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Abstract Following the 14th International Workshop on
Wave Hindcasting and Forecasting and 5th Coastal Haz-
ards Symposium in November 2014 in Key West, Florida,
a topical collection has appeared in recent issues of Ocean
Dynamics. Here, we give a brief overview of the 16 papers
published in this topical collection as well as an overview
of the widening scope of the conference in recent years. A
general trend in the field has been towards closer integration
between the wave and ocean modelling communities. This
is also seen in this topical collection, with several papers
exploring the interaction between surface waves and mixed
layer dynamics and sea ice.
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1 History of the workshop

The history of the International Workshop on Wave Hindcas
ting and Forecasting was presented by Breivik et al. (2015b)
where the topical collection following the 13th Interna-
tional Workshop on Wave Hindcasting and Forecasting and
4th Coastal Hazards Symposium was presented. At the fol-
lowing workshop, held in Key West, Florida, in November
2015, it was decided that the next workshop would for the
first time be held outside North America. It will be hosted by
the National Oceanography Centre as the first International
Workshop on Waves, Storm Surges and Coastal Hazards in
Liverpool, UK, 10-15 September 2017. This will further
broaden the scope of the workshops to foster closer integra-
tion between the wave and ocean modelling communities,
such as the emerging priority of multi-hazard early warning
systems (MHEWS) for coastal inundation resulting from
the combined effects of waves, storm surges, tides, etc., e.g.
the WMO Coastal Inundation Forecasting Demonstration
Project (CIFDP). It will also shorten the title of the workshop
series, which grew in 2007 when the International Work-
shop on Wave Hindcasting and Forecasting was joined by
the Coastal Hazards Symposium. The title grew further in
2015 when it was joined by the 2nd JCOMM Scientific
and Technical Symposium on Storm Surges. Despite the
new integrated workshop title, the Wave Workshop will con-
tinue to be explicitly identified as a component of the meet-
ing (with the 15th Wave Workshop in 2017), to maintain the
successful legacy of the previous workshops, including the
workshop web site www.waveworkshop.org.
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It is now more than 30 years since the first International
Workshop on Wave Hindcasting and Forecasting was held
in Halifax, Nova Scotia, Canada in September 1986. As des-
cribed by Breivik et al. (2015b), the research tools and the
topics have changed over the years, but we can still recog-
nise the primary objectives of the first workshop, namely
to

® Provide a forum for the exchange of ideas and informa-
tion related to wind and wave hindcasting and forecast-
ing, including modelling, measurement and past and
future states of the climate
Coordinate ongoing research and development initiatives
Discuss priorities for future research and development

2 The 14th workshop

The 14th International Workshop on Wave Hindcasting
and Forecasting and the 5th Coastal Hazards Symposium
(henceforth referred to as the Workshop) was held in Key
West, Florida, USA, from 8 to 13 November, 2015. The
workshop counted 147 participants who gave over 118 pre-
sentations and displayed 11 posters. For the first time, the
conference was split into parallel sessions. This strategy
received a mixed response, as many participants felt that the
strength of the workshop series has been that all the atten-
dees are gathered in one plenary session where discussions
at times can run high, offering an opportunity to also fol-
low what is going on in neighbouring scientific disciplines.
It was announced that the next workshop will endeavour to
return to a plenary format. The session topics were

Wave Measurement—In Situ

Wave Measurement—Remote Sensing

Wave Climate

Wave Climate and Design

Wave Forecasting Developments

Wave Forecasting

Wave Hindcasts and Climate Change

Wave Modelling

Tropical Systems

Storm Surge Forecasting and Climate

Storm Surge Modelling

Storm Surge Forecasting

Mississippi Delta and the Jersey Shore

The WMO Coastal Inundation Forecasting Demonstra-
tion Project

The North Atlantic Coast Comprehensive Study
Coastal Processes

Operational Forecast Challenges and Issues
Coastal Impacts

Living Shorelines
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In addition to the general sessions, the workshop had
theme sessions, as is always the case for this workshop
series. The special topics were (i) “Developing improved
methods for wave prediction in complex conditions and
environments” and (ii) “Operational advances in wave pre-
diction capabilities”. The Coastal Hazards Symposium had
“Developing Tools for Quantifying Future Coastal and Off-
shore Risks and Resiliency” as its special topic.

Sixteen papers relating to the Workshop have been pub-
lished in this topical collection. A brief summary of these
papers follows.

Several authors considered wave-ice interactions. Collins
et al. (2017) investigated four different dispersion models
of ocean surface gravity waves in ice. For each disper-
sion model, model parameters were varied to study the
dependence of dispersion on ice thickness, elasticity, and
viscosity. In all cases, the deviation of wavenumber from
the open water relation is more pronounced for higher
frequencies. The effect of mass-loading, a component of
all dispersion models, tends to shorten the wavelength
whereas elasticity in the elastic plate model and viscosity
in the viscous-layer model tend to increase the wavelength.
The net effect, lengthening or shortening, is a function
of the particular combination of ice parameters and wave
frequency. Empirical results were compiled and interpreted
in the context of these theoretical models of dispersion.

Gebhardt et al. (2016) investigated the penetration of
ocean waves into the marginal ice zone (MIZ) with synthetic
aperture radar images from the TerraSAR-X satellite and
numerical simulations of the European Centre for Medium-
Range Weather Forecasts (ECMWF). The study focussed
on a swell event from a passing storm in the North Atlantic
which penetrated deeply into the MIZ off the coast of East-
ern Greenland in February 2013. The authors found an
increase in wavelength which is consistent with the spatial
dispersion of deep water waves, even within the ice-covered
region.

Several papers made use of non-traditional observational
methods. Gemmrich et al. (2016) assessed the spatial vari-
ability of open ocean wave fields on scales of O(10 km)
from four different data sources: (i) TerraSAR-X SAR
imagery, (ii) four drifting SWIFT buoys, (iii)) a moored
waverider buoy and (iv) WAVEWATCH-III (WW3, Tolman
1991; Tolman et al. 2002, 2009) model runs. Two examples
from the open northeast Pacific, comprising a pure wind sea
and a mixed sea with swell, were given. Wave parameters
attained from observations have a natural variability, which
decreases with increasing record length or acquisition area.
The retrieval of dominant wave scales from point observa-
tions and model output are inherently different to dominant
scales retrieved from spatial observations. This can lead to
significant differences in the dominant steepness associated
with a given wave field. These uncertainties have to be taken
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into account when models are assessed against observations
or when new wave retrieval algorithms from spatial or tem-
poral data are tested. However, there is evidence of abrupt
changes in wave field characteristics that are larger than the
expected methodological uncertainties.

Lund et al. (2016) investigated the performance of marine
X-band radars (MRs) in the Philippine Sea. Spreading
parameters derived from two-dimensional radar spectra
were compared to buoy spreading functions and the radar
spectra were also compared directly to WW3 modelled
spectra. A new MR wave retrieval technique was introduced
that addresses various shortcomings of existing methods.
Both buoy and model data sets are in good agreement with
MR data, tracking the evolution of up to four simultaneous
wave systems over extended time periods.

Hole et al. (2016) presented a new autonomous vessel,
the Offshore Sensing Sailbuoy, which has been employed
for wave measurements near the Ekofisk oil platform com-
plex in the North Sea (56.5° N, 3.2° E) during a field
campaign in November 2015. The Sailbuoy is propelled by
wind alone and has two-way communication via the Iridium
network. It can operate for periods of more than 6 months
and has previously been deployed in the Arctic, the Norwe-
gian Sea and the Gulf of Mexico. The present study was
however the first test for wave measurements. During the
campaign the Sailbuoy held position about 20 km northeast
of Ekofisk (on the lee side) during rough conditions. The
Sailbuoy measurements were compared with non-direc-
tional Waverider observations at the Ekofisk complex. The
agreement between the two data sets was good, with a mean
absolute error of 7% and a linear correlation coefficient of
0.97. The wave frequency spectra measured by the two in-
struments compared very well, except for low Hg (ca 1 m),
where the motion of the vessel seemed to influence the mea-
surements. Nevertheless, the Sailbuoy performed well dur-
ing this campaign, suggesting that it is a suitable platform
for wave measurements in a broad range of sea states.

Several authors focussed on wave model development,
and model evaluation. van Vledder et al. (2016) presented a
wave hindcast of a severe storm in the Southern North Sea
with the objective of assessing recently developed deep and
shallow water source terms for use in third-generation wave
prediction models. These deep water source terms for white-
capping, wind input and nonlinear interactions were devel-
oped, implemented and tested primarily in WW3, whereas
shallow water source terms for depth-limited wave break-
ing and triad interactions were developed, implemented and
tested primarily in the SWAN wave model Ris et al. (1999)
and Booij et al. (1999). Their performance and the impact
of different physical settings on the prediction of wave
heights and wave periods in the relatively shallow North
Sea was analysed for the December 2013 storm (which was
also investigated by Staneva et al. 2017). Spectral wave

boundary conditions were obtained from an Atlantic Ocean
WAVEWATCH III model implementation and the model
was driven by hourly wind fields from the Climate Fore-
cast System Reanalysis (CFSR) (Saha et al. 2010, 2014). In
the southern part of the North Sea, current and water level
effects were included. The hindcast was performed with five
different settings for whitecapping, viz. three Komen-type
whitecapping formulations, the saturation-based whitecap-
ping by van der Westhuysen et al. (2007) and the recently
developed ST6 whitecapping described by Zieger et al.
(2015). An analysis was made of the source term balance at
three locations, the deep water location North Cormorant,
the intermediate depth location K13 and at location Wielin-
gen, a shallow-water location close to the Dutch coast. The
results suggest that at deep water, the source terms for wind
input, whitecapping and nonlinear four-wave interactions
are of the same magnitude. At the intermediate depth loca-
tion K13, bottom friction plays a significant role, whereas
at the shallow water location Wielingen depth-limited wave
breaking is also of importance.

Barbariol et al. (2017) presented an implementation of
space-time wave extremes in WAVEWATCH III (WW3).
The new output parameters, available in WW3 version 5.16,
rely on the theoretical model of Fedele (2012), extended by
Benetazzo et al. (2015) to estimate the maximum second-
order nonlinear crest height over a given space-time region.
In order to assess the wave height associated with the maxi-
mum crest height and the maximum wave height (generally
different in a broad-banded stormy sea state), the linear
Quasi-Determinism theory of Boccotti (2000) is considered.
The new WW3 implementation is tested by simulating sea
states and space-time extremes over the Mediterranean Sea
(forced by the wind fields produced by the COSMO-ME at-
mospheric model). Model simulations are compared to wave
maxima from sea-state observations in the northern Adri-
atic Sea (Italy), by a stereo-camera system installed onboard
the “Acqua Alta” oceanographic tower. Results show that
modelled space-time extremes are in general agreement
with observations. Differences are mostly ascribed to the
accuracy of the wind forcing and, to a lesser extent, to
the approximations introduced in the space-time extreme
parameterizations. Model estimates are expected to be more
accurate over areas that are larger than the mean wavelength
(for instance, the model grid size).

Li (2016) presented a WAVEWATCH III model domain
for the Arctic that employs the spherical multiple-cell
(SMC) grid (Li and Saulter 2014). This avoids the singu-
larity at the pole by gradually reducing the number of grid
cells, thus keeping the Courant-Friedrichs-Lewy (CFL) cri-
terion at an acceptable level. This has practical implications
as the retreat of the Arctic ice edge implies that global
ocean surface wave models will have to be extended to high
latitudes or maybe even to cover the North Pole in the future.

@ Springer
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The SMC grid was implemented in the WAVEWATCH III
model and compared against altimeter and buoy observa-
tions. An idealised ice-free Arctic case was presented to test
the Arctic domain and was compared with a reference case
with real ice coverage. The comparison indicates that swell
wave energy will increase near the ice-free Arctic coastlines
due to increased fetch.

Ponce de Leon et al. (2016) studied the ability of a third-
generation spectral wave model to reproduce winter sea
states in the North Sea. Severe sea states in the North Sea
present a challenge to wave forecasting systems and a threat
to offshore installations such as oil and gas platforms and
offshore wind farms. Measured and modelled time series
of integral wave parameters and directional wave spectra
were compared for a 12-day period in the winter (Decem-
ber to February) of 2013/2014 when several severe storms
moved across the North Atlantic and the North Sea in suc-
cession. Records were obtained from a Doppler radar and
wave buoys. The hindcast was performed with the WAVE-
WATCH III model with high spectral resolution both in
frequency and direction. A good general agreement was
obtained for integrated parameters, but discrepancies were
found to occur in spectral shapes.

Moving towards papers arising from the Coastal Hazards
symposium, several authors investigated water levels and
currents, in addition to waves and the interactions between
them. Li et al. (2016) used the Fully Adaptive Storm Tide
(FAST) model to study the response of Lake Okeechobee
(Florida) as hurricanes Frances, Jeanne, and Wilma passed
over in September 2004 and October 2005, respectively.
Strong winds caused a large surface seiche on the lake
during all three storms. These storms resulted in erosion
damage to dikes in the lake. Comparisons of the modelled
surface water level with the observations were overall in
good agreement for all three hurricanes. The results suggest
that the strong currents induced by the winds may be the
dominant factor controlling the dike erosion observed at the
lake side as the locations of erosion damage are consistent
with the modelled high-velocity zones during the storms.

Staneva et al. (2017) looked at the effect of wind waves
on water level and currents during two storms in the North
Sea using a high-resolution Nucleus for European Mod-
elling of the Ocean (NEMO, see Madec and the NEMO
team 2008) model forced with fluxes and fields from a
high-resolution wave model, building on previous work on
a global version of NEMO (Breivik et al. 2015a). The
additional terms accounting for wave-current interaction
that are considered in this study are the Stokes-Coriolis
force (Breivik et al. 2014, 2016) the sea-state-dependent
energy and wave-modulated momentum fluxes. The same
regional model setup with forcing from a WAM wave
model has previously been described by Alari et al. (2016)
where the focus was the influence of wave effects on
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surface water temperature. The individual and collective
role of these processes is quantified and the results are com-
pared with a control run without wave effects as well as
against current and water-level measurements from coastal
stations. Two North Sea storms in November and December
2013 were used as test cases, and it was found that including
the wave forcing raises the water level by 20—40 cm in the
German Bight area, bringing the results closer to observed
water levels. Moreover, the vertical velocity profile also fits
the observations better when the wave forcing is included.

Kodaira et al. (2016) also employed NEMO, but here
the model was set up on a global grid. The objective is to
develop an operational forecast system for total water level,
and to this end, a study is performed of global storm surges
for the northern hemisphere autumn of 2014. The model
has 19 vertical levels, a horizontal resolution of 1/12°, and
is forced by hourly forecasts of atmospheric wind and air
pressure. It is found that the model provides reasonable pre-
dictions of surges at 257 tide gauges with relatively large
tidal residuals. It is also found that the inclusion of density
stratification increases the predictive skill at almost all the
tide gauges.

Zou and Xie (2016) presented a fully coupled spectral
wave and circulation model consisting of the wave model
SWAN and the circulation model ADCIRC. The model suite
was applied to investigate tide-surge and wave interaction in
the Gulf of Maine during the extratropical storm on Patriot’s
Day of 2007. Significant tide-surge and wave interaction
was found over Georges Bank and in the coastal areas. Over
Georges Bank, the wave-induced current reached 0.2 m/s
at the storm peak, accounting for 17% of the total depth-
averaged current. In Saco Bay, the current was dominated by
wave-induced current with a magnitude up to 1.0 m/s dur-
ing the storm. Two clockwise circulation gyres were found
to form and sustain over a period of 26 h during the storm
in the bay. They were driven by spatial variations of wave
height, direction and the resulting wave radiation stress gra-
dient. Wave setup reached 0.2 m at the storm peak along
the coast of Saco Bay. In the bay, wave energy dissipation
was reduced and wave height increased due to the increased
water depth at high tide and surge. Consequently, wave
height was modulated by tide and surge along the coast. As a
result, wave setup and wave-induced current in the bay were
also modulated by tide and surge. During the tidal cycle at
the storm peak, wave setup increased with tidal level and the
maximum wave setup coincided with high tide.

End user applications are also important and two papers
looked at the use of wave models in offshore engineer-
ing. Bruserud and Haver (2016) compared metocean design
criteria for waves and currents based on measured and hind-
cast data. At the Norwegian Continental Shelf (NCS), the
Norwegian Hindcast Archive (NORA10, see Reistad et al.
2011; Aarnes et al. 2012; Breivik et al. 2013; Semedo et al.
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2015) for wind and waves and the Northern North Sea Cur-
rent Hindcast Study (NoNoCur) for currents was employed.
NORA10 waves and NoNoCur currents were compared to
wave and current measurements taken during the period
May 2011 to October 2015 at four locations in the north-
ern North Sea. Significant wave height, Hg, spectral peak
period, Tp, wave direction, as well as current speed, U and
direction at two water depths were compared with observa-
tions. In addition, the extreme values of Hg were estimated,
the conditional log-normal distribution for 7}, given Hs was
considered, and the H;-T}, contour lines were established.
Good agreement between NORA10 and measured wave
data in the northern North Sea was demonstrated, although
the NORA10 Hg was found to be slightly more conservative
than observations. The NoNoCur data corresponded well
to current measurements in the northern North Sea. How-
ever, the NoNoCur data does not correspond as good as the
NORA10 data corresponds to measured data. Consequently,
NORAI10 can be recommended to be used for wave design
criteria at NCS, while NoNoCur must be further developed
and used with caution.

Zou and Kaminski (2016) looked at the applicabil-
ity of WW-III to fatigue assessment of offshore floating
structures. The Bluewaters Floating Production, Storage
and Offloading (FPSO) installation which has been turret-
moored at the Sable field about 150 km southwest of South
Africa for half a decade was used as a specific case study.
The modelled waves were compared with ERA-Interim
reanalysis data (Dee et al. 2011) and buoy measurements.
Fatigue calculations were carried out for main deck and
side shell locations. It was found that predicted fatigue
damages using WW-III were in good agreement, but the
model was found to underestimate fatigue damage of the
side shells by approximately 30% compared with buoy
measurements. The reason was the wider directional spread-
ing of actual waves. WW-III was generally found suitable
for the fatigue assessment, but the authors concluded that
more attention should be paid to wave directionality, wave
system partitioning and uncertainty analysis when investi-
gating the usefulness of wave model simulations for fatigue
calculations on offshore structures.

Finally, Pampell-Manis et al. (2016) reported that Gulf of
Mexico (GOM) coasts have been included in the US Tsu-
nami Warning System since 2005. While the tsunami risk
for the GOM is low, tsunamis generated by local submarine
landslides pose the greatest potential threat, as evidenced by
several large ancient submarine mass failures identified in
the northern GOM basin. Given the lack of significant his-
torical tsunami evidence in the GOM, the potential threat of
landslide tsunamis in this region is assessed from a worst-
case scenario perspective based on a set of events including
the large ancient failures and most likely extreme events
determined by a probabilistic approach. Since tsunamis are

not well understood along the Gulf Coast, they investi-
gated tsunami inundation referenced to category-specific
hurricane storm surge levels, which are relatively well estab-
lished along the Gulf Coast. This provides information for
assessing the potential threat of tsunamis which is more
understandable and accessible to emergency managers. The
general trends indicate that tsunami inundation can well ex-
ceed the level of storm surges from major hurricanes in open
beachfront and barrier island regions, while interior areas
are less threatened. Such information can be used to better
prepare for tsunami events as well as provide a prelimi-
nary estimate of tsunami hazard in locations where detailed
tsunami inundation studies have not been completed.

The 16 articles in the topical collection show the breadth
of the workshop. However, a number of excellent proceed-
ing papers can also be found online at www.waveworkshop.
org, where the long history of the workshop has been care-
fully archived. As the workshop now for the first time takes
the leap across the Atlantic, we look forward to an even
more international gathering in the coming years.
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