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Abstract In the ocean, wind-generated kinetic energy (KE)
manifests itself primarily in balanced currents and near-
inertial waves. The dynamics of these flows is strongly
constrained by the Earth’s rotation, causing the KE in
balanced currents to follow an inverse cascade but also pre-
venting wave-wave interactions from fluxing energy in the
near-inertial band to lower frequencies and higher verti-
cal wavenumbers. How wind-generated KE is transferred to
small-scale turbulence and dissipated is thus a non-trivial
problem. This article presents a review of recent theoreti-
cal calculations and numerical simulations that demonstrate
how some surprising modifications to internal wave physics
by the lateral density gradients present at ocean fronts allow
for strong interactions between balanced currents and near-
inertial waves that ultimately result in energy loss for both
types of motion.
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1 Introduction

Winds blowing over the ocean generate currents with a
range of frequencies. The bulk of the kinetic energy (KE)
in these flows is contained in mesoscale currents and eddies
with low frequencies, which are strongly constrained by the
Earth’s rotation to follow the geostrophic balance. Winds
also generate near-inertial waves (NIWs), which are oscil-
latory, unbalanced motions with frequencies close to the
inertial frequency f = 2� sinφ (� is the Earth’s angu-
lar velocity and φ latitude). The dissimilar temporal scales
of the balanced, mesoscale currents, and the NIWs suggest
that the two types of motion should not interact very effec-
tively, and that the fast waves should simply pass through
the balanced flows without exchanging energy or momen-
tum.While this is a fairly accurate characterization for weak
currents, this does not hold for energetic flows, such as
those found in western boundary currents and the Antarc-
tic Circumpolar Current. These regions also coincide with
the maxima in NIW kinetic energy (e.g., Elipot et al. 2010),
suggesting that strong interactions between NIWs and bal-
anced motions should be prevalent at these locations. Such
interactions have been hypothesized to play an important
role in the kinetic energy budgets for both types of motions
through damping the balanced circulation and facilitating
a transfer of KE from NIWs to higher frequency internal
waves and potentially to small-scale turbulence (Ferrari and
Wunsch 2009; Polzin 2010; Polzin and Lvov 2011; Nagai
et al. 2015). Recent idealized, high-resolution simulations of
wind-forced flows support this hypothesis and suggest that,
integrated globally, the rate of KE extracted from the bal-
anced circulation by NIWs could be of order 0.1 TW (Taylor
and Straub 2016; Barkan et al. 2017).
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Not surprisingly, the hotbeds of NIW-balanced flow
interactions are ocean fronts, where strong vertical vortic-
ity and horizontal density gradients conspire to significantly
modify the physics of the waves. The vertical vorticity of
geostrophic currents, ζg , shifts the net spin of the fluid away
from f/2, causing inertial motions to oscillate at the effec-
tive inertial frequency feff = √

f (f + ζg) (Healey and
LeBlond 1969; Mooers 1975; Olbers 1981; Kunze 1985).1

Lateral variations in ζg and feff further modify the hor-
izontal wavenumber of NIWs and enhance their vertical
propagation (van Meurs 1998; Young and Ben-Jelloul 1997;
Balmforth and Young 1999). In so doing, the waves acquire
potential energy at the expense of the energy in the balanced
flow (Xie and Vanneste 2015). NIW-mean flow interactions
associated with vertical vorticity can also trigger wave-wave
interactions that transfer KE from the inertial peak to higher
frequencies (e.g., Wagner and Young 2016).

The intense lateral density gradients characteristic of
ocean fronts modify the physics of NIWs in ways that are
less intuitive than the vertical vorticity described above,
causing NIWs to exhibit rather unexpected behavior. For
example, NIW velocity hodographs do not trace inertial cir-
cles but are instead elliptical, the vertical components of
the group and phase velocity can be in the same direc-
tion, and the direction of energy propagation is symmetric
about the slope of isopycnals not the horizontal. This atyp-
ical wave physics can facilitate energy transfers between
NIWs, inertia-gravity waves of different frequencies, and
balanced currents. The objective of this article is to review
recent work that describes this physics and discusses the
implications for the energetics of both the near-inertial wave
field and balanced circulation in the ocean. The focus is on
NIWs that are presumed to have been generated externally
by winds as opposed to internally by frontal processes, since
the energy exchange with the mean flow that transpires
in either case is different in nature. Therefore, the litera-
ture on geostrophic adjustment (e.g., Zeitlin et al. 2003;
Shakespeare and Taylor 2013) and spontaneous imbal-
ance and emission of inertia-gravity waves at fronts (e.g.
Vanneste 2013; Shakespeare and Taylor 2014; Nagai et al.
2015; Shakespeare and Hogg 2017) will not be reviewed
here.

2 Modifications of near-inertial wave properties
at fronts

The key to comprehending how fronts facilitate wave-
mean flow interactions is to understand how lateral density

1This expression for feff is only valid for straight fronts. If the front
is curved, inertial motions oscillate at a frequency that depends on the
flow curvature as well, see for example Kunze and Boss (1998).

gradients modify the propagation, frequency, and polariza-
tion relations of NIWs. For the latter two properties, the
most insightful way to do this is to use parcel arguments
and the principles of conservation of buoyancy and absolute
momentum that govern the basic physics of inertia-gravity
waves (e.g., Holton 2004, Section 7.5).

2.1 Parcel arguments and the minimum frequency
of inertia-gravity waves

Buoyancy, b = −gρ/ρo, (g is the acceleration due to grav-
ity, ρ is the density, and ρo a reference density) is conserved
when diabatic processes (caused by heating, cooling, or
mixing of heat and salt, for example) are absent. Absolute
momentum is an angular momentum-like quantity that is
conserved in currents that are inviscid and that do not have
spatial variations in the direction of their flow (which is a
fairly good approximation at fronts). Take for example a
current in the x-direction that satisfies these assumptions. In
this limit, both friction and pressure gradient forces in the
along flow direction are zero, and the momentum equation
in the x-direction can be written as
DM

Dt
= 0 (1)

where M = u − f Y is the absolute momentum, Y is the
displacement of fluid parcels in the y-direction, and D/Dt

is the material derivative. Thus ΔM ≡ ∫
(DM/Dt)dt = 0,

where Δ is the change following fluid parcels. Splitting the
flow into two components, u = ug +u′, one associated with
the front, ug , and the other with the wave, u′, conservation
of absolute momentum implies that

u′ = −ΔMg (2)

where Mg ≡ ug − f Y is the absolute momentum of the
background flow and u′ = 0 at t = 0. The buoyancy can be
decomposed in a similar fashion, b = bg + b′, and if it is
conserved the wave buoyancy anomaly is

b′ = −Δbg, (3)

where it is assumed b′ = 0 at t = 0. Wave buoyancy and
velocity anomalies drive forces, the latter associated with
the Coriolis force −f u′, that when restoring explain the
oscillatory behavior of inertia-gravity waves.

For instance, in the textbook example with no back-
ground flow (ug = 0) and a density field with flat isopy-
cnals and stratification N2 = ∂bg/∂z, small-amplitude
vertical displacements, Z, generate a buoyancy anomaly
and hence vertical acceleration D2Z/Dt2 = b′ = −N2Z,
yielding oscillations at a frequency ω = N . In this case, iso-
surfaces of the absolute momentum of the background flow,
known as M-surfaces, are vertical (Fig. 1, upper left panel).
Consequently, fluid parcel displacements in the y-direction
cross M-surfaces and generate a velocity anomaly, Coriolis
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Fig. 1 Upper panels: isopycnals (black) and M−surfaces (red) for
no background flow (left) and at a front (right), where thermal wind
shear and horizontal density gradients tilt the two surfaces toward one
another and reduce the along-isopycnal gradient in absolute momen-
tum. Consequently, at fronts along-isopycnal displacements of fluid
parcels (blue arrows), which lead to inertia-gravity waves with the
minimum frequency, result in a reduced along-front wave velocity, u′,
Coriolis force, and frequency. In addition, hodographs of the wave
velocity (bottom panels) shift from inertial circles when there is no
background flow (left) to ellipses with stronger flow in the cross-front
direction at a front (right)

force, and lateral acceleration D2Y/Dt2 = −f u′ = −f 2Y

but no buoyancy anomaly, and hence result in oscillations at
a frequency ω = f . For most oceanic conditions, N > f ,
and consequently inertia-gravity waves in the absence of a
background flow span a range of frequencies between f and
N as fluid parcel displacements move from being purely
horizontal to purely vertical.

Fronts distort the geometry of isopycnals and M-
surfaces, leading to profound modifications to the properties
inertia-gravity waves. The baroclinicity of the front, which
can be quantified with the thermal wind relation

S2 ≡ −∂bg

∂y
= f

∂ug

∂z
, (4)

tilts both isopycnals and M-surfaces (Fig. 1, upper right
panel).2 As the baroclinicity increases (keeping all other
properties of the background flow constant), M-surfaces
flatten while isopycnals steepen and the two surfaces angle
toward one another. In this system, the inertia-gravity waves
with the lowest frequency correspond to parcel displace-
ments that are along-isopycnal (since they do not induce
a buoyancy force), and result in oscillations caused by the
Coriolis force, similar to the case without a background
flow. However, the change in absolute momentum that the
fluid parcels experience at a front, and hence the Coriolis
force, is reduced because the along-isopycnal gradient in

2Note that since the front is two-dimensional, there is no geostrophic
flow nor thermal wind shear in the y-direction.

M is weakend by baroclinicity. The expression for the min-
imum frequency of inertia-gravity waves in a background
flow reflects this physics

ωmin = √−f ∇ρMg = f
√
1 + Rog − 1/Rig, (5)

where ∇ρM is the along-isopycnal gradient in absolute
momentum, which can also be written in terms of the
gradient Rossby number

Rog = ζg

f
=

(
−∂ug

∂y

)/
f (6)

(which unlike the bulk Rossby number can be positive or
negative depending on the sign of the vertical vorticity) and
Richardson number of the geostrophic flow

Rig = N2

(∂ug/∂z)2
= N2f 2

S4
(7)

(for a derivation of this expression see Whitt and Thomas
2013). The main message to take from (5) is that baro-
clinicity permits wave frequencies that are less than the
effective inertial frequency feff = f

√
1 + Rog . In par-

ticular, for sufficiently low Richardson numbers, namely
Rig → 1/(1 + Rog), ωmin → 0 and the distinction in time
scales between the waves and balanced currents is lost.

2.2 Polarization relations at the minimum frequency

For inertia-gravity waves at the minimum frequency, the
polarization relation between the magnitudes of three com-
ponents of the wave velocity is

(|u′
min|, |v′

min|, |w′
min|

) = |v′
min|

(
ωmin

f
, 1, |sρ |

)
, (8)

where sρ = S2/N2 is the slope of isopycnals (Whitt and
Thomas 2013). Thus velocity hodographs of waves of min-
imum frequency do not trace perfect inertial circles but are
instead ellipses with a major axis pointed in the cross-front
direction (i.e. |u′

min| < |v′
min|) when ωmin < f (Fig. 1,

lower panels). This follows from conservation of absolute
momentum and the reduction of |∇ρM| by baroclinicity.
In addition, the hodographs are aligned with isopycnals
which are tilted in the vertical, imparting a vertical veloc-
ity to the waves. These modifications can allow the waves
to flux momentum in the vertical and make the wave
momentum fluxes anisotropic in the horizontal. This has
important implications for the energetics of NIWs, as will
be highlighted in Sections 3 and 5.

2.3 Dispersion relation and wave propagation

While parcel arguments are useful for understanding the
restoring forces for NIWs in fronts, they cannot be used
to characterize wave propagation. Instead, a WKB-type
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analysis of the governing wave equation is the most straight-
forward approach to derive the waves’ dispersion relation
and group velocity.

Two-dimensional NIW are governed by the time-
dependent, hydrostatic Eliassen-Sawyer equation
(

∂2

∂t2
+ f 2

eff

)
∂2ψ ′

∂z2
+ 2S2 ∂2ψ ′

∂y∂z
+ N2 ∂2ψ ′

∂y2
= 0, (9)

where the wave velocity is related to the streamfunction
in the usual way v′ = ∂ψ ′/∂z, w′ = −∂ψ ′/∂y (Sawyer
1956; Eliassen 1962; Whitt and Thomas 2013). Assuming
slow spatial variations in the background flow, plane wave
solutions of the form ψ ′ ∼ exp[i(ly + mz − ωt)] with
wavevector (l, m) and frequency ω can be sought, yielding
the dispersion relation

ω2 = f 2
eff + 2S2γ + N2γ 2, (10)

where γ = l/m. Similar relations were first derived by
Mooers (1975) in the non-hydrostatic limit and by Kunze
(1985) for fronts with weak vorticity and baroclinicity (i.e.,
with Rog � 1 and Rig � 1). The group velocity can be
calculated from Eq. 10 as

cg ≡
(

∂ω

∂l
,

∂ω

∂m

)
=

(
S2 + N2γ

ωm

)
(1, −γ ) . (11)

It follows that the direction of energy propagation with
respect to the horizontal, that is, the slope of wave charac-
teristics, is

cg,z

cg,y

= −γ = sρ ∓
√

ω2 − ω2
min

N2
. (12)

For waves of a given frequency (excluding the mini-
mum frequency), there are four possible directions of energy
propagation, similar to inertia-gravity waves in the absence
of a background flow. However, unlike the no-flow case, at
a front the directions of propagation are symmetric about
isopycnals not the horizontal (Fig. 2). Consequently, for
waves at the effective inertial frequency, ω = feff , two
characteristics slopes are possible γ = 0 and −γ = 2sρ ,
in contrast to the case of no front where only the γ = 0
characteristic and horizontal propagation is allowed. This
leads to unusual rules for wave reflection off boundaries that
can make NIWs undergo critical reflections during which
energy from both the waves and mean flow is dissipated, as
will be discussed in Section 4.

2.4 Summary of modifications

Horizontal density gradients at fronts modify the properties
of NIWs in three important ways: first, by reducing the min-
imum frequency of inertia-gravity waves (5) they support
waves with frequencies less than the effective inertial fre-
quency feff ; second, by adjusting the direction of energy

Fig. 2 The directions of energy propagation for NIWs, i.e., the ray
paths, (blue arrows) are parallel to isopycnals (black lines) at the min-
imum frequency ωmin (left) and progressively move away from the
isopycnal slope as the frequency is increased. This is very different
from NIWs in the absence of background currents, which propagate
horizontally at the minimum frequency. At a front, horizontal propaga-
tion only occurs for waves at the effective inertial frequency, ω = feff ,
yet these waves can also propagate vertically on a steep characteristic
with twice the isopycnal slope

propagation (12) they allow waves at the effective inertial
frequency to transmit energy vertically as well as hori-
zontally; and third, fronts permit vertical and anisotropic
horizontal wave momentum fluxes as a consequence of the
polarization relation (8). These modifications are important
because they are responsible for phenomena that could help
close the energy budgets of both the NIW field and balanced
circulation, as will be described in the next three sections.

3 Parameteric subharmonic instability at fronts

In the upper ocean, the majority of the kinetic energy (KE)
in the internal wave spectrum is found near the inertial fre-
quency (Ferrari and Wunsch 2009). How NIWs lose their
KE is not well understood although shear instabilities and
wave absorption at critical layers have been proposed as
possible damping mechanisms (Alford and Gregg 2001;
Kunze et al. 1995). Wave-wave interactions, in contrast, are
thought to transfer energy to low frequencies and hence
increase rather than reduce the energy in the inertial peak
(McComas and Bretherton 1977; Müller et al. 1986). One
wave-wave interaction, parametric subharmonic instability
(PSI), is characterized by a transfer of energy from a wave
of a given frequency to its subharmonic at half its fre-
quency. Since NIWs have the lowest frequencies of all
inertia-gravity waves according to classical internal wave
theory, they cannot lose energy via PSI. However, this
reasoning no longer holds at fronts because baroclinicity
permits inertia-gravity waves with subinertial frequencies,
e.g., Eq. 5. Indeed, Thomas and Taylor (2014) demonstrated
using a stability analysis and numerical simulations that
inertial waves in fronts can be damped by PSI under certain
conditions. The key findings from this work are summarized
in this section.
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Fig. 3 Schematic of the basic state of the stability analysis used to
study a parametric subharmonic instability that extracts kinetic energy
from inertial motions at fronts. A vertically-sheared inertial oscillation
(velocity vectors in magenta) at a front (isopcynals in blue) is per-
turbed by a flow that is purely isopycnal (velocity vector in black).
Four snapshots are shown, at 1/2, 1, 3/2, and 2 inertial periods, Ti ,
and for a front with Rig = 4/3

Thomas and Taylor (2014) considered a vertically-
sheared inertial oscillation superimposed on a simple front
with uniform gradients (Fig. 3). The frontal flow had no
vertical vorticity and hence the inertial motion oscillated at
a frequency feff = f . Therefore, the condition for PSI
to develop at the front is ωmin ≤ f/2, which using (5)
translates to a critical Richardson number of Rig = 4/3.

Thomas and Taylor (2014) tested this prediction using a
stability analysis in which the basic state was perturbed
with a two-dimensional (invariant in the along-front direc-
tion) plane wave corresponding to an inertia-gravity wave
of minimum frequency, i.e. with flow that is aligned with
isopcynals (Fig. 3, black arrows). Time series of the cross-
front velocity of the perturbations for three values of the
Richardson number Rig = 7/6, 4/3, and 3/2 illustrate the
expected increase in frequency of the perturbation, but also
growth for Rig = 4/3 when ωmin = f/2 and PSI is active
(Fig. 4, middle panel). This result is for weak inertial shear.
The stability analysis revealed that the instability criterion
is also a function of the strength of the inertial shear rela-
tive to the thermal wind shear. When it is weak, PSI occurs
near Rig = 4/3 as illustrated above, but as the two shears
become comparable, PSI can develop for a range of values
of Rig centered about 4/3 since the inertial shear affects the
properties of the waves (Thomas and Taylor 2014).

PSI gains energy by extracting KE from the inertial oscil-
lation at a rate given by the ageostrophic shear production

AGSP = −v′w′ ∂v

∂z
(13)

where v is the cross-front velocity of the inertial motion
and v′, w′ are the velocity components of the perturbation.
Since the perturbation is a wave of minimum frequency, its
velocity is along-isopycnal and v′ and w′ are correlated fol-
lowing the polarization relation (8). This results in a vertical
wave momentum flux that can lead to a net extraction of KE
from the inertial oscillation with AGSP > 0 when the flux
is phased correctly with the inertial shear (Fig. 4, bottom
panel). This phasing is achieved when ωmin = f/2 (namely

Fig. 4 Results from the stability
analysis for a basic state similar
to that shown in Fig. 3, but with
three different Richardson
numbers of the frontal flow
Rig = 7/6, 4/3, 3/2 (blue,
black, and red lines,
respectively) yet the same
inertial shear (top panel,
normalized by the thermal wind
shear S2/f ). Time series of the
perturbation cross-front velocity
(middle panel, normalized by its
initial value) and the
ageostrophic shear production
(13) (bottom panel, normalized
by (S2/f )KEo, where KEo is
the initial kinetic energy of the
perturbation). Time is expressed
in units of inertial periods
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Fig. 5 Left: The cross-front velocity (color shading, in units of m s−1)
and isopycnals (white contours) at 16 inertial periods into a numerical
simulation of a front with inertial shear, similar to the set up shown in
Fig. 3, however initialized with perturbations taking the form of ran-
dom noise. Over time perturbations with flow parallel to isopycnals
grow out of the noise and develop Kelvin-Helmholtz billows that are

evident in the fine-scale structures in density. Right: Time series from
the simulation of the kinetic energy in the inertial shear (black) and
the perturbations (red), and the kinetic energy removed from the iner-
tial shear by the perturbations

∫
AGSPdt . Variables are normalized

by the initial kinetic energy in the inertial oscillation and time by an
inertial period

when the perturbation wave is a subharmonic of the iner-
tial motion, hence the PSI) and when the times of minimum
inertial shear and maximum |v′| coincide (c.f. Fig. 4, top
and middle panels, black lines).3

Thus, at fronts, PSI can remove KE from inertial motions,
but what is the ultimate fate of this energy? Nonlin-
ear, non-hydrostatic, high-resolution numerical simulations
were used by Thomas and Taylor (2014) to address this
question and test the stability analysis. The simulations were
configured with a front and inertial oscillation similar to
that used in the stability analysis; however, the perturba-
tions were initialized with random noise rather than a plane
wave. Out of the noise, an unstable mode with flow parallel
to isopycnals grows under the conditions for PSI to develop
predicted by the stability analysis (Fig. 5, left panel). As it
grows in amplitude, the unstable mode develops secondary
shear instabilities, creating Kelvin-Helmholtz billows in the
regions of strong shear where the Richardson number of the
total flow drops below a quarter. The unstable mode extracts
KE from the inertial shear via the AGSP, consistent with the
stability analysis. However, the amount of KE contained in
the perturbations saturates at a value much less than the total
KE removed from the inertial motion (Fig. 5, right panel).

3This is true for a front with upward sloping isopycnals where v′ and
w′ are positively correlated as shown in Fig. 3, and as used in the sta-
bility analysis plotted in Fig. 4. When isopycnals slope downward, the
times of maximum inertial shear and maximum |v′| must coincide for
PSI to develop since v′ and w′ are anti-correlated in that case.

The remaining KE is not stored in the unstable mode, but is
instead either lost through viscous dissipation or increases
the potential energy of the system throughmixing density by
the small-scale shear instabilities. It is important to realize
that these shear instabilities would not form in the absence
of the PSI because the minimum Richardson number of the
combined geostrophic and inertial motions is above the cri-
terion for Kelvin-Helmholtz instability. By enhancing the
vertical shear, the growth of the PSI lowers the Richardson
number to subcritical values, thereby opening a pathway to
turbulence where KE in inertial motions is transferred to
small scales and lost.

4 Critical reflection of near-inertial waves at fronts

Apart from wave-wave interactions such as PSI, inertia-
gravity waves can lose energy during reflections off bound-
aries. This is especially true if they experience critical
reflection, when the direction of energy propagation of
the reflected wave runs parallel to the boundary (Ivey and
Nokes 1989). According to classical internal wave theory
(ug = 0), inertial waves with ω = feff ≡ f cannot
experience critical reflection because they only propagate
horizontally. At fronts, however, this conclusion does not
hold because inertial waves can propagate in the vertical
as well as in the horizontal (e.g. Fig. 2). Using analytical
theory and numerical simulations, Grisouard and Thomas
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Fig. 6 At a front (isopycnals in brown), a beam of energy associ-
ated with a vertically propagating inertial wave with ω = feff (blue,
upward sloping lines), will be compressed into an infinitesimally-thin
area when the wave reflects off the sea surface. Under these conditions
the wave experiences critical reflection and amplifies

(2015) and Grisouard and Thomas (2016) demonstrated that
inertial waves can indeed experience critical reflection as

a consequence of this physics. A summary of this work is
presented in this section.

If an inertial wave is propagating vertically in a front
along the tilted ray path shown in the righthand panel of
Fig. 2, when it hits a boundary it must reflect along the
horizontal characteristic with γ = 0. Consequently, if the
boundary is flat, a beam of inertial wave energy will be
compressed into an infinitesimally thin area upon reflec-
tion and the wave must amplify to conserve its energy. This
is the condition for critical reflection and it can occur at
fronts off the nominally-flat sea surface (Fig. 6). Grisouard
and Thomas (2015) tested this idea using linear and non-
linear two-dimensional (i.e., invariant in the x-direction)
numerical simulations. The simulations were forced by a
wave maker at depth that was designed to generate upward
propagating inertial waves on the steep characteristic of
Eq. 12 and the background front had no vertical vorticity

Fig. 7 Snapshots of the along-front component of the vorticity (nor-
malized by f ) of an inertial wave (i.e., with frequency ω = f )
at 1, 4/3, 5/3, and 2 inertial periods in a front with isopycnals in
black from a linear numerical simulation. Note that the flow is invari-
ant in the along-front x-direction and the cross-front coordinate is y.

The wave is forced by a wave maker at the depth indicated by the
magenta arrow to the right that generates an upward propagating iner-
tial wave packet. As the waves hit the surface, they experience a critical
reflection and generate a thin viscous boundary layer



1342 Ocean Dynamics (2017) 67:1335–1350

such that feff = f . In the linear simulations, inertial waves
on the steep characteristic are amplified upon reflection,
but the amplification is limited by friction in a thin vis-
cous boundary layer that develops near the surface (Fig. 7).
In the nonlinear simulations, bores and higher harmon-
ics form via wave-wave interactions, resulting in a thicker
layer over which the effects of critical reflection are felt
(Grisouard and Thomas 2015), but the basic energetics of
the phenomenon are qualitatively similar.

The energy fluxed upward by the wave maker,

Incoming Flux = 1

ρo

∫
p′w′dy, (14)

(where p′ is the wave pressure perturbation, and the integral
is made over the width of the domain) is dissipated in the
boundary layer during critical reflection. However, the total
dissipation of wave energy (both kinetic and potential),

Dissipation = ν

∫ ∫ (
u′ · ∂2u′

∂z2
+ b′

N2

∂2b′

∂z2

)
dydz, (15)

(where ν is the constant viscosity and diffusivity used in
the simulations and the integral is made over a control vol-
ume that spans the width and upper 15 m of the domain)
exceeds the incoming flux for waves near critical reflection
with ω ≈ f (Fig. 8, upper panel) (Grisouard and Thomas
2016). Clearly, there must be an additional source of wave
energy besides the wave maker to explain this excess dis-
sipation. This extra energy originates from the front and is
liberated by the waves at a rate

Energy exchange with Front=
∫ ∫ (

−u′w′ S2

f
+ v′b′ S2

N2

)

dydz,

(16)

where the control volume is the same as that used in Eq. 15
(Fig. 8, bottom panel). Near critical reflection, the waves
preferentially remove the front’s potential energy over its
kinetic energy via the second term in Eq. 16, indicating that
they act to mix the frontal lateral density gradient.

The rate of energy removed from the front depends on
both the wave frequency and the strength of the fronts, as
measured by the Richardson number (Fig. 8, bottom panel).
The energy exchange with the front involves correlations
between the wave velocity components and its buoyancy
anomaly. Friction enhances these correlations, consequently
they are largest at near-inertial frequencies where viscous
effects are most prominent due to the compression of the
waves’ vertical scale near critical reflection (Grisouard and
Thomas 2016). The peak energy exchange at near-inertial
frequencies decreases with increasing Richardson number,
which is to be expected since the front is weaker. In addition,

Fig. 8 Top panel: the dissipation of energy integrated over a control
volume that spans the upper 15 m of the domain, (15), normalized by
the energy flux of the upward propagating wave, (14), as a function of
the forcing frequency of the wave generator, ωf orcing . The Richardson
number of the front is Rig = 1.05, with a minimum wave frequency
indicated by the vertical, yellow dashed line. Bottom panel: the rate of
energy exchange with the front integrated over a control volume that
spans the upper 15 m of the domain, (16), normalized by the energy
flux of the upward propagating wave, (14), as a function of the forc-
ing frequency of the wave generator, for three different frontal flows
with Richardson numbers Rig = 1.05, 2, and 4. Solid lines (markers)
indicate results from the theory (linear numerical simulations)

as Rig increases, the slope of isopycnals and hence char-
acteristics of vertically-propagating inertial waves, c.f. (12),
is reduced. Consequently, the amplification of the waves
by the compression of ray tubes during critical reflection
(c.f. Fig. 6) is less intense. Since the waves in the bound-
ary layer are weaker, the energy exchange with the front is
reduced. For the strongest fronts (with Richardson numbers
near one), however, the rate of energy exchange is compara-
ble to the incoming energy flux of the waves, suggesting that
critical reflection of inertial waves at fronts acts as a damp-
ing mechanism for the balanced circulation that depends
externally on the processes that generate the inertial waves
either locally or non-locally, such as the tides or the winds.

5 Near-inertial waves in fronts undergoing
frontogenesis

The wave-mean flow interactions that have been described
thus far involve fronts with lateral density gradients that do
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Fig. 9 Flow configuration used in the theory to study NIWs in a front
undergoing frontogenesis. A front (with isopycnals in black) is forced
by a frontogenetic strain field (red arrows). Both the density gradi-
ent and strain are spatially-uniform and the domain is unbounded.
To maintain the thermal-wind balance in the presence of strain, a

vertically-sheared ageostrophic secondary circulation (with velocity
vectors in magenta) is induced. A two-dimensional (i.e., invariant in
the x-direction) near-inertial wave (with phase lines shown in blue) is
added to the flow

not change with time. In the ocean, however, the strength
of fronts is rarely stationary, but evolves in response to
frontogenetic and frontolytic processes. Strain imposed by
the flow of mesoscale eddies is particularly effective at
modifying lateral density gradients. When the strain is fron-
togenetic, it leads to a rapid intensification of the thermal
wind shear and a decrease in the gradient Richardson num-
ber of the frontal, geostrophic flow (7). As a result, NIWs
caught up in a front undergoing frontogenesis, should expe-
rience considerable modifications to their dispersion and
polarization relations (e.g., Section 2), that could foster
wave-mean flow interactions. This idea was explored in the
theory of Thomas (2012), which will be summarized here
and illustrated with a numerical simulation.

Fig. 10 Surfaces of constant absolute momentum Mg , (magenta) and
isopycnals (black) of the frontal zone schematized in Fig. 9 at the
onset of frontogenesis, top left, and six inertial periods later, top right,
for a front forced by a strain of strength α = 0.0625f . The gradient
Richardson number of the frontal flow, Rig , is plotted as a function
of time in the bottom panel and in this particular example is initially
equal to 100 but asymptotes to one under frontogenesis

As in the front-NIW interactions studies described in the
previous sections, Thomas (2012) used the simple “frontal-
zone” configuration with spatially-uniform gradients in the
density and flow fields (e.g., Fig. 9). In contrast to those
studies, the frontal zone is forced by an additional flow
(ue, ve) = (αx,−αy) with a constant strain, α, that is
frontogenetic. This flow is balanced and is meant to repre-
sent a mesoscale eddy-driven strain field. The strain throws
the front out of the thermal wind balance, and drives an
ageostrophic circulation to restore geostrophy. For this sim-
ple configuration, the ageostrophic flow is in the cross-front
direction, is sheared in the vertical, and drives restratifica-
tion (Fig. 9, magenta arrows). In spite of the strengthening
stratification, however, Rig decreases in time because of the
exponentially-growing thermal wind shear (Fig. 10, lower
panel). The Richardson number of the frontal flow eventu-
ally asymptotes to one, reflecting the tendency for fronto-
genesis to cause surfaces of constant density and absolute
momentum to run parallel to one another over time (Fig. 10,
top panels).4

To this background flow, Thomas (2012) added a two-
dimensional near-inertial wave (i.e., invariant in the along-
front direction) with streamlines that run parallel to isopy-
cnals (Fig. 9, blue lines) and solved for the evolution of its
velocity. In the absence of frontogenetic forcing, this wave
would correspond to the inertial-gravity wave of minimum
frequency described in Section 2. However, because of the
time-dependent nature of the background flow and the pres-
ence of ageostrophic shear, the wave is not a simple periodic
motion with stationary frequency and amplitude. For early
times when Rig is large, the amplitude and frequency are
relatively constant and the two horizontal components of
the velocity oscillate in quadrature as a near-inertial motion
(Fig. 11, top panel). However, as the front strengthens

4Note that for this simple frontal zone without vertical vorticity, the
slope of M−surfaces is sM = f 2/S2 = Rigsρ . Hence as Rig → 1,
sM approaches the isopycnal slope sρ .
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Fig. 11 Top panel: Change in the along-front, u′ (red), and cross-
front, v′ (blue), components of the velocity (both normalized by the
initial speed of fluid velocity of the wave) of a near-inertial wave in
the background flow undergoing frontogenesis shown in Fig. 10. The
time series is made in a framemovingwith the background flow, therefore
the lengthening of the wave period reflects changes in the intrinsic
rather than Eulerian frequency of the wave. Bottom left panel: a hodo-
graph of the velocities in the top panel (from t = 0 to 15 inertial

periods) reveals how a near-inertial wave in a front undergoing fron-
togenesis experiences a change in polarization relation, transitioning
from being circularly polarized to rectilinear in the cross-front, y-
direction. In the process, the wave induces a momentum flux that is
down the gradient in momentum associated with the eddy-driven strain
field whose velocity (αx, −αy) is shown in plan view in the bottom
right

and Rig asymptotes to 1, both the wave’s frequency and
amplitude decrease. The reduction in amplitude is more pro-
nounced for the along-front versus cross-front component
of the velocity (u′ and v′, respectively), making the veloc-
ity hodograph shift from an inertial circle early in the record
to a more rectilinear flow in the cross-front direction over
time (Fig. 11, lower left panel). This behavior is consis-
tent with the effect that lateral density gradients have on
the polarization relation of NIWs described in Section 2,
and can be understood in terms of conservation of abso-
lute momentum. As the front strengthens and isopycnals
and M-surfaces align, along-isopycnal wave parcel dis-
placements cross fewer and fewer M-surfaces over time,
therefore reducing the amplitude of the along-front velocity
perturbation u′ required to conserve absolute momentum.
As u′ weakens, so too does the Coriolis force that provides
the restoring force for the oscillation, and consequently the
periods between velocity minima and maxima expand as
frontogenesis progresses (Fig. 11, top panel).

The wave is ultimately damped, however, not by friction
as the theory is inviscid, but by transferring kinetic energy
to the background flow. The wave can exchange energy with
all three elements of the background flow: the thermal wind

shear, the balanced eddy strain field, and the cross-front
ageostrophic shear at rates GSP = −u′w′(S2/f ),

DSP = −u′2 ∂ue

∂x
− v′2 ∂ve

∂y
= α(v′2 − u′2) (17)

and AGSP (e.g., Eq. 13, where v in this context represents
the ageostrophic flow driven by frontogenesis), respectively.
These three shear production terms can be non-zero only if
the waves induce a vertical flux of momentum, or if their
horizontal momentum flux is anisotropic. Fronts allow this
to happen by modifying the wave polarization relations, as
discussed in Section 2 and as manifest in the solution shown
in Fig. 11. Time integrals of the three shear production terms
reveal that the waves lose KE to the ageostrophic shear via
AGSP (Fig. 12, red line). Surprisingly, however, the waves
lose twice the amount of KE that they started with through
this mechanism. The additional KE that can account for
this discrepancy originates from the strain field via DSP
(Fig. 12, black line), which only becomes a major player in
the wave energetics when the wave velocity becomes rec-
tilinear and |v′| exceeds |u′| and Eq. 17 becomes positive.
The dominance of the cross-front wave velocity at this time
drives a momentum flux v′2 that is down the gradient of ve
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Fig. 12 The transfer of KE to the near-inertial wave shown in
Fig. 11 from the eddy-driven strain field,

∫ t

0DSP/KEodt ′ (black), the
frontal geostrophic flow,

∫ t

0GSP/KEodt ′ (blue), and the ageostrophic

circulation,
∫ t

0AGSP/KEodt ′ (red). The dotted black line is the sum
of all three terms and represents the net change in KE of the wave. All
quantities are normalized by the initial KE of the wave, KEo

(Fig. 11, lower right panel). In this way, the waves act like
a viscosity for the balanced eddy-driven strain field. The
KE transferred from the deformation field is ultimately lost
to the unbalanced ageostrophic circulation through shear
production, hence the waves play a catalytic role in loss
of balance. The energy exchange is quite rapid, occurring
over a few inertial periods, and scales with the KE initially
contained in the waves. Given the large amount of KE in
NIWs and the ubiquitous combination of eddy strain and
fronts in the ocean, this mechanism could play a significant
role in the removal of KE from both the internal wave and
mesoscale eddy fields.

In spite of the many simplifying assumptions for the flow
configuration used in the theory of Thomas (2012) (e.g., the
frontal gradients and strain considered were spatially uni-
form and the flow was unbounded) the predictions of the
theory are qualitatively borne out in numerical experiments
of NIWs in strained fronts with more realistic flow fields.
One such numerical experiment will be presented here,
while a more thorough examination is described in Thomas
(2017). The numerical simulation is configured with a front
that is aligned in the x-direction, with initially uniform

gradients, and in a periodic channel with walls on the north-
ern and southern boundaries of the domain (Fig. 13, left
panel). The front is in geostrophic balance, and an array of
barotropic eddies is added to the flow to generate strain. The
strain is frontogenetic near y = 37.5 km, x = 18.75 km
and frontolytic near y = 37.5 km, x = 56.25 km (Fig. 13).
To this flow, a NIW is added that takes the form of a beam
(Fig. 14, upper panels). The beam is not forced but is instead
constructed as an initial condition with a plane wave of fre-
quency 1.025f modulated by a Gaussian envelope with an
e-folding scale of 30 m in the vertical and 5.6 km in the hor-
izontal. The response of the wave to frontogenetic versus
frontolytic strain is markedly different (c.f. Figs. 14 and 15
left and right panels). In regions of frontolysis, the horizon-
tal wavenumber of the wave decreases as isopycnals flatten
and the front weakens. The wave essentially retains its iner-
tial character throughout the simulation as reflected in its
velocity hodograph that traces inertial circles (Fig. 15 right
panel). In contrast, in regions of frontogenesis the properties
of the wave change dramatically: the horizontal wavenum-
ber increases, the amplitude decreases, and the velocity
becomes more rectilinear in the cross-front direction with

Fig. 13 Plan view of the surface buoyancy and velocity fields at
t = 0 (left) and 7.1 inertial periods (right) from the numerical sim-
ulation used to study NIWs in a front undergoing frontogenesis. The
eddy field that drives frontogenesis (frontolysis) near x = 18.75 km,

y = 37.75 km (x = 56.25 km, y = 37.75 km) has an initial maximum
strain rate of 0.045f . The color scale is the same in both panels and
spans buoyancy values between −3.55× 10−3 and 3.55× 10−3 m s−2
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Fig. 14 Cross-sections of the y-component of the wave velocity
field (color) and isopycnals (contours) at, from top to bottom, t =
0, 2.9, 4.3, and 5.7 inertial periods into the numerical simulation used
to study NIWs in a front undergoing frontogenesis. The sections on the
left (right) were made at x = 18.75 km (x = 56.25 km) in a region
where the eddy-driven strain field is frontogenetic (frontolytic). The
color scale is the same in each panel and spans velocities between -0.01
and 0.01 m s−1. The contour interval for the density is 0.08 kg m−3 in
each panel

time (Figs. 14 and 15 left panels). The modifications to
the NIW in the front undergoing frontogenesis is therefore
qualitatively consistent with the theory (e.g., Fig. 11).

A more quantitative comparison to the theory can be
made by calculating the transfers of KE between the NIW
and background flow. The strongest energy exchanges are
confined to the region of frontogenesis. In this region, by
eight inertial periods into the experiment, the waves have
removed an amount of KE from the strain field,

∫
DSPdt ′,

that is comparable to the initial KE in the NIW (c.f. Fig. 16
left and right panels). At the same time, the NIWs lose a sig-
nificant amount of KE to the ageostrophic circulation, i.e.∫

AGSPdt ′ < 0, but exchange little energy with the frontal
geostrophic flow,

∫
GSPdt ′, averaged over the frontal zone

(e.g., Fig. 17). Other simulations with a plane wave that

Fig. 15 Hodographs of the wave velocity at mid-depth (z = −50 m),
y = 37.5 km, and traced between 0 and 8 inertial periods from the
numerical simulation used to study NIWs in a front undergoing fronto-
genesis. The hodograph on the left (right) was made at x = 18.75 km
(x = 56.25 km) in a region where the eddy-driven strain field is
frontogenetic (frontolytic)

is not modulated in the horizontal by a Gaussian envelope
shows similar behavior, indicating that the enhancement and
confinement of the energy exchange at the front is a result
of the frontal dynamics, not the initial position and lateral
extent of the wave (Thomas 2017). The behavior is consis-
tent with the theory (e.g., Fig. 12, black line), but unlike
the theory, the energy exchange occurs in a narrow area
delineated by the finite width of the front.

The NIW in the simulation described above had an initial
horizontal wavelength, λy that was smaller than the width
of the front, Lf . The opposite limit, λy > Lf , is con-
sidered more representative of the ocean since the lateral
wavelength of NIWs is thought to be imposed by the winds
which typically vary on larger scales than oceanic flows. To
explore the impact of frontogenesis on NIWs with λy > Lf

another experiment was performed with an initial wave field
with no horizontal wavenumber, but with the same front
and eddy field shown in Fig. 13. Cross-sections of the wave
velocity for this experiment reveal that in the region of fron-
togenesis the wave develops a horizontal wavenumber in a
matter of a few inertial periods (Fig. 18). The horizontal
variability in the wave field is generated by the frontal ver-
tical circulation which is characterized by downwelling and
upwelling on the dense and light sides of the front, respec-
tively. This differential vertical motion tilts wave phase lines
in the opposite direction of isopycnals in the center of the
front, which allows the NIWs to radiate away from the front,
explaining the deficit in wave energy seen there at 9 inertial
periods. On the flanks of the front, however, the NIWs are
trapped as the differential vertical motion aligns the wave
phase lines with isopycnals, thus reducing the group veloc-
ity, e.g., (11). This numerical experiment illustrates that
frontogenesis can significantly affect NIWs even when they
initially have no lateral variations and in particular can facil-
itate the radiation of NIW energy from the surface to the
ocean interior.
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Fig. 16 Left: plan view of the KE in the NIW at the start of the numeri-
cal simulation used to study NIWs in a front undergoing frontogenesis.
Right: plan view of the amount of KE removed from the strain field

by the NIWs, i.e.,
∫

DSPdt , eight inertial periods into the simula-
tion. The color scale is the same in both panels and both quantities are
evaluated at mid-depth (z = −50 m)

Fig. 17 Left: cross-section of the amount of KE removed from the
ageostrophic flow by the NIWs, i.e.,

∫
AGSPdt , eight inertial periods

into the simulation used to study NIWs in a front undergoing fronto-
genesis. Right: cross-section of the amount of KE removed from the
frontal geostrophic flow by the NIWs, i.e.,

∫
GSPdt , eight inertial

periods into the simulation. The color scale in both panels is the same
as in Fig. 16 and both quantities are evaluated at x = 18.75 km in a
region where the eddy-driven strain field is frontogenetic. Isopycnals
are contoured with an interval of 0.08 kg m−3 in both panels

Fig. 18 Cross-sections of the y-component of the wave velocity field
(color) and isopycnals (contours) at, from left to right, t = 0, 5, and
9 inertial periods into a numerical simulation of a NIW with initially
no horizontal wavenumber in a front undergoing frontogenesis. The

sections were made at x = 18.75 km in a region where the eddy-
driven strain field is frontogenetic. The color scale is the same in each
panel and spans velocities between−0.01 and 0.01 m s−1. The contour
interval for the density is 0.08 kg m−3 in each panel
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6 Conclusions

Winds are one of the main sources of KE for the ocean and
generate NIWs and balanced currents. How the KE con-
tained in these motions is transferred to small scales and
dissipated is not well understood. Wave-mean flow interac-
tions have been invoked as a mechanism that could facilitate
this process. Here, it is shown that ocean fronts, which are
a ubiquitous feature of the upper-ocean, provide conditions
conducive for irreversible energy exchanges between NIWs,
balanced motions, and small-scale turbulence by modifying
the properties of the waves in rather surprising ways.

In fronts, inertia-gravity waves are permitted to have
subinertial frequencies, more accurately, frequencies that
are less than the effective inertial frequency feff =
f

√
1 + Rog . Consequently, at fronts, NIWs can be suscep-

tible to a parametric subharmonic instability that transfers
KE from the waves to subinertial motions with smaller
vertical scales; subsequent development of secondary insta-
bilities irreversibly convert the NIW KE to potential energy
and heat through mixing and viscous dissipation. This PSI
develops in stratified frontal flows with Richardson num-
bers just above one, well above the condition for Kelvin-
Helmholtz instability. Such conditions are likely to be found
at the base of the surface mixed layer in the ocean. It is
precisely in this region where inertial shears, the source of
energy for the PSI, are observed to be strongest and where
much of the near-surface dissipation of inertial motions is
thought to occur (Plueddemann and Farrar 2006). Could
PSI facilitate this dissipation? To investigate this possibility
more fully, the effects on the instability of vertically-varying
stratification and shear should be studied.

The four directions that energy in an inertia-gravity wave
can propagate are symmetric about the isopycnal slope, not
the horizontal, which at a front can profoundly alter the rules
of wave reflection off surfaces. In particular, inertial waves
with frequency feff experience critical reflection off the sea
surface at fronts. Upon reflection, the vertical scale of the
waves collapses, enhancing viscous dissipation. But in the
process, the waves dissipate more energy than that which
they flux toward the surface. The extra energy comes from
the front. Thus, critical reflection at fronts is a mechanism
that dissipates energy in the NIW field and the balanced
circulation simultaneously. It is therefore distinct from clas-
sical critical reflection of internal waves off bathymetry
which only damps the waves. The rate at which energy is
removed and dissipated from the front during critical reflec-
tion scales with the energy flux of the upward propagating
inertial waves. Accounting for variations in the effective
Coriolis frequency, such waves could be generated remotely
by the winds or tides, for example, and experience critical
reflection if their frequency is equal to the local value of
feff at the front. In this case, the dissipation of energy in the

balanced circulation via critical reflection should scale with
the rate of energy input into the waves by the winds or tides
where they are generated. Another complication to consider
is variable stratification near the surface of the ocean. For
example, if there were a mixed layer, the theory would pre-
dict that the energy exchange with the mean flow during
critical reflection would be enhanced as the weaker strati-
fication reduces the Richardson number of the geostrophic
flow (e.g., Fig. 8).

Finally, the velocity hodographs of NIWs do not trace
horizontal inertial circles at fronts. Instead, the wave veloc-
ity has a vertical component and is elliptically polarized
with stronger flow in the cross-front direction. These mod-
ified polarization relations allow the waves to exchange
kinetic energy with mean flows by driving wave momentum
fluxes. The effects are enhanced with frontal intensity, and
therefore are most pronounced in fronts undergoing fronto-
genesis. If the frontogenesis is driven by strain associated
with mesoscale eddies, for example, the increasingly ellip-
tically polarized wave velocities allow NIWs trapped in a
front to efficiently extract KE from eddies. The energy is
not stored in the wave field but is instead lost to cross-front
ageostrophic motions. Hence, the NIWs act as a conduit that
transfers KE from balanced eddies to unbalanced motions.
As with critical reflection, the waves are ultimately damped
in the process, therefore both mechanisms represent sinks of
KE for the NIW wave field and mesoscale eddies.

Recent numerical studies on energy exchanges between
low-frequency currents and NIWs suggest that the baroclin-
icity of the balanced flow is critical for such exchanges.
Taylor and Straub (2016) and Barkan et al. (2017) diag-
nosed terms in low and high pass filtered energy equations
from simulations of wind-forced channel flows to quan-
tify the energy transfer between the higher frequency NIWs
and low frequency motions. Both studies found that the
NIWs damped the low-frequency motions and that shear
production terms involving the vertical shear of the low fre-
quency flow played a leading order role in the energetics.
Such terms are absent in NIW-mean flow interactions in
barotropic balanced flows (e.g., as described by Xie and
Vanneste 2015 and Wagner and Young 2016) and point
to the importance of fronts in facilitating energy transfers
across scales and frequencies. Whether the mechanisms
described in this review were active in the simulations of
Taylor and Straub (2016) and Barkan et al. (2017) is dif-
ficult to assess without a detailed analysis, but nonetheless
both articles motivate further study of the role of baroclinic
currents in NIW-mean flow interactions.

The rate and amount of KE removed from balanced
motions by the processes described here could be significant
for global energy budgets since the theory suggests that they
should scale with the NIW-generating energy fluxes and the
KE contained in NIWs, respectively. For example, NIWs
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in a front undergoing frontogenesis remove an amount of
KE from the strain field that is about equal to the KE
that they contain. This energy removal happens in a short
period of time, namely in a few inertial periods ∼ 1 × 105

s, since frontogenesis and its modification to NIWs is an
exponentially-fast process. Globally, it is estimated there is
1 × 1018 J in NIWs (Ferrari and Wunsch 2010). Even if,
for example, only 1% of this energy coincided with fronts
undergoing frontogenesis, the theory would suggest that
NIWs could damp the balanced circulation at a rate of order
0.1 TW, which is around a tenth of the wind-work on the cir-
culation. This begs the question, over which regions of the
ocean are NIW-front interactions most prevalent? Clearly,
western boundary currents and the Antarctic Circumpolar
Current are prime locations since they are where fronts are
most intense, meso- and gyre-scale strain is strong, and
where the wind energy input to NIWs is maximum (Alford
2003). Indeed, NIWs observed in these regions show indica-
tions of being modified by fronts and baroclinic eddies (e.g.,
Kunze 1986; Rainville and Pinkel 2004; Shcherbina et al.
2003; Joyce et al. 2013; Whitt and Thomas 2013; Nagai
et al. 2015; Whitt et al. 2017) and of causing enhanced
dissipation (e.g., Kunze et al. 1995; Inoue et al. 2010).
Observations of NIWs in less intense fronts, such as those in
the subtropical convergence zones, also suggest that interac-
tions of NIWs with baroclinic mean flows can be significant
(e.g., Kunze and Sanford 1984; Alford et al. 2013), imply-
ing that the phenomenon may be ubiquitous and therefore
play an important role in closing the kinetic energy budget
of the ocean. Yet many details of NIW-front interactions,
from regional variations to the effects of finite-width fronts,
need to be understood before the contributions of these pro-
cesses to global energy budgets can be fully quantified, and
studies addressing these issues should be the focus of future
work.
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