
random phases.”

We see that the ratio of theta functions is the spectral
modulation of the solution to the tNLS equation. The
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dynamics of the surface wave elevation are given to leading
order by

η(x, t) = Re

(
ao

θ(x, t |τ, φ−)

θ(x, t |τ, φ+)
ei[(ko+k′)x−(ωo+ω′)t]

)
(25)

The latter expression is a nonlinear superposition law for the
nonlinear Fourier modes of the NLS equation. Some details
of this approach are given below. Additional mathematical
discussion of this spectral solution of the tNLS equation are
not of great interest in this document, but can be found in the
literature both theoretically (Kotljarov and Its 1976; Tracy
and Chen 1988; Belokolos et al. 1994) and numerically
(Osborne 2010). What we would like to do here instead
is to give an overview as to how Stokes waves arise from
this formulation. Consider what happens when we have no
modulations in deep water:

ψ(x, t) = aoe
− i

2 ωok
2
oa2

o t (26)

This happens because in the absence of modulations

θ(x, t |τ, φ−)

θ(x, t |τ, φ+)
= 1 (27)

This means that we have the leading order contribution to
the Stokes wave:

η(x, t) = ao cos
[
kox − (ωo + ω′)t

]
(28)

In this simple case, for deep water, we have: k′ = 0
and ω′ = ωok

2
oa

2
o/2. This emphasizes how Stokes waves

appear in this spectral formulation, even when there are no
modulations. Of course, the full Stokes wave happens when
we use ψ(x, t) from Eq. 26 in Eq. 9 (see also Eq. 68 below).

The direct problem: the eigenvalue problem The spectral
eigenvalue problem is the main NLFA tool in this paper and
is discussed in some detail in Section 3.5 below. In NLFA
we solve a Floquet eigenvalue problem to determine the
nonlinear spectrum. This contrasts to the computation of the
Fourier series in linear Fourier analysis, which is a simple
summation. The use of the eigenvalue problem in integrable
nonlinear wave equations is the standard norm and is
another reason the NLFA differs from its linear counterpart.
The eigenvalue problem used here is not the same as that
used in many analyses in science and engineering. This is
because the solutions must be temporally periodic, so that in
reality, we are solving the so-called Floquet problem (refer
to Section 3.5 for more details).

3.4 Linear instability analysis and themodulational
dispersion relation

Yuen and Lake (1982) studied the NLS equation intensely,
together with a number of other wave equations, to improve
understanding of instabilities in deep-water wave trains.
Their worked focused, in part, on numerical solutions of the

NLS equation with spatially periodic boundary conditions.
For linear instability analysis, they considered a small-
amplitude modulated sine wave (a carrier) of the following
form:

η(x, t) = ao [1 + ε cos(Kx − �t)] cos
[
kox − (ωo + ω′)t

]

(29)

The small amplitude modulation is 1 + ε cos(Kx − �t) for
ε small. Note that the Stokes wave correction, ω′, is often
referred to as a frequency shift (14). Indeed, (28) arises from
Eq. 29 for ε = 0. This is just the leading order Stokes
wave (higher order terms are given in Eq. 9). Here, K is
the modulation wavenumber and �(K) is the modulation
frequency. In what follows �(K) will be first determined
by linear instability analysis, in order to examine the
small time, exponential growth of the Stokes wave train.
For real modulation frequency, the Stokes wave is stable;
for imaginary frequency, the Stokes wave is unstable. To
determine the modulational dispersion relation �(K), we
write the small amplitude modulation for small times as

ψ(x, t) =
{
ao + ε+e

i�t+iK
(
x− ωo

2kot

)

+

+ ε+e
−i�t−iK

(
x− ωo

2kot

)}
e

1
2 iωok

2
oa2

o t (30)

Inserting this last equation into the nonlinear Schrödinger
Eq. 2 and linearizing gives the modulation dispersion relation,
here written in deep water:

�2 = ω2
o

8k2
o

(
K2

8k2
o

− k2
oa

2
o

)
K2 (31)

We see that for an initial Stokes wave train to be stable,
we require K > 2

√
2k2

oao. Furthermore, the expression
(31) shows that an initial wave train is unstable to a
small amplitude modulation provided that the modulation
wavenumber K lies in the wavenumber band 0 < K <

2
√

2k2
oao. This is because Eq. 31, in this range, gives a

frequency which is imaginary so that e−i�t = e�I t grows
exponentially for small time (�I is the imaginary part of
the frequency). The wave train is stable if it lies outside this
range because the frequency is real so that e−i�Rt is purely
oscillatory. Thus, the modulated wave train can undergo
exponential growth for early time provided we choose K in
the interval 0 < K < 2

√
2k2

oao (see Fig. 6 for a graph of
Eq. 31).

These results were originally very surprising (Benjamin
and Feir 1967) since the authors show that the Stokes wave
can be unstable because it can undergo exponential growth
from an infinitesimal (arbitrarily small) initial perturbation!
The idea of carrying a Stokes wave expansion out to
arbitrary order is thus moot, provided that the condition
0 < K < 2

√
2k2

oao is met, because precisely computing
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the Stokes wave out to large order makes no sense if its real
destiny is to explode exponentially. Indeed the Benjamin
and Fier paper was entitled: The Disintegration of Stokes
Waves on Deep Water. Such a drastic outcome for the
evolution of a Stokes wave was shocking at the time, a
result of linear instability analysis. However, as we see
below, NLFA is effectively a kind of nonlinear instability
analysis and this leads instead to breather train amplitudes
which oscillate up and down in time rather than undergoing
indefinite exponential growth.

3.5 The spectral eigenvalue problem

The goal in this section is to discuss the spectral eigenvalue
problem for the NLS equation and some of its properties.
The solution to this eigenvalue problem lies at the heart
of NLFA. For the linear Fourier transform, we solve an
integral (implemented as the fast Fourier transform, which
is just a Fourier series). For NLFA, we solve the Floquet
solution (periodic and antiperiodic boundary conditions)
of an eigenvalue problem. We characterize a particular
nonlinearity parameter for NLS which is the spectral
Benjamin-Feir or modulational instability parameter (see
Osborne (2010) for an historical overview). This parameter
simultaneously tells us (1) whether the NLS Stokes wave
approximation is a good one and (2) how nonlinear each
NLS Stokes wave is. We now derive the BF parameter
directly from the time NLS (tNLS) eigenvalue problem
(Osborne 2010):

Ψt = Q̃Ψ, Q̃ =
[−iλ u

σ±u∗ iλ

]
, u(0, t) = ρ′ψ(0, t)

(32)

Here, σ± = ±1 and ρ′ is given by Eq. 21. Note that σ± = 1
when koh < 1.36 and σ = −1 when koh > 1.36, the
latter case being applicable to the Currituck Sound data (see
Figs. 4, 15–17 for the characteristic parameters of this data
set). The present formulation is for the time NLS Eq. 17 (and
hence is valid for time series) and as we see on right-hand
side of Eq. 32, the input is the complex time series ψ(0, t),
whose determination from the surface wave elevation with
Hilbert transforms is given in Section 3.10 below. Now, let
�t = T and get

ΨT = 1

�
Q̃Ψ =

[−i λ
�

u
�

σ u∗
�

i λ
�

]
Ψ (33)

so that

ΨT =
[−iζ u

�

σ u∗
�

iζ

]
Ψ, ζ = λ

Ω
(34)

Now, set ψ(x, t) = 2aoφ(x, t) to get the rescaled time
series u(0, t) = 2ρ′aoφ(0, t), for which the eigenvalue
problem becomes

�T =
[

−iζ
2ρ′aoφ

�

σ
2ρ′aoφ

∗
�

iζ

]

�, ζ = λ

�
(35)

We recognize the spectral BF parameter as being given by

IBF = 2ρ′ao

Ω
(36)

This is the BF parameter for general water depth h. Finally,
the eigenvalue problem becomes

ΨT =
[−iζ IBF φ

σIBF φ∗ iζ

]
Ψ, ζ = λ

Ω
(37)

So we now see how to get the spectral BF parameter from
the eigenvalue problem for the tNLS equation. The spectral
BF parameter IBF (36) is seen to multiply the time series
φ(0, t) and is the nonlinear parameter for tNLS dynamics.
IBF depends on the carrier wavenumber ko and the carrier
amplitude ao, both assumed constant for a particular time
series. IBF also depends on the modulational frequency �,
so that the each NLFA component has a different IBF that
depends strictly on the modulation frequency �. Since time
x is just a parameter in the above eigenvalue problem, we
might just as well set it to zero, x = 0. This means that
we must study the solution to the eigenvalue problem for
the input function ψ(0, t) (or equivalently φ(0, t)) which
is what we call nonlinear time series analysis for the
tNLS equation. Thus, (32) is valid for understanding the
dynamics of time series. Time series are obtained from
local measurements such as wave staffs, resistance gauges,
and pressure recorders. Numerical methods for solving the
eigenvalue problem are given in Section 3.6 below.

It is now worthwhile discussing the global spectral BF
parameter for a time series beginning with Eq. 36. This
happens by noting that in deep water, we have ρ′ = Cgρ =√

2ω3
o/(2g) so that we find

IBF =
√

2

g

ω3
oao

Ω
(38)

This expression uses simpler notation for the data analysis
given below. To obtain a global measure of an entire time
series, we set Ω = 2πF , F = Δf = 1/T so that
Ω = 2πΔf where T is the length of the time series. Then,
we have the BF parameter in the form

IBF = √
2

koao

Δf/fo

(39)

This result is ostensibly for problems with small amplitude
modulations. However, for ocean waves we can also have
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large amplitude modulations due to the fact that we have
near Gaussian time series which has a Rayleigh envelope for
narrow banded spectra. This suggests that we should use the
appropriate ao which is the mean of the envelope function
of a Rayleigh distributed random variable. The mean of
the envelope of the Rayleigh probability density function is
given by (Osborne 2010)

ao =
√

π

2

Hs

4
=
√

π

2
σ (40)

Finally, we have for the BF parameter

IBF = π5/2

g
f 3

o HsT (41)

This form for the parameter is obtained by noting that
the carrier frequency fo is just the peak frequency in the
spectrum and thus the peak period is Tp = 1/fo. We prefer
the simplicity of this expression (41) for the BF parameter
rather than the more general form for arbitrary depth given
in Eq. 36. Should one instead prefer to use (36) (together
with the general dispersion relation (6) for arbitrary water
depth) it is well to keep in mind that for the Currituck Sound
data σo = tanh(koh) = tanh(1.36) ≈ 0.876 which is not too
far from the infinite depth case for which σo = 1.

It is well to keep in mind that IBF , as given here, is
just a rough estimate of the number of breather trains in
a time series. To obtain a precise estimate of IBF , one
must actually take the NLFT of the time series: This means
numerically solving the Floquet problem for the eigenvalue
problem (32) as discussed in the next section.

3.6 Computation of the nonlinear Fourier transform
of a time series

In linear Fourier analysis, we compute a Fourier integral or
Fourier series. In nonlinear Fourier analysis, we compute
the solution to an eigenvalue problem (32). We here seek an
algorithm for solving the eigenvalue problem numerically in
order to determine the tNLS spectrum of a time series.

The numerical algorithm The numerical algorithm is
designed to solve the Floquet problem for Eq. 32 by replac-
ing a time series u(0, t) by piecewise constant values un

at temporal points tn = nΔt where Δt = T/M, n =
1, 2...M . Periodic boundary conditions are assumed so that
u(0, t) = u(0, t + T ) and therefore un = un+M . The solu-
tion of the spectral eigenfunction Ψ (t) in each interval Δt

is then obtained by integrating the eigenvalue problem for a
constant in a particular interval:

Ψ (tn + Δt) = U(un, Δt) Ψ (tn) (42)

where U(un, Δt) is the exponential of the trace-vanishing
matrix:

U(u) = eΔtQ(λ) = exp

[
Δt

(−iλ u
σu∗ iλ

)]
=

(
cosh(ω Δt) − iλ

ω
sinh(ω Δt) u

ω
sinh(ω Δt)

σu∗
ω

sinh(ω Δt) cosh(ω Δt) + iλ
ω

sinh(ω Δt)

)

(43)

Here, ω2 = σ |u|2 − λ2 is constant inside an interval Δt .
At this point, it is convenient to introduce a four-component
field consisting of Ψ and its derivative Ψ ′ with respect to λ:

Ξ(t, λ) =
(

Ψ

Ψ ′
)

(44)

where � ′ = ∂Ψ/∂λ. It is clear that the field Ξ(t, λ) has a
recursion relation

Ξ(tn + Δt) = T (un)Ξ(xn) (45)

where

T (un) =
(

U(un) 0
U ′(un) U(un)

)
(46)

is a four-by-four matrix and U ′(un) = ∂U(un)/∂λ is given
by the four elements:

U ′
11 = iΔt

λ2

ω2
cosh(ωΔt) −

(
λΔt + i + i

λ2

ω2

)
sinh(ωΔt)

ω

U ′
12 = −uλ

ω2

(
Δt cosh(ωΔt) − sinh(ωΔt)

ω

)

U ′
21 = −σu∗λ

ω2

(
Δt cosh(ω�t) − sinh(ωΔt)

ω

)

U ′
22 = −iΔt

λ2

ω2
cosh(ωΔt) −

(
λΔt−i−i

λ2

ω2

)
sinh(ωΔt)

ω

(47)

Discretizing the field u(0, t) into M steps gives

Ξ(tn) =
0∏

j=n−1

T (uj )Ξ(to) (48)

The monodromy matrix of Floquet theory is then given by

T(to, λ) =
0∏

j=M

U(uj , λ) (49)

The NLFT spectrum, as computed from the monodromy
matrix, is now discussed.

Given the above solution of the eigenvalue problem (32)
as an exercise in Floquet analysis, one can solve for the
tNLS spectrum numerically, the elements of which are given
by
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The main spectrum The trace of the monodromy matrix
determines the main spectrum eigenvalues. Thus,

1

2
T rT = 1

2
(T11 + T22) = aR(to, λ) = ±1 (50)

gives the complex eigenvalues λk, k = 1, 2, . . . , 2N . The
complex eigenvalues are also referred to a points of simple
spectrum.

The auxiliary spectrum The auxiliary spectrum eigenvalues
μj are found by the relation: T12 = g(to, λ) = 0.
This expression gives the complex eigenvalues μj (x =
0, to), j = 1, 2, . . . , N . To compute both the μj and their
complex conjugates μ∗

j , one can of course use T12 = T21 =
0 to compute the spectrum.

The auxiliary spectrum of the Riemann sheet indices σj The
Riemann sheet indices are found from

σk = f (λ)√
P(λ)

∣∣∣∣
λ=μk

= iIm(T11)√
T ∗

12T21 − Im2(T11)

∣∣∣∣∣∣∣
λ=μk

(51)

These indices tell us on which of the two Riemann sheets of
(32) a particular μj (x = 0, to) function lies.

Spines in the spectrum The NLFA spectrum provides the
information necessary to compute the spectral quantity
known as the spines. These are curves in the complex plane
with values of λ which insure that the Bloch eigenfunctions
are stable, i.e., they do not blow up exponentially fast for
certain values of the temporal variable, t (i.e., for arbitrary
temporal translations of the Bloch eigenfunctions). The
spines are defined by

Im[T rT/2] = 0 − 2 ≤ Re[T rT/2] ≤ 2 (52)

Additional analysis reveals that spines typically connect two
points of simple spectrum (or even three or four, but this
is the rarer case for superbreathers). When two or more
points of simple spectrum are connected by a spine, the
combination of spectral information is called a nonlinear
mode. There are several kinds of nonlinear modes:

(1) When two points of spectrum are connected by a spine
that crosses the real axis, we have a stable sine wave or
Stokes wave. One point of spectrum lies in the upper
half plane and the other in the lower half plane so that
the spine naturally crosses the real axis in this case.

(2) When the two points of spectrum are connected by a
spine that does not cross the real axis, we have two
phase-locked unstable NLS Stokes waves referred to as
a breather in the spectrum.

(3) When three or more points of simple spectrum are
connected by a spine that does not cross the real axis,
we have combinations of phase locked unstable NLS

Stokes waves referred to as a superbreather in the
spectrum. Figure 5 show examples of spectrum for
types (1) and (2) above.

3.7 The Benjamin-Feir parameter and the physics
of themodulational instability

One of the important properties of an unstable wave packet
is the modulational frequency known as the growth rate.
The growth rate is derived from the modulational dispersion
relation by simply taking the square root of Eq. 31:

� = iωok
2
oa

2
o

(
K

2
√

2k2
oao

)√√√√1 −
(

K

2
√

2k2
oao

)2

(53)

Equation 53 is also the leading order approximation for the
modulational dispersion relation for NLFA and this suggests
that the BF parameter appropriate for use with NLFA (for
the deep water Cauchy initial value problem) is given by

IBF = 2
√

2k2
oao

K
= 2

√
2koao

K/ko

= steepness

bandwidth
(54)

The wave-steepness-to-bandwidth-ratio is then proportional
to IBF . When IBF > 1, then the frequency is imaginary in
the modulational dispersion relation and the resultant expo-
nential growth can lead to the formation of breather trains.
When IBF < 1, then the frequency is real in the modu-
lational dispersion relation and we have sine waves and
NLS Stokes waves. The Eq. 54 is just the imagery part of
the modulation frequency: We graph in Fig. 6 the dimen-
sionless form of the modulation frequency (2�/ωok

2
oa

2
o)

as a function of the dimensionless wavenumber (K/2k2
oao).

When the dimensionless wavenumber lies under the graphed
curve, the nonlinear modes of the NLS equation are unsta-
ble, leading to exponential growth for small time and “rogue
waves” or “oscillatory breathers” over long times.

Another important property of unstable wave packets is
the maximum amplitude of the unstable breather packet with
respect to the carrier amplitude (Osborne 2010):

Amax

ao

= 1 + 2

√√√√1 −
(

K

2
√

2k2
oao

)2

(55)

This function is graphed in Fig. 7. When the modulational
wavenumber K = 0 and find Amax/ao = 3. This is the
Peregrine breather (see below with regard to Fig. 9 and
accompanying text). Figure 7 shows that the largest breather
packets occur near modulational wavenumber K = 0,
which is near the peak of the surface wave spectrum as
seen in Fig. 14. These breathers take a long time to rise up
because their rise time is proportional to 1/� for � << 1.
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Fig. 5 Inverse scattering
transform lambda plane where
the NLFA spectrum lives.
Shown also are the types of
spectrum that can occur.
Eigenvalues (points of simple
spectrum) are denoted by ×.
Spines are lines which connect
two points of simple spectrum.
When the spine crosses the real
(horizontal) axis the mode is a
sine wave or NLS Stokes wave.
When the spine does not cross
the real axis the mode is a
breather packet. In the analysis
of data (see sections below), we
do not graph the lower half
plane since it is symmetric with
the upper half plane

3.8 The classical breathers

There are three classical breather formulas that have been
used as convenient tools to understand breather behavior by
a wide number of researchers in the field (Pelinovsky and
Kharif 2008; Kharif et al. 2009; Osborne 2010). These are
seen in Figs. 8, 9, and 10. In Fig. 8 is one of the first breather
discovered (Akhmediev et al. 1987). From the figure, we
see that the Akhmediev breather begins as a small amplitude
modulation and then rises up to an amplitude of 2.414ao. A
second breather is seen in Fig. 9, that of Peregrine (1983),

Fig. 6 Modulation diagram for the IST spectrum. The curve is a graph
of the dimensionless modulational dispersion relation (2�/ωok

2
oa

2
o ) as

a function of dimensionless modulation wavenumber K/2k2
oao. Any

spectral components which have wavenumbers in 0 < K < 2
√

2k2
oao

(under the curve) will be modulationally unstable. The particular
wavenumber K = 0 corresponds to the peak of the surface wave
spectrum (see Fig. 14 below for more details)

which is also a small amplitude modulation, that rises up
to 3.0ao. One of the more interesting classical breathers is
that due to Kuznetsov and Ma [1979] (see Fig. 10). The
interesting feature of this breather is that it is born from a
large amplitude modulation which then rises up to 3.828ao.
The large amplitude modulations are among the most impor-
tant of the breathers because they rise significantly higher
than the small amplitude modulations and therefore pose
greater risk for ships and offshore platforms. Details of these
breathers and their formulas can be found in Osborne (2010).

Fig. 7 Any unstable mode, as defined in Fig. 6, will rise up to a
maximum amplitude as described by this curve. We see that a zero
modulational wavenumber will rise up by a factor of three. Other types
of spectrum corresponding to large amplitude modulations will rise up
even higher at some point in their breathing cycle. The enhancement
curve in this figure decreases to zero as we move to the right and the
left of the spectral peak (see Fig. 14). The enhancement is arbitrarily
large for large amplitude modulations as seen in Section 3.8 below
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Fig. 8 The space/time evolution of the Akhmediev breather. The
vertical axis is the height of the modulation envelope relative to the
carrier height, here set to 1. One can see that the maximum height is
about 2.41 times the carrier amplitude on the graph. Note that this case
is a small amplitude initial modulation, as can be seen by the shape of
the surface at t = 0. This breather occurs below the carrier wave in
the spectral domain (see Fig. 5)

From an oceanographic point of view, it is instructive to
see how the time series of a breather vary along the direction
of propagation as seen in Fig. 11. At the beginning of the

Fig. 9 The space/time evolution of the Peregrine breather. The vertical
axis is the height of the modulation envelope relative to the carrier
height, here set to 1. One can see that the maximum height is 3.0 times
the carrier amplitude on the graph. Note that this case is also a small
amplitude initial modulation, as can be seen by the shape of the surface
at t = 0. The Peregrine breather occurs at the height of the carrier
wave in the spectral domain (see Fig. 5)

Fig. 10 The space/time evolution of the Kuznetsov-Ma breather. The
vertical axis is the height of the modulation envelope relative to the
carrier height, here set to 1. One can see that the maximum height is
about 3.8 times the carrier amplitude on the graph. Note that this case
is a large amplitude initial modulation, as can be seen by the shape
of the surface at t = 0. The Kuznetsov-Ma breather occurs above the
carrier wave in the spectral domain (see Fig. 5). This means that any

wave above the carrier in the spectral domain is outside the class of
small amplitude modulations usually studied as the basis of the BF
instability. The not-small-initial-amplitude behavior of this breather
means that it is a strong candidate for being classified as a rogue wave
packet should it appear in a measured time series

propagation, one has a small amplitude modulation of a sine
wave which, after propagating 2 km, grows from about 3 m
in amplitude up to over 5 m. After 4 km, the breather has
reached maximum amplitude near 8 m. Another interesting
way to understand breather behavior is seen in Fig. 12 where
the largest amplitude of the modulation is followed for a
Peregrine breather from its small amplitude modulation near
3 m up to a 9 m maximum after a 20-min time interval.
We see that the period of time that the breather is near its
maximum is rather small, only 4–6 min out of the total
40-min time interval.

3.9 Modulations for near Gaussian processes

We have seen that the main mathematical results for
the modulational instability relate to the small amplitude
modulation of a carrier wave which grows exponentially
initially, but eventually reaches the maximum amplitude as
a large breather state. However, the oceanic wave field is
typically a near Gaussian process, not a small amplitude
modulation. Furthermore, evidence of a carrier wave is
not easily seen by eye as in the simple examples of
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Fig. 11 Evolution of a typical breather packet over 4 km of propagation
distance. The upper panel corresponds to a small amplitude modulation
of about 3 m in amplitude. The center panel shows the influence
of the modulational instability as the initial small amplitude wave
train begins to focus and forms a localized packet. The lower panel
corresponds to the maximum growth of the initial wave train where the
central wave in the packet, after propagating 4 km, has grown from the
initial 3-m wave in the upper panel to a wave of almost 8 m in the lower
panel. This large wave is often referred to as a rogue wave because it
has grown much larger than the initial wave by a factor 7.8/3 = 2.6.
The 4-km distance traveled by the breather to rise up to the maximum
crest amplitude takes about 8.5 min in the present case

Figs. 8, 9, and 10. In reality, the wave amplitudes η(0, t)

are given approximately by a Gaussian distribution and
the real modulational envelope (|ψ(0, t)|) is a Rayleigh
distribution for a narrow-banded process (Longuet-Higgins

Fig. 12 Time evolution of the maximum amplitude of a Peregrine
breather: Initially, the wave train starts as a 3.0-m small amplitude
modulation and then rises up, over a 20-min period, to a maximum
height of 9 m. It can be seen that the maximum amplitude of the
breather during the first 10 min never rises above 4 m. During the
subsequent 5 min, the amplitude barely rises above 5 m. Only in the
last 5 min does the breather rise to its maximum amplitude of 9 m.
Thus, the time evolution of the breather train is such that the largest
amplitude is reached for only a small fraction of the breather cycle
time, here 40 min

1952). NLFA, in its spectral structure, requires knowledge
of a carrier wave, which for a near Gaussian process is the
mean value of the real modulation function 〈|ψ(x, t)|〉 (the
brackets imply either a space or time average depending on
whether we are dealing with a space or time series): This
implies that we must find, approximately, the mean of the
Rayleigh distribution for a narrow banded process. Given a
time series, we can always compute the standard deviation
σ . Then, the significant wave height is here defined by

Hs = 4σ (56)

The carrier wave amplitude, for a linear, narrow-banded
sea state, is given by the mean of the Rayleigh probability
density:

ao =
√

π

2
σ =

√
π

2

Hs

4
� 1.25331σ � 0.31333Hs (57)

The first formula (56) is well known and the second
formula (57) is based upon the narrow-bandedness and
linear assumptions (Osborne 2010). The related auxiliary
height is given by Ho = 4ao = √

8πσ = √
π/2Hs �

5.01326σ � 1.2533Hs .
In the data analysis that follows, we compute ao as the

average value of the real envelope function: 〈|ψ(0, t)|〉,
where ψ(0, t) is computed from the Hilbert transform of a
time series (see Section 3.10).
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In the absence of the Rayleigh modulation, we would
typically have a small amplitude modulation of a linear/sine
wave of amplitude ao sin 2πfot , where the frequency fo

corresponds to the peak period To = 1/fo. Physically rogue
wave packets rise up from small amplitude modulations, but
large amplitude modulations (Section 3.10) can also occur
as we now discuss.

In order to compute the ratio of the maximum wave height
of a breather to the significant wave height, hear Hmax/Hs ,
one begins with the relation (55) (Osborne 2010):

Amax

ao

= 1 + 2
λI

ao

(58)

Here, λI is the NLFA spectral signature (the mean value
of two points of simple spectrum connected by a spine)

associated with a breather packet. Also ao =
(√

2π/8
)

Hs

and Hmax = 2Amax and one finds

Hmax

Hs

=
√

π

8

(
1 + 2

λI

ao

)
� 0.62666

(
1 + 2

λI

ao

)
(59)

On this basis, we note that the Akhmediev breather has
Hmax = 1.513Hs (λI = ao/

√
2), the Peregrine breather

has Hmax = 1.880Hs (λI = ao) and the Kuznetsov-Ma
breather has Hmax = 2.399Hs (λI = √

2ao). An interesting
question is where does the ratio Hmax/Hs exceed 2.0?
At λI = 1.09576ao (for which the wave will rise up to
2(λI /ao)+ 1 = 3.19152a0). Where does the ratio Hmax/Hs

exceed 2.2? At λI = 1.25534ao (for which the wave will
rise up to 2(λI /ao) + 1 = 3.51068ao). One should compare
these simple calculations with the usual definition of the
design wave in the shipping and oil industries: 1.86 Hs is
the 1 in 1000 wave in the 1 in 100 year storm in a linear
wave field assumed to be Gaussian. This case corresponds
to 2(λI /ao) + 1 = 2.96812a0. These issues are revisited
with regard to the Currituck Sound data analysis in Section 5
below, particularly with regard to Fig. 28 and Table 2 below
and describing text.

At this juncture, it is worth discussing the physics and
Fourier analysis of the NLFT with regard to the modulation
parameter IBF . A first observation is that the number of
spectral points N in the NLFT spectrum is exactly the same
as the number of points in the analyzed time series. This
parallels standard Fourier analysis. However, in contrast to
standard Fourier analysis, the NLFT spectral components
may be sine or Stokes waves, and pairs of Stokes waves
may also become phase locked with each other, resulting
in breathers. Thus, each breather corresponds to two Stokes
waves. The IBF gives us the number of paired Stokes waves
(breathers) in the spectrum. It may at first seem surprising
that IBF depends on the length of the time series. A simple
argument tells us why. Given a time series of perhaps 20 min

Table 2 Parameters of the 8 largest breathers in the NLFT spectrum of
Fig. 28

No. NLFT Max. Max Rise distance

Br. Amp. Amp. Height /Rise time

1 0.243 m 4.06ao 2.50Hs 5.34 km/41.6 min

2 0.239 m 3.99ao 2.45Hs 7.89 km/61.5 min

3 0.206 m 3.58ao 2.20Hs 103. km/11.9 h

4 0.163 m 3.05ao 1.88Hs 4.93 km/38.5 min

5 0.161 m 3.02ao 1.86Hs 20.3 km/2.63 h

6 0.156 m 2.95ao 1.82Hs 2.08 km/17.1 min

7 0.151 m 2.90ao 1.78Hs 3.72 km/28.0 min

8 0.138 m 2.74ao 1.68Hs 138. km/17.9 h

The first column is an index number of the breathers, starting with
the largest and ending with the smallest of the eight. In Fig. 22 these
breathers are shown in the time series, labeled as in the table above.
The second column is the value of the spectral component λI in
Fig. 28. The third column shows the maximum amplitude of each
breather times the carrier amplitude ao. The forth column gives the
maximum possible breather height in terms of the significant wave
height. The last column shows the rise distances and the rise times from
the quiescent state of the breathers up to their maximum amplitudes

in length, let us suppose that we find 10 breathers. Then,
for a time series of 40 min, we would on the average find
20 breathers, provided of course that the sea state meets
the stationary, ergodic and homogeneous conditions. But,
for a nonlinear system, we are now able to look at wave
modes twice as close to the peak of the spectrum, where
the really large (but slowly rising) breathers may possibly
occur. So, by doubling the length of the time series, one
is doubling the amount of energy under consideration and
one will certainly capture extra breathers, about twice the
number in the original time series.

One should not confuse the parameter IBF used herein
with the Benjamin Feir Index (BFI) in Janssen (2004),
where the BFI arises by considering the modulational insta-
bility arising from narrow-banded spectra, assuming the
relevant modulation period is inversely proportional to the
spectral width. On the other hand, IBF used herein resolves
all nonlinear modes in a time series in order to esti-
mate the longest modulation period which is that obtained
from the length of the record T . Therefore, breathers with
modulation period out to the time T can be found, but longer
breathers will naturally be excluded from the analysis. Like-
wise, one can consider a time series much shorter than T :
This means that many of the longer breathers will no longer
be resolvable. Indeed a time series that is sufficiently short
will be much more linear than a longer time series. How
can this be? The longest modulation is that for �f = 1/T ,
relative to the peak of the spectrum. A shorter time series
will mean that the number of spectral points near the peak
of the spectrum will be reduced as �f = 1/T is increased,

202 Ocean Dynamics (2019) 69:187–219



thus in effect filtering the spectrum by removing many of
the longer breathers. We have not proven these statements
here, but they are discussed in detail in Osborne (2010).

3.10 The nonlinear inverse Stokes transformation

We have discussed how the NLFT works: Basically, to
determine the nonlinear spectrum of a time series, we need
to solve the Floquet problem of the eigenvalue problem (32).
But in order to solve the eigenvalue problem, we need to
experimentally determine the complex function time series
ψ(0, t) that is the input function to the eigenvalue problem.
It is clear that ψ(0, t), as a complex function, has both
real and imaginary parts, ψ(0, t) = ψR(0, t) + iψI (0, t).
This means that ψ(0, t) consists of two time series, but in
reality, we have at our disposal only the measured surface
elevation which is a single time series: η(0, t). How are
we to determine two time series ψR(0, t) and ψI (0, t)

from only one time series η(0, t)? The answer lies in the
expression for the surface elevation in terms of ψ(x, t):

η(x, t) = Re
(
ψ(x, t)ei(kox−ωot)

)
(60)

Thus, the surface elevation is the real part of ψ(x, t) times
the carrier oscillation. However, we could also define the
imaginary part of the surface wave elevation:

η̃(x, t) = Im
(
ψ(x, t)ei(kox−ωot)

)
(61)

We refer to this latter equation as the auxiliary surface
elevation. This means that we can now construct a kind of
complex surface elevation: �(x, t) = η(x, t) + iη̃(x, t).
Provided that we could find a way to construct η̃(x, t) from
η, then we might think of inverting (60) and (61) to obtain
ψ(x, t). By forming the complex function surface elevation
time series

Ξ(0, t) = ψ(0, t)e−iωot (62)

we can invert this to give

ψ(0, t) = Ξ(0, t)eiωot (63)

This inversion procedure to determine ψ(0, t) from �(0, t)

is perfectly adequate provided we have a way to first
compute η̃(0, t) from η(0, t). It is well known that the
following relation holds η̃(0, t) = H [η(0, t)], where H[.] is
the Hilbert transform (see (Osborne 2010), chapter 13 for
additional details). In summary, given the surface elevation
time series η(0, t), we compute its Hilbert transform to
detemine η̃(0, t). Then, ψ(0, t) is computed from (63). We
then must solve the eigenvalue problem (32) to obtain the
NLFT spectrum and it would appear that our job is done

as far as defining the data analysis problem for the NLFT.
However, that is not the whole story.

To see this note that the modulated Stokes wave Eq. 9,
recalling that ψ(x, t) = A(x, t) exp[iφ(x, t)], can be
written for the Cauchy problem as

Ξ = ψZ +
(

3 − σ 2

2σ 3

)
ko

2
ψ2Z2 +

−i
1

2ko

[
1 +
(

1 − σ 2
) koho

σ

]
ψxZ

+
[
2ωoV + (1 − σ 2)gkoh

]

4σ
(
V 2 − gh

) ψZψ∗Z∗ + . . . (64)

Here, Z = exp[i(kox − ωot]. Eq. 64 is the Stokes wave
field for the complex surface elevation Ξ(x, t) in terms
of the modulational solution ψ(x, t) of the NLS equation.
The Stokes wave field Eq. 64 and the NLS Eq. 2 have
been derived from the Euler equations to the same order of
approximation. Equations 2 and 64 are a pair of equations
that describe the nonlinear physics of unidirectional ocean
waves at the order of the NLS equation. If one continues the
derivation from the Euler equations to still higher order, one
would determine a modulated Stokes wave at higher order
and a wave equation at higher order than the NLS equation.

Note that at leading order in Eq. 64, we have Ξ = ψZ,
whose inverse is ψ ≈ ΞZ−1 which is identical with Eq. 63.
If we turn off the modulation by setting ψ(x, t) = aoe

−iω′t ,
we get the usual Stokes wave, Eq. 68 below (see for example
Lamb (1916), (Kinsman 1965)). If we write the complex
modulation in terms of its amplitude and phase, ψ(x, t) =
A(x, t) exp[iφ(x, t)], we get Eq. 9, equivalent to Eq. 64.

On the basis of the above discussion, the physics of
the surface wave elevation therefore consists of two kinds
of nonlinearities: (a) the Stokes wave field (64) and (b)
the NLS Eq. 2. We are here simultaneously studying these
two kinds of nonlinearity to describe ocean surface waves.
It is important to recognize that both effects are to be
simultaneously addressed and understood together, as the
theory tells us that they are inseparable. We must now
understand, in practical terms, how to do this with measured
time series.

To this end, a question arises: Can we use Eq. 64 to
address the Stokes wave nonlinearity and consider the
possibility of removing it from the problem in order to
more carefully study the NLS nonlinearity? Our perspective
here is to use Eq. 64 as an approach to remove the Stokes
up/down antisymmetry in the measured time series. To this
end, we write a kind of Stokes operator for dealing with the
physics of the Stokes wave effect:

ΞNoStokes = Ô−1
StokesΞ, Ξ = ÔStokesΞNoStokes (65)
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where the Stokes operator, ÔStokes, and its inverse, Ô−1
Stokes,

are given by

ÔStokes = 1 +
(

3 − σ 2

2σ 3

)
ko

2
Ξ+

−i
1

2ko

[
1 +
(

1 − σ 2
) koho

σ

]
(ln [Ξ ]x − iko) +

+
[
2ωoV + (1 − σ 2)gkoh

]

4σ
(
V 2 − gh

) Ξ∗ (66)

Ô−1
Stokes = 1 −

(
3 − σ 2

2σ 3

)
ko

2
Ξ+

+i
1

2ko

[
1 +
(

1 − σ 2
) koho

σ

]
(ln [�]x − iko) +

−
[
2ωoV + (1 − σ 2)gkoh

]

4σ
(
V 2 − gh

) Ξ∗ (67)

Note that the difference between the Stokes operator and
its inverse are the differences in sign in front of the higher
order terms in Eqs. 66 and 67. To leading order, we see
that ÔStokesÔ

−1
Stokes ∼ 1. Thus, the Stokes operator can be

viewed as a kind of near identity transformation, whose
inverse is found by inverting the signs of the small terms.
The operator is therefore asymptotic to the order of the
Stokes approximation, but is not an exact relation and can
be improved only by extending the order of the modulated
Stokes expansion (64) and the NLS Eq. 2 beginning with the
Euler equations.

According to Eq. 65, we can remove the Stokes wave
effect from the measured complex time series Ξ(t). We now
have the complex surface elevation without the Stokes wave
effect, ΞNoStokes(t) = Ô−1

StokesΞ(t), which no longer has the
up/down antisymmetric form of a Stokes wave, but is now
up/down symmetric and is therefore ready to be analyzed
in terms of the NLS modulational spectrum by solving the
eigenvalue problem (32).

We now need to obtain the complex modulational
envelope ψ(0, t) without the Stokes wave effect. This
is done by the relation ψNoStokes ≈ ΞNoStokesZ

−1. We
are then ready to solve the eigenvalue problem (32) with
ψNoStokes(t) as input. We simply remove the higher order
Stokes terms from the measured surface wave amplitude and
then compute the modulational field from this “Stokesless”
surface elevation.

Is the idea of removing the Stokes wave effect from
a measured time series reasonable and desirable from a
physical point of view? Are indeed the solutions of the
Schrödinger equation up/down symmetric? The answers are
indeed “yes,” as seen by the following arguments. Let us try
inverting the complex envelope: ψ(x, t) ⇒ −ψ(x, t). If we
insert this change of sign into the NLS equation we find,
once again, the NLS equation. This says the solutions of

NLS are indeed up/down symmetric and we conclude that
the notion of removing the Stokes wave effect is consistent
with the solutions of the NLS equation. If for some reason,
the resultant wave train as computed from Eq. 65 is not
up/down symmetric, then we need to use a higher order
Stokes wave, say forth or fifth order, to fully remove the
up/down antisymmetry of the Stokes wave from the surface
elevation.

3.11Why is NLFA a theory of Stokes waves?

We have seen that the traditional Stokes wave is a simple
reduction of Eqs. 64 and 2 to the unmodulated case
ψ(x, t) = aoe

−iω′t , i.e. set A(x, t) = ao and φ(x, t) = 0 in
Eq. 9 to get

η(x, t) = − γ a2
0

4koσo

+ ao cos θ + δa2
o

4koσo

cos 2θ + . . . (68)

And we have seen that the modulated Stokes wave is
given by Eq. 64, whose dynamics is given by NLS (2).
Furthermore, we have learned that by first removing the
Stokes wave nonlinearity from the surface wave elevation
(by the first of Eq. 65), we can determine the NLFT to obtain
the nonlinear spectrum for the NLS equation, directly from
the Floquet solution of the eigenvalue problem.

We have also discussed that the solution to the NLS
equation is written as the ratio of two theta functions as seen
in Eq. 23. The latter expression together with (24) can be
put in the form of a multidimensional, quasiperiodic Fourier
series (Osborne 2017):

ψ(x, t) =
∑

n∈ZN

ψnein·K x−in·�(K) t+in·φφφ (69)

Here, the coefficients ψn are functions of the parameters
τττ, K,� and φφφ. Thus, the so-called Riemann spectrum is
contained in the coefficients ψn. Notice that the above
equation is a function of the modulational wavenumber K
and frequency �(K), just as we would expect.

To understand the physics of this expression, let us write
the complex surface wave elevation as

Ξ(x, t) = η(x, t) + iη̃(x, t) = ψ(x, t)Z (70)

where Z = eikox−iωot . Then, the quasiperiodic Fourier
series has the form:

Ξ(x, t) =
∑

n∈ZN

Ξnein·k x−in·ωωω(k) t+in·φφφ (71)

for which

n · k = ko + n · K

n · ωωω = ωo + n · �(K) + ω′ (72)

These are important relations because they say that the
spectrum of the modulational envelope is the same as the
Fourier spectrum of the surface elevation, apart from a
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shift in the spectral domain. This is the shifting theorem
of Fourier analysis. The surface elevation spectrum is in
terms of of the conventional wavenumber and frequency
(k, ω) and is centered about (ko, ωo) (the peak of the
spectrum) while the modulation spectrum is in terms of
the modulational wavenumber and frequency (K, Ω) and
the modulational spectrum has its peak centered about zero
((K, Ω) = 0). Further discussion will be given with regard
to Fig. 14 below.

Let us return to the solution of Eq. 69 and show that
it is a multidimensional, quasiperiodic Fourier series of
interacting NLS Stokes waves, the goal of this section.
First note that we are excluding the modulated Stokes
wave field (64) from this analysis. Instead, in this section
we are discussing the actual Stokes wave solutions of the
NLS equation. Suppose that we extract terms in Eq. 69 for
which the summation vectors n have only a single nonzero
component. Terms of this type will have the form

Sn(x, t) =
∞∑

m=−∞
un

meim[knx−i[ωn(kn)+ω′
n]t+iφn] (73)

These are just the Stokes waves in the NLFT spectrum.
Indeed (64) can, to leading order, be easily written:

Ξ(x, t) =
N∑

n=1

Sn(x, t) + �int (x, t) (74)

where Ξint (x, t) are pairwise nonlinear interactions among
the Stokes waves. Thus, we have Fourier analysis of the
NLS equation as a summation of Stokes waves, plus
their nonlinear mutual interactions. This is the appropriate
perspective about nonlinear Fourier analysis with Stokes
waves. The main new feature in the formulation is the
surprising appearance of phase-locked Stokes waves that
form breathers and superbreathers, as already mentioned
above. Details on this phase locking can be found in
Osborne (2010).

Let us return to the work of Benjamin and Feir (1967)
and Whitham, together with a whole body of literature over
the past 50 years to give an overview of the physics of
the modulational instability for water waves. What does the
full theory say? It says that if one takes a Stokes wave
Eq. 68 and nonlinearly modulates it, one will obtain a
modulated Stokes wave Eq. 64. If one simultaneously asks
the question: What are the dynamics of the modulation?
One finds that it is governed by the NLS equation (Eq. 2).
The combination of Eqs. 2 and 64 is a dynamical system
which tells us the space/time behavior of the surface wave
elevation and the modulation of the wave train. If we
analyze this system for instabilities using linear instability
analysis, we find, for small times, exponential growth in the
modulation of a Stokes wave.

If on the other hand we use NLFA to analyze the insta-
bility properties for large time, we find that the early expo-
nential growth slows and turns around to give recurrence,
i.e., breathing of localized wave packets: We call these
phenomena breather trains. Exponential growth at small
times gives way to recurrence dynamics for long times and
the formation of coherent wave packets. The way to think
about the modulation of ocean waves is that it is a very
general representation of a near Rayleigh random process
governed by the NLS equation. The underlying surface ele-
vation Eq. 64 will be near Gaussian (with a tail due to
the Stokes and NLS nonlinearities). If the BF parameter
is greater than 1, then the Stokes wave expansion Eq. 64
is unstable and any modulation will grow according to the
dynamics of the NLS equation. Therefore, the implication
is that any Stokes wave expansion of water waves for which
IBF > 1 is unstable! Therefore, any such Stokes wave
in a wave flume will be unstable. This is the remarkable
conclusion of Benjamin and Feir who essentially created
our modern day understanding about the instabilities of
Stokes waves. Today, we understand the problem much
more, because we realize that for IBF > 1, to leading
order the disintegration is nothing more than the formation
and appearance of nonlinear modes such as breather trains,
whose properties are spectral invariants according to NLS
evolution. Additional issues occur because of higher order
physics, including dissipation and two-dimensional effects,
which we will address in future papers (many of these issues
are discussed in detail in chapter 29 of Osborne (2010)).
The remarkable property of this physics is that even with
the presence of instabilities, the NLS equation is perfectly
integrable. This raises the ante on the use of the NLFT to
clarify the actual nonlinear dynamics in experimental mea-
surements, both in the laboratory and in the ocean. The
surprising new features are of course the breathers, their
pairwise interactions with other breathers, and recurrence.

3.12 Perspective on how to interpret the NLFA
spectrum

Here, we want to show how the NLFT method graphically
presents sine waves, NLS Stokes waves and breathers for a
particular measured wave train. In practical applications of
the NLFA method, all three kinds of spectral components
can appear in the same spectrum. Figure 13 shows how this
can happen. Generally, the sine waves lie in the tails of the
spectrum, Stokes waves occur at intermediate amplitudes
and finally the breathers are clustered around the peak. This
ranking of the spectral components is quite natural for wave
dynamics of the NLS equation and in many data analysis
problems, we might expect to see a NLFA spectrum of this
type. Of course in a particular situation, we could find very
small waves with small BF parameter that would show only
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Fig. 13 Schematic of nonlinear Fourier spectrum for ocean surface
waves in the presence of the modulational instability, for a variety
of Stokes wave components in the spectrum. The sine waves are the
smallest components far to the right and left of the peak (the spines
are vertical lines connecting to the frequency axis). The Stokes waves
are of intermediate amplitude closer to the peak (see curved spines
connecting to the frequency axis). The breather trains occur in a band
about the spectral peak, where two points of simple spectrum are
directly connected by a spine that does not cross the real axis. A NLFT
ocean wave spectrum would not necessarily have the components
ordered in exactly this way, but this general perspective is reflected in
the analysis of data as seen below

sine and Stokes waves, but no breathers. It is unlikely in our
opinion that only sine waves would ever appear in an NLFT
spectrum.

In Fig. 14, we give a summary of many of the features
of NLFA which can be important in the analysis of data.
Some of these ideas come from linear instability analysis,
while others come from the nonlinear instability analysis
of NLFA as already discussed above. Figure 14 shows a
spectrum with a band of instability (green components)
about the peak of the spectrum, the region where the
breathers occur. Also shown are three important curves:

(1) The instability curve of the modulational dispersion
relation, the real part of Eq. 53, in shown in blue
in Fig. 14 (see also Fig. 6). These curves define not
only the width of the unstable region in the spectrum,
but also how unstable the particular NLFA modes are.
For a particular frequency, the higher the blue curve,
the higher is the rate of instability and the faster the
unstable modes grow.

(2) The rise time curves, essentially the inverse of the
modulational dispersion relation (1/ |Ω|), are shown
in red. This information tells us how long it takes for a
particular breather to rise up and how far it propagates
in the process. On the average, the unstable modes
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Fig. 14 Schematic of the Fourier spectrum for ocean surface waves in
the presence of the modulational instability, combining ideas from both
linear and nonlinear instability analyses discussed herein. The focus
of this graph, together with Fig. 13, is to aid the reader in interpreting
the nonlinear Fourier transform of the Currituck Sound data given
below in Fig. 28. The spectrum is characterized by a central band of
components (green) where the modulational instability occurs: This
happens naturally because the most nonlinear part of the spectrum lies
near the peak and then the nonlinearity subsequently decreases as one
moves away from the peak. Thus, breathers tend to occur near the
peak, sine waves occur in the tails and the intermediate regions have
Stokes waves (see also Fig. 13). The instability diagram (Fig. 6) is
shown here as the double lobed curve (blue) centered about the peak
of the spectrum: this defines the width of the green band of spectral
components where the breathers reside. The rise time or cycle time
curves are shown in red: Note that the largest breathers occur near
the peak and that they have the largest rise times, so that they come
up more slowly than the smaller breathers. The maximum amplitudes
of the breather packets are shown in brown: We see that there is an
enhancement of the wave amplitudes (see Fig. 7) about the peak of the
spectrum, caused by the spatially/temporally dynamically oscillating
breather amplitudes there, a result already well known in the field of
wind waves where the parameter γ gives a peak enhancement in the
JONSWAP spectrum. We see here that it is the modulational instability
that causes the enhancement of the spectral peak, normally accounted
for in an ad hoc manner by the parameter γ

nearest the peak of the spectrum take much longer
to rise up than those further away (while at the same
time being in the green unstable band), so the highest
breathers nearest the peak may take hours, not minutes,
to rise up from a quiescent initial state.

(3) The amplitude enhancement curves, Equation 55, is in
brown. This curve tells us what the maximum height
of the breather packets is, for example, 2, 3, or 4
times the carrier amplitude. Note that this curve spans
the entire unstable (green) region of the spectrum and
that breathers near the peak of the spectrum are the
largest. Intuitively, the NLFA components near the
peak should be most nonlinear, and the brown curve
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theoretically demonstrates this. This is the dynamics
of the NLS equation.

The IBF parameter used in this paper is an estimate

of the number of breathers in a wave train. This estimate
corresponds to the so called zero field approximation for
small amplitude modulations as discussed in Tracy and
Chen (1988), which is then here treated in the limit of a
Gaussian process. How is this estimate for IBF computed?
We recognize that the breathers occur in a band around
the peak of the spectrum whose half-width is that of the
modulational instability diagram shown in Fig. 6. Breathers
occur under the curve of Fig. 6, which corresponds to the
double lobe (in blue) of Fig. 14. The center of this double
lobe occurs at zero modulational wavenumber (in Fig. 6),
here converted to the modulational frequency appropriate
for the analysis of time series. This can be seen explicitly in
the actual nonlinear Fourier spectrum shown in Fig. 14. The
modulational instability diagram of Fig. 6 is graphed both to
the right (its actual image) and to the left (the mirror image)
of the peak frequency as two blue arcs: We can actually see
the double modulational lobe connecting the peak frequency
fo (on the frequency axis) to a red dot to the right, and its
image to the red dot on the left. This is the central band
of spectrum for which the waves are most nonlinear and
hence unstable. Here, the spectral components are indicated
by green vertical lines. These are the Stokes waves in the
spectrum. We know that Stokes waves pair off to make
a breather, so the rule to find the number of breathers
in the unstable band is to count the Stokes waves in the
green band and divide by 2 to get the number of breathers.
This estimate of the number of breathers allows one to a
priori guess the number of breathers in a time series from
the simple parameters Hs and Tp. However, we note that
the actual number of breathers comes from the spectral
eigenvalue problem as used to determine the NLFT spectral
components. This spectral number of breathers is discussed
in detail with regard to the Currituck Sound spectrum shown
in Fig. 28 below.

As just discussed, the instability curve gives the band
of spectrum over which instabilities happen (blue curve,
Fig. 14), i.e., those that initiate phase locking and therefore
breather formation by the pair-wise binding of NLS Stokes
waves. The rise time curves (red curve, Fig. 14) tell us how
long it will take the breathers to “rise up” to their maximum
heights. One can see in Fig. 14, the red curve, that the
rise time increases for the larger, more energetic breathers.
The larger the breathers are, and the closer they are to the
peak of the spectrum, the slower they rise up. Thus, a low
lying breather might take only 20 min to rise up to its
maximum height, while a large breather might take much
longer, even an hour or more. The brown curve tells us how
high the breathers maximum height will be. We see how

this curve acts effectively as an enhancement of the peak
of the spectrum: The modulational instability effectively
enhances the spectral peak in a “nonequilibrium sea” due to
the presence of the modulational instability and the resultant
breather dynamics. Oceanographers already know about this
effect and take it into account in an ad hoc manner with the
well-known parameter called γ in the JONSWAP spectrum.
In the present dynamical scenario, the breather part of the
spectrum is the theoretical, analytical, and experimental
manifestation of the nonequilibrium nature of the sea state
that occurs when the BF parameter is large. A future paper
will discuss the relationship of γ to IBF .

3.13 Application to spectral solutions of nonlinear
wave equations

Let us briefly give an overview for the solutions of water
wave equations in terms of quasiperiodic Fourier series such
as Eq. 71, which we write again here:

Ξ(x, t) =
∑

n∈ZN

Ξnein·k x−in·ωωω(k) t+in·φφφ

We are thinking of applications of this series not only to a
wide range of nonlinear integrable wave equations such as
the KdV, NLS, and KP equations, but also to the Euler equa-
tions, the prototypical nonintegrable system. The advantage
of a quasiperiodic Fourier series is that it has all infinity
harmonics in a particular wave equation and the spectrum
consists of a Riemann matrix for which the diagonal ele-
ments are Stokes waves and the off-diagonal elements are
the pair-wise interactions between Stokes waves. The basic
notion is that all nonlinear wave equations with well-defined
dispersion relations (which is the case for water waves)
must have single modes or degrees of freedom that are
Stokes waves (see further discussion in Section 3.11 above).
This is a lesson in the study of nonlinear wave equations,
first discovered by Stokes for the Euler equations in the
mid 1800s. When one treats the case for two degrees of
freedom, we find two interacting Stokes waves. For the
integrable equations, there is a symmetric 2x2 Riemann
matrix whose diagonal elements correspond to Stokes
waves and whose off-diagonal elements carry the pair-wise
interactions. One also has to include the influence of nonlin-
earity on the frequency and phase. The influence of nonlin-
earity on the frequency is just the quadratic correction to the
linear dispersion relation, the main result of Stokes, but here
generalized to two or more interacting Stokes waves. When
the modulational instability occurs, two Stokes waves phase
lock and the frequency becomes imaginary, allowing expo-
nential growth in the associated breather train. The influence
of the BF instability, which causes strong phase interactions
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or coupling between two Stokes wave components, is a fea-
ture of nonlinear interactions at higher than linear order.
Below the modulational threshold, IBF < 1 (Eq. 36), for
a particular NLFT component there are two independent
Stokes waves that nonlinearly interact: This means that the
sum of two Stokes waves must include a nonlinear inter-
action term in a kind of nonlinear superposition principle
formally given by the theta functions and Eq. 23. But, as
the IBF parameter increases, the two phases are dynami-
cally drawn together and at IBF = 1 they become locked,
so that the two Stokes waves form a coherent waveform
or breather. This threshold for the formation of breathers is
referred to as the Tracy threshold, after its discoverer (Tracy
and Chen 1988). Sea states which substantially exceed the
Tracy threshold are referred to as rogue seas.

In traditional numerical spectral models, one uses the
FFT to integrate the motion forward in time. For a numerical
spectral model, one typically assumes spatially periodic
boundary conditions. This assumption results in a standard
Fourier series for the wave motion with time-dependent
Fourier coefficients, the latter of which are associated with a
set of nonlinear ordinary differential equations (odes). One
numerically integrates the nonlinear odes (normally with
a Runge-Kutta algorithm) and then uses the time varying
coefficients in the Fourier series (numerically the FFT) to
get the wave motion.

Another type of spectral model follows from Eq. 71
again by assuming spatially periodic boundary conditions,
for which we obtain (see chapter 32, Osborne (2010)):

Ξ(x, t) =
∞∑

n=− ∞
Ξn(t)e

iknx (75)

Ξn(t) =
∑

{n∈ZN : n=L n·k/2π}
Ξne−i n·ωωω(k)t+n·φφφ (76)

This result says that the wave motion is governed by a
spatially periodic Fourier series (75) with time varying
Fourier coefficients (76). As just mentioned, these coeffi-
cients are governed by a set of nonlinear odes in a stan-
dard spectral model. However, in the present model (75,
76), the time-dependent coefficients Ξn(t) are themselves
quasiperiodic Fourier series that explicitly have the Rie-
mann spectrum, with sine wave, Stokes waves and breather
components! Thus, in the new model (75, 76), there is no
longer any mystery about the physics hidden in a set of
nonlinear odes, because the nonlinear physics is explicitly
written in terms of the coherent waveforms of water waves
(76).

In the model just given, there is one great advantage:
The quasiperiodic Fourier series contains the coherent
waveforms such as the Stokes wave and the breathers (76),
whereas traditional models do not explicitly retain this
information in the nonlinear odes. Therefore, only in the

new class of models like that just given above do we actually
retain the coherent waveforms as encoded information. One
should read (Osborne 2010) (chapter 32) for an overview of
this newer method as applied to a shallow water model.

In summary, only in multiply periodic Fourier series can
we maintain the spectral information related to the indi-
vidual Stokes waves, i.e., that information on the diagonal
of the Riemann matrix. The off-diagonal elements give
the interactions between the pairs of Stokes waves. One
therefore concludes that to have the fundamental informa-
tion about Stokes waves and breathers in the numerical
integration of a nonlinear wave equation, one must use the
NLFT (75, 76), not traditional spectral methods, to carry out
the numerics. In this way, one has at all stages of the com-
putation the Stokes waves and breathers. If such a model
would be driven by the wind, then the nonlinear compo-
nents themselves would have their spectra (Riemann matrix,
frequencies, and phases) vary as a function of time. From
an initial sea state with small amplitude sine wave com-
ponents, one would find that as the wind blows the sine
waves, especially near the peak of the spectrum, would grow
into Stokes waves and with further wind/wave growth the
Stokes waves would continue to grow and would eventually
begin to phase lock near the peak of the spectrum, creating
breathers. A rogue sea would result after sufficient energy
has been injected into the sea surface that the NLFT spec-
trum would be BF unstable over a large band about the peak
of the spectrum. In this case, most of the NLFT compo-
nents in the nonlinear spectrum would be breather trains. We
refer to a wind/wave model of this type as a phase resolving
model. Traditional wind/wave models use a kinetic equation
that does not retain phase information.

3.14 Application to wind/wavemodels

Typical wind/wave models use the Hasselmann kinetic
equation with driving terms (nonlinearity, wind forcing,
breaking dissipation, etc.) to compute the four-wave
interactions among sine waves. However, in a 3G wave
model, one finds that the nonlinear driving term Snl goes
to zero for one-dimensional wave motion: Zakharov and
coworkers have written extensively on this result, i.e., that
Snl = 0 in the case of no spreading. This means that there
is no Benjamin-Feir instability, even in 1D for 3G models
because the nonlinearities are not included! This spells the
death of any predictability for the Benjamin-Feir instability
in modern 3G models. One cannot even study the one-
dimensional problem with a 3G model and find the BF
instability. This should not be too surprising because of the
nature of the kinetic equation, i.e., that one is dealing only
with interacting sine waves.

In order to get the coherent waveforms (Stokes waves,
breathers, or super breathers) into a 3G model, one needs
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to have the capability to couple together sine waves (as
a series) to create Stokes waves and then to pairwise
couple Stokes waves to obtain breathers. These coherent
waveforms are distinct features of higher order nonlinearity.
The best way to do this, from a spectral point of view,
is with the Riemann theta functions (see Eq. 24). The
NLFA spectrum is then the Riemann matrix whose diagonal
elements are sine waves or Stokes waves: To form a breather
train two Stokes waves must bind together to form a
coherent waveform with a 2×2 Riemann matrix. Higher
bindings (super breathers) would be 3×3 or 4×4, etc.
Thus, one could think of a 3G+ model (or possibility 4G)
that would include the BF instability, by using a multiply
periodic Fourier series of the type Eq. 71, as derived
from Eqs. 23, 24, and 25. A model of this type could be
developed, but has not had high priority in the field of wind
waves up to now. In such a wind/wave model, one would
deal with Stokes wave basis functions instead of sine waves
as in the standard kinetic equation.

An alternative approach would be to reformulate the full
Boltzmann integration in such a way that the quasiperiodic
properties would be retained in the formulation. This
approach would provide the full Boltzmann interactions
with the coherent waveforms integrated into the formulation
and would heavily depend theoretically and numerically
on the Riemann theta functions to fully formulate the
modulational instability. Formulations of this type would
have to rely on the numerical acceleration of the theta
functions using methods in Osborne (2010).

3.15 Possible directions of research for wave
breaking

We consider the issue of wave breaking from a physical,
but qualitative, point of view. We have conducted the
preliminary analysis of a breather train solution of the NLS
equation while it is initially small in amplitude during
its early evolution (middle panel of Fig. 11) and have
passed this solution to a computational fluid dynamical
(CFD) model (this of course requires the construction of
the particle velocity field as input). Then, we observed
the breather evolution according to the CFD model. The
breather begins to grow according to the small-amplitude
physics of the NLS equation and eventually becomes even
larger that the NLS equation would predict, due to higher
order nonlinearities in the CFD dynamics. Finally, the
packet rises to breaking amplitude and, being a deep-
water wave, it undergoes behavior consistent with spilling
breaker dynamics. Finally, due to the breaking dissipation,
the packet drops below the breaking level and it continues
its FPU cycle (qualitatively according to the NLS equation),
but is slightly reduced in maximum amplitude. After the
breaking stage, the packet is still a breather, but in the

case studied, with its amplitude, a few percent smaller in
the NLFT spectral domain. It appears that after at most a
few breathing/breaking cycles, the wave will no longer rise
above the breaking level, but will continue its breathing
dynamics without further breaking. Thus, the breather
concept seems to be robust to wave breaking in the sense
just discussed, implying that the breather packet remains
phase locked during its evolution. The breaking energy is
removed from the maximum breather amplitude and the
breather packet NLFT parameters change only slightly.
We thus suspect that a nonlinear random wave spectrum
would have its maximum breather amplitudes reduced by
breaking events. The amazing robustness of the breathers
is a conclusion of this preliminary study. Of course, if the
breather falls below the Tracy threshold, the breather will
fission into two separate Stokes waves. A future paper will
provide details of this work.

4 The Currituck Sound data set

We now discuss the Currituck Sound data set that we are
analyzing in this paper (Section 2 discusses the instrumen-
tation). An important aspect of this data set is that the
instruments were bottom founded and therefore not subject
to the wave dynamics themselves, as are for example buoys.
The Currituck Sound experiment also does not suffer from
an important source of noise for wave staffs on offshore
platforms that are subject to interference from structural
members. The high resolution in frequency and direction are
also important attributes of the instrument and data. While
the wave heights are not large in terms of oceanic scales,
the periods are small and hence we find large values for
the steepness and the BF parameter. We recognize that, in
spite of the smaller scale of waves in Currituck Sound, with
respect to the North Sea, say, the physics is nevertheless the
same as that of waves at larger scales. The importance of this
high-resolution data set is its significance for the purposes
of understanding the nonlinear physics. Here, we are study-
ing this physics from the point of view of the modulated
Stokes wave expansion (64) and the nonlinear Schrödinger
Eq. 2: This is the simplest nonlinear modulational model of
ocean waves. The fact that this model can be interpreted as
a kind of nonlinear Fourier analysis, here exploited fully as
the NLFT, is an important aspect of this work.

Figure 15 shows the significant wave height Hs and peak
period Tp graphed as a function of time for the duration
of the storm on 4 February 2002. The peak of the storm is
seen to last for roughly 15 h, from about 15:00 until well
past midnight and through the morning hours of the next
day. The values graphed in Fig. 15 were obtained from half-
hour time series and were averaged over the 9 probes of the
experimental apparatus.
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Fig. 15 Significant wave height
(red) and peak period (black) as
a function of time (from
midnight) during the Currituck
Sound storm of 4 February 2002

Figure 16 shows a graph of the significant wave height
Hs and BF parameter IBF for the storm period in Fig. 15.
We see that the BF parameter varies between about 80 and
130, rough indications of the number of breather trains in
each of the half-hour time series. This simple computation
of IBF indicates that the data are quite nonlinear, and
that there is a large density of breather trains in the data,
suggesting a priori an interpretation in terms of breather
turbulence, even before the NLFT analysis discussed below.
One can see from the figure that away from the peak of the
storm IBF is substantially lower and this suggests that the
breather trains will go away in sufficiently low sea states
with longer periods.

The steepness values were also found to be rather high,
based on Hs and Tp (S = (π5/2/g

)
Hs/T

2
p ), up to 0.17,

with some of the individual waves near wave breaking.
While the significant wave height varies from about 0.2 m

up to over 0.5 m, the peak period ranges from about 1.6 s
up to nearly 1.8 s. These relative parameter values ensure
that the BF parameter remains large for the duration of the
measurements.

5 Nonlinear Fourier analysis of the Currituck
Sound data set

The nonlinear Fourier analysis of the Currituck Sound data
set is shown in Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, and 28. Because of limited space here, we have elected
to analyze only a single time series, but in great detail. We
apply the knowledge that we have discussed earlier about
the physics of nonlinear waves. We have taken a sample
time series from the storm on 4 February 2018, that which
was recorded beginning at 21:00. This time series occurs

Fig. 16 The significant wave
height and Benjamin-Feir
parameter as a function of time
(from midnight) during the
Currituck Sound storm of 4
February 2002
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Fig. 17 Time series of 8192 points from Currituck Sound at 21:00 on
4 February 2002. The length of the time series is 1677.72 s = 27.962
min and the discretization interval is 0.2048 s. The standard deviation
is σ = 13.7 cm, the significant wave height is Hs = 4σ = 54.7
cm, the peak period is Tp = 2.51 s (spectral average over 9 probes)

and the zero crossing period is Tz = 2.38 s, giving 705 zero crossing
waves. The blue horizontal lines correspond to the number of standard
deviations above and below the zero mean. The largest measured wave
amplitude is 86 cm (over six standard deviations tall) and the largest
wave height (the same wave) is 114 cm, which corresponds to 2.08Hs

near the peak of the storm and was chosen because it has the
largest measured wave height of 114 cm during the storm.

Figure 17 shows the time series analyzed with the various
methods in this paper. To get a measure of the nonlinear
behavior in this time series, we have placed horizontal blue
lines that are spaced by a single standard deviation σ , both
above and below the zero mean. For crests, we have marked
up to over 6σ on the graph and for the troughs, we have
labeled down to nearly −3σ . The largest crest rises to
86 cm, which is 6.3σ . The up-crossing trough just to the
left of this peak extends downward to −0.28 m. The actual
height of this wave is 114 cm. An expanded view of the
wave is shown in Fig.19.

In the time series of Fig. 17, there are a total of 36 wave
crests above 3σ , 3 crests above 4σ , and 1 crest above 5σ

and 6σ , all suggesting non Gaussian behavior. The fact that
there are 6 pairs of crests above 3σ and 2 triples above 4σ ,

Fig. 18 Histogram of positive wave amplitudes (normalized by the
standard deviation) compared to a Gaussian probability density
function for the Currituck Sound time series at 21:00 on 4 February
2002. Statistics were obtained from all nine probes (12,288 points
in each time series) in the instrument array, with a total of 110,592
amplitudes included in the histogram, of which only the positive values
are shown

suggests that the large waves are correlated and related to
nonlinear packet formation dynamics.

A histogram of the probability density for the positive
wave amplitudes is given in Fig. 18, where the Gaussian
density function is shown as a solid line. Waves from
the 9 probes of the entire array were included in the
histogram. We see that there is a substantial tail to the
data, considerably above the Gaussian density for wave
amplitude/σ greater than about 2.5. An exploded view of the
time series about the largest wave is shown in Fig. 19. This
wave, due to its very high crest, provides a startling contrast
to the other lower waves in the time series. The height of
this wave is 2.09 Hs .

Figure 20 shows the measured time series after the low
frequency part of the signal has been removed by a high-
pass filter. This is consistent with Costa et al. (2014) who
argued that the low frequency power law f −1 in Fig. 4 can
be interpreted as soliton turbulence. While this component
of the wave train has been evidently driven energetically by
the high frequency waves near the peak of the spectrum,
we note that these low frequency waves are small and
the energetics of the spectrum are governed by the region
around the peak of the spectrum where the dynamics are
governed to leading order by the NLS equation. Figure 4
shows the relevant physical parameters of the spectrum,
including the peak frequency, the region of relevance at low
frequency for the KdV equation and the frequency band
about the peak of the spectrum appropriate for the dynamics
of the NLS equation. After removing the low frequency
content, we note from Fig. 20 that the highest crests have
been reduced in amplitude by a few percent and the troughs
have been deepened slightly. For example, the largest wave
crest is reduced from 85 to 73 cm and the associated trough
has been reduced from −27 to −38 cm as indicated in the
figure. Thus, the height of the largest wave has been reduced
from 114 to 111 cm by the high pass filtering operation.
These details are more easily seen in the exploded view of
the largest wave shown in Fig. 21. After having removed
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Fig. 19 Blow up of time series of Fig. 17 which centers about the point interval (3584–4096) to show the largest measured wave with crest height
86 cm and trough of −28 cm and height of 114 cm. The length of this section of the total time series is 104.86 s

Fig. 20 Time series of Fig. 17 after the removal of the low frequency
part of the spectrum, whose physics is not described by the NLS
equation, but instead by the low frequency soliton dynamics of the
Korteweg-deVries equation (Costa et al. 2014). Here, the region of the

left-hand power law f −1 in the spectrum of Fig. 4 has been removed
by a high-pass filter. The standard deviation of the filtered time series
is 13.45 cm and significant wave height is 53.8 cm. The largest wave
height is 111 cm, corresponding to 2.06Hs

Fig. 21 Time series of Fig. 20 has been expanded about the point inter-
val (3584–4096) to show the largest measured wave at the center, here
after the soliton low frequency part of the spectrum has been filtered

out of the measured time series of Fig. 17. The length of this section
of the total time series is 104.86 s. The largest wave has its crest and
trough values shown

Fig. 22 The measured time series of Fig. 17 has been first high-pass
filtered (to remove the low frequency oscillations not described by the
NLS equation) to obtain the time series of Fig. 20. Then, the inverse
nonlinear Stokes operator of Eqs. 65 and 67 has been used to obtain
the present time series. Also shown (red) is the modulational envelope

A(0, t) = |η(0, t) + iη̃(0, t)| found by the Hilbert transform of the
above time series for which the carrier amplitude is ao = 16.0 cm (see
Fig. 24 below for an expanded, detailed view). The significant wave
height of this time series is 52.0 cm. The height of the largest wave
(labeled 1) is 2.04Hs
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Fig. 23 Shown is the phase time series φ(0, t) of the complex envelope ψ(0, t) = A(0, t) exp[iφ(0, t)] of the Currituck Sound time series shown
in Fig. 22

Fig. 24 Time series of Fig. 22 has been expanded about the point interval (3584–4096) to show the largest measured wave at the center. The
length of this section of the total time series is 104.86 s

Fig. 25 Time series of Fig. 23 has been expanded about the point
interval (3584–4096) to show the modulational phases. The length of
this section of the total time series is 104.86 s. This figure should be

compared to the packets of Fig. 24. It is instructive to note that the
phases have regions of relative constancy beneath some of the large
packets, but undergo phase jumps between many packets

Fig. 26 The measured time series of Fig. 17 is first high-pass filtered
(to remove the low frequency oscillations not described by the NLS
equation) to obtain the time series of Fig. 20 and then the nonlinear
Stokes filter (the first of of Eqs. 65 and 67) is used to obtain the time

series of Fig. 22. Shown in this figure is the complex envelope func-
tion ψ(0, t) = ψR(0, t) + iψI (0, t) found by the Hilbert transform of
Fig. 22 and Eq. 63. ψR(0, t) is shown in red and ψI (0, t) is shown in
blue
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Fig. 27 The time series of Fig. 26 has been expanded about the point interval (3584–4096) to show the complex modulation function in detail.
The length of this section of the total time series is 104.86 s

the low frequency content of the measured data, we are one
more step closer to the nonlinear Fourier analysis.

The next step is to remove the Stokes wave nonlinear-
ity from the wave train of Fig. 20. To remove the Stokes
component, we use the inverse Stokes operator of Eqs. 65
and 67. The goal is to remove the Stokes wave nonlinear-
ity (which is up/down antisymmetric) from the time series
of Fig. 20, so that the resultant time series is up/down
symmetric and therefore appropriate for analysis with the
NLS eigenvalue problem Eq. 32. Indeed, the resultant time
series, given in Fig. 22, has the required up/down symmetry.
As pointed out earlier, we must meet the requirement that

the physics of the NLS equation has only up/down symmetric
wave trains, a requirement for the subsequent NLFT analysis.
The up/down symmetry of Fig. 22 contrasts to the original
measured time series in Fig. 17 which is up/down anti-
symmetric, clearly showing the Stokes wave nonlinearity.
This sequence of events simply emphasizes the fact that
the global Stokes wave nonlinearity and the dynamics of
the NLS equation are experimentally separable from each
other at the approximation given here. Alternatively, one
might say that the wave dynamics, to this order, are gov-
erned by a complex NLS equation solution which is then
“dressed” after the fact with the Stokes wave nonlinearity
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Fig. 28 The nonlinear Fourier spectrum for the complex modulation
function shown in Fig. 26. This is the actual NLFT spectrum of the
Currituck Sound time series. Note that there are two vertical axes.
The one on the left is the actual eigenvalue obtained in the compu-
tation of the NLFT spectrum and has units of meters. The right-hand
vertical axis is dimensionless and is effectively the maximum ampli-
tude of a breather normalized by the carrier amplitude. This means

that the actual carrier amplitude is 0.16 m (left vertical axis, see hor-
izontal red line in Fig. 22) and the normalized amplitude is 3 (the
normalized amplitude of the Peregrine breather (Fig. 9), see right-hand
vertical axis). The actual positions of the three theoretical breathers
discussed herein (Akmediev, Peregrine and Ma-Kuznetsov) are shown
in blue. Spectral data points above 2.2Hs (there are three of them) are
considered to be rogue waves by the definition of (Dean 1990)
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via the Stokes operator (the second of Eqs. 65, 66). As will
be seen below, the Stokes wave modes of the NLS equation
will be evident in the NLFT spectrum discussed in Fig. 28.
This is an interesting lesson in nonlinear wave dynamics.

We now take the Hilbert transform of the wave train
of Fig. 22 and then apply Eq. 63 to remove the carrier
oscillation to obtain the complex envelope (see discussion in
Section 3.10). The modulus A(0, t) of the time series, related
to the complex modulation ψ(x, t) = A(x, t) exp[iφ(x, t)],
is shown in red in Fig. 22. Figure 23 shows the time series of
the complex modulational phase time series φ(0, t) obtained
from the data in Fig. 22. We have found that there are two
types of activity that are apparent in this graph of the phases:

(1) Clumps of dense points that tend to fall beneath
packets in Fig. 22.

(2) Phase jumps that occur from one packet to the other.
The clumps of points suggest the coherent nature of
the packets (many of them are actually breathers) and
the phase jumps indicate that the phase tends to leap
from one value to another as one passes from one wave
group to another across the time series of Fig. 22. An
expanded view of Fig. 22 is shown in Fig. 24. Here
we see the largest wave in the center together with the
modulus of the complex envelope which is shown in
red.

Figure 25 shows an exploded view of Fig. 23, i.e., of
the complex modulation phases centered about the largest
wave. The phases of Fig. 25 should be compared to the wave
amplitudes of Fig. 24, which has the same time scale. Again
we note, and perhaps it is easier to see on the expanded
time scale, that the phases under many of the packets tend
to remain relatively constant, while there tend to be phase
jumps between many of the packets. It may be that such
behavior is indicative of nonlinear packet dynamics and
suggests that many of the packets are not dispersive in
nature, but instead behave coherently.

In Fig. 26, we show the complex envelope ψ(0, t) =
ψR(0, t)+iψI (0, t) obtained from Fig. 22 with Eq. 63. Both
the real part ψR(0, t) and the imaginary part ψI (0, t) are
shown. An exploded view of the Fig. 26 is shown in Fig. 27.

We are now ready to obtain the NLFT spectrum of the
complex function ψ(0, t) shown in Fig. 26: ψ(0, t) is the
input complex function to the eigenvalue problem, Eq. 32,
which we use to obtain the NLFA spectrum by the methods
of Section 3.6. To this end, finally, the resultant NLFT
spectrum of the Currituck Sound time series of 21:00 on 4
February 2002 is graphed in Fig. 28. The horizontal axis
is the usual frequency axis in Hertz, while the left-hand
vertical axis consists of the NLFT mode amplitudes in meters.
The right-hand vertical axis shows the maximum breather
amplitudes normalized by the carrier amplitude. For a
particular breather mode in the graph, one can therefore

instantly read off its maximum amplitude on the right-hand
vertical scale.

We first discuss the least energetic modes in the spectrum
of Fig. 28. The small nonlinear modes near the frequency
axis can be identified by a red dot (point of simple spectrum)
with a spine (thin black line) dropping to the frequency
axis. These latter are small NLS sine and Stokes waves.
When two red dots (again, points of simple spectrum) are
connected by a spine (thin black curve, not crossing the real
axis), we have the spectral signature of a small breather. A
close inspection of the graph indicates that there are quite a
number of these small amplitude breathers in the lower part
of the graph near the frequency axis. A small box on the
lower left shows simple pictograms for these simple modes.

The most important and energetic nonlinear modes in
Fig. 28 are the NLFT modes λI above about 0.08 m: These
are the red dots corresponding to breather modes that exceed
about twice the carrier amplitude, as can be seen on the
vertical axis to the right of the graph. For these energetic
modes, the two points of simple spectrum are very near each
other, so that the spine cannot be seen by eye because it is
too short. Modes of this type are called “nearly homoclinic”
because they are very close to each other, i.e., they are
nearly “double points.” Of course, in real applications of the
NLFT, the two points are never double points, but instead
they are slightly separated, but this is not seen at graphical
resolution. Note that the carrier amplitude ao = 0.16 m is
shown on the graph. Any breather of amplitude ao has a
maximum amplitude of 3ao, as we have seen in particular
for the Peregrine breather. The maximum amplitudes are
easily found on the vertical axis on the right, which has these
amplitudes on a scale of 1.0–4.0. Note also the positions of
the three classical breathers for Akhmediev, Peregrine, and
Kuznetsov-Ma that were discussed at length in Section 3.8.
Shown in the upper right of Fig. 28 is an example of a
breather train: There are arrows that point to examples of
breathers in the spectrum. The number of breathers above
2.0ao (twice the carrier amplitude of ao=16.0 cm) is 45,
i.e., these are the subset of all the breathers in the spectrum
whose maximum amplitudes range from twice to four times
the carrier amplitude.

Note the horizontal lines in Fig. 28 for Hmax = 2.0Hs

and Hmax =2.2Hs , two common values often used to define
“rogue waves,” see (Dean 1990). Note also that in Fig. 28,
there are three modes above 2.2Hs (3.49ao) so that we have
three rogue waves (by the Dean definition) in the Currituck
Sound time series. There are six modes above 1.86Hs

(2.97ao) in the data set. The latter discovery of six modes
above 1.86Hs is a significant result, for indeed a linear
Gaussian stochastic process has only one of these large
waves in a time series of 1000 waves. In the present case for
Currituck sound, we have six waves larger than the design
height in a time series of 700 waves. Since the factor 1.86Hs
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is used as the defined size of the design wave for both the oil
and shipping industries, the present findings have significant
implications on the choice of the design wave for offshore
structures and ships, here found for Currituck Sound to
have a risk level an order of magnitude higher (about
6(1000/700)=9) than the chosen industry standard. The fact
that the measured data are also from a typical winter storm,
not the one-in-one-hundred year storm, suggests also that
there would be considerable additional risk should one use
the actual one-in-one-hundred year storm.

We now look closely at the eight largest breathers, which
rise above 2.7ao in Fig. 28. These eight waves correspond to
the breather packets already marked in Fig. 22, seen there to
all lie above three standard deviations. The results are given
in Table 2, where a number (left column) is associated with
each breather, starting with the largest breather in the NLFT
spectrum. These numbers are used to label the breathers
in Fig. 22, from which one can directly see the packet
amplitudes and heights at the instrument location. From
Table 2, we see that the first two breathers have maximum
heights that are quite large, 2.5Hs and 2.45Hs . These two
packets, as they rise up, will likely be forced into breaking,
essentially driven by the BF instability. From the right-hand
column, we see that these two packets are due to rise up
over periods of 40–60 min and 5–8 km. These are clearly
appropriate space and time scales suited to investigation
inside Currituck sound, which is about 20-km wide (see
Fig. 1). Two of the breathers have close proximity to the
carrier wave frequency and therefore take a long time to rise
up. These are the two breathers numbered 3 and 8 in Table 2.
The long distances and times mean that these waves will
never be seen in the basin formed by Currituck Sound, for
they are due to rise up only after they impact the far shore.
Of the eight breathers in the table, six of them are due to rise
to their maximum heights within the confines of Currituck
Sound.

The time series analyzed here is 1677.7 s long and the
waves at the peak frequency have wavelength of about 8.86 m.
The time series have about 687 peak frequency wavelengths,
are 6.09 km long based on the phase speed and are 3.59 km
long based on the linear group speed of 2.14 m/s. These
simple numbers characterize the measurement domain for
which Table 2 shows that four of the eight breathers
will propagate beyond the length of the time series. This
interesting idea provides an estimate of the risk level for
the largest breathers outside of the measurement domain, a
result not obtainable with linear Fourier analysis.

6 Summary

Traditionally, the linear Fourier transform is used to analyze
ocean surface wave data, here a time series η(0, t). A

measured wave train is then viewed as a linear superposition
of sine waves with random Fourier phases. Such a field is
Gaussian in the wave amplitudes and, if sufficiently narrow
banded, Rayleigh in its modulational envelope.

The goal of this paper is instead to analyze the surface
wave amplitude η(0, t) for nonlinear effects such that
coherent waveforms are important in the analysis. We do
this by first computing the auxiliary wave field η̃(0, t),
which is the Hilbert transform of η(0, t), yielding the
complex surface elevation �(0, t) = η(0, t)+ iη̃(0, t). This
function is viewed as analytic in the complex plane because
the Hilbert transform guarantees the Cauchy conditions
are satisfied. We are then able to compute the complex
modulational envelope ψ(0, t) = �(0, t)eiωot , where ωo is
the carrier or peak spectral frequency of the wave train.

Given the above two complex fields �(0, t) = η(0, t) +
iη̃(0, t) and ψ(0, t), we apply a method (Osborne 2010) that
we call nonlinear Fourier analysis (NLFA) which is based
on two sources of nonlinearity in the surface wave field:

(1) The Stokes wave nonlinearity of the complex surface
elevation �(x, t) that is modulated by the complex
field ψ(x, t) (Eq. 64).

(2) The nonlinear Schrödinger equation which governs
the nonlinear dynamics of ψ(x, t) (Eq. 2). We have
found that the first type of nonlinearity, that of the
globally modulated Stokes wave, can be removed by a
particular Stokes operator that we determine (the first
of Eqs. 65 and 67).

After removal of the global Stokes wave nonlinearity in
a time series, we obtain the up/down symmetric wave
train which is governed to leading order by the nonlinear
Schrödinger (NLS) equation. The NLS equation can be
written as a boundary value problem which we call the
tNLS equation (Eq. 17). The associated eigenvalue problem
for tNLS (Eq. 32) is referred to as the nonlinear Fourier
transform (NLFT), whose spectral structure then provides
us with tools to nonlinearly analyze time series. The
spectrum of the tNLS equation has three types of nonlinear
Fourier components: (1) sine waves, (2) NLS Stokes waves
and (3) breather packets (two phase locked NLS Stokes
waves).

The NLFT spectrum reduces, in the limit of small ampli-
tude waves, to the linear Fourier transform traditionally used
to analyze time series (the FFT). As the wave field grows
above this linear state, we find that, in addition to sine
waves, Stokes waves began to appear in the spectrum. Fur-
ther growth in the wave field results in the spontaneous
formation of breather states. Thus, the NLFT spans the
full range of nonlinearity from sine waves, to NLS Stokes
waves to breathers in a natural and continuous way. Suf-
ficiently increasing the global modulational parameter IBF

results in a sea state saturated by breather trains and is often
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referred to as a rogue sea, further characterized by breather
turbulence.

We have applied the above NLFT method to the analysis
of Currituck Sound time series measured during a storm
on 4 February 2002. Surprisingly, we have found the time
series to be energetically dominated by breather trains in
the nonlinear spectrum. There are 195 breathers in the
time series analysed herein and these nonlinear components
contain about 95% of the energy in the spectrum. The
breather trains are found to have NLFT phases that are
uniformly distributed between 0 and 2π . This fact suggests
a stochastic paradigm for these highly nonlinear wave
trains: A wave field which is dominated by breather packets
that are randomly distributed in their NLFT phases. This
nonlinear random phase approximation contains breathers
as “coherent waveforms,” the natural nonlinear modes
in the formulation, together with the nonlinear pairwise
interactions among the breathers.

The energetic dominance of the breather packets and
their random phases leads us to the description of ocean
waves in Currituck Sound as being characterized by
breather turbulence. Breather turbulence at the order
of the nonlinear Schrödinger equation is referred to as
integrable turbulence because the tNLS equation is exactly
integrable by the periodic inverse scattering transform
as described herein. This new nonlinear random phase
approximation is governed by Eq. 23 where the phases
for the breather components are themselves taken to be
uniformly distributed random numbers. Future work will
determine properties of breather turbulence based on the
approximation for the wave motion used herein: The wave
field η(x, t) is taken to be a Stokes wave with a complex
modulation function ψ(x, t) (Eq. 64), such that ψ(x, t) is a
breather-dominated solution of the NLS equation (23) with
random NLFT phases.

What are the implications of this new perspective on
the nonlinear behavior of ocean surface waves? It means
that many of the traditional arguments, based on observing
individual waves in a time series, about whether a single
wave is a sine wave, Stokes wave or something else, are
all mute. Now, we can use modern tools, here mainly the
NLFT, to determine what is really happening in a particu-
lar time series. No longer will we look at a time series and
declare that a particular wave, on the basis of pure opin-
ion, is a breather, Stokes wave, soliton or other kind of
nonlinear coherent wave form. Now, we can determine the
actual configuration of a nonlinear random sea state without
guessing. Such a sea state might be a small amplitude wave
train described by the Gaussian random phase approxima-
tion with its superposition of sine waves. Or a slightly more
energetic sea state might be more complex, such that sine
waves and Stokes waves occur together. More energetic near
Gaussian sea states might simultaneously have sine waves,

Stokes waves, and breathers for their NLFT components.
Or we might have cases where primarily breathers domi-
nant the spectrum, such as in Currituck Sound, giving what
we might also call a rogue sea condition, because a sea
state dominated by breather turbulence is also a precursor of
extreme waves (Osborne 2010).

It nevertheless seems clear that we are arriving at a new
age of perception about the behavior of energetic nonlinear
ocean waves. In our opinion, we are only at the beginning
of this new research and of the resultant consequences
on our understanding of ocean wave dynamics. Thus, the
approach of taking the Fourier transform of a time series
and assuming random phases, thus destroying any possible
coherency, seems much less desirable. The paradigm of
the nonlinear random phase approximation introduced here
will provide us with tools for a better understanding of the
coherent nature of ocean surface waves. Furthermore, the
search for superbreathers in ocean surface waves should
have a high priority. Finally, nonlinear Fourier methods for
the study of fully two-dimensional wave data must also be
pursued.
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