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Abstract A hybrid ensemble data assimilation scheme
(HYBRID), combining a flow-dependent with a static back-
ground covariance, was developed and implemented for as-
similating satellite (SeaWiFS) Chl-a data into a marine ecosys-
tem model of the Mediterranean. The performance of
HYBRID was assessed against a model free-run, the
ensemble-based singular evolutive interpolated Kalman
(SEIK) and its variant with static covariance (SFEK), with
regard to the assimilated variable (Chl-a) and non-assimilated
variables (dissolved inorganic nutrients). HYBRID was found
more efficient than both SEIK and SFEK, reducing the Chl-a
error bymore than 40% inmost areas, as compared to the free-
run. Data assimilation had a positive overall impact on nutri-
ents, except for a deterioration of nitrates simulation by SEIK
in the most productive area (Adriatic). This was related to
SEIK pronounced update in this area and the phytoplankton
limitation on phosphate that lead to a built up of excess ni-
trates. SEIK was found more efficient in productive and vari-
able areas, where its ensemble exhibited important spread.
SFEK had an effect mostly on Chl-a, performing better than
SEIK in less dynamic areas, adequately described by the dom-
inant modes of its static covariance. HYBRID performed well
in all areas, due to its Bblended^ covariance. Its flow-

dependent component appears to track changes in the system
dynamics, while its static covariance helps maintaining suffi-
cient spread in the forecast. HYBRID sensitivity experiments
showed that an increased contribution from the flow-
dependent covariance results in a deterioration of nitrates, sim-
ilar to SEIK, while the improvement of HYBRIDwith increas-
ing flow-dependent ensemble size quickly levels off.
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1 Introduction

The Mediterranean is a semi-enclosed sea, connected to the
Atlantic Ocean through the Strait of Gibraltar in the west and
to the Sea ofMarmara and theBlack Sea through theDardanelles
Straits in the northeast (Fig. 1). Its pelagic ecosystem may be
characterized as oligotrophic, exhibiting a well-defined eastward
decreasing trend in primary productivity (Moutin and Raimbault
2002) that is related to the anti-estuarine circulation at Gibraltar,
with inflowing nutrient poor surface Atlantic waters and out-
flowing subsurfaceMediterraneanwaters. The eastern basin, sep-
arated by the shallow Sicily Strait (~500m), is recognized as one
of the most oligotrophic areas in the world (Azov 1991).
Phosphorous is the limiting nutrient for phytoplankton and bac-
terial growth, with decreasing concentrations from west to east
(Krom et al. 2004). The primary production is mainly controlled
by vertical mixing processes that supply the euphotic zone with
deep water nutrients, reaching its maximum between December
and April and minimum between June and September. The sea-
sonal cycle is stronger in areas characterized by deep water for-
mation, such as the Gulf of Lions in the northwestern
Mediterranean, which is one of the most productive areas in
the Mediterranean (Morel et al. 1991; Bosc et al. 2004).
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Relatively increased productivity is also found in areas receiving
river nutrient inputs (Fig. 1), such as the Northern Adriatic, the
North Aegean, and the Gulf of Lions.

Numerical models are now routinely used to simulate the
dynamics of marine ecosystems, which are subject to changes
from climate and human pressures, providing a valuable tool for
the management of marine resources. However, the models abil-
ity to accurately simulate the space-time variability of the marine
environment is limited by various sources of uncertainties, such
as those of model structure and parameterization, as well as the
quality of initial conditions and meteorological forcing. In this
respect, the pronounced characteristics of theMediterranean eco-
system, such as the P-limited oligotrophism and the role of the
physics as the main driver on the ecosystem processes, signifi-
cantly add to the complexity. Data assimilation is a process of
nudging the model simulations toward available observations to
reduce the uncertainties in the model outputs. This approach is
widely used in atmospheric and ocean sciences and has also
become popular in biogeochemical ocean applications in the last
decades (see review in Edwards et al. 2015). Particularly in the
Mediterranean Sea, biological data assimilation has been applied
regionally in the Ligurian Sea (Lenartz et al. 2007; Kalaroni et al.
2016), the Northwest coast of Spain (Torres et al.2006), the
Cretan Sea (Allen et al. 2003; Hoteit et al. 2003, 2004;
Triantafyllou et al. 2003, 2007, 2012; Kalaroni et al. 2016), and
at basin scale (Hoteit et al. 2005; Teruzzi et al. 2014).

Ensemble Kalman filters (EnKFs) are currently among the
most popular data assimilation techniques due to their effi-
ciency and robustness in dealing with large scale nonlinear
systems and their reasonable computational cost. Different
types of EnKFs are now commonly used for physical (e.g.,
Hoteit et al. 2002; Evensen 2003; Nerger et al. 2006; Xu et al.
2013; Hoteit et al. 2013; Hoteit et al. 2005) and biochemical

(Natvik and Evensen 2003; Triantafyllou et al. 2003; Nerger
and Gregg 2007; Simon and Bertino 2009; Ciavatta et al.
2011, 2014; Hu et al. 2012;) ocean applications.

In an EnKF, the distribution of the state of the system, con-
ditioned on available observations, is represented by a set of
state vectors called ensemble. The standard forecast-update
steps of the Kalman filter are then implemented as follows.
The ensemble members are first propagated in time with the
model to estimate the forecast and its error covariance as the
sample mean and covariance of the forecasted members. These
are then used in the Kalman correction step to update the fore-
cast with the incoming observations. In practice, a sufficiently
large, but computationally demanding, ensemble is needed to
well describe the state distribution (Pham 2001; Song et al.
2010). A small ensemble may result in an underestimation of
the state variance and a degenerative analysis, characterized by
an ensemble collapse (Whitaker and Hamill 2002). This limi-
tation is often mitigated by introducing appropriate inflation
and localization (Edwards et al. 2015). Another approach that
was proven efficient for enhancing the performance of the
EnKF when implemented with small ensembles is the so-
called hybrid scheme (Hamill and Snyder 2000). It com-
bines the error covariance estimated from an EnKF ensem-
ble with a pre-selected static background error covariance
representing the climatology of the system statistics (Hamill
and Snyder 2000; Song et al. 2010; Lui et al. 2016). The
hybrid method was found particularly efficient when the
filter is implemented with a small ensemble and also in
the presence of model error (Wang et al. 2008; Counillon
et al. 2009; Song et al. 2010).

Hybrid assimilation schemes have been successfully ap-
plied in meteorology (e.g., Hamill and Snyder 2000;
Etherton and Bishop 2004; Wang et al. 2008) and more

Fig. 1 Mediterranean model domain and bathymetry (m). Major rivers and straits are indicated, along with the Gulf of Lions (black box), Adriatic Sea
(red box), and Levantine basin (green box), where averages are calculated in Figs. 5, 7, and 8
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recently in ocean forecasting (Counillon et al. 2009) and sub-
surface flows (Gharamti et al. 2014). In the present study, a
hybrid scheme was developed and implemented for efficient
data assimilation into a marine ecosystem model of the
Mediterranean Sea. The scheme combines the ensemble-
based forecast error covariance of the singular evolutive inter-
polated Kalman (SEIK, Pham 2001) filter, with a static

background covariance built from a set of empirical orthog-
onal functions (EOFs), as in the singular fixed extended
Kalman (SFEK, Hoteit et al. 2002). The hybrid algorithm was
implemented and tested for assimilation of satellite Chl-a data
into a three-dimensional ecosystem model of the
Mediterranean. Data assimilation for marine ecosystems can
be quite challenging, given the large number of state variables
and the required computational cost, the short time-scales, and
nonlinear nature of biogeochemical processes (Edwards et al.
2015). In particular, for the shelf and regional areas of
Mediterranean ecosystems, these shortcomings have been
analyzed and discussed in the works of Triantafyllou et al.
(2007) and Triantafyllou et al. (2005), supporting the idea of
the development of a more efficient Kalman scheme. The main
aim of this study is to assess the performance of the new hybrid
scheme for data assimilation and to test its efficiency and ro-
bustness before implementing it operationally as part of the
POSEIDON forecasting system (www.poseidon.hcmr.gr).

The paper is organized as follows. Section 2 briefly de-
scribes the coupled hydrodynamic/biogeochemical model.
Section 3 presents the ensemble hybrid data assimilation
scheme. Section 4 assesses the performance of the new hybrid
scheme against SEIK and SFEK, first with regard to the as-
similated data (Chl-a) and then with regard to non-assimilated
model variables, such as dissolved inorganic nutrients. In sec-
tion 5, the performance of the assimilation schemes is
discussed in relation to the ensemble spread and forecast up-
date. The performance of the hybrid scheme is also further
analyzed through a series of sensitivity experiments, to inves-
tigate the effect of the dynamic ensemble size and the blending
parameter. Concluding remarks are offered in section 6.

2 Materials and methods

2.1 Model description

A three-dimensional coupled hydrodynamic/biogeochemical
model is implemented at Mediterranean basin scale (Fig. 1).
The coupled model is comprised of the Princeton Ocean
Model (POM, Blumberg and Mellor 1983) and the
European Regional Seas Ecosystem Model (ERSEM,
Baretta et al. 1995). POM is a primitive equation, free-surface,
and sigma-coordinate model that employs a 2.5 turbulence
closure scheme (Mellor and Yamada 1982) to compute verti-
cal viscosity/diffusivity. It is a widely spread community

model (www.ccpo.odu.edu/POMWEB) with numerous
applications in coastal and open ocean studies, including the
Mediterranean (Zavatarelli and Mellor 1995; Horton et al.
1997; Korres and Lascaratos 2003), among others. ERSEM
is a comprehensive generic biogeochemical model that has
been successfully implemented in various coastal and open
sea ecosystems, such as the North Sea (Pätsch and Radach
1997), the oligotrophic Mediterranean (Allen et al. 2002;
Petihakis et al. 2002), and the Arabian Seas (Blackford and
Burkill 2002; Triantafyllou et al. 2014), among others. It fol-
lows the functional group approach, adequately describing the
pelagic plankton food web with four phytoplankton groups
(diatoms, nanoplankton, picoplankton, and dinoflagellates),
three zooplankton groups (heterotrophic nanoflagellates,
microzooplankton, and mesozooplankton), and bacteria. Its
variables also include dissolved and particulate organic mat-
ter, along with dissolved inorganic nutrients (phosphate, ni-
trate, ammonium, and silicate), while carbon dynamics are
loosely coupled with nitrogen and phosphorus dynamics, as
plankton groups have dynamically varying C:N:P internal
pools (in total, 38 pelagic variables are prognostically com-
puted). We refer the reader to Petihakis et al. (2002), Tsiaras
et al. (2014), and Petihakis et al. (2014) for more details on the
biogeochemical model description and implementation.

The coupled hydrodynamic/biogeochemical model is cur-
rently operational in the Mediterranean, providing 4-day fore-
casts (without data assimilation) for dissolved inorganic nutri-
ents, plankton biomass, and production, as part of the
POSEIDON forecasting system (www.poseidon.hcmr.gr;
Korres et al. 2007; Tsiaras et al. 2010). It successfully
reproduces the main features of the Mediterranean
ecosystem, such as the east-west gradient of productivity
and phosphorus limitation, the seasonal cycle of plankton pro-
duction that is controlled by vertical mixing processes, and the
increase of productivity in coastal areas receiving river nutri-
ent inputs (Tsiaras et al. 2010).

In this study, simulations were performed for year 2000, and
the atmospheric forcing was obtained from the POSEIDON
operational weather forecast (Papadopoulos et al. 2002). Fresh
water discharge and nutrient inputs from (25) major rivers in the
Mediterranean were obtained from hydrological/nutrient emis-
sion modeling of the Mediterranean drainage basin (Ludwig
et al. 2009). Open boundary conditions near the Gibraltar strait
(Fig. 1) were obtained from available climatologies for dis-
solved inorganic nutrients (MEDATLAS 2002, www.ifremer.
fr/medar/) and temperature/salinity (MODB-MED4), while ra-
diation conditions were adopted for current velocities. The
Dardanelles water exchange, an important mechanism
for the ecosystem of the Aegean Sea (Petihakis et al.
2014), is parameterized through a two-layer open bound-
ary condition (Nittis et al. 2006), with prescribed clima-
tological data of seasonally varying water inflow and dis-
solved inorganic nutrients (Tugrul et al. 2002).
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2.2 Observational dataset

Assimilated observations consist of remote sensing Chl-a, re-
trieved by SeaWiFS (Sea-viewingWide Field-of view Sensor)
and processed using the Ocean Chlorophyll 4-version 4 (OC4-
v4) algorithm (O’Reilly et al. 1998). The SeaWiFS data are 8-
day composite products (9 × 9 km2 resolution) for year 2000.
On top of assessing the performance of the different filters in
improving the model Chl-a estimate, we also evaluated the
filters in term of their impact on non-assimilated variables,
such as dissolved inorganic nutrients that are primary constit-
uents in the biogeochemical model dynamics. For that pur-
pose, given the limited data availability on specific years, a
seasonal Bclimatology^ of near-surface (0–50 m) in situ data
was constructed, by aggregating available observations in the
Mediterranean on different seasons over 1990–1999 period,
obtained from the SeaDataNet database (www.seadatanet.
org). The simulated seasonal mean phosphate and nitrate
concentrations, extracted at the data locations, were
compared against the observations on different seasons. The
model performance, particularly the efficiency of data
assimilation in reproducing the nutrients spatial/seasonal vari-
ability, was assessed by calculating the following model skill
indexes over all model (M)/data (D) pairs (n) (e.g., Stow et al.
2009; Jolliff et al. 2009):

• Percentage model bias PBIAS ¼ ∑ D−Mð Þ=∑Dð Þ*100;

which computes the percentage normalized difference be-
tween the model and data mean. It basically evaluates whether
the model systematically underestimates or overestimates the
observations.

• Pearson correlation coefficientPCC

¼ ∑ D−D
� �

⋅
�
M−M

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ D−D
� �2

⋅
�
M−M

�2
r

;

where over-bar denotes a mean value. This provides a mea-
sure of whether the model is able to reproduce the observed
spatial variability. PCC = 1 indicates a perfect correlation.

• RMS model errorRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ D−Mð Þ2=n

q
;

which gives the overall goodness of fit between model and
data values, with RMSE = 0 indicating a perfect fit.

• Normalized standard deviation NSTD

¼ σ2 Mð Þ=σ2 Dð Þ;

which measures whether the model exhibits a similar overall
variability to the observed (NSTD = 1).

3 The hybrid SEIK filter

The hybrid ensemble scheme proposed in this study uses a
combination of covariances from the singular extended inter-
polated Kalman (SEIK; Pham 2001) and the singular fixed
extended Kalman (SFEK, Hoteit et al. 2002; Hoteit and
Pham 2004) in the Kalman update step. SFEK uses a static
background covariance, built from a set of EOFs, while SEIK
employs a flow-dependent error covariance, estimated from a
stochastically generated ensemble (Hoteit et al. 2012).
HYBRID bears some similarities with the singular semi-
evolutive interpolated Kalman (SSEIK, Hoteit et al. 2002),
in the sense that its algorithm also involves static and flow-
dependent covariances. In SSEIK, however, only a Bpart^ of
the filter covariance is integrated in time with the model dur-
ing the forecast step through a well-chosen reduced ensemble
that is sampled, at every analysis step, based on certain criteria
(as for example propagating the part of the covariance that
represents the dominant error modes as extracted by a singular
value decomposition, SVD).

3.1 SEIK filter

SEIK operates as a succession of three consecutive steps: a sam-
pling step to generate the ensemble from the filter’s estimate and
its covariance, a forecast step to integrate the ensemble forward
with the model, and a Kalman update step of the forecast ensem-
ble mean and covariance with the incoming observations.

3.1.1 Sampling step

Starting from an available analysis state and a low rank (r) error
covariance Pa(tk) = LkUkLk

T at a given time tk, an ensemble of
N = r + 1 statesX a

1 tkð Þ;…;X a
N tkð Þ is randomly drawn after

every assimilation cycle (tk) in such a way that their samplemean
and covariance exactly match Xa(tk) and P

a(tk) (Note thatN = r +
1 is the smallest ensemble that could be generated to describe a
rank-r covariance matrix, Pham 2001) i.e.,

X a tkð Þ ¼ 1

N
∑
N

i¼1
X a

i tkð Þ; ð1Þ

Pa tkð Þ ¼ 1

N
∑
N

i¼1
X a

i tkð Þ−X a tkð Þ� �
X a

i tkð Þ−Xa tkð Þ� �T ð2Þ

Uk is a r × r matrix and Lk is the so-called filter correction
basis of dimension n × r, with n being the size of the system
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state X(tk). To generateX a
i tkð Þ, one may use the second-order

exact sampling technique (Pham 2001; Hoteit et al. 2002), in
which the ith ensemble member is computed as

X a
i tkð Þ ¼ Xa tkð Þ þ ffiffiffiffiffiffiffiffiffiffiffi

r þ 1
p

Lk Ωk;iC−1
k

� �T
; ð3Þ

where C is the square root matrix of Uk (that can be obtained
by Cholesky decomposition) and Ωk , i denotes the i

th row of a
randomly generated matrixΩk, with columns orthonormal and
orthogonal to the vector [1⋯ 1]T, so that the X a

i tkð Þ satisfy (1)
and (2).

3.1.2 Forecast step

The generated ensemble members Xi
a (tk) are propagated for-

ward with the model (M), to compute the forecast ensemble

X f
i tkþ1ð Þ ¼ M tkþ1; tkð ÞXa

i tkð Þ. The forecast state Xf(tk + 1)
and its error covariance matrix Pf(tk + 1) are then estimated as

the sample mean and covariance of theX f
i tkþ1ð Þ, respectively.

One can then decompose Pf(tk + 1) as

Pf tkþ1ð Þ ¼ Lkþ1 NTTT� �−1
Lkþ1

T ; ð4Þ

with

Lk: ¼ X f
1 tkð Þ; …; X f

rþ1 tkð Þ
h i

⋅T ð5Þ

and T is a (r + 1) × r orthogonal matrix with zero column
sums (Hoteit et al. 2002).

3.1.3 Analysis step

Once a new observation yk+1 becomes available, the forecast
and its error covariance matrix are updated exactly as in the
Kalman filter, as

X a tkþ1ð Þ¼ X f tkþ1ð ÞþKkþ1 ykþ1−Hkþ1 X f tkþ1ð Þ� �� � ð6Þ
Pa tkþ1ð Þ ¼ Lkþ1Ukþ1Lkþ1

T ; ð7Þ

where Kk + 1 is the so-called Kalman gain, given by

Kkþ1¼ Lkþ1Ukþ1 HLð ÞTkþ1R
−1
kþ1 ð8Þ

HLð Þkþ1 ¼ Hkþ1 X 1
f tkþ1ð Þ� �

; :::;Hkþ1 X rþ1
f tkþ1ð Þ� �� �

⋅T ;
ð9Þ

with Hk+1 the observational operator at time tk+1, practically
computing the predictions of the observation by the forecast

members. Rk+1 is the observational error covariance, andUk+1

is the computed from

U−1
kþ1 ¼ ρ

1

N
TTT
� �−1 þ HLð ÞTkþ1R

−1
kþ1 HLð Þkþ1: ð10Þ

ρ is the so-called Bforgetting^ factor, taking values between
0 and 1. It is used to inflate the error covariance (by 1/ρ) to
account for the various sources of errors, assigning more or
less confidence on the observations in relation to the model
forecast (Hoteit, Pham and Blum 2002).

Localization is applied as described by Nerger et al.
(2006) to filter out long-range spurious correlations and
to allow more degrees of freedom to fit the data. This is
implemented in practice by updating the model state var-
iables at each grid cell using only observations within a
specified cutoff radius.

3.2 SFEK filter

The update step of the SEIK filter is only applied along
the directions of Lk, which was hence called correction
basis of the filter (Pham 2001). Lk is updated in time to
follow changes in the system dynamics, but this can be
computationally demanding. Noticing that the filter gen-
erally behaves well when the update step is always ap-
plied along an initial correction basis L0 described by a
set of EOFs computed from a historical model trajectory,
Hoteit et al. (2002) suggested to keep L0 invariant with
time to drastically reduce the computational load. In the
resulting SFEK filter, the forecast step only computes the
forecast state, by integrating the analysis state with the
model Xf(tk + 1) =M(tk + 1,tk)X

a(tk). Lk is kept invariant
equal to L0, and Uk is still updated as in Eq. 10. The
analysis step is then identical to that of SEIK filter
(Eqs. 6–8).

3.3 HYBRID filter

The HYBRID scheme uses a weighted combination of the
(low-rank and already scaled/inflated) covariances of SEIK
and SFEK, following the formulation of Hamill and Snyder
(2000). More specifically, HYBRID uses

Pkþ1
Hybrid ¼ 1−αð Þ⋅Pkþ1

SEIK þ α⋅Pkþ1
SFEK ð11Þ

as background covariance in the SEIK filter update step,
where α is the weighting factor between 0 and 1. Based on the
low-rank decomposition of PSEIK and PSFEK, one can write:
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Pkþ1
Hybrid ¼ 1−αð Þ⋅Lkþ1

SEIK NTTT
� �−1

Lkþ1
SEIK

� �T þ α⋅LSFEKUk
SFEK LSFEK

� �T
;

¼ LkSEIKjLSFEK
� �

⋅ 1−að Þ⋅ NTTT
� �−1

0
0 a⋅Uk

SFEK

" #
⋅ LkSEIKjLSFEK
� �T

¼ LkHybridUk
Hybrid LkHybrid

� �T
;

ð12Þ

which can be then directly used in Eqs. 6–10 to update the
forecast with a blended correction basis of flow-dependent
and climatological (static) directions.

For resampling, we follow Wang et al. (2008) and gen-
erate the analysis ensemble from the analysis covariance
of the flow-dependent part only, that is we use Eq. 3 with
Lk = Lk

SEIK and Ck
−1 the cholesky decomposition of

Uk
SEIK, with:

USEIK
kþ1

� �−1 ¼ ρ
1

N
TTT
� �−1

þ HLSEIK
� �T

kþ1
R−1
kþ1 HLSEIK

� �
kþ1

: ð13Þ

This ensemble is then integrated with the model as in SEIK
to compute the forecast state, as the mean of the forecasted
members and P k+1

SEIK as their sample covariance. In terms of
computational load, the size of the flow-dependent ensemble
in the hybrid scheme can be significantly smaller than that of
the SEIK filter, meaning important savings in computing
hours.

4 Experiments design and results

The model state vector consists of all (38) pelagic variables of
the biogeochemical model (seemodel description section 2.1).
The initial/static correction basis L0 was generated by
performing an EOF analysis on a long-sequence of (bi-daily)
model outputs, simulated over a 2-year period (January 1997–
December 1998). A set of 25 EOF modes was retained, as
described by Hoteit et al. (2001), to form the initial correction
basis, explaining about 84% of the system’s variance.

The observation error was estimated as 20% of the
SeaWiFS Chl-a, i.e., R(i,j) = [0.2 × Chl-aSeaWiFS(i,j)]

2, assum-
ing a 20%measurement error. This is lower from the SeaWiFS
errors that are usually used in the literature (~35%). A recent
work that sampled a great variety of the Atlantic waters (in-
cluding temperate environments) reported an accuracy of 16%
(Brewin et al. 2016). In this preliminary study, testing the
efficiency of the proposed ensemble hybrid scheme for data
assimilation into a marine ecosystem model, the specified
20% mean error was considered as a compromise between
coastal (higher error) and open sea (lower error) areas. More
sophisticated approaches for estimating the observation error
have been recently proposed to tackle this challenging issue in
data assimilation (e.g., Luo and Bhakta 2016; Miyoshi et al.
2013). Moreover, advanced techniques have been suggested

for the online estimation of the observation noise variance as
hyper-parameters during the filtering process (e.g., Ueno and
Nakamura 2014; Dreano et al. 2017; Li et al. 2009). These
would still however require limiting the spatial variability of
the observational error variance through some kind of param-
eterization in order to reduce the number of hyper-parameters
to be estimated.

A cutoff radius of ~30 km was adopted for the localization
of the filter update. This was chosen by trial-and-error, after a
series of sensitivity experiments testing the impact of various
values on the performance of the filtering schemes. Consistent
with Hamill et al. (2001), we found that a small cut-off radius
was more suitable when the filter is implemented with small
ensembles. SEIK performance was slightly improved with a
slightly larger (~60 Km) cut-off radius. The ensemble size of
SEIK is N = 26, while the size of the HYBRID flow-
dependent ensemble is ND = 10. The rank of the static back-
ground covariance in HYBRID and SFEK is r1 = 16 and
r0 = 25, respectively (see Table 1). The SeaWiFS 8-day aver-
age Chl-a is assimilated at the middle of the 8-day assimilation
window (end of day 4). The filter performance in improving
the model Chl-a estimate is evaluated comparing the model 8-
day average Chl-a of analysis and forecast states against the
respective assimilated SeaWiFS 8-day average Chl-a
(Figs. 2–5). This model 8-day average is computed as the
average of the analyzed Chl-a at day 4 and the forecasted
Chl-a on the remaining 7 days, considered as the best estimate
of the 8-day average Chl-a data over the assimilation window.

Various sensitivity experiments were performed to set the
SEIK/HYBRID ensemble ranks (rk, r0), forgetting factors (ρ),
and the covariances weighting factor (α). The best parameters
were chosen, based on the filters performance in estimating
Chl-a, as well as the system robustness and behavior with non-
assimilated variables (dissolved inorganic nutrients). The

Table 1 Attributes of different assimilation experiments

Scheme Flow-dependent
ensemble size
(N/ND)

Rank of static
covariance
(r1/r0)

Forgetting
factor (ρ)

Hybrid
weighting
factor (a)

SEIK 26 – 0.4 –

SFEK – 25 0.85 –

HYBRID_
REF

10 16 0.85 0.95

HYBRID_
0.7

10 16 0.85 0.7

HYBRID_
0.5

10 16 0.85 0.5

HYBRID_
5

5 21 0.85 0.95

HYBRID_
15

15 11 0.85 0.95

HYBRID_
20

20 6 0.85 0.95
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attributes of the selected data assimilation experiments are
summarized in Table 1. The performance of HYBRID was
compared with that of SEIK and SFEK. Results of sensitivity
experiments to test the HYBRID performance with different
values of the weighting factor (α) and the size of the dynamic
ensemble (see Table 1) are also presented and discussed.

4.1 Impact of data assimilation on Chl-a

The performance of the HYBRID scheme is first evaluated
against the assimilated SeaWiFS Chl-a, and in comparison

with SEIK, SFEK and a model free-run without assimilation.
Two examples illustrating the impact of data assimilation with
the HYBRID scheme on the model Chl-a are shown in Fig. 2
for spring and summer periods. During April, the model free-
run underestimates the phytoplankton spring bloom in the
Gulf of Lions (see Fig. 1). This bloom is triggered by an
increased vertical mixing in this dense water formation site,
which results in the entrainment of deep water nutrients in the
euphotic zone (e.g., Marty et al. 2002). The model free-run
partly reproduces such a bloom in early March (not shown),
but underestimates the late April bloom that is captured by

Fig. 2 Model simulated Chl-a without assimilation (FREE) and with the different filter schemes (HYBRID, SEIK, SFEK) against SeaWiFS Chl-a for
21-28/04/2000 (left) and 19-27/08/2000 (right)
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SeaWiFS. This underestimation is significantly reduced after
assimilation, particularly using HYBRID and SEIK, and
somewhat less with SFEK. This is better depicted in Fig. 3,
plotting the relative differences between the simulated and
SeaWiFS Chl-a. Another area of model deficiency is the over-
estimation of Chl-a in the Eastern Levantine, Ionian, and
Balearic Seas (see Fig. 1), which is mostly related to the hy-
drodynamic model overestimation of winter-spring vertical
mixing. Again, this is significantly improved in HYBRID,
SEIK, and to a lesser degree in SFEK. During August, the
free-run Chl-a is underestimated, mainly in the Adriatic and
N. Aegean, the Gulf of Lions, and some areas in the Ionian
and Eastern Levantine. This bias is practically corrected
(Figs. 2 and 3) over most of the domain by the HYBRID
scheme. Few exceptions are some coastal areas in the
Northern Adriatic, the Gulf of Gabes, where the retrieved
Chl-a by the satellite bio-optical algorithm may be

overestimated due to direct bottom reflection in shallow wa-
ters (Barale et al. 2008) and the Egyptian coast that is influ-
enced by nutrient inputs from the River Nile (Fig. 1). SEIK
achieves a slightly better performance in the Adriatic, as com-
pared to HYBRID. It also behaves better than SFEK in the
Gulf of Lions and the N. Aegean Sea, but is slightly less
efficient in some other areas in the South Ionian and the
Eastern Levantine.

Figure 4 plots the annual mean fractional change of
HYBRID, SEIK, and SFEK Chl-a relative error with respect
to the free-run error, illustrating the overall performance of the
different schemes throughout the Mediterranean. HYBRID
reduces the estimation error by more than 40% in most areas
compared to the free-run. Slightly less improvement is
achieved in more productive areas, receiving important lateral
nutrient inputs, such as the Northern Adriatic (River Po), the
Gulf of Lions (River Rhone), the Northern Aegean (river and

Fig. 3 Model simulated Chl-a relative error (model-SeaWiFS)/SeaWiFS, without assimilation (FREE) and with the different filter schemes (HYBRID,
SEIK, SFEK), during 21-28/04/2000 (left) and 19-27/08/2000 (right)
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Black Sea Water inputs), and the Nile area, or exhibiting
strong space-time variability, such as the Alboran Sea. The
latter is characterized by important dynamical variations of
the circulation driven by the Atlantic water inflow and local
atmospheric forcing (e.g., Macias et al. 2014). SFEK reduc-
tion of the estimation error exhibits a similar pattern but to a
much less degree, as compared to HYBRID. This could be
attributed to the spatial variability of the assigned observation
error, which was estimated as a function of satellite Chl-a,
resulting in a relatively weaker correction in more productive
areas where observations are considered more uncertain, thus,
receiving less weight in the filter update. SEIK exhibits some-
how a different behavior, being more efficient in more pro-
ductive areas, such as the Adriatic, the Gulf of Lions, and the
North Aegean and less efficient in others, mostly open-sea
areas in the Eastern Levantine and the southwestern
Mediterranean. This is due to the nature of its fully flow-
dependent ensemble, exhibiting more spread in the more pro-
ductive areas. Overall, SEIK provides a mixed performance,

showing a better behavior than SFEK in some areas and worse
in others, while both being significantly less performant than
HYBRID in most areas.

The seasonal variability of the relative Chl-a error over
different areas of the Mediterranean is shown in Fig. 5. We
focus on the Adriatic Sea, because it represents a river-
influenced productive area, the Gulf of Lions, because it is a
dynamically varying area that exhibits a strong spring bloom,
and the Levantine area that is a more oligotrophic area.
HYBRID outperforms both SEIK and SFEK throughout the
year in all areas, except in the Adriatic, where SEIK performs
better over most of the year. SEIK is also slightly better than
SFEK in the Gulf of Lions, but worse in the Levantine area
during the summer-autumn period. Overall, SEIK appears to
perform better than SFEK during winter-spring period that is
characterized by stronger variability, while SFEK is slightly
better during the calmer summer-autumn period. SEIK pro-
vides a slightly lower mean 8-day estimation error (0.34) in
the Mediterranean, as compared to SFEK (0.343). One can
notice that despite this, SEIK leads to a slightly worse
Mediterranean average analysis and forecast errors (Fig. 5),
as compared to SFEK. This is related to the stronger impact of
SEIK on non-assimilated variables, such as dissolved inorgan-
ic nutrients that results in a more efficient decrease of the Chl-
a error over the 8-day period (see discussion in section 5.1).
Furthermore, HYBRID appears very efficient in the forecast
update, as depicted by its very low analysis error, as compared
to both SEIK and SFEK. This is not reflected in its forecast
error, being much closer to the other schemes, but gives
HYBRID an important Bhead start^ over the other schemes,
which results in a significantly lower error on the 8-day
period.

Comparing other skill indexes (Table 2), SEIK achieves
better scores in terms of overall percentage bias, RMS error
and standard deviation, as compared to both HYBRID and
SFEK, which is mainly due to its stronger impact in the most
productive Adriatic area. On the other hand, HYBRID esti-
mates correlate better with the data.

4.2 Impact on non-assimilated variables

The impact of data assimilation on model predicted dissolved
inorganic nutrients (phosphate, nitrate) in terms of bias, cor-
relation, standard deviation, and RMS error, against observa-
tions obtained from the SeaDataNet seasonal climatology
(1990–1999) is outlined in Table 2. The free-run shows an
overall underestimation (positive percentage model bias,
PBIAS) for both nitrates and phosphates, and also a weaker
phosphate variability (normalized STD < 1), as compared to
the observed. SEIK achieves the stronger decrease of PBIAS
and increase of STD for phosphate concentration. In contrast,
SEIK has the highest RMS error and the lowest Pearson cor-
relation (PCC). This is mostly related to SEIK’s stronger

Fig. 4 Fractional change of the annual mean Chl-a relative error (|data-
model|/data) against the SeaWiFS Chl-a, over the free run simulation
(ASSIM/FREE-1) for the simulations adopting the HYBRID (top),
SEIK (middle), and SFEK (bottom) assimilation filter schemes
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update in the productive Adriatic region (Figs. 4 and 5), where
nutrient concentrations are highest. This stronger update re-
sults in a significant increase of nutrients that has a positive
effect on PBIAS and STD, but a negative onmodel correlation
and RMS error, suggesting a potential deterioration in repro-
ducing the observed variability. When the Adriatic Sea is re-
moved, the SEIK phosphate PBIAS is still better than
HYBRID and SFEK, but differences are much lower. SEIK
has also the lowest RMS error, indicating the good perfor-
mance with phosphate. On the other hand, HYBRID leads to
a higher correlation coefficient (with or without the Adriatic)
and a lower RMS error, which are better indicators of the
model performance, despite the weaker improvement in
PBIAS and STD. In the case of nitrates, HYBRID improves
both correlation and PBIAS, but slightly overestimates STD
and has a higher RMS error. The simulation of nitrate is sig-
nificantly deteriorated using SEIK, mainly due to its strong
update in the Adriatic. In most of the Mediterranean,

phosphate is the main limiting factor for phytoplankton
growth (Krom et al. 2004). This phosphate limitation is par-
ticularly noticeable in the Adriatic, which receives river nutri-
ent loads characterized by high N:P ratios (Ludwig et al.
2009). Moreover, in this area, the model exhibits a systematic
negative bias (Fig. 3). This is presumably due to an underes-
timation of phosphate river loads or also due to an overesti-
mation of the retrieved Chl-a by the satellite bio-optical algo-
rithm, as this may be influenced by land inputs of colored
matter and suspended solids (Gregg and Casey 2004). Given
this negative bias, the filter update results in an increase of
nutrient concentrations, along with Chl-a. The addition of ex-
cess nitrogen that cannot be consumed by phytoplankton, be-
ing limited by phosphate, may result in nitrate built up by the
model, as observed in the results of SEIK (see discussion
below). The impact of SFEK on nitrate and phosphate is
somewhat similar to HYBRID, as indicated by its skill index-
es lying between HYBRID and the free-run.
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Fig. 5 Seasonal variability of the
mean 8-day Chl-a relative error
(|data-model|/data) against the
SeaWiFS Chl-a, averaged in the
Adriatic Sea (top left), Gulf of
Lions (middle left), Levantine
basin (bottom left), Mediterranean
(bottom right), and mean analysis
(top right) and forecast (middle
right) Chl-a relative error,
averaged over the Mediterranean,
for the simulations adopting the
HYBRID (red line), SEIK (black
line), SFEK (green line)
assimilation filter schemes and
the one without assimilation
(FREE, blue line)
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5 Analysis of filters forecast update/spread
and HYBRID sensitivity experiments

5.1 Forecast update

The impact of the different filtering schemes on Chl-a and
dissolved inorganic nutrients is further investigated by exam-
ining the fractional change as imposed by the filters after the
analysis step [FC = (analysis − forecast)/forecast] for Chl-a,
phosphates and nitrates concentrations (Figs. 6 and 7).
HYBRID leads to a much larger mean annual absolute frac-
tional change (Fig. 6), particularly for Chl-a, indicating a more
pronounced update as compared to SEIK and SFEK. It is
noticeable that in the Adriatic, SEIK leads to a stronger change
for nitrate and phosphate, as compared to HYBRID, despite
the weaker correction it imposes on Chl-a. The more pro-
nounced impact of SEIK on nitrates results in the overestima-
tion mentioned above (Table 2). We should note, however,
that nitrates updates are more significant, as compared to
phosphates in all schemes. Areas showing a stronger update
are those characterized by a larger model bias, such as the
Adriatic, or those characterized by strong seasonal variability,
such as the Gulf of Lions. SFEK imposes a relatively weaker

correction than both HYBRID and SEIK in the more produc-
tive areas, such as the Adriatic and G. Lions, but a slightly
stronger correction than SEIK in more oligotrophic open sea
areas, such as the Levantine basin. This differentiation in the
filter’s performance is related to the nature of their covari-
ances. SEIK is more efficient in more productive and variable
areas, such as the Adriatic and Gulf of Lions, due to its flow-
dependent covariance, while SFEK shows a good perfor-
mance in less variable areas, such as the Levantine, as its
EOF-based covariance retains the spread of the dominant cli-
matological modes of the system. HYBRID appears to per-
form well in all areas thanks to its Bblended^ covariance,
estimated as a weighted average of flow-dependent and
Bsmoothed^ climatological covariances.

Figure 7 shows the different impacts of the filters on
Chl-a, nitrates, and phosphates in the three focus areas:
Adriatic, Gulf of Lions, and Levantine. In the Adriatic,
SFEK mostly improves Chl-a, while SEIK imposes a more
dynamically evolving update, based on its flow-dependent
correction subspace, to all variables and in many cases
most pronounced on nitrates. HYBRID improvement lies
somewhere in between, leading to a stronger update of
Chl-a, as SFEK, but with a more dynamically evolving

Fig. 6 Annual mean absolute fractional change (|Analysis-Forecast|/Forecast) of the Chl-a (left column), phosphates (middle column), and nitrates (right
column) assimilation correction for HYDRID (top), SEIK (middle), and SFEK (bottom)
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update and a stronger impact on other variables as in SEIK.
The SEIK’s stronger impact on phosphates (Figs. 6 and 7)
results in a lower Chl-a error in the Adriatic, as compared to
HYBRID (Fig. 5), despite its weaker impact on Chl-a. As
nutrients are the driving fuel of phytoplankton, it appears to
be more efficient for the filter to change those in order to
achieve a better sustained change in phytoplankton. This in-
formation emerges from the statistics of flow-dependent co-
variance, as estimated from the evolving ensembles. A short-
coming of this dynamical behavior is that an inappropriate
nutrients correction may lead to instabilities, as in the case
of nitrates for SEIK. However, this is not entirely attributed
to the filter. As explained above, phytoplankton growth is
constrained by the most limiting nutrient and in most cases
phosphates. The biogeochemical model provides a feedback
to minimize the effect of an inappropriate correction of this
limiting nutrient through its own dynamics, which is not the
case for nitrates that are found in excess and are therefore
susceptible to unconstrained instabilities. In that respect,
HYBRID appears more robust than SEIK, as its dynamically

based covariance is smoothed by a static one that was built by
time-Bsmoothed^ EOFs. In the Gulf of Lions, HYBRID im-
poses a stronger and more dynamically evolving update on all
variables, as compared to SEIK and SFEK, showing peaks
during the spring bloom events, which explains its more effi-
cient error decrease (Figs. 3 and 5). In the Levantine, the filters
impose a negative correction during the winter-spring period,
to correct the model positive bias in this area (Figs. 2 and 3).
This is most pronounced in HYBRID and comparable in
SEIK and SFEK, as is the decrease of the respective errors
(Fig. 5). During summer-autumn period, SFEK moderately
changes Chl-a, while SEIK’s update is quite weak for both
Chl-a and nutrients, resulting in a weak error decrease
(Figs. 3 and 5).

5.2 Ensemble spread

The poor performance of SEIK in the Eastern Levantine
during the summer-autumn period (Figs. 5 and 7) can
be related to the spread of the forecast ensemble

Table 2 Percentage bias (PBIAS), pearson correlation coefficient
(PCC), normalized standard deviation [STDN = STD(model)/
STD(data)], and root mean square error (RMSE) of model simulated
Chl (mg/m3), NO3 (mmol/m3), and PO4(mmol/m3) against SeaWiFS

Chl-a and available in situ data over 1990–2009 period, collated from
SeaDatanet database (www.seadatanet.org). The correlation coefficient is
calculated on the logarithm of model and data values.

PBIAS PCC STDN RMSE

ChlSat

(mg/m3)

Free 21.0 0.68 0.39 0.34

Hybrid 19.1 0.84 0.38 0.32

SEIK 15.7 0.82 0.53 0.30

SFEK 19.4 0.78 0.38 0.33

Free 35.0 (36.7) 0.34 (0.39) 0.30 (0.22) 0.0910 (0.092)

PO4 

(mmol/m3)

Hybrid 33.5 (36.01) 0.35 (0.40) 0.30 (0.21) 0.0906 (0.0919)

SEIK 28.1 (34.54) 0.32 (0.39) 0.44 (0.22) 0.0939 (0.0916)

SFEK 34.9 (37.51) 0.34 (0.38) 0.30 (0.21) 0.0910 (0.0924)

NO3 

(mmol/m3)

Free 18.4 (54.6) 0.277 (0.23) 1.09 (0.28) 3.29 (2.50)

Hybrid -1.8 (50.9) 0.279 (0.25) 1.30 (0.29) 3.61 (2.49)

SEIK -770.7 (-20.7) 0.178 (0.07) 27.15 (2.85) 64.91 (6.78)

SFEK 3.3 (52.7) 0.2749 (0.23) 1.28 (0.28) 3.58 (2.49)

Values in parentheses are calculated excluding the Adriatic Sea (see Fig. 1). See section 2.3 for metrics definitions.

Red worse, green better
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(δXa(tk)) that is calculated as the standard deviation of
its (N = 26) ensemble members

δXa tkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Xa

i tkð Þ−X a tkð Þ
h i2s

ð14Þ

In the case of SFEK, the spread of the static ensemble is the
standard deviation of the initial ensemble members (δXa(t0)),
while in the case of HYBRID, the spread is calculated as a
weighted combination (α = 0.95) of the variance of the dynamic
(ND = 10) and static (r1 = 16) ensemble.

As shown in Fig. 8, the spread of the SEIK ensemble for Chl-
a in the Eastern Levantine significantly decreases after June, as is
the correction imposed by the filter (Fig. 7). The opposite occurs
in the Adriatic, where the SEIK ensemble exhibits a larger Chl-a
spread, as compared to SFEK/HYBRID (Fig. 8), consistent with
the SEIK smaller Chl-a error (Fig. 5). The HYBRID ensemble
spread is quite close to the SFEK spread, due to the relatively

small (1-α = 0.05) contribution of the flow-dependent ensemble
(this is the reason why the HYBRID ensemble spread is plotted
on a different axis in Fig. 8, in order to better show its variability
in time). In the Gulf of Lions, SEIK exhibits a slightly lower
spread than SFEK/HYBRID, which is, however, maintained
throughout the year, in contrast with the Eastern Levantine.
The close relation between the SEIK ensemble spread and its
ability to reduce the Chl-a estimation error can also be clearly
identified, comparing the annual mean spread (Fig. 9) with the
Chl-a relative error decrease (Fig. 4). One may notice that the
areas where SEIK is more efficient are those characterized by a
larger ensemble spread, such as the Adriatic, the North Aegean,
and the Gulf of Lions. In contrast, areas where SEIK exhibits a
poor performance, such as the coastal areas in the Eastern
Levantine or the Alboran Sea, are those characterized by a small-
er ensemble spread. In the Eastern Levantine, the small spread of
the ensemble, particularly during summer-autumn periods
(Fig. 8), can be attributed to the very low productivity (Fig. 2),
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Fig. 7 Seasonal variability of the Chl-a (blue line), phosphates (red line),
and nitrates (black line) assimilation correction fractional change
(Analysis/Forecast-1) for HYDRID (left column), SEIK (middle

column), and SFEK (right column), averaged over Adriatic (top), G.
Lions (middle), and Levantine (bottom) areas
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as surface nutrients are depleted, and Chl-a approaches very
small values. On the other hand, the Alboran Sea is a produc-
tive and dynamic area, where one would expect a better per-
formance for SEIK. The SEIK ensemble has enough spread in
this area during the early assimilation window (not shown).
However, the ensemble appears to have lost most of the initial
spread after only few forecasting cycles with the model
(Fig. 9). This may be attributed to the strong effect of circula-
tion in this area, controlled by Atlantic water inflow and local
atmospheric forcing that apparently drives the ensemble mem-
bers closer to the mean state. One way to alleviate this could
be to consider including stochastic perturbations in the model
internal dynamics and/or the atmospheric forcing. A smaller

forgetting factor (i.e., larger inflation rate) should also result in
a larger spread, but this would affect the entire domain. Given
that in some areas, such as the Adriatic, SEIK already exhibits
a sufficiently large spread and corrections, a spatially varying
forgetting factor that would inflate the spread in areas where it
is low, might be more appropriate (Anderson 2009).

A relatively small contribution (1-α = 0.05) from the flow-
dependent covariance is adopted in HYBRID (Eq. 11), resulting
in an ensemble spread being effectively close to that of the SFEK
static ensemble (Figs. 8 and 9). Including this small (5%) contri-
bution from the flow-dependent covariance in HYBRID seems to
significantly enhance the filter performance as compared to both
SFEK and SEIK. As discussed in the next section, increasing the
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weight of the flow-dependent covariance deteriorated the
HYBRID behavior, which started resembling more the SEIK
behavior, leading to an increased error for nitrates, particularly
in the Adriatic (Table 2, see discussion in section 4.2). The rela-
tively small (1-α = 0.05) flow-dependent contribution in
HYBRID, that is found optimum in our case, is consistent with
Counillon et al. (2009), who also found an optimum α = 0.95 for
their HYBRID scheme as compared to a 10-member ensemble
Kalman filter and an Optimal Interpolation scheme. As men-
tioned above (section 4.2, Figs. 6–7), the HYBRID appears to
impose a significantly stronger correction (Analysis-Forecast,
Eq. 6) to the forecast, as compared to SFEK, despite their similar
spread. Given that the HYBRID forecast error is always lower
than SFEK (not shown), this stronger correctionmay be attributed
to the more efficient representation of the error growth directions
in the HYBRID covariance, which includes a flow-dependent
component, allowing it to track changes in the system dynamics
(Pham 2001; Hoteit et al. 2002; Hoteit et al. 2004). Another
important attribute of HYBRID is its ability to maintain enough
variance for its update step through the contribution of the static
covariance. In this way, HYBRID remains efficient in areas, such
as the Levantine, where SEIK ensemble members are driven to a
similar state during summer, resulting in a poorer performance.

5.3 HYBRID sensitivity experiments

Another set of sensitivity experiments (see Table 1) was
performed to investigate the sensitivity of the HYBRID
scheme to the weighting factor and the size of the dynam-
ically varying ensemble. In the reference HYBRID simu-
lation (Table 1), the weighting parameter is α = 0.95. When
this is decreased to 0.7 and 0.5, i.e., assigning more weight
to the flow-dependent ensemble covariance (see Eq. 11) in
the analysis step, the Chl-a relative error is also decreased
(Table 3), suggesting a more effective correction.
However, in this case, HYBRID starts resembling more
the SEIK behavior, increasing the nitrates correction in
the Adriatic that results in a significant increase in the
nitrate model bias.

The reference HYBRID simulation has used a flow-
dependent ensemble of 10 members (Table 1). HYBRID was
also tested with a flow-dependent ensemble of 5 (HYBRID_5),
15 (HYBRID_15), and 20 (HYBRID_20) members. The Chl-a
mean relative error is slightly larger in HYBRID_5 simulation,
but seems to quickly level off with an increasing flow-
dependent ensemble size (Table 3). However, one may clearly
notice that the larger flow-dependent ensemble results in an
improvement of the Chl-a forecast, suggesting a more efficient
projection of the Chl-a information onto the non-assimilated
variables. A larger flow-dependent ensemble is therefore bene-
ficial and is recommended depending on the availability of
computational resources. HYBRID was not found sensitive to
the rank of its static background covariance, providing very
similar results to the reference HYBRID simulation (not
shown), which is consistent with previous sensitivity experi-
ments performed with SFEK (Hoteit et al. 2004).

6 Conclusions

A hybrid ensemble scheme, combining a flow-dependent en-
semble covariance with a static background covariance, was
developed and successfully implemented for assimilating sat-
ellite (SeaWiFS) Chl-a data into a marine ecosystem model of
the Mediterranean. The performance of the new hybrid
scheme (HYBRID) was assessed against a model free-
run (without assimilation), and SEIK and SFEK schemes,
with regard to the assimilated data (Chl-a) and non-
assimilated model variables, such as dissolved inorganic
nutrients (nitrates, phosphates).

The Chl-a estimation error against SeaWiFS significantly de-
creased after assimilation, particularlywith theHYBRID scheme,
correcting the most important model deficiencies. HYBRID re-
duced the error by more than 40% in most areas, as compared to
the free-run, showing a slightly less pronounced improvement in
the more productive areas, which could be explained by the
relatively high observational error that has been adopted in these
areas. SFEK estimation error exhibits similar patterns to that of

Table 3 Annual mean of 8-day
average, analysis, and forecast
relative Chl-a error (|data-model|/
data), nitrates correction
fractional change (FC,
|analysis − forecast|/forecast),
nitrates concentration in the
Adriatic and nitrate overall model
PBIAS, for different HYBRID
runs (see also Table 1)

Blend
parameter
(a)

Size of
evolving
ensemble (rk)

Chl-a R.
error 8-
day

Chl-a R.
error
forecast

Chl-a R.
error
analysis

NO3
FC

NO3
(mmol/m3)
Adriatic

NO3
PBIAS

0.95 5 0.273 0.3559 0.2077 0.15 0.67 0.74

0.95 10 0.266 0.352 0.21 0.11 0.69 −1.77
0.95 15 0.265 0.3513 0.2124 0.09 0.67 −1.44
0.95 20 0.264 0.3518 0.215 0.08 0.63 0.33

0.7 10 0.26 0.3493 0.2041 0.21 4.47 −90.64
0.5 10 0.262 0.3479 0.2093 0.24 8.75 −198.23
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HYBRID, but is generally higher. SEIK leads to mixed perfor-
mances, being more efficient than SFEK (and in some cases
HYBRID) in more productive areas, and less efficient in others,
mostly open-sea oligotrophic areas. This is related to the flow-
dependent SEIK ensemble, efficiently identifying the directions
of error growth in highly productive areas. In oligotrophic nutri-
ent depleted areas during summer-autumn period, characterized
by very low Chl-a, or in areas that are strongly controlled by
circulation, the ensemble members are driven to a similar regime
with small spread, leading to the SEIK poor performance.

The impact of data assimilation with the different filtering
schemes on dissolved inorganic nutrients (phosphate, nitrate)
was evaluated in terms of various skill indexes (bias, correla-
tion, standard deviation, and RMS error), against a seasonal
climatology (1990–1999) of in situ observations in the
Mediterranean (SeaDataNet). Data assimilation had a positive
overall impact on nutrients (as compared to the free-run) with
regard to most skill indexes. An exception was the deteriora-
tion of nitrates simulation by SEIK in the Adriatic, which was
related to its strong update in this productive area, and also to
the phytoplankton limitation on phosphate that lead to a built
up of excess of nitrates. SEIK, on the other hand exhibited a
good performance, particularly in terms of mean model bias,
with phosphate, which is the main limiting nutrient in the
Mediterranean, thus, controlling primary production.
HYBRID achieved the best and most robust performance im-
proving phosphate, particularly in terms of correlation and
RMS error, as well as nitrates, in terms of correlation and bias.
The impact of SFEK on nitrate and phosphate was somewhat
similar to HYBRID.

The filters different behavior was illustrated by the space-
time variability of the forecast update on Chl-a and dissolved
inorganic nutrients. SEIK imposed a more dynamically evolv-
ing correction that was in some cases stronger on nutrients, as
compared to Chl-a. This emerges from the SEIK flow-
dependent covariance, as nutrients effectively drive phyto-
plankton variability, and their change may result in a better
sustained change in phytoplankton. A shortcoming of this
behavior is that dynamical inconsistencies in the correction
of nutrients may lead to instabilities, as in the case of nitrates
in the Adriatic. SFEK appeared to have a stronger effect on
Chl-a, while HYBRID in a way combines SFEK and SEIK
attributes, leading to a stronger update for Chl-a, but with a
more dynamically evolving update, based on its flow-
dependent correction subspace and a stronger effect on other
variables.

Adopting an increased contribution (weighting factor) from
the flow-dependent covariance resulted in a more effective
correction of Chl-a, but also in a deterioration of nitrates,
similar to SEIK. An improvement in the HYBRID Chl-a fore-
cast was also obtained with increased flow-dependent ensem-
ble size, but this improvement in the filter performance quick-
ly leveled off.

Overall, SEIK was found to be more efficient in more pro-
ductive and variable areas, due to its flow-dependent covari-
ance, while SFEK showed a better performance than SEIK in
less variable areas, as its EOF-based covariance retains the
main modes of the system long-term variability. HYBRID
was more efficient than both SFEK and SEIK, as it appears
to perform well in both types of areas, due to its Bblended^
covariance. Its flow-dependent component may track changes
in the system dynamics, allowing for a more efficient repre-
sentation of the error growth directions, which results in a
better filter correction, even though the spread of its ensemble
is largely determined by the static ensemble. Another impor-
tant attribute of HYBRID is its ability to maintain a sufficient
spread in its dynamic ensemble, thanks to its static covariance
that mitigates the inbreeding of the ensemble.

Among the main challenges of assimilating satellite Chl-a in
marine ecosystem models are the dynamically consistent projec-
tion of the Chl-a information onto non-assimilated variables,
respecting the ecosystem dynamics, and the increased computa-
tional cost, given the large number of state variables. The devel-
oped hybrid assimilation scheme was found particularly robust
and efficient in reducing the model Chl-a error but also showing
a positive effect and dynamically consistent updates on non-
assimilated variables. Moreover, its good performance with a
relatively small flow-dependent ensemble size is translated to a
significantly reduced computational load, which is particularly
important for its operational implementation within the 3-D bio-
geochemical forecasting model of the Mediterranean. Future re-
search besides an end-to-end ecosystem simulation analysis will
also consider stochastic perturbation on the physical forcing and
the ecosystem parameters, eventually developing and
implementing filtering schemes for state parameter estimation.
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