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Abstract Remote sensing has been successfully utilized to
distinguish and quantify sediment properties in the inter-
tidal environment. Classification approaches of imagery are
popular and powerful yet can lead to site- and case-specific
results. Such specificity creates challenges for temporal
studies. Thus, this paper investigates the use of regression
models to quantify sediment properties instead of classi-
fying them. Two regression approaches, namely multiple
regression (MR) and support vector regression (SVR), are
used in this study for the retrieval of bio-physical variables
of intertidal surface sediment of the IJzermonding, a Bel-
gian nature reserve. In the regression analysis, mud content,
chlorophyll a concentration, organic matter content, and
soil moisture are estimated using radiometric variables of
two airborne sensors, namely airborne hyperspectral sen-
sor (AHS) and airborne prism experiment (APEX) and and
using field hyperspectral acquisitions by analytical spec-
tral device (ASD). The performance of the two regression
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approaches is best for the estimation of moisture content.
SVR attains the highest accuracy without feature reduc-
tion while MR achieves good results when feature reduction
is carried out. Sediment property maps are successfully
obtained using the models and hyperspectral imagery where
SVR used with all bands achieves the best performance.
The study also involves the extraction of weights identifying
the contribution of each band of the images in the quantifi-
cation of each sediment property when MR and principal
component analysis are used.
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1 Introduction

A balance of an intertidal flat results due to the net effect
of biological, physical, and sedimentological factors and
processes (Fig. 1). Non-cohesive sandy sediments behave
autonomously depending on their diameter and density,
while cohesive silt and clay particles aggregate and act in
groups (Mitchener and Torfs 1996; Amos et al. 1997). Fur-
thermore, microorganisms stabilize the sediment surface by
secreting mucilaginous films or mucus (Lundkvist et al.
2007; Murphy et al. 2009), while other organisms may
destroy the “biostabilizing” structure of the sediment and
thus weaken it (Herman et al. 2001; Widdows and Brinsley
2002). The importance of such sediment characteristics in
determining sediment stability leads to a need for frequent
field data collection, especially due to the high temporal
variability of intertidal areas (Hakvoort et al. 1997). Thus,
traditional field sampling is often inefficient on intertidal
flats. Remote sensing offers an alternative to traditional
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Fig. 1 Major aspects influencing sediment stability of an intertidal flat

field acquisitions and has been gaining popularity in envi-
ronmental applications that include sediment-related studies
(Rainey et al. 2003; Diafas et al. 2013).

Classification of imagery, supervised and unsupervised,
is a basic and centrally utilized image processing tool for
sediment characterization. Depending on the nature of the
study area and the type of required classes, supervised
classification can vary in difficulty. Spectral unmixing tech-
niques have also been used to distinguish sediment classes
by selecting spectral end-members where areas are hetero-
geneous (Yates et al. 1993; Rainey et al. 2003). In any
case, classes of sediment types need to be defined for these
approaches. Defining lake and forest classes for landuse,
for example, is relatively simpler than defining the bound-
ary between classes of moisture content of sediments due
to moisture’s gradual variation. Generally, sediment classes
have been determined using case-specific field data or from
experience and intuition, whereby the class boundaries for
a sediment property were often defined using an ad-hoc
procedure (Defew et al. 2002). Tables 1 and 2 (interm =
intermediate) show examples of several thresholds used by
researchers to specify classes of four vital sediment proper-
ties, namely moisture content (MC), chl a content, organic
matter content (OM), and mud content (MUC), where
“mud” refers to cohesive particles smaller than 63 μm. A
number of the references in these tables based their choice
of classes on their experience and knowledge of the study
areas (Yates et al. 1993; Thomson et al. 2003; Smith et al.
2004) or visual assessment (Barille et al. 2011). Other stud-
ies defined the classes according to erosion shear stress
(Hakvoort et al. 1998) or such that they were physically
meaningful and led to a similar distribution of field samples
for each class (Deronde et al. 2006; Adam et al. 2006). On
the other hand, the grain-size classes obtained in one of the
studies were defined using ternary plots (Flemming 2000).

Furthermore, others classified various imagery using a uni-
form set of classes that were based on a combined view
of all the available field data of the same site from various
years (Ibrahim andMonbaliu 2009). Finally, one of the stud-
ies used classes achieved from unsupervised classification
and the correspondence of field data to the resulting clusters
(Ibrahim and Monbaliu 2013).

Although these case-dependent classes lead to use-
ful classification results, classification accuracy is highly
dependent on the choice of classes (Ibrahim and Monbaliu
2013). This case dependency makes comparison of results
between sites and even images of the same site very chal-
lenging, creating a major obstacle is temporal studies. Thus,
as an alternative to the use of such defined classes, regres-
sion modeling can be used for finding relationships between
field sampled values and surface reflectance acquired by
field, airborne, or spaceborne sensors (Ibrahim et al. 2014).

The objective of this paper is to assess the use of regres-
sion models to quantify sediment properties for an intertidal
flat in Belgium using field and airborne hyperspectral data.
Such regression approaches have been mostly used for
grain-size mapping of surface sediment, e.g., Yates et al.
(1993), Rainey et al. (2003), and Van der Wal and Herman
(2007). Yet, this work attempts to address the quantification
and mapping of sediment mud content, chlorophyll a con-
tent, organic matter content, and soil moisture using multi-
ple regression (MR) and support vector regression (SVR).

2 Study area

The IJzermonding is located at the outlet of the IJzer river at
the Belgian coast and consists of dunes, marshes and mud-
flats (Fig. 2). It is a small nature reserve of about 130 ha that
since 1994 has been classified as an EC Special Protection
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Table 1 Examples of thresholds used to describe grain-size distribution and moisture content where “mud” refers to cohesive particles smaller
than 63 μm

Reference Grain size MC

Yates et al. (1993) Muddy >20% mud

Hakvoort et al. (1998) Sandy mud <25% mud

Muddy sand >25 & <50

Mud >50&<85

Clayey mud >85

Flemming (2000) Sand <5% mud

Slightly muddy sand >5 & <25

Muddy sand >25 & <50

Sandy mud >50 & <75

Slightly sandy mud >75 & <95

mud >95

Thomson et al. (2003) Sand <30% mud

Muddy sand >30 & <50

Mud >50

Smith et al. (2004) Low <50 μm mean gs Low <20%

Medium >50 & <100 Medium >20 & <30

High >100 High >30

Deronde et al. (2006) Sand <30% mud Low <30%

Mud >30 High >30

Adam et al. (2006) Sand <15% mud Dry <20%

Loamy sand >15 & <30 Wet >20 & <30

Clayey loam >30 Very wet >30 & <40

Sat >40

Ibrahim and Monbaliu (2009) Low <10% mud Low <20%

Interm >10 & <40 Interm >20 & <40%

High >40% High >40%

Barille et al. (2011) Fine Sand 88.8% >125 μm & <250 μm
Mud >97% mud

Ibrahim and Monbaliu (2013) Low <10% mud Low <20%

High >10% mud High >20% mud

Table 2 Examples of
thresholds used to describe Chl
a content and organic matter
content

Reference Chl a OM

Smith et al. (2004) Low <50 mg/m2 Low <2%

Medium >50 & <100 Medium >2% & <5%

High >50 High >5

Deronde et al. (2006) Low <40 mg/m2 Low <2%

High >40 Interm >2% & <4%

High >4%

Adam et al. (2006) Low 20 mg/m2 Low <2%

Interm >20 & <40 Interm >2% & <4%

High >40 High >4%

Ibrahim and Monbaliu (2009) Low 40 mg/m2 Low <4%

Interm >40 & <80 Interm >4 & <10

High >80 High >10

Ibrahim and Monbaliu (2013) Low <80% mud Low <3%

High >80% High >3%
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Fig. 2 The location of the IJzermonding nature reserve

Area for birds. In 1999, a nature restoration project was ini-
tiated that aimed at restoring natural gradients taking into
consideration their important function of coastal defence
(Hoffman et al. 2005). Accordingly, buildings, roads, docks,
and a former naval base were removed resulting in larger
areas of mudflats and marshes (Herrier and Nieuwenhuyse
2005). Tides are semidiurnal with a mean tidal range of
3.2 m at neap and 5 m at spring tide. The average tide has
a mean flood duration of 5h34′ and mean ebb duration of
6h51′ (Giardino et al. 2009).

3 Flight campaigns

Two hyperspectral images of the IJzermonding were con-
sidered for this study and were acquired at cloud-free and
low-tidal conditions:

– On the 17th of June 2005, an image was acquired by
the airborne hyperspectral sensor (AHS) resulting in

a 3.4 m × 3.4 m pixel-sized image. Raw data was
radiometrically calibrated for system errors and geo-
metrically corrected using the PARGE software (ReSe
Applications Schlapfer, Switzerland). For the atmo-
spheric correction, sunphotometer measurements were
acquired simultaneously to the overflight to estimate
the amount of water vapor and the aerosol concen-
tration. Then, the atmospheric correction was carried
out using ATCOR4 which is based on the radiometric
transfer model MODTRAN 4 (Richter and Schläpfer
2002). The radiometric, atmospheric, and geometric
corrections were done by VITO (Vlaamse Instelling
voor Technologisch Onderzoek; Flemish Institute for
Technological Research)

– On the 9th of July 2013, an image was acquired by
the airborne prism experiment (APEX) resulting in a
2.317 m × 2.317 m pixel-sized image. The geometric
correction was performed using a C++ module devel-
oped by VITO and is based on direct georeferencing.
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Input data from the sensor’s GPS/IMU, boresight cor-
rection data, and the Flanders DEM were further used
during the geometric correction process. The atmo-
spheric correction was carried out with the MOD-
TRAN4 radiative transfer code (Richter and Schläpfer
2002). The radiometric, spectral, and geometric calibra-
tions were performed using calibration cubes generated
from data measured and collected on the APEX cali-
bration home base (CHB) hosted at DLR Oberpfaffen-
hofen, Germany (Gege et al. 2009).

The good quality bands of the two images are described
in Tables 3 and 4. For each of the modules: visible (VIS),
near-infrared (NIR), and short wave-infrared (SWIR), the
number of bands, the spectral range, and the full width at
half maximum (FWHM) are listed.

4 Field campaigns

Field campaigns were carried out at low tide to accompany
the acquired images. For each campaign, sampling sites
were chosen based on field knowledge to include the high-
est diversity in sediment properties. The coordinates of the
sampled sites were determined by a differential global posi-
tioning system, and surface reflectance was measured by an
analytical spectral device (ASD) spectrometer. ASD records
the reflectance from 350 to 2500 nm. Its spectral resolu-
tion is 3 nm for the region 350–1000 and 10 nm for the
1000–2500 nm region. These spectral measurements were
performed at a height of 0.7 m with a nadir looking 25◦ field
of view.

The samples were collected of the upper 2 mm of the
sediment to be tested for chl a content, moisture content,
organic matter content, and mud content with a 2.5 cm
diameter contact corer that freezes a 2 mm layer. Pigments
were extracted using 90% acetone, identified using the
High-performance liquid chromatography (HPLC) method
(Wright et al. 1991) and quantified using a calibration with
commercial standards. The moisture content of a sample
was determined by calculating the weight difference after a
12-h drying process at 105 ◦C. Grain size was determined
in a Coulter Counter for the 2005 campaigns and a Malvern
Instrument Mastersizer2000 for the 2013 campaign. Finally,
organic matter content was determined by calculating the

Table 3 The relevant 19 bands of the AHS image of the IJzermonding
acquired in 2005

Module Spectral range (nm) Band FWHM (nm)

VIS 445–689 1–8 27–30

NIR 718–1004 9–18 27–30

SWIR 1419–1824 19 159

Table 4 The relevant 99 bands of the APEX image of the IJzermond-
ing acquired in 2013

Module Spectral range (nm) Band(s) FWHM (nm)

VIS 414–698 1–57 3.4–13.8

NIR 702–1350 58–149 4.8–16.7

SWIR 1974–2337 220–271 8.2–12.0

difference in weight between the sample before and after
burning at 600 ◦C for 2 h.

In 2005, 28 sites were sampled four days before the
flight. To account for the variability within one pixel, two
or three replicate samples (within 2 m) were taken lead-
ing to 80 samples. Then, 36 spectral measurements were
acquired where for a number of sites, 2 or 3 replicates were
considered. In 2013, the field campaign was carried out the
day after the overflight. Field sampling at 29 sites was con-
sidered with one sample per site in addition to 43 spectral
measurements as they included replicates. Table 5 shows an
overview of the analyzed parameters per campaign.

5 Methodology

5.1 Feature extraction

Dimensionality can be a critical factor when working with
remote sensing data, whereby a successful reduction of the
number of dimensions can lead to an increase in computa-
tional efficiency and estimation accuracy. There are several
powerful feature extraction techniques (Kumar et al. 2001;
Jolliffe 1986), where principal component analysis (PCA)
is one of the most popular. PCA provides a condensed
description of multivariate data and is a linear transforma-
tion method where a new coordinate system for the data set
is chosen such that the greatest variance by a projection of

Table 5 Overview of the field data acquired in 2005 and 2013

Min Average Max

2005

chl a (mg/m2) 0 71 201

MC (%) 6 36 71

MUC (%) 0 36 94

OM (%) 2 7 21

2013

chl a (mg/m2) 7 34 97

MC (%) 1 36 78

MUC (%) 6 40 90

OM (%) 0.5 5 15
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the data comes to lie on the first axis (first principal compo-
nent), the second greatest variance on the second axis, etc.
Lillesand and Kiefer (2015). This PCA approach was tested
in this paper to assess its impact on the regression models
and was compared to the use of all spectral bands.

5.2 Regression models and their performance

Multiple regression (MR) (Draper and Smith 1998) was uti-
lized along with support vector regression (SVR) (Drucker
et al. 1996). Multiple regression is a more extended
approach to regression than simple linear regression, where
it is utilized to predict the value of a variable based on
the value of several variables. On the other hand, SVM
considers a kernel function to transform a nonlinear learn-
ing problem into a linear learning problem. A structural
risk minimization (SRM) principle was used to identify the
most suitable linear approximation function as it controls
the empirical errors.

Field samples with corresponding ASD data and with
corresponding airborne spectra were used to test the regres-
sion and feature reduction approaches. To derive the gen-
eralized estimation performance of the regression for each
sediment property, the accuracy of regression estimates was
evaluated using mutually independent training and valida-
tion data sets. Thus, an m-fold cross-validation scheme was
used. In the validation scheme, the total samples were first
randomly divided into training and validation sets with the
relative portions of 75 and 25%, respectively. For this study,
m = 4, thus the 75% (training)/25% (testing) division was
repeated four times. The regressor was thus trained and
applied to the validation samples to produce the accuracy
estimates. Thus, for each sediment property, four runs were
done for each of MR and SVR. Furthermore, for each prop-
erty and regression approach, the results using all bands
were compared to the use of PCs.

For the performance measure, absolute mean percent
difference (APD) as defined below and the correlation
sum-of-squared-difference (Corr) were used. The use of
the two measures is important since APD is a measure
for estimation of uncertainty while Corr shows the overall
performance of the estimation.

APD = 100 ∗
n∑

i=1

|(νestimated − νinsitu)/νinsitu)| (1)

where νestimated and νinsitu denote the estimated vari-
able values and the in-situ measured values, respectively.
APD represents the variance of estimation results, e.g., an
APD = 30%means the regression estimates have an average
of 30% uncertainty in both directions. Thus, high perfor-
mance of a regression refers to low uncertainty and high
correlation.
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chl a 63 mg/m2, MUC 19%, MC 30%, OM 3%

Fig. 3 2013 field spectrum resampled to APEX bands

5.3 Identifying important spectral features

Due to the nature of SVR, it is not simple to obtain the bands
that were critical in quantifying certain properties. Yet, with
MR, it is possible to retrieve those bands. With PCA and the
regression analysis, a weight vector,W , is obtained form the
original data X, e.g., an image, that is a set of N pixels and
n features (bands).

V = WX (2)

where X is the N ×n original data, V is the of N ×P trans-
formed data where P corresponds to the number of selected
PCs, and W is the n × P weight vector. Multiple regression
is

Z = KV (3)

where K is the P × P weight matrix and Z is N × P final
data matrix.

Thus, the coefficient KW can be retrieved.

Z = KWX (4)

6 Results

6.1 Feature reduction

When using ASD spectra to quantify sediment properties of
imagery, these spectra were resampled to the bands of the

Table 6 The contri bution of five PCs to the total variance in the data

2005 ASD 2005 AHS 2013 ASD 2013 APEX

98.7% 99.7% 99.1% 99.4%
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Table 7 2005 ASD Summary
of regression results using all
bands

Property MR APD mean/sd SVR APD mean/sd MR Corr mean/sd SVR Corr mean/sd

Chl a 52%/11% 38%/8% 0.36/0.2 0.53/0.2

MC 23%/8% 18%/5% 0.86/0.06 0.84/0.07

MUC 61%/18% 41%/11% 0.70/0.12 0.76/0.08

OM 47%/13% 35%/5% 0.77/0.07 0.72/0.1

Table 8 2005 ASD summary
of regression results using five
PCs

Property MR APD mean/sd SVR APD mean/sd MR Corr mean/sd SVR Corr mean/sd

Chl a 44%/10% 41%/8% 0.45/0.25 0.43/0.27

MC 38%/10% 33%/8% 0.59/0.14 0.57/0.16

MUC 52%/14% 48%/16% 0.67/0.11 0.66/0.12

OM 50%/13% 46%/9% 0.63/0.61 0.14/0.15

Fig. 4 Regression training and testing results for four runs of chl a SVR using all bands of 2005 ASD data

Table 9 2005 AHS Summary
of regression results using all
bands

Property MR APD mean/sd SVR APD mean/sd MR Corr mean/sd SVR Corr mean/sd

Chl a 117%/66% 47%/43% 0.06/0.44 0.37/0.51

MC 43%/27% 20%/6% 0.56/0.85 0.47/0.1

MUC 132%/116% 46%/20% 0.23/0.47 0.69/0.27

OM 223%/204% 40%/12% 0.26/0.49 0.77/0.11
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Table 10 2005 AHS Summary of regression results using five PCs

Property MR APD SVR APD MR Corr SVR Corr

mean/sd mean/sd mean/sd mean/sd

Chl a 59%/34% 54%/30% 0.29/0.31 0.22/0.3

MC 31%/16% 29%/14% 0.69/0.27 0.72/0.2

MUC 55%/27% 56%/27% 0.64/0.19 0.62/0.32

OM 66%/29% 49%/18% 0.64/0.26 0.72/0.16

Table 11 2013 ASD Summary of regression results using all bands

Property MR APD SVR APD MR Corr SVR Corr

mean/sd mean/sd mean/sd mean/sd

Chl a 113%/62% 38%/14% 0.3/0.3 0.58/0.33

MC 58%/27% 22%/6% 0.45/0.3 0.62/0.25

MUC 273%/221% 49%/16% 0.22/0.34 0.6/0.26

OM 132%/72% 38%/18% 0.45/0.77 0.28/0.09

Table 12 2013 ASD Summary of regression results using five PCs

Property MR APD SVR APD MR Corr SVR Corr

mean/sd mean/sd mean/sd mean/sd

Chl a 46%/11% 42%/8% 0.58/0.31 0.52/0.32

MC 24%/5% 20%/6% 0.46/0.22 0.51/0.23

MUC 55%/18% 48%/14% 0.49/0.15 0.51/0.24

OM 36%/9% 34%/7% 0.67/0.2 0.66/0.15

Table 13 2013 APEX summary of regression results using all bands

Property MR APD SVR APD MR Corr SVR Corr

mean/sd mean/sd mean/sd mean/sd

Chl a 219%/223% 77%/29% 0.15/0.46 0.41/0.35

MC 51%/22% 33%/8% 0.25/0.42 0.27/0.43

MUC 77%/28% 45%/10% 0.52/0.34 0.61/0.2

OM 140%/297% 66%/49% 0.42/0.37 0.53/0.43

Table 14 2013 APEX summary of regression results using five PCs

Property MR APD SVR APD MR Corr SVR Corr

mean/sd mean/sd mean/sd mean/sd

Chl a 95%/51% 82%/38% 0.37/0.35 0.3/0.31

MC 28%/11% 21%/6% 0.24/0.52 0.5/0.39

MUC 62%/20% 66%/23% 0.31/0.26 0.28/0.3

OM 75%/33% 83%/39% 0.36/0.38 0.3/0.4

corresponding imagery (e.g. Fig. 3). When PCA transfor-
mation was carried out for field spectra and imagery, the
first five PCs were considered where their contribution to
the variance in the data is shown in Table 6.

6.2 ASD, AHS, and APEX correlations to field data

Since several runs were done for each property, regressor,
and considered dimensionality, the mean accuracy and stan-
dard deviation (sd) of the test results are reported in Tables 7
and 8 for ASD 2005 data. Figure 4 shows an example of the
regression results (training and testing) for four runs of chl
a content using 2005 ASD data.

Tables 9 and 10 show the results for 2005 AHS data. One
can notice a great reduction in accuracy when compared to
ASD data. Furthermore, when using all bands, SVR resulted
in much better accuracy than MR. The use of PCA resulted
in improvement in the MR results, yet did not impact
SVR.

Tables 11 and 12 show the results for 2013 ASD data.
MR using all spectral bands resulted in a very low accuracy
that improved considerably when using five PCs. Tables 13
and 14 show the results for 2013 APEX data that show as
well low accuracy when using all bands with MR.

It can be noticed that the best estimation is for moisture
content since it results in relatively lower values of APD
with a high Corr for all data. Furthermore, SVR showed a
better capability of predicting the sediment properties than
MR, and finally the use of PCA resulted in similar results
when compared to using all the bands.

6.3 Mapping sediment properties using the airborne
imagery

After testing the performance of the considered approaches,
sediment property maps were created by estimating the val-
ues of each property using AHS and APEX imagery. All the
data from the in-situ locations were used for the training of
the regressor to create the maps.

Figures 5, 6, 7 and 8 show the resulting maps using the
2005 AHS image. Figures 9, 10, 11 and 12 show the result-
ing maps using the 2013 APEX image. For all properties,
MR with all bands showed low performance. This can be
due to overfitting the data. Further work needs to be done
regarding this issue, yet it will not be carried out in the scope
of this paper. Furthermore, for all maps and approaches
(except for MR using all bands), special known features
in the field such as those of saturated muddy areas or dry
and sandy areas were revealed. Also from field knowledge,
when PCs are used, it can be noticed that both regres-
sors overestimated the values of all variables around the
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Fig. 5 Chl a (mg/m2) maps for
AHS 2005

(a) (b)

(c) (d)

Fig. 6 Moisture content (%)
maps for AHS 2005

(a) (b)

(c) (d)
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Fig. 7 Mud content (%) maps
for AHS 2005

(a) (b)

(c) (d)

Fig. 8 Organic matter (%)
maps for AHS 2005

(a) (b)

(c) (d)
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Fig. 9 Chl a (mg/m2) maps for
APEX 2013

(a) (b)

(c) (d)

Fig. 10 Moisture content (%)

maps for APEX 2013

(a) (b)

(c) (d)
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Fig. 11 Mud content (%) maps
for APEX 2013

(a) (b)

(c) (d)

Fig. 12 Organic matter (%)

maps for APEX 2013

(a) (b)

(c) (d)
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(a) (b)

(c) (d)

Fig. 13 Regression analysis using SVR and all bands of AHS 2005

North East borders of the flat. There, it can be that various
bordering pixels may include vegetation or other dominat-
ing features that are accounted for in the regression. The
regressors seem to give the highest values of each sedi-
ment property to those pixels. Yet, this overestimation is not
revealed when SVR is used without PCA. Thus, SVR used
with all bands seems to achieve the highest performance
and the the best sediment maps. The regression plots of this
approach as shown below in Figs. 13 and 14.

From the maps, it can be noticed that correlations
between the different properties are revealed in several
cases. For example, areas of very high mud content are typi-
cally accompanied with high moisture content. On the other
hand, several areas of high chl a content close to the IJzer
river consisted of low mud content. This is consistent with
the field data and field spectra of MUC shown in Fig. 3
where chl a absorption features at about 673 nm (Murphy
et al. 2005) is observed with relatively low mud content.
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(a) (b)

(c) (d)

Fig. 14 Regression analysis using SVR and all bands of APEX 2013

6.4 Identifying important spectral features

Since MR resulted in reliable results only when feature
reduction was considered, weights are calculated from this
option. Figures 15 and 16 show weights retrieved for
each band for that case. These weights or coefficients are
obtained through a multiplication of the coefficients from
PCA and MR as explained in the methodology, with P = 5.

The highest weights as an “absolute value” can be consid-
ered critical for estimating the corresponding variables.

Regarding the biological properties of sediments, an
increase in chl a pigment leads to an emphasis around
440 nm and of the absorption dip at around 673 nm of the
spectrum. This can be noticed in the obtained weights that
the highest absolute values of weights are around those parts
of the spectrum. Figure 17 shows examples of these spectra
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(a) (b)

(c) (d)

Fig. 15 Weights of different wavelengths of MR with five PCs of AHS 2005

(a)

(c)

(b)

(d)

Fig. 16 Weights of different wavelengths of MR with five PCs of APEX 2013
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Fig. 17 2013 field spectra resampled to APEX bands for three sam-
ples showing low, average, and high values of chl a while other
parameters (MC, MUC, and OM) were in the same range for the three

and the absorption features with varying content of chl a
while moisture content is between 5 and 30% and MUC
between 19 and 27%.

Furthermore, moisture content leads to an overall
increase or decrease of the reflectance spectrum (Weidong
et al. 2002; Neema et al. 1987). Yet, a special absorption
feature is normally observed around 1450 nm (Adam et al.
2012). The spectral resolution of AHS does not allow the
retrieval of this feature while the bands of APEX around that
part of the spectrum have been excluded from the study for
being too noisy. The resulting weights from the regression
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Fig. 18 2013 field spectra resampled to APEX bands for three
samples showing low, average, and high values of MUC and their
correspondingMCwith chl a values varying between 20 and 30 mg/m2

show that the most important for moisture content of the
available bands are of the shortest wavelengths.

The spectral response of increasing mud content in dry
sediments consists of an increase in overall reflectance
(Baumgardner et al. 1985) and an increase in absorption at
specific clay absorption features (Hunt 1977). For a mix of
fine sand with clay, absorption features have been reported
between 1325 and 1563, 1850 and 2050, and 2125 and
2265 nm. AHS does not provide bands in those part so the
spectrum. APEX bands include 2125 and 2265 nm and show
great weight increase around these parts of the spectrum.
Figure 18 shows spectral of varying values of MUC that
can confirm this result when considering an absorption fea-
ture around 2125 nm yet an increase in reflectance around
2265 nm.

Regarding OM, generally, its effect is partially compara-
ble to that of moisture content (Adam 2009). This can be
retrieved from the weights of both images.

7 Conclusions

The regression approaches were successfully used to quan-
tify four sediment properties, namely mud content, chloro-
phyll a concentration, organic matter content, and soil mois-
ture for the IJzermonding. Multiple regression (MR) and
support vector machine regression (SVR) with and with-
out feature reduction were tested using in-situ and airborne
hyperspectral signals. Then, sediment property maps of the
IJzermonding nature reserve were created using airborne
hyperspectral imagery. The results show the suitability of
these approaches with the best results achieved when SVR
was used with the full spectral dimensionality of the data.
Furthermore, the work shows that PCA achieved in good
results yet with an overestimation of sediment properties
in pixels with unstudied features that are on the border
of the intertidal flat. The importance of bands used for
MR were also extracted as weights and showed compara-
ble results to what is found in literature. This work is a
foundation study for obtaining suitable approaches to model
and assess changes in the intertidal flat using imagery of
various sources from different periods. Such results would
allow a better understanding of the temporal dynamics of
the intertidal flat and result in valuable input for modelers
and end-users.
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