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Abstract The nonlinear effects of the eddy viscosity and the
bottom friction on the Lagrangian residual velocity (LRV) are
studied numerically in a narrow model bay. Three groups of the
experiments with different eddy viscosity and different forms of
the bottom friction are designed and are carried out in the three
kinds of the topography. When the eddy viscosity is obtained
from a two-equation turbulence closure model, the pattern of
the LRV is more complex than that of the time invariant eddy
viscosity case and the intensity is frommore than 1.3 times to one
order smaller than that of the linear eddy viscosity condition. The
LRV are also acquired when the eddy viscosity varies from the
flood-averaged one to the ebb-averaged one. It is found that
when the flood-averaged eddy viscosity is bigger than the ebb-
averaged eddy viscosity (flood-dominated asymmetry), the di-
rection of the breadth-averaged LRV and the 3D LRV is nearly
opposite to that when the eddy viscosity asymmetry is reverse
(ebb-dominated asymmetry). However, the intensity of the LRV
for the ebb-dominated case decreases toward the flood-
dominated case as the ratio of the maximum depth in the deep
channel and the minimum depth on the shoal increases. The
different forms of the bottom friction also play a role in the
LRV. The structures of the 3D LRV and the depth-integrated

LRV are simpler, and the intensity of the LRV is two times
smaller when the linear bottom friction is used than those when
the quadratic bottom friction is used.

Keywords Nonlinear effects . Eddy viscosity . Bottom
friction . Lagrangian residual velocity . 3D . Narrow bay

1 Introduction

When tide is the main driving force in bays and channels, not
only the nonlinear advection but also the temporally varying
eddy viscosity and the nonlinear bottom friction can generate
residual current. There mainly exist two categories of the def-
inition of the residual currents, namely the Eulerian residual
velocity (ERV) and the Lagrangian residual velocity (LRV).
The ERV was obtained by averaging the current velocity in
one or several tidal periods at a fixed location (Abbott 1960).
The LRV was defined by Zimmerman (1979) as the net dis-
placement of a labeled water parcel over one or several tidal
periods. Feng et al. (1986a) proved that under the weakly
nonlinear condition, the LRV was equal to the sum of the
ERVand the Stokes’ drift velocity.

Inmany studies, the nonlinear effects of the eddy viscosity are
always neglected when studying the generation mechanism of
the residual current. When the ERV is used as the representative
of the residual current, Hansen andRattray (1965) established the
estuary dynamics theory by assuming a time-invariant eddy vis-
cosity coefficient. This theory was applied in many estuaries and
achieved a lot of success, while the contradiction of the time-
invariant eddy viscosity and the large fluctuation of it during the
tidal cycle is always a problem.

Simpson et al. (1990) found that the periodical stratification
in the estuary caused by the tidal current leads to the periodical
variation of the turbulence intensity, which they called the
tidal straining. Jay and Musiak (1994, 1996) also found the
similar phenomenon which they called the internal tidal
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asymmetry. They all found that this effect intensifies the estu-
arine circulation. Burchard and Hetland (2010) investigated
the contribution of the tidal straining effect numerically by
solving the rectilinear tidal motion subject to a constant lon-
gitudinal buoyancy gradient. They found that the tidal
straining induced circulation is larger than the gravitational
circulation. The subsequent studies also confirmed the above
finding (Burchard et al. 2011, 2014; Burchard and
Schuttelaars 2012). Cheng et al. (2010, 2013) and Cheng
(2014) also obtained the similar results by taking more pro-
cesses into consideration.

In the above studies, the ERV is used as the residual circu-
lation velocity. However, it has been proven in Feng et al.
(2008) that the ERV does not satisfy the material surface con-
servation law which was pointed out in Lamb (1975) as a gen-
eral surface condition. While the LRV satisfies that law and is
suitable for representing the residual circulation velocity. There
are also many studies on the generation mechanism of the LRV
in the shallow seas. Ianniello (1977) gave the first analytical
solution of the LRV which showed that the LRV is against the
gravitational circulation in a breadth-averaged model by sum-
ming up the ERVand the Stokes’ drift velocity. Winant (2008)
calculated the LRV by using the same approach to get the 3D
LRV in a narrow bay analytically. The results showed that the
ratio of the dissipative frequency and the tidal frequency have
obvious effects on the 3D LRV, whose structures with larger
ratio were much simpler than those with smaller one. Jiang and
Feng (2014) analytically derived the 3D LRVagain by solving
the LRV governing equations directly. They found that if the
flat sea bottom is assumed, their results can be retreated to
Ianniello’s (1977) results. In the nonflat bottom case, the
breadth-averaged LRV showed a more complex pattern which
enhances the gravitational circulation. In all of these analytical
studies, the temporally constant eddy viscosity and the no-slip
bottom condition were assumed, which ignored the nonlinear
effects of both the eddy viscosity and the bottom friction. Feng
and Lu (1993) have derived the LRV governing equations with
a simplified turbulence closure model to demonstrate the non-
linear effect of the eddy viscosity on the LRV. It was found that
the time-variant eddy viscosity induced a generation term in the
LRV governing equations no matter what is the mechanism to
generate this time dependence. However, they only gave the
theoretical framework and no solution has been obtained.

Apart from the eddy viscosity, the bottom friction is also an
important source of the nonlinearity to the LRV. Jiang and
Feng (2011) examined its performance in a depth-averaged
analytical model. Although the linear bottom friction was as-
sumed to get the analytical result, the bottom friction term in
the momentum equations contains the instantaneous water
depth which makes this term a nonlinear one. Hence, they
found that the bottom friction has two contradictory effects,
one is to damp the LRV and the other is to generate it. Quan
et al. (2014) further explored this problem by using the depth-

averaged numerical model and found that the quadratic bot-
tom friction contributes more complexity to the LRV than the
linear bottom friction. However, the corresponding study in
3D condition has not been reported.

In the present study, the effects of the temporal variation of the
eddy viscosity (nonlinear effects of eddy viscosity) and the non-
linear effects of the bottom friction on the 3D LRV will be ex-
amined by applying the numerical model in a rectangular bay.
The 3D LRV is obtained by setting different turbulence closure
schemes and different forms of the bottom friction in the model.
Their variations with the turbulence closure schemes and the
bottom friction forms are acquired. The paper is arranged as
follows. The methods and the model configuration will be given
in section 2. The results and discussions are shown in the section
3. Finally, the conclusions are reached in section 4.

2 Methods and the model configuration

2.1 The model description and its setup

The Finite-Volume Coastal Ocean Circulation Model
(FVCOM) is used to carry out the experiments in an idealized
setting. The model is a 3D unstructured-grid, free-surface,
primitive equations ocean model that uses the sigma coordi-
nate and the arbitrarily sized triangular mesh (Chen et al.
2003). In FVCOM, several options of the turbulence closure
scheme can be chosen which includes the Mellor and Yamada
(1982) level 2.5 (MY-2.5) turbulence closure model, k-εmod-
el, and the constant eddy viscosity coefficient scheme. In order
to carry out the experiment in the present study, a new option
is added in FVCOM to allow the input of the vertical profiles
of the eddy viscosity coefficients on each grid point at each
time step. The original bottom friction form is the quadratic
bottom friction in FVCOM, and the code is modified to in-
clude the option of the linear bottom friction form.

The model domain in this study is a semi-enclosed rectan-
gular bay. A Cartesian coordinate system is set up in the model
bay with the x-axis being along the bay (the head of bay is at
x = 0 and the open boundary is at x = L) and the y-axis being
across the bay (y = 0 and y = B are the two lateral boundaries).
The topography varies only in y direction, and the lateral depth
profile is expressed as:

h ¼ aþ b� e− 2y=1000−20ð Þ=7ð Þ2 ð1Þ
where a, b are two parameters to control the topography. The
topography described in Eq. (1) is quite typical for a coastal
narrow bay, which has two shoals along the two sides of the
bay and a deep part in the center. In the present study, three
kinds of the topography are used with a being 5 m and b being
5, 10, and 15m respectively, which reflects the different steep-
ness of the bottom. The bay length L is chosen as 0.3
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wavelengths or 1 wavelength of the incoming tide to simulate
the short and the long bay. Then the bay length is roughly
120 km or 400 km when a = 5 m, b = 10 m are taken and
the M2 tide is assumed. The bay width B is chosen as 20 km;
thus, the narrow bay case is studied in this paper, so the
Coriolis force can be omitted in the present study.

No freshwater discharge is imposed at the head of the bay,
only the semidiurnal tide (M2) with the amplitude of 1 m is
imposed at the open boundary. The density is constant in the
bay to study the barotropic case only.

In the present system, the basic characteristic scales are
xc = λc, yc = B, zc = hc, and Tc = ω−1, where hc = 8.1 m is the
mean depth of the bay obtained from Eq. (1) with a = 5 m and
b = 10 m, ω = 1.4 × 10−4 s−1 is the tidal frequency for theM2

tide, and λc ¼ 2π
ffiffiffiffiffiffiffi

ghc
p

Tc is the tidal wavelength. In view of
the tidal dynamics in the present model domain, the charac-

teristic velocity scales are uc ¼ ζc
ffiffiffiffiffiffiffiffiffiffi

g=hc
p

, vc = Bζc/(hcTc),
wc = ζc/Tc, where ζc=1 m is the scale of the tidal amplitude.
The scale analysis in the present study is after Jiang and Feng
(2014), and it is nearly the same as those in Winant (2008).
The only difference is that the tidal wavelength is taken as the
horizontal scale in the present study, while in Winant (2008)
the bay length was chosen as the horizontal scale. However, in
both studies, these two scales are of the same order.

The resolution of the model grid is around 50 m near the
head of the bay and is 1000m near the open boundary, and the
vertical layers are uniformly divided into 15 sigma layers. The
model runs for 5 days until it reaches the steady state. Then the
results of the last tidal period of the simulation are used for
further manipulation.

2.2 The calculation method for the LRV

The LRV is calculated according to its original definition,
which is the net displacement of the water parcels over one
or several tidal periods (Zimmerman 1979). Feng et al. (2008)
proved that the so obtained velocity can formulate the velocity
field only when the net displacement is at least one order
smaller than the length scale of the flow field. The x-direction,
y-direction, and z-direction components of the LRV are
(uLR, vLR, wLR), which is listed as follows:

uLR ¼ 1

nT
∫

t0þnT

t0
u x t; x0; t0ð Þ; tð Þdt

vLR ¼ 1

nT
∫

t0þnT

t0
v x t; x0; t0ð Þ; tð Þdt

wLR ¼ 1

nT
∫

t0þnT

t0
w x t; x0; t0ð Þ; tð Þdt

ð2Þ

where (x0, t0) is the initial position and the starting time of the
labeled parcel. The x(t; x0, t0) is the position of that water
parcel at the time of t, which represents the trajectory of the

water parcel starting from x0 at the time of t0. Here, (u, v,w)
are the tidal currents along the x, y, and z-axes, which is in the
geopotential coordinates (z-coordinate). In this paper, only
one tidal period will be tracked for every parcel; thus, n = 1
is assumed.

The equations solved in FVCOM are based on the
sigma coordinate, with its axes being xσ, yσ, and σ.
However, the velocities calculated in the equations are
u, v, and ωσ, with u, v being the velocities along the
x-axis and y-axis in z-coordinate, respectively, and ωσ

being along the σ-axis in sigma-coordinate. In
FVCOM the vertical velocity w in the z-coordinate is
also provided as an output option. The velocities (u, v, w) are
obtained at sigma layers in the present study. Then, the water
parcels are tracked in geopotential coordinate by applying the
4th order Runger-Kutta scheme and the 3D LRV is obtained
according to Eq. (2).

In the present study, the 3D LRV, depth-integrated
LRV, and the breadth-averaged LRV are calculated. In
order to obtain the detailed information of each variable,
two kinds of the initial water parcel arrangements are
used. For the 3D LRV and the depth-integrated LRV, the
initial water parcels are chosen on every model grid
which is on the sigma layer. This can guarantee the
same vertical resolution in the whole model area.
When the breadth-averaged LRV is acquired, the initial
water parcels are chosen according to its z-level so that
for every cross-section, all the LRV are defined at the
same level to ensure that the breadth-averaging proce-
dure can be carried out. In this study, in the vertical
direction, the initial position of the water parcels is set
1 m apart.

2.3 The model validation

In order to test the validity of the model, a test case based on
the setup of the analytical study in Jiang and Feng (2014) is
carried out. The system in Jiang and Feng (2014) is a weakly
nonlinear case in a narrow bay so that they can obtain the
analytical solution by using the perturbation method. In the
present study, the geometry of the model area and the driving
force are both taken from Jiang and Feng (2014). It forms the
basis for the comparison between these two studies.

In Jiang and Feng (2014), the vertical eddy viscosity υcwas
regarded as a constant. In order to estimate that constant, they

set δe = 1, where the nondimensional number δe ¼ υc= h2cω
� �

is defined as the ratio of the dissipative frequency (υc=h2c ) and
the tidal frequency (ω) which measures the relative
importance of the eddy viscosity term and the local accelera-
tion term in the governing equations. It corresponds to
υc= 0.009 m2/s which is also adopted in the test experiment
in the present study.
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In view of the feasibility to get the analytical solu-
tion, the no-slip bottom boundary condition is adopted
in Jiang and Feng (2014). According to Eq. (82) of that
paper, the effect of the no-slip bottom boundary condi-
tion is equivalent to the linear form of the bottom fric-
tion. Based on the model setting in Jiang and Feng
(2014), the linear bottom friction coefficient (βT) was
estimated as 0.01 m/s which is also used in the valida-
tion run. Thus, the test experiment here can be com-
pared essentially with that in Jiang and Feng (2014).

Figure 1 is the nondimensional LRV of the four
cross-sections in the 0.3 wavelength long bay, which
shows that the LRV are landward from the upper layers
of the deep channel and seaward from the both sides
and the bottom layers of the bay. The results in Fig. 2
are the streamlines of the depth-integrated LRV in the
0.3 wavelength long bay, which shows that the LRV
flows inside from the deep channel and outside from
the both sides of the bay. The characteristics of them
are the same as Fig. 1 (L = 0.3) and Fig. 3a in Jiang
and Feng (2014). It demonstrates that the model is re-
liable to calculate the LRV by using the procedure de-
scribed in section 2.2.

2.4 The design of the experiments

In order to study the effects of the nonlinear eddy viscosity on
the LRVand the influence of the different forms of the bottom
friction, three groups of the numerical experiments are de-
signed in the present study. They are listed as follows:

(1) For the first group, the experiments are designed to com-
pare the difference of the LRV when the linear and the
nonlinear eddy viscosity are used in the FVCOMmodel.
There are four experiments in this group. The first case is
that the eddy viscosity in the FVCOM model is

calculated by the turbulence closure model of Mellor
and Yamada (1982), which is called the BMY-2.5 model
case^ hereafter. The second case is that the eddy viscos-
ity used is the tidal average of the eddy viscosity in the
first case, which is called the Btidally averaged case.^ In
this case, the eddy viscosity is time invariant but it still
has horizontal and vertical structures. The third case is
that the eddy viscosity from the first case is temporally
and vertically averaged, which is called the Btidally-ver-
tically averaged case.^ Thus, it only has horizontal struc-
tures. The fourth case is that the eddy viscosity is tem-
porally and spatially averaged in the whole bay and it is a
constant value, which is called the Bconstant eddy vis-
cosity case.^ In the first case, the nonlinear eddy viscos-
ity effect is included in the model, while in the latter three
cases the eddy viscosity term is only linear.

(2) The eddy viscosity varies with the tidal phase, and
the major difference exists between the flood and
the ebb tide. Two kinds of the asymmetry between
the flood-averaged and the ebb-averaged eddy vis-
cosity are considered in the present paper to study
their effect. One is the flood-dominated asymmetry
with the flood-averaged eddy viscosity being larger
than the ebb-averaged eddy viscosity, and another
is the ebb-dominated asymmetry with the latter be-
ing larger than the former. Thus, two sensitivity
experiments are designed in this group to represent
the two different types of the asymmetry, one for
the flood-dominated asymmetry and the other one
for the ebb-dominated asymmetry.

(3) In order to compare the effect of the bottom friction, two
forms of the bottom friction are used, which are the qua-

dratic bottom friction Cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

u; vð Þ and the lin-
ear bottom friction βT(u, v). The Cd is the quadratic bot-
tom drag coefficient and the βT is the linear bottom fric-
tion coefficient.

Fig. 1 The nondimensional LRV of four cross sections in the 0.3
wavelength long bay with a = 5 m, b = 10 m for constant eddy
viscosity case with the linear bottom friction (βT = 0.01 m/s). Shaded
areas denote the positive values (outflow toward the ocean), while the
blank areas denote the negative values (inflow toward the head) of the

velocity along the x-axis. The red contour lines represent the magnitude
of the velocity along the x-axis and the contour interval is 0.02. The blue
vectors are the magnitude and direction of the lateral and the vertical
velocity
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3 Results and discussions

The three groups of the numerical experiments described in
section 2.4 are carried out under three kinds of the topography
condition described in Eq. (1) by varying the parameters a and
b. The results show that the patterns of the LRVare not sensi-
tive to the variation of the topography set in the present study.
This is because in the range of the variation of the topography,
the nondimensional parameter δe does not change its order of
magnitude. Hence, the LRV under the topography with a=
5 m, b=10 m will be exhibited hereafter in the present study.

However, the intensity of the LRV under different topogra-
phy conditions has different variations as the ratio of the max-
imum depth in the deep channel and the minimum depth on
the shoal changes. We set the length of the bay to 120 km and
vary the topography only to study the change of the LRV
intensity due to the topography. The dimensional results are
shown in Table 1 and discussed in each subsection below.

3.1 The comparison between the nonlinear eddy viscosity
and the linear eddy viscosity

As described in section 2.4, the turbulence closure model of
Mellor and Yamada (1982) is used in the FVCOM model to
calculate the tidal current, and the time varying eddy viscosity
is also acquired. It shows that the eddy viscosity has obvious
temporal and spatial distributions. It appears that in the verti-
cal direction, the eddy viscosity shows a higher value at the
middle of the water column and lower value near the surface
and the bottom, and the eddy viscosity also has strong varia-
tions during the whole tidal period, as shown by the blue lines
in Fig. 3a, c. A typical tidally averaged vertical profile of the
eddy viscosity is shown by the red line in Fig. 3a, c.

If the vertical profile of the eddy viscosity is averaged over
flood or ebb phase, the difference is quite obvious between the
two profiles, which is called the asymmetry. In the model area,
the two kinds of the asymmetry, namely the flood-dominated
asymmetry and the ebb-dominated asymmetry, both exist
(Fig. 3b, d). It appears in Fig. 4 that on both sides of the bay,
the flood-dominated asymmetry (negative values in the Fig. 4)
appears. While in the deep channel of the bay, the flood-
dominated asymmetry and the ebb-dominated asymmetry
(positive values in the Fig. 4) appear alternatively. Except at
the mouth of the bay where the intensity of the tidal asymme-
try of the eddy viscosity on the shoals is bigger than that in the

deep channel, and opposite features of the magnitude of the
symmetry exist in the remaining part of the bay. The maxi-
mum difference occurs at the head of the bay.

The eddy viscosity coefficients obtained from FVCOM by
using the MY-2.5 model are kept based on which three kinds
of the eddy viscosity are generated for further comparison.
Firstly, the eddy viscosity is averaged temporally in one tidal
period on every grid point to get the time invariant eddy vis-
cosity. Then they are averaged vertically in the water column
to get the eddy viscosity only varying horizontally. Lastly, the
eddy viscosity goes through a further horizontal averaging
procedure to get the constant eddy viscosity in the whole
model domain. The three kinds of the eddy viscosity are ap-
plied in FVCOM to replace the MY-2.5 model. Then the so
obtained tidal currents are used to get the LRV. It demonstrates
that the structures of the LRV based on these three kinds of the
time-invariant eddy viscosity are nearly the same, although
the magnitudes of the LRV have a big difference, which will
be discussed later. This is because the time-varying character-
istic is removed from the eddy viscosity term and its only
remaining effect is to damp the LRV. Hence, the structures
of the LRV based on the time-invariant eddy viscosity will
be compared with those based on the tide-varying eddy vis-
cosity, which will be discussed below to evaluate the effect of
the nonlinearity of the eddy viscosity. Considering the gener-
ality of the comparison, two bay lengths are chosen, which are
0.3 and 1 wavelength respectively.

For the 0.3 wavelength long bay case, there are significant
differences in the LRVat the cross-section of 0.75 bay lengths
away from the head between the linear and nonlinear eddy
viscosity case. The LRV flows outside from the slope and
the lower layers of the deep channel and flows inside from
the upper layers of the deep channel and from both sides of the
banks when the time-varying eddy viscosity is used (Fig. 5a).
While in Fig. 5b–d, if the time-invariant eddy viscosity is
adopted, the LRV flows outside from the deep channel and
inside from the banks of the bay, which is simpler than that in
Fig. 5a. In the inner bay, the direction of the LRV in the MY-
2.5 model case is inward at the bottom layers of the deep
channel, while for the three time-invariant eddy viscosity
cases the LRVis outward and the outflow area becomes bigger
with the shift from the tidally averaged case to the constant
eddy viscosity case (Fig. 5b–d). It should be noted that the
constant eddy viscosity averaged from the output of the MY-
2.5 model is 0.0015 m2/s in this experiment. Thus, the

Fig. 2 The streamlines of the
depth-integrated LRV in the 0.3
wavelength long bay with
a = 5 m, b = 10 m for the constant
eddy viscosity case with the linear
bottom friction (βT = 0.01 m/s)
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nondimensional parameter δe is 0.16, which is one order
smaller than that used in Jiang and Feng (2014). Hence, the
LRV (in Fig. 5d) is different from those in Fig. 1 which means
the magnitude of the eddy viscosity is important to the LRV.

If the bay is one-wavelength long, the structures of the LRV
at each section in tidally averaged case are nearly the same, as
shown in Fig. 6a, b, with the outward flowing area in the deep
channel and the inward flowing area on the shoals. The 3D
LRV in the tidally vertically averaged case and in the constant
eddy viscosity case almost have the same pattern as that in the
tidally averaged case (The figures are omitted).

For the depth-integrated LRV, the LRV flows inside from
the both sides and the deep channel and flows outside from the
slopes between 0.23 and 0.27 wavelengths away from the
head of the 0.3 wavelength long bay exhibited in Fig. 7a,
while at the same position of Fig. 7b–d the LRV flows inside
from both sides and slopes and outside from the deep channel
when the time-invariant eddy viscosity is used. For the one
wavelength long bay, a pair of cells flows inside from the deep
channel and outside from the slopes and both sides of the bay
in the position between 0.5 and 0.6 wavelengths away from
the head of the bay in Fig. 8a. In Fig. 8b, the pair of cells
disappears and the semi-enclosed cells at the mouth and the
cells in the inner bay become bigger and occupy the position
when the tidally averaged eddy viscosity is used. The depth-
integrated LRV for the other two time invariant eddy viscosity
cases almost have the same pattern as that in the tidally aver-
aged case (The figures are omitted).

In a 0.3 wavelength long bay when the nonlinear eddy
viscosity is used, the breadth-averaged LRV flows inside from
the middle and lower layers and outside from the upper layers
in the horizontal areas from the head of bay to 0.2 wavelengths

away from it, while the reverse results are obtained near the
open boundary (Fig. 9a). In the tidally averaged case and in
the tidally-vertically averaged case, the LRV flows toward the
sea from the upper layers near the head of the bay and there is
an anti-clockwise cell in the middle and bottom layers. From
0.09 to 0.15 wavelengths away from the head of the bay, there
exists a clockwise cell. Near the open boundary, an anti-
clockwise semi-enclosed cell exists (Fig. 9b, c). While for
the constant eddy viscosity case in Fig. 9d, the breadth-
averaged LRV flows inside from the upper layers and outside
from the lower layers in the whole bay except for the areas
near the head.

In a one wavelength long bay, when the nonlinear eddy
viscosity is used, there exists a clockwise cell near the head
of the bay. Adjacent to it, an anti-clockwise cell exists. At the
position which is 0.55 and 0.65 wavelengths away from the
head of the bay, a small cell has the same flowing direction
with that near the head. At the mouth of the bay, the down-
estuary flow exists in the middle and lower layers with the up-
estuary flow in the upper layers (Fig. 10a). However, under
the tidally averaged case, the structure of the LRV is simple
with flowing outside in the middle and bottom layers and
inside at the surface (Fig. 10b).

Not only the pattern but also the magnitude of the LRV has
the obvious changes when the nonlinear effects of eddy vis-
cosity are considered. For a 120-km long bay, the intensity of
the dimensional LRV increases as the ratio of the maximum
depth in the channel and the minimum depth on the shoal
increases. The intensity of the LRV in the tidally averaged
case is more than 2 times, 1.5 times, and 1.3 times bigger than
that in the MY-2.5 model case with the ratio of the maximum
depth in the channel and the minimum depth on the shoal

Fig. 3 The vertical eddy
viscosity profiles of two points at
the mouth of the bay. The profiles
of the point at the center of the
deep channel are drawn in a and
b, and the profiles of the point
near the bank are drawn in c and
d. In a and c, the blue lines
represent the time series of the
vertical eddy viscosity profiles in
a tidal cycle and the red lines
represent the tidally averaged
eddy viscosity profile; in b and d,
the red lines represent the flood-
averaged eddy viscosity and the
blue lines represent the ebb-
averaged eddy viscosity
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being 2, 3, and 4 (row a and b in Table 1). The change of the
LRV intensity in the tidally vertically averaged case is almost
the same as that in the tidally averaged case, which shows the
vertical distribution of the eddy viscosity has nearly no effects
on the LRV (row b and c in Table 1). However, if the eddy
viscosity is tidally and spatially averaged in the whole bay, the
intensity of the LRV (row d in Table 1) increases by one order
compared with that in the MY-2.5 model case (row a in
Table 1).

We conclude that the structure of the LRV is highly sensi-
tive to the nonlinear effects of the eddy viscosity in a tidal
period. The intensity of the LRV depends not only on the
nonlinear eddy viscosity but also on the spatial variation of
the eddy viscosity. The intensity of the LRV is highly sensitive
to the topography.

3.2 The tidal asymmetry of the eddy viscosity

The different patterns of the tidal asymmetries of the eddy
viscosity exist in different regions of the bay because of the
tidal nonlinear effects (Cheng et al. 2011). This makes the
situation very complex. Cheng et al. (2010) explored the ef-
fects of the tidal asymmetry of the eddy viscosity on the
breadth-averaged ERV by assuming a simple variation of the
eddy viscosity. The similar approach is adopted in this paper
to study the influences of the tidal asymmetry of the eddy
viscosity on the 3D LRV. Two sensitivity experiments are
designed here to represent two different types of the asymme-
try, one for the flood-dominated asymmetry (Fig. 11a, the
eddy viscosity during flood is larger than that during ebb)
and the other for the ebb-dominated asymmetry (Fig. 11b,
opposite behavior compared with the flood-dominatedT
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Fig. 4 The deviation of the depth-averaged eddy viscosity between the
flood-averaged and the ebb-averaged. The negative value represents the
condition that the eddy viscosity during the flood is bigger than that
during ebb. The positive value represents the condition that the eddy
viscosity during the ebb is bigger than that during the flood

Ocean Dynamics (2017) 67:1105–1118 1111



asymmetry). The maximum value of the comparatively higher
curved line of the eddy viscosity is 0.02m2/s and that of the
lower curved line of the eddy viscosity is 0.01 m2/s. They
reach the maximum both at the position of z = − 10/15h0 and
h0 is the local depth according to the formula in Ianniello
(1977).

The 3D LRV are drawn in Figs. 12 and 13 under different
tidal symmetry conditions. Compared with the results in the
tidally averaged case (Figs. 5b and 6b), the structures of the
LRV are quite different. This is because the eddy viscosity in
the two kinds of tidal asymmetry cases varies as the flood
phase and the ebb phase changes. Furthermore, the two kinds
of the asymmetries of the eddy viscosity have simpler varia-
tion than that in the MY-2.5 model case in the tidal cycle, so
the LRV in the two cases have different patterns compared
with the results in the MY-2.5 model case (Figs. 5a and 6a).
It demonstrates that the temporal variation of the eddy viscos-
ity plays the important role in the LRV. The following part will
display the effects of the asymmetries of the eddy viscosity on
LRV in detail.

For the 0.3 wavelength long bay, as shown in Fig. 12a, the
LRV under the flood-dominated asymmetry condition in the

upper layers above the slope flows outside and gradually ex-
tends to both sides of the banks until the outflow area occupies
the banks of the bay from the mouth to the head of the bay.
The LRV flows inside from the deep channel and the bottom
layers and the inflow area in the upper layers of the deep
channel becomes larger and larger from the open boundary
to the head of the bay. While in Fig. 12b when the ebb-
dominated asymmetry condition is assumed, the outflow is
in the lower layers and the outflow area in the lower layers
of the banks extends upward until occupying the whole banks
from the mouth to the head of the bay, and the inflow area in
the upper layers of the deep channel becomes bigger and big-
ger from the open boundary to the head of the bay. For the one
wavelength long bay, compared with that in the 0.3 wave-
length long bay, when the position is more than 0.15 wave-
lengths away from the head of the bay, the 3D LRV flows
outside from the upper layers of the banks and inside from
the lower layers and the deep channel in the flood-dominated
case (Fig. 13a), and the outflow area in the upper layers of the
banks becomes larger until they occupy the upper layers from
the mouth to the head of the bay. While in the ebb-dominated
case (Fig. 13b) the LRV flows outside from the lower layers

Fig. 5 The nondimensional LRV
of four cross-sections in the 0.3
wavelength long bay with
a = 5 m, b = 10 m for a the MY-
2.5 model case, b the tidally
averaged case, c the tidally
vertically averaged case, d the
constant eddy viscosity case with
the quadratic bottom friction. The
contour interval is 0.02 and the
other notions are as in Fig. 1
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and inside from the upper layers, the outflow area in the lower
layers of the banks becomes thinner and that in the lower
layers of the deep channel becomes larger from the open
boundary to the head of the bay.

The depth-integrated LRV flows inside from the deep
channel and outside from the banks (the figures are omitted)
and has nearly no changes between the flood-dominated and
the ebb-dominated asymmetries. However, the results of the

breadth-averaged LRV are significantly sensitive to the tidal
asymmetry of the eddy viscosity. For the 0.3 wavelength long
bay, as shown in Fig. 14, the LRV under the flood-dominated
asymmetry condition has the same pattern as that of the grav-
itational circulation, while the LRV under the ebb-dominated
asymmetry condition is nearly the same as that in Ianniello
(1977). Because of the topography, the direction-turning po-
sition of the LRV is at the minimum depth. For the one

Fig. 7 The streamlines of the
depth-integrated LRV in the 0.3
wavelength long bay with
a = 5 m, b = 10 m for a the
MY-2.5 model case, b the tidally
averaged case, c the tidally
vertically averaged case, d the
constant eddy viscosity case with
the quadratic bottom friction

Fig. 6 The nondimensional LRV
of four cross-sections in the 1
wavelength long bay with
a = 5 m, b = 10 m for a the
MY-2.5 model case, b the tidally
averaged case with the quadratic
bottom friction. The contour
interval is 0.01 and the other
notions are as in Fig. 1
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wavelength long, the same results are obtained (the figures are
omitted).

The LRV kinetic energy is also affected by the different
tidal asymmetries of the eddy viscosity. In the 120-km long
bay, the intensity of the LRV for the ebb-dominated case is
more than three or two times bigger than that of the flood-
dominated case when b=5 m or b=10 m is set. When b=15 m
is set, the intensities of the LRV in the two cases are almost the
same. In other words, the tidal asymmetry of the eddy viscos-
ity affects not only the pattern of the LRV but also the mag-
nitude of the LRV kinetic energy. Also, the intensity of the
LRV highly depends on the topography. However, there are
no obvious differences in the effects on the tide between the
two cases, which can be seen from the total tidally averaged

kinetic energy listed in row e and f in Table 1 and the figures of
co-tide and co-range lines (the figures are omitted).

3.3 Sensitivity to the form of the bottom friction

The nonlinear effects of the bottom friction on the LRV are
studied in this section by comparing the results between the
linear bottom friction and the quadratic bottom friction in the
FVCOM model. In most estuaries, the magnitude of the ve-
locity is in the range of 0.5 to 1 m/s, which implies that the
linear bottom friction coefficient ranges from 1.06 × 10−3 to
2.12 × 10−3 m/s, assuming the quadratic bottom friction coef-
ficient Cd = 0.0025 (Li and O'Donnell 1997). In this section,
the linear bottom friction coefficient is 1.76 × 10−3 m/s. The

Fig. 8 The streamlines of the
depth-integrated LRV in the 1
wavelength long bay with
a = 5 m, b = 10 m for a the
MY-2.5 model case, b the tidally
averaged case with the quadratic
bottom friction

Fig. 9 As in Fig. 7 but for the
streamlines of the breadth-
averaged LRV
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eddy viscosity is calculated by the MY-2.5 turbulence closure
model.

When the results of the cross-section are examined, it ap-
pears that the LRV flows inside from the deep channel and
outside from the bottom layers and the banks with the excep-
tions for two small areas at both sides of the banks of the outer
bay (Fig. 15a, b). While for the results with the quadratic
bottom friction (Fig. 5a), it is clear that the LRV has different
structures in the inner bay and outer bay in the 0.3 wavelength
long bay. This result also shows that the structure of the LRV
with the linear bottom friction is simpler than those with the
quadratic bottom friction.

The results of the depth-integrated LRV in a 0.3 wave-
length long bay with the linear bottom friction are shown in
Fig. 16a. It appears that the two cells in the inner bay extend to

the open boundary exhibiting the pattern of flowing inside from
the deep channel and outside from the banks of the bay. This
pattern is simpler than the results with the opposite flowing
directions in the inner bay and the outer bay when the quadratic
bottom friction is used (Fig. 7a). In a one wavelength long bay,
the structure of the LRV displayed in Fig. 16b is also simpler
than the polycyclic structure generated by the quadratic bottom
friction (Fig. 8a). The two cells at the head of the bay remain the
same as in Fig. 8a with the quadratic bottom friction. However,
the two semi-enclosed cells in the outer bay extend to the posi-
tion of 0.25 wavelengths away from the head of the bay in
Fig. 16b with the linear bottom friction being assumed. In-
between two small cells between 0.25 and 0.35 wavelengths
away from the head have opposite direction compared with
those near the head and in the outer bay.

Fig. 10 As in Fig. 8 but for the
streamlines of the breadth-
averaged LRV in the 1
wavelength long bay

Fig. 11 The vertical profiles of
the eddy viscosity (m2/s) for a
flood-dominated asymmetry and
b ebb-dominated asymmetry
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Not only the pattern but also the intensity of the LRV has
obvious changes. The intensity of the LRV in the linear bot-
tom friction case is more than two times smaller than that in
the quadratic bottom friction case in all the three kinds of the
topography (row g in Table 1). This demonstrates the genera-
tion mechanism of the LRV due to the nonlinearity of the
bottom friction.

In general, it shows that the form of the bottom friction has
obvious influences on the 3D LRV and the depth-integrated
LRV. Since the quadratic bottom friction includes both the
linear part and the nonlinear part with the linear part dissipat-
ing energy and the nonlinear part generating the LRV. Hence,
the results with the linear bottom friction are simpler than
those with the quadratic bottom friction, which is consistent
qualitatively with the depth-averaged analytical results in
Jiang and Feng (2011) and numerical results in Quan et al.
(2014). However, the breadth-averaged LRV is almost unaf-
fected by changing the form of the bottom friction (the figures
are omitted).

4 Conclusions

In this paper, the Lagrangian residual velocity in an idealized
bay is calculated according to its definition based on the tidal
currents obtained from the FVCOM model. It shows a close
agreement between the numerical solution and the analytical
solution in Jiang and Feng (2014) when the same setting is
used.

Several numerical experiments are carried out to study the
effect of the nonlinear eddy viscosity and the influence of the
different forms of the bottom friction on LRV in the three
kinds of the topography. The results show that the pattern does
not change according to the variation of the topography, but
the intensity of the LRV increases as the ratio of the maximum
depth in the deep channel and the minimum depth on the shoal
does. The detailed conclusions are as follows:

The present work overcomes the temporally constant eddy
viscosity limitation in the analytical solution by considering
the periodic oscillation of eddy viscosity calculated by the

Fig. 12 The nondimensional
LRVof four cross sections in the
0.3 wavelength long bay with
a = 5 m, b = 10 m for a flood-
dominated asymmetry and b ebb-
dominated asymmetry with the
linear bottom friction
(βT = 0.00176 m/s). The contour
interval is 0.01 and the other
notions are as in Fig. 1

Fig. 13 As in Fig. 12 but for the
1 wavelength long bay
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MY-2.5 turbulence closure model. It shows that the LRV pat-
terns are similar when different kinds of the time-invariant
eddy viscosity are used in the FVCOM model. The structure
is more complex when the time-varying eddy viscosity is used
which shows the important effect of the nonlinearity of the
eddy viscosity. However, the intensity of the LRV is from 1.3
times to one order bigger when temporally constant eddy

viscosity is assumed than those when the time varying eddy
viscosity is used under the three kinds of the topography.

The tidal asymmetry of the eddy viscosity during the flood
and ebb is a typical type of the nonlinear eddy viscosity. Two
sensitivity experiments are designed to study the effects of the
two kinds of the asymmetry of eddy viscosity on the LRV. It
appears that the 3D LRV has opposite patterns except for the

Fig. 14 The streamlines of the
breadth-averaged LRV in the 0.3
wavelength long bay with
a = 5 m, b = 10 m for a flood-
dominated asymmetry and b ebb-
dominated asymmetry with the
linear bottom friction
(βT = 0.00176 m/s)

Fig. 15 The nondimensional
LRVof four cross sections in a the
0.3 wavelength long bay and b
the 1 wavelength long bay with
a = 5 m, b = 10 m for the MY-2.5
model case with the linear bottom
friction (βT = 0.00176 m/s). The
contour interval is 0.02 and 0.01,
respectively, in (a) and (b). The
other notions are as in Fig. 1

Fig. 16 The streamline of the
depth-integrated LRV for a the
0.3 wavelength long bay and b
the 1 wavelength long bay with
a = 5 m, b = 10 m for the MY-2.5
model case with the linear bottom
friction (βT = 0.00176 m/s)
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upper layers of the deep channel in the cross-sections which
are more than 0.15 wavelengths away from the head of the
bay. The depth-integrated LRV is not sensitive to the asym-
metry of the eddy viscosity, while the structures of the
breadth-averaged LRV are opposite in the two experiments.
The ratio of the intensity of the ebb-dominated asymmetry
case and that of the flood-dominated case decreases by from
more than three times to one time as the ratio of the maximum
depth in the deep channel and the minimum depth on the shoal
increases by from two to four times.

The nonlinear effects of the bottom friction on the LRVare
studied in this paper to relieve the limitation of the analytical
solution (Winant 2008; Jiang and Feng 2014). The form of the
bottom friction has significant influences on the 3D LRVand
the depth-integrated LRV, while the breadth-averaged LRV is
not sensitive to the form of the bottom friction. The intensity
of the LRV in the quadratic bottom friction case is more than
two times bigger than that in the linear bottom friction case in
the three kinds of the topography.

In this paper, only the barotropic condition is considered
the effect of the nonlinearity of the eddy viscosity is obvious,
yet the baroclinic condition will give more complexity to the
variation of the eddy viscosity. Therefore, it will be studied in
the future to give deeper understanding of the generation
mechanism of the 3D LRV.
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