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Abstract Artificial neural networks (ANNs) were used to
predict landings of anchovy (Engraulis ringens), common
sardine (Strangomera bentincki), and jack mackerel
(Trachurus murphyi) in central-southern Chile. Twelve envi-
ronmental variables were considered along with fishing effort
(fe) and landing statistics from 1973 to 2012. During external
validation, the best models with all of the selected variables
gave r2 values of 90 % for anchovy, 96 % for common sar-
dine, and 88 % for jack mackerel. The models were simplified
by considering only fe and sea surface temperature from
NCEP/NCAR reanalysis data (SST-NOAA), and very similar
fits were achieved (87, 92, and 88 %, respectively). Future
SSTs were obtained from the A2 climate change scenario
and regionalized using statistical downscaling techniques.
The downscaled SSTs were used as input for landings predic-
tions using ANN simplified models. In addition, three scenar-
ios of future fishing efforts (2010–2012 average, average +
50 %, and average − 50 %) were used as the input data for
landing simulations. The results of the predictions show a
decrease of 9 % in future landings of sardine and an increase
of 17 % for jack mackerel when comparing 2015 and 2065
monthly projections. However, no significant differences are
shown when comparing the estimated landings for the three

fishing effort scenarios. Finally, more integrative and complex
conceptual models that consider oceanographic-biophysical,
physiological, environmental-resource, and interspecies pro-
cesses need to be implemented.

Keywords Forecast . Artificial neural networks . Pelagic
landings . Central-southern Chile . Climate change

1 Introduction

The exploitation of pelagic resources in central-southern Chile
(32°S–42°S) began in the early 1940s. Landings reached
94,000 t of anchovy (Engraulis ringens) in 1969 and
113,000 t of common sardine (Strangomera bentincki) in
1974, which later decreased and remained low until 1988;
thereafter, they exceeded the previous peaks at 520,000 t for
anchovy in 2007 and 886,000 t for common sardine in 2011
(SAG 1950–1977; SERNAPESCA 1978–2012). After 1974,
there was also a notable increase in landings of Chilean jack
mackerel (Trachurus murphyi), which reached 4.4 million
tons in 1995. Afterwards, the landings decreased and stabi-
lized at approximately 1 million tons until 2007, when the
decrease continued to 200,000 t by 2012. The fluctuations in
these fishing activities are related to the intensity of the ex-
ploitation and environmental changes associated with El Niño
events, interdecadal phenomena, and possibly climate change
(Hare et al. 2000; Yáñez et al. 1992, 2001, 2014; Chavez et al.
2003; Alheit and Ñiquen 2004; Cheung et al. 2010; Merino
et al. 2012).

In the face of variable and uncertain scenarios, prediction
plays a central role in resource management and decision
making (Makridakis et al. 1983). In fisheries management,
the main objective is to identify the permissible level of
catches to ensure resource sustainability. However, in most
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cases, achieving this objective is challenging due to the need
to predict uncontrollable events (Gutiérrez-Estrada et al.
2007, 2008, 2009; Gutiérrez-Estrada and Yáñez 2008).
Nonlinear relationships between fishery resources and the
environment hinder precise forecasting with traditional sta-
tistical methods (Cisneros et al. 1996). One alternative for
modeling nonlinear relationships is the use of artificial
neural networks (ANNs), which perform better than linear
models and have the capacity to generalize new data (Lek
et al. 1996; Özesmi et al. 2006). In recent years, the appli-
cation of ANNs has increased in different fields of science
and engineering, including fisheries science (Hardman-
Mountford et al. 2003; Gutiérrez-Estrada et al. 2007,
2009; Yáñez et al. 2010; Naranjo et al. 2015).

Given the importance of pelagic resources in central-
southern Chile, the present study analyzes the performance
of ANNs in the prediction of monthly landings of anchovy,
common sardine, and Chilean jack mackerel based on fishing
efforts and environmental variables. Forecasted landings of
each species are calculated through 2065 and take into account
the selected ANN models under the A2 climate change sce-
nario of the Intergovernmental Panel on Climate Change
(IPCC) and three fishing effort projections (2010–2012 aver-
age, average + 50 %, and average − 50 %).

2 Materials and methods

The study zone consisted of the purse seine fleet operating
area off central-southern Chile (32°S–42°S) from the coast
to 60 nm offshore for anchovy and common sardine (75°W)
and over 200 nm from the exclusive economic zone for jack
mackerel (78°W) (Fig. 1). The analyzed data include environ-
mental and fishing data from 1983 to 2012 for anchovy and
common sardine and 1973–2012 for jack mackerel.

2.1 Artificial neural network model applications

2.1.1 Data

For anchovy and common sardine, the values for total month-
ly landings (t) were obtained from the Fishing Statistics
Annual Repor t of the Nat ional Fishing Service
(SERNAPESCA 1983–2012); the values for jack mackerel
landings are from yearly reports by the same association
(SERNAPESCA 1978–2008) and from the Agriculture and
Livestock Service reports (SAG 1973–1977). The joint statis-
tics on landings and fishing effort of the industrial purse seine
fleet and the artisanal fleet were obtained from the Monitoring
Program of the Principal National Fisheries gathered annually
by the Institute of Fishing Development (IFOP). The environ-
mental data consisted of the monthly averages of 12 variables
recorded at weather and oceanographic stations located off the

coast of Talcahuano (36°S–73°W) and included in reports by
global climate centers (www.cpc.ncep.noaa.gov/data/indices).
The environmental variables included the following: sea
surface temperature (SST) and mean sea level (MSL) from
oceanographic stations; SST from NCEP/NCAR reanalysis
data (Kistler et al. 2001) for the common sardine, anchovy,
and jack mackerel fishing zones; air temperature (AT); Pacific
Decadal Oscillation (PDO); SST in the El Niño 1 + 2 region
(SST NIÑO 1 + 2); SST in the El Niño 3.4 regions (SST
NIÑO 3.4); Southern Oscillation Index (SOI); Cold Tongue
Index (CTI); and Antarctic Oscillation (AAO). The wind
speed and direction at Carriel Sur (36°46′S–73°03′W) were
used to estimate the Ekman Transport (ET) (Bakun et al. 1974
) and the turbulence index (TI) (Elsberry and Garwood 1978).
The data for all of these variables are available on the
CL I PESCA web s i t e (www. c l i p e s c a . c l / i n d e x .
php/productos/info-historica/ambiental-temporal).

The fishing and environmental data were analyzed to de-
termine which variables to include in the ANN models. First,
any strongly correlated variables were excluded from the anal-
ysis. Then, a principal component analysis was conducted to
visualize the level of representation of each variable on the
main axes (Yáñez and Barbieri 1983); these are the variables
that present an individual value that is higher than the average
of the values generated by each factor (Hair et al. 1999).
Finally, a linear cross-correlation analysis was performed for
the selection of time lags in time series models based on a
95 % confidence level (α = 0.05). To decrease high-
frequency noise and thus clearly identify trends, the data were
smoothed out through the use of a mobile mean centered
around 3 months of data (Freón et al. 2003).

Regionalized projections of SST for central-southern Chile
were used to forecast landings with ANNmodels, considering
the fishing zones of anchovy, sardine, and jack mackerel for
the period 2015–2065 (Fig. 2).

2.1.2 Artificial neural network models

The ANN models included monthly landings, fishing effort,
and environmental variables, with time lags for the period of
1983 to 2012 for anchovy and common sardine and 1973 to
2012 for jack mackerel. Regarding modeling, 60% of the data
was used to calibrate the network (training), 20 % was used
for the selection stage (learning verifies the network), and
20 % was used for the test step (validation model); all data
were randomly selected (e.g., Makkearsorn et al. 2008;
Gutiérrez-Estrada et al. 2009; Yáñez et al. 2010; Naranjo
et al. 2015). Monthly landing estimates for anchovy, common
sardine, and jack mackerel were the output variables of the
models.

The ANNs were tested with a hidden layer and by varying
the number of nodes for each model depending on the number
of input variables. The ANN that functioned best in the
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validation stage was then chosen, and 30 repetitions of the
calibration process were performed for each ANN structure
(Anctil and Rat 2005; Pérez-Marín et al. 2006). Based on this
number of repetitions, the chosen model was within the best
14% of all possible models with a 99% confidence level (Iyer
and Rhinehart 1999). The learning algorithm for calibration
purposes and subsequent validation of the models was the

supervised second-order Levenberg-Marquardt algorithm
(Shepherd 1997), which is a variation of the backpropagation
algorithm (Rumelhart et al. 1986) and is highly recommended
(e.g., Tan and Van Cauwenberghe 1999; Martín del Brío and
Sanz 2001; Anctil and Rat 2005, Özesmi et al. 2006;
Suryanarayana et al. 2008). The software STATISTICA 7.0
was used to run the ANN models.

Fig. 1 Location of the study area comprises the purse seine fleet operating area off central-southern Chile (32°S–42°S). Black line indicates the anchovy
and common sardine fishing areas (until 60 n mi offshore) and blue line indicates the jack mackerel fishing area (until 200 n mi offshore)
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2.1.3 Model evaluation

With a randomly selected dataset (20 %), the functioning
of the ANNs was evaluated during the validation stage
using the coefficient of determination (r2), the percentage
standard error of prediction (%SEP) (Ventura et al. 1995),
the coefficient of efficiency (E) (Nash and Sutcliffe 1970;
Kitanidis and Bras 1980), and the average relative vari-
ance (ARV) (Griñó 1992). These indices are not influ-
enced by the range of variation of their elements and are
used to identify the extent to which the model is able to
explain the total variation of the data. Similarly, the error
can be quantified in terms of the units of the variable
being estimated. These absolute error measurements in-
cluded the root mean square (RMS). To accept the fit,
the values of r2 and E must be close to one, and the
values of %SEP and AVR must be near zero. The persis-
tence index (PI) was also used to assess the models
(Kitanidis and Bras 1980). A PI value of one indicated a
perfect fit between the estimated and observed values,
whereas a zero value indicated that the model was no
better than a Bnaïve^ model, which always gives the pre-
vious observation as the next prediction. A negative PI
value indicated that the model was altering the original
information to give a level of function that was worse
than a naïve model (Anctil and Rat 2005).

2.1.4 Sensitivity analysis

A sensitivity analysis was conducted to identify the most
significant input variables. This analysis treats each input
variable on the neural network as if it were unavailable in
the model (Hunter et al. 2000). To evaluate the sensitivity
of variable X, the sums of squares residuals for the model
when the respective predictor was eliminated from the
neural net were calculated; ratios (of the reduced model
versus the full model) were also calculated, and the pre-
dictors were sorted by their importance or relevance for

the particular neural network. If the value was less than or
equal to one, adding or removing the variable had no
significant effect on the model.

2.2 Statistical SST downscaling

SST simulations from the AR4 of the IPCC (IPCC 2007)
were used for prediction. The AR4-IPCC included simula-
tions from 23 different global climate models run with
standardized CO2 emission scenarios. In this study, we used
the National Centre for Atmospheric Research (NCAR)
Community Climate System Model 3.0 (CCSM3) and con-
sidered the high future CO2 emission scenario known as
A2 (IPCC 2007). The simulations extend from 2000 to
2100 under the hypothetical A2 emissions scenario
(Nakicenovic et al. 2000). The NCAR CCSM3 is a global,
coupled ocean–atmosphere–sea ice–land climate model
(Collins et al. 2006) used to drive marine ecosystem
models to investigate the responses of fishery resources to
global warming (Di Lorenzo et al. 2008; Hare et al. 2010).
The model used in this study is the same model used at
higher resolution for the IPCC AR4 projections of future
climate, with an ocean horizontal resolution corresponding
to a nominal grid spacing of approximately 1° latitude × 1°
longitude. However, the resolution of the NCAR CCSM3
model is coarse, potentially limiting the use of this model
to assess regional changes in marine ecosystems, particular-
ly in coastal and shelf waters. For this reason, there is a
need to use climate and oceanographic projections with
better spatial resolution (e.g., using statistical downscaling)
in regional assessments (Stock et al. 2011). In this study,
the change factor (CF), or Delta method, was applied be-
cause it is a relatively straightforward and popular down-
scaling method for the rapid impact assessment of climate
change (Wilby and Wigley 2000; Silva et al. 2015). The
CF method involves adjusting the observed monthly SST
(SSTobs, m) obtained from MODIS climatology (2003–2013)
by adding the interpolated anomaly (delta) or difference in

Fig. 2 National Centre for
Atmospheric Research (NCAR)
model projections of regionalized
sea surface temperature (SST)
anomaly (°C) for the high
emission CO2 scenario (A2) of
the Intergovernmental Panel on
Climate Change (IPCC) for
anchovy-common sardine and
jack mackerel fishing areas
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monthly SST predicted by the global climate model (GCM)
NCAR CCSM3 between the 2065 horizon and the refer-
ence period (SSTGCM,2065,m − SSTGCM,ref, m). A monthly
adjusted SST at the 2065 horizon (SSTadj,2065,m) is then
obtained:

SSTadj;2065;m ¼ SSTobs;m þ SSTGCM ;2065;m−SSTGCM ;ref ;m
� �

B e f o r e a d d i n g S S T o b s , m , t h e a n o m a l i e s
(SSTGCM,2065,m − SSTGCM,ref,m) were interpolated by the
Kriging algorithm over a grid with the same spatial resolution
(4 km) and extent as SSTobs,m to downscale the coarse grid
resolution (1° = 111.1 km) of the NCAR CCSM3 model.
Using GIS tools, the future mean SST from the predicted
SST maps were extracted for anchovy, sardine, and jack
mackerel fishing areas.

2.3 Landings forecasts

The reduced ANN models calibrated for the three fishing ac-
tivity types were used to forecast landings. The averages of
fishing effort over the last 3 years of each fishing activity
(2010–2012) were used as input values. SST output predic-
tions based on the A2 climate change scenarios were also
used. To force the ANN models, SST time series predictions
were extracted according to the three fisheries (anchovy, sar-
dine, and jack mackerel) areas in central-southern Chile and
for the period 2015–2065 (Fig. 2).

To simulate and identify the effects of climate change in the
aforementioned fisheries, downscaled SST (A2 scenario) pre-
dictions (2015–2065) and three scenarios of future fishing
effort (2010–2012 average, average + 50 %, and aver-
age − 50 %) were used as input for landing simulations.

Table 1 Correlation matrix between environmental variables with highly correlated in bold

AT SST SST-NOAA MSL TI ET PDO SST NIÑO 1 + 2 SST NIÑO 3.4 SOI CTI AAO

AT 1

SST 0.68 1

SST-NOAA 0.93 0.69 1

MSL −0.12 −0.01 −0.02 1

TI 0.59 0.34 0.56 −0.45 1

ET 0.34 0.13 0.32 0.15 −0.12 1

PDO 0.01 0.18 0.13 0.26 −0.03 0.09 1

SST NIÑO 1 + 2 0.52 0.59 0.67 0.24 0.18 0.02 0.28 1

SST NIÑO 3.4 −0.23 0.06 −0.14 0.33 −0.21 −0.13 0.45 0.38 1

SOI 0.02 −0.12 −0.01 −0.29 0.04 −0.09 −0.41 −0.18 −0.66 1

CTI −0.01 0.15 0.01 0.22 0.01 0.02 0.44 0.29 0.83 −0.72 1

AAO 0.03 0 0.05 −0.08 0.08 −0.14 −0.12 −0.02 −0.18 0.14 −0.19 1

Environmental variables correspond to anchovies and common sardines fishing areas. Values are Pearson correlation coefficients with P < 0.01

Table 2 Correlation matrix between environmental variables with highly correlated in bold

AT SST SST-NOAA MSL TI ET PDO SST NIÑO 1 + 2 SST NIÑO 3.4 SOI CTI AAO

AT 1

SST 0.71 1

SST-NOAA 0.89 0.72 1

MSL −0.08 0.00 0.03 1

TI 0.19 0.10 0.16 0.12 1

ET 0.52 0.40 0.47 −0.42 −0.36 1

PDO 0.04 0.15 0.12 0.30 −0.02 −0.04 1

SST NIÑO 1 + 2 0.53 0.53 0.75 0.29 −0.02 0.16 0.29 1

SST NIÑO 3.4 −0.15 0.09 −0.01 0.44 −0.11 −0.20 0.46 0.43 1

SOI −0.03 −0.15 −0.05 −0.35 −0.02 0.02 −0.41 −0.21 −0.67 1

CTI 0.03 0.19 0.03 0.31 0.05 0.00 0.45 0.33 0.81 −0.71 1

AAO 0.00 −0.04 0.02 −0.04 −0.16 0.05 −0.11 0.01 −0.15 0.17 −0.20 1

Environmental variables correspond to jack mackerel fishing area. Values are Pearson correlation coefficients with P < 0.01
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3 Results

3.1 Artificial neural network models

3.1.1 Correlations between variables and principal
component analysis (PCA)

Table 1 indicates that the SST-NOAA for the common sardine
and anchovy fishing zone is strongly correlated with AT, SST,
and NIÑO 1 + 2 (0.93, 0.69, and 0.67, respectively); similar
correlations were found between SST NIÑO 3.4 and the var-
iables CTI (0.83) and SOI (0.66). According to Table 2, the
correlation matrix for jack mackerel has similar values among
the environmental variables, although the SST-NOAA is for a
more oceanic fishing zone.

PCA leads to 12 factors that together explain 100 % of the
variance. However, for anchovy and common sardine, factors
1, 2, 3, and 4 were selected. When combined, these factors
account for 29.4, 26.2, 11.2, and 8.8 % of the variance, re-
spectively; therefore, they explain 75.6% of the total variance.
For jack mackerel, factors 1, 2, 3, and 4 account for 30.4, 25.2,
11.8, and 9.2% of the variance, respectively, which results in a
combined total variance of 76.6 %.

For anchovy and common sardine, the correlation matrix of
environmental variables with each principal factor shows the
highest values for SST-NOAA, AT, and SST with factor 1;
SST NIÑO 3.4, CTI, and SOI with factor 2; MSL and TI with
factor 3; and ET with factor 4 (Table 3). For jack mackerel,
these correlations are similar for factors 1 and 2, but ET has
the highest value for factor 3 and AAO for factor 4 (Table 4).

Considering the correlation matrix results between the en-
vironmental variables and the PCA, the pre-selected variables
for anchovy and common sardine are SST-NOAA, SSTNIÑO
3.4, ET, TI, and MSL, and the variables for jack mackerel are
SST-NOAA, SST NIÑO 3.4, ET, and AAO.

3.1.2 Cross-correlations

For anchovy, SST-NOAA has significant values for cross-
correlation with the rectangular hyperbolic II function and time
lags of −2, −7, −14, and −19 months (Fig. 3). For common
sardine, significant values are achieved with the Cauchy function
with time lags of −1, −6, −16, and −18 months (Fig. 4). The
Cauchy function also produces significant values for jack mack-
erel but with time lags of −2, −14, −26, −38, −50, and
−62 months (Fig. 5). SST NIÑO 3.4 reaches its maximum cor-
relation value at −22 months with the rectangular hyperbolic II
function for anchovy, at −3 months with the reciprocal rectangu-
lar hyperbolic I function for common sardine, and at −46months
with the rectangular hyperbolic II function for jackmackerel. The
TI attains significant correlations with the rectangular hyperbolic
II function at −8 and −21 months for anchovy and with the
parabolic function at −8 and −20 months for common sardine.
The MSL attains its maximum significant correlation value with
the parabolic function at −21 months for anchovy and with the
Cauchy function at−5 and −17months for common sardine. The
ET does not give significant correlation values for any of the

Table 3 Rotated loading (correlation coefficient) matrix provided by
the multivariate analysis of environmental variables in order to define
principal components or factors (factor 1, factor 2, factor 3, and factor 4)

Factor 1 Factor 2 Factor 3 Factor 4

AT 0.91 −0.12 −0.20 0.19

SST 0.81 0.14 −0.06 −0.02
SST-NOAA 0.96 −0.05 −0.09 0.11

MSL 0.05 0.27 −0.83 0.04

TI 0.51 −0.03 −0.74 −0.08
ET 0.28 −0.12 0.30 0.76

PDO 0.17 0.59 0.19 0.08

SST NIÑO 1 + 2 0.75 −0.35 0.21 −0.20
SST NIÑO 3.4 −0.07 0.91 0.18 −0.11
SOI −0.03 −0.81 −0.06 −0.14
CTI 0.05 0.90 −0.03 0.06

AAO 0.13 −0.28 0.12 −0.69

Environmental variables correspond to anchovy and common sardine
fishing areas

Absolute correlation values higher than 0.7 in bold

Table 4 Rotated loading (correlation coefficient) matrix provided by
the multivariate analysis of environmental variables in order to define
principal components or factors (factor 1, factor 2, factor 3, and factor 4)

Factor 1 Factor 2 Factor 3 Factor 4

AT 0.93 −0.09 −0.10 −0.10
SST 0.83 0.13 −0.11 −0.09
SST-NOAA 0.97 0.00 −0.02 0.04

MSL 0.03 0.48 0.63 0.25

TI 0.21 −0.17 0.69 −0.50
ET 0.47 −0.07 −0.79 −0.01
PDO 0.11 0.64 0.06 0.01

SST NIÑO 1 + 2 0.73 −0.40 0.13 0.26

SST NIÑO 3.4 −0.03 0.92 0.10 0.06

SOI −0.04 −0.82 0.00 0.16

CTI 0.07 0.88 −0.01 −0.18
AAO 0 03 −0.21 0.00 0.82

Environmental variables correspond to jack mackerel fishing area

Absolute correlation values higher than 0.7 in bold

�Fig. 3 Linear and nonlinear cross-correlation for anchovy landings and
sea surface temperature from NCEP/NCAR reanalysis data (SST-
NOAA), Ekman transport (ET), mean sea level (MSL), turbulence index
(TI), SST in El Niño 3.4 regions (SST NIÑO 3.4), and anchovy fishing
effort (fe). Significance level also included (P = 0.05)
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species, and no significant values are obtainedwithAAO for jack
mackerel. The standard fishing effort (fe) shows significant
cross-correlation values with the reciprocal rectangular hyperbol-
ic I function at 0 and −12months for anchovy and at 0, −12, −24,
and −36 months for jack mackerel and with the parabolic func-
tion at 0, −11, and −22 months for common sardine.

Although the nonlinear and linear cross-correlations are
very similar, the nonlinear cross-correlations generally ac-
count for more variance, particularly in terms of fishing effort.
In addition to the previously mentioned significant values,
there are other significant values, but these were disregarded
to avoid redundancy, which can negatively affect the
modeling.

3.1.3 ANN modeling

After initial data treatment, phase 1 defined the ANN models
with their respective input variables and corresponding time
lags: SST-NOAA, fe, MSL, TI, and SST NIÑO 3.4 for ancho-
vy and common sardine and SST-NOAA, SST NIÑO 3.4, and
fe for jack mackerel. Therefore, the best architecture for an-
chovy was 10:9:1 (10 nodes on the input layer, 9 nodes on the
hidden layer, and 1 node on the output layer), which gave an r2

of 90 % and PI of 0.92, indicating a good degree of fit
(Table 5). However, a slight degree of dispersion between
the observed and estimated series is evident in the %SEP
and RMS values of 28 % and 7275 t, respectively. For com-
mon sardine, the best model has a 12:12:1 architecture with an
r2 of 96%, a coefficient of efficiency of 96%, and a PI close to
1. The %SEP and RMS values are 22 % and 10,039 t, respec-
tively. For jack mackerel, the best model has an 11:13:1 archi-
tecture with an r2 of 88% and E of 89 %. The standard error is
34.75 %, indicating that there is dispersion between the ob-
served and estimated series, whereas the RMS is 39,790 t.

Table 6 shows the sensitivity analysis that evaluates the
importance of each variable in the best ANNmodels identified
in phase 1 for each fish species.

To simplify the models, phase 2 involved decreasing the
number of input variables in the models without losing an
important degree of fit. The variables selected to reduce the
models were fe and SST-NOAA, whose ratios in the phase 1
models were above the median (Table 6). Therefore, the an-
chovymodel considers variables with ratios above 1.36: fe(t-0),
SST-NOAA(t-14), SST-NOAA(t-7), and SST-NOAA(t-2). The
median value for common sardine is 1.57; therefore, the input
variables are fe(t-0), SST-NOAA(t-13), SST-NOAA(t-1), SST-
NOAA(t-2), SST-NOAA(t-18), and SST-NOAA(t-6). The medi-
an value for jack mackerel is 1.76, and the included variables
are fe(t-0), SST-NOAA(t-50), SST-NOAA(t-14), SST-NOAA(t-

38), fe(t-12), and fe(t-36). SST-NOAA and fe are of particular
importance in the models (Table 6); SST-NOAA is included
in the models to allow the use of future temperature scenarios
of climate change as inputs for the fisheries landings

simulation. However, MSL was discarded for anchovy and
common sardine despite giving a ratio above the median
value.

Table 7 shows the best models selected in phase 2 for the
three fish species. Compared with the phase 1 models, ancho-
vy and common sardine show r2 and RMS values with min-
imal differences, although increases in %SEP are more nota-
ble, as they suggest slightly more dispersion between the ob-
served and estimated data; by contrast, the PI values indicate a
similar quality of fit (Figs. 6 and 7). For jack mackerel, the
indices of error show practically no variation except for a
lower index of persistence; therefore, the models were simpli-
fied without losing any predictive capacity (Fig. 8).

3.2 Temperature downscaling

For NCAR-corrected SST anomalies forecast under the A2
scenario, the linear regressions were fitted, showing positive
trends for anchovy-sardine and jack mackerel fishing areas
(Fig. 2). Considering changes in the sea surface temperature
(SST) from 2015 to 2016 with a fitted linear regression
(Fig. 2), Table 8 show increases (change) in the projected
SST from 2015 to 2065 for anchovy, common sardine, and
jack mackerel fishing areas.

3.3 Landings forecasts

Figures 9, 10, and 11 show the respective anchovy, common
sardine, and jack mackerel landing projections from 2015 to
2065 periods based on the A2 climate change scenario and
three fishing effort projections considering a 2010–2012 aver-
age, a 50 % average increase, and a 50 % average decrease.
Anchovy and sardine projections have less pronounced trends
than jack mackerel; the latter shows higher variability. In
Table 9, based on the A2 climate change scenario, anchovy
and sardine landings would decrease by 1 and 4 %, respective-
ly, whereas jack mackerel landings would increase by 13 %.

4 Discussion

In recent years, artificial intelligence has been used to manage
large databases and algorithms through a complex structure to
produce easily interpreted results (Bravo-Oviedo and
Kimdermann 2004). The aim of using predictive models with
fishing activities is to provide those responsible for resource

�Fig. 4 Linear and nonlinear cross-correlation for common sardine land-
ings and sea surface temperature from NCEP/NCAR reanalysis data
(SST-NOAA), Ekman transport (ET), mean sea level (MSL), SST in El
Niño 3.4 regions (SST NIÑO 3.4), turbulence index (TI), and common
sardine fishing effort (fe). Significance level also included (P = 0.05)
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management and other users with information on the biolog-
ical and/or environmental effects of fishing on available
stocks. However, conventional production models are not al-
ways adequate, as variations in fishing effort account for only
a portion of the changes in landings; there is often a residual

variation caused by environmental phenomena that affect
abundance and/or catchability of stocks from one year to the
next (Freón et al. 1993).

Based on the time series analyses in the present study, strong
correlations were identified between the variables, such as SST

Fig. 5 Linear and nonlinear cross-correlation for jack mackerel landings
and sea surface temperature from NCEP/NCAR reanalysis data (SST-
NOAA), Ekman transport (ET), SST in El Niño 3.4 regions (SST

NIÑO 3.4), turbulence index (TI), and jack mackerel fishing effort (fe).
Significance level also included (P = 0.05)
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and AT. These two variables were measured at coastal stations
but were also correlated with SST-NOAA, a variable that rep-
resents an average of the SST values in the fishing zone that
was slightly better represented in the first component of the
PCA (Table 3). Therefore, SST-NOAAwas selected as an input
variable in the models. The CTI and the SOI were discarded
because they were strongly correlated with SST NIÑO 3.4,
which was chosen as an input variable because it represents
the dynamics transmitted by trapped waves on the south-
eastern Pacific coast. Plaza et al. (2008) and Yáñez et al.
(2010) obtained similar correlations when conducting the same
analyses to reduce the input variables in their ANN models to
predict the abundance of anchovy and common sardine in
northern Chile. Yáñez et al. (1992) included AT and other var-
iables to account for inter-annual variations in abundance and
catches of jack mackerel in central-southern Chile.

Strong correlations between observed and estimated land-
ings using ANN models were estimated (Figs. 6, 7, and 8).
However, it could be clearly seen that the models tended to
overestimate the low landing levels (close to zero). This over-
value is important, as it occurs when the population is close to

collapse, a condition under which a model should work fine.
In spite of this, the models captured the general trends of the
anchovy, sardine, and jack mackerel landings data series.

The three fishing operations were modeled using the same
methods and considering the input variables fe, SST-NOAA,
MSL, TI, and SST NIÑO 3.4, which, along with their respec-
tive time lags, attained the necessary level of significance in
cross-correlation analyses (Table 6). These variables have been
considered in previous studies. Gutiérrez-Estrada et al. (2009)
and Yáñez et al. (2010) include SST NIÑO 3.4 in predictive
ANN models for common sardine and anchovy landings in
northern Chile, respectively; Yáñez et al. (1992) included TI,
fishing effort, MSL, and AT to explain inter-annual fluctua-
tions in abundance and catches of jack mackerel in central-
southern Chile; and Yáñez et al. (2014) considered fe and
SST to explain the inter-annual abundance and catches of jack
mackerel using a CLIMPROD production model (Freón et al.
1993) and obtained a significant correlation (r2 = 0.89).

The exclusion of ET because it was not significant in the
cross-correlations implied that wind acts preferentially
through TI, which affects the vertical structure of the water

Table 6 Sensitivity analysis for
the anchovy, common sardine, and
jack mackerel artificial neural
networks (ANN) models (phase 1)

Ranking Anchovy model Common sardine model Jack mackerel model

Variable Ratio Variable Ratio Variable Ratio

1 fe(t-0) 3.72 fe(t-0) 4.24 fe(t-0) 3.07

2 SST-NOAA(t-14) 2.95 SST-NOAA(t-13) 3.11 SST-NOAA(t-50) 2.97

3 SST-NOAA(t-7) 1.96 SST-NOAA(t-1) 2.52 SST-NOAA(t-14) 2.61

4 SST-NOAA(t-2) 1.47 MSL(t-5) 2.25 SST-NOAA(t-38) 2.11

5 MSL(t-21) 1.44 SST-NOAA(t-18) 1.99 fe(t-12) 2.06

6 TI(t-8) 1.27 SST-NOAA(t-6) 1.75 fe(t-36) 1.76

7 SST-NOAA(t-19) 1.24 fe(t-22) 1.39 SST-NOAA(t-2) 1.75

8 SST NIÑO 3.4(t-22) 1.15 TI(t-8) 1.33 SST-NOAA(t-26) 1.53

9 TI(t-21) 1.05 TI(t-20) 1.17 SST-NOAA(t-62) 1.46

10 fe(t-12) 1.02 MSL(t-17) 1.16 fe(t-24) 1.31

11 fe(t-11) 1.12 SST NIÑO 3.4(t-46) 0.95

12 NIÑO 3.4(t-3) 1.02

Median 1.36 1.57 1.76

Average of the ratios between the network error without the input variable and the original error (see text) for the
best models. Ranking and mean ratio are shown. Bold indicates higher-than-median ratio

Table 5 Anchovy, common
sardine, and jack mackerel
artificial neural networks (ANN)
models (phase 1) architecture and
accuracy measures (error index)

Error index

Species Architecture N Parameters r2 RMS %SEP E PI

Anchovy 10:9:1 9 99 0.90 7275 28.06 0.89 0.92

Common sardine 12:12:1 12 156 0.96 10,039 22.20 0.96 0.96

Jack mackerel 11:13:1 13 156 0.88 39,790 34.75 0.88 0.89

Presented are the values of the best model for each hidden neuronal architecture following the external validation
(EV)
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column, the distribution of nutrients, and the food, diet, and
consumption of small pelagic species (Cubillos et al. 2001).
However, according to Cubillos and Arcos (2002), sea surface
temperatures and upwelling indexes (such as ET and TI) have
high negative relationships with common sardine recruitment,
while common sardine recruitment has a negative relationship
with anchovy recruitment. Gomez et al. (2012) also showed
that coastal chlorophyll, upwelling intensity, and SST anoma-
lies from the NIÑO 3.4 region could potentially help to predict
common sardine recruitment. The latter could be considered
to be an improvement for future analysis.

The MSL was above the median ratio (Table 6) and there-
fore should have been included in the anchovy and sardine
reduced ANN models. However, this variable was discarded
because future simulations were not available, climate change
forecasts are mainly associated with variations in temperature,
and MSL is mainly associated with the third component (or
factor) in the PCA, which, according to the eigenvalues, rep-
resents a lower percentage of the total variance (Table 3).

Yáñez et al. (2010) fit ANN models to predict the monthly
abundance of anchovy and common sardine in northern Chile
using the input variables fe and SST as well as ET and SOI,
which were not selected in the present study. The jack mack-
erel landing models, which included AAO, considered the
possible forcing effects from the south and the extreme south,
but the inclusion of this variable was not significant.

Variables with close-to-one ratios in the sensitivity analysis
did not have an important effect on the ANN models. The
variables selected in phase 2, including fe and SST-NOAA,
whose ratios were above the median (Table 6), were sufficient
to fit the models (Table 7) and achieved a similar predictive
capacity compared with the models generated in phase 1
(Table 5). These simplified models were carried out for the
2015–2065 landings projection based on the A2 climate
change scenarios from the IPCC. With these scenarios, the
estimated SST changes for anchovy and sardine fishing areas
and jack mackerel fishing areas showed increases of 0.58 and
2.36 °C, respectively. According to the IPCC (2013), central-
southern Chile temperatures will show an increase of 0.7–
3.5 °C by 2100.

Gutiérrez-Estrada et al. (2007, 2009) and Yáñez et al.
(2010) related the biological processes of anchovy and com-
mon sardine to landings with time-lagged environmental var-
iables. Similar results were obtained for anchovy in this paper.
For SST-NOAA, the time lags of −2, −7, −14, and −19months
for anchovy and −1, −6, −13, and −18 months for common
sardine could possibly imply two different effects, one of
which is associated with recruitment and the other is
associated with distribution. Braun et al. (1995) and Castillo
et al. (2002) indicated that anchovy recruitment occurs at 5–
7 months, whereas temperatures at 2–3 months before hatch-
ing affect fertility of clupeiform species (Winters et al. 1993;

Fig. 6 Best anchovy artificial neural network (ANN) prediction model (phase 2). Scatter plot between observed and estimated jack mackerel landings
for external validation (EV)

Table 7 Anchovy, common
sardine, and jack mackerel
artificial neural networks (ANN)
models (phase 2) architecture and
accuracy measures (error index)

Error index

Species Architecture N Parameters r2 RMS %SEP E PI

Anchovy 4:10:1 10 50 0.87 10,187 42.78 0.88 0.89

Common sardine 5:3:1 3 18 0.92 12,716 32.80 0.88 0.

Mackerel 6:10:1 10 70 0.88 40,373 33.20 0.88 0.83

Presented are the values of the best model for each hidden neuronal architecture following the external validation
(EV)
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Tanasichuk andWare 1987). For common sardine, the recruit-
ment occurs at 11–12 months (Castillo et al. 2000).

Pelagic fish depend on physiological thermoregulation pro-
cesses. Anchovy and common sardine are stenothermic spe-
cies (i.e., capable of living or surviving only within a narrow
temperature range) and have been reported to spawn in a wide
range of upwelling conditions, particularly in weaker and
stronger ones. Jack mackerel presents a high plasticity in
terms of hydrological conditions such as temperature and
can adapt to most of the water masses inside its limitations
and preferences; however, this species is usually encountered
in subtropical waters (Bertrand et al. 2006). SST is considered
a proxy of ecosystem variability (Yáñez et al. 2008), which
indicates changes in primary productivity, food, fertility, egg
and larval survival due to upwelling turbulence, and, conse-
quently, in recruitment and landings. Furthermore, the proba-
bility of catching certain species is affected by trapped waves
on the coast, which increase MSL and deepen the thermocline
when passing through fishing zones, leading to a lower

availability of small pelagic species (Yáñez et al. 2008;
Parada et al. 2013). For anchovy, recruitment-related effects
could affect the landings in lags greater than 6 months and for
common sardine in lags greater than 12months; similarly, lags
of less than 6 months for anchovy and less than 12 months for
common sardine are associated with distribution changes
(Yáñez et al. 2010).

For jackmackerel, the models considered the yearly fishing
efforts and the fishing efforts delayed by 12, 24, and
36 months, as these variables affect both resources and future
catches. Significant time delays in SST-NOAA show a strong
environment/resource correlation (Table 6), which is mainly
associated with recruitment because the most significant clas-
ses in the jack mackerel landings are those of 4–9 years with
variations over time (Naranjo et al. 2015; SUBPESCA 2012).
Since the mid-1970s, jack mackerel landings have increased
considerably in the coastal zone due to higher availability and
a notable increase in fishing effort. This increase in fishing
effort is related to the technological development of the fleet,

Fig. 8 Best jack mackerel artificial neural network (ANN) prediction model (phase 2). Scatter plot between observed and estimated jack mackerel
landings for external validation (EV)

Fig. 7 Best common sardine artificial neural network (ANN) prediction model (phase 2). Scatter plot between observed and estimated jack mackerel
landings for external validation (EV)
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which added boats with storage capacities up to 2200 m3 in
2000, and a level of autonomy that allows them to go farther
offshore beyond the exclusive economic zone (Aranís et al.
2012). The displacement of jack mackerel towards more oce-
anic zones increases the duration of fishing journeys (6–
7 days) and the number of casts per trip (six or more), thus
leading to higher fishing effort to maintain performance.

There is evidence that increases in fishing effort are associ-
ated with interdecadal environmental changes with a warmer
regime change from 1976 to the 1990s (Yáñez et al. 1992;
Yañez 1998). These temporal correlations are also shown in a
spatial scale, particularly between the distribution of pelagic
resources and SST (Barbieri et al. 1995; Maravelias and Reid
1995; Yáñez et al. 1996), which is consistent with the variables
selected in the present ANN modeling. Using data from 1973
to 2008, Yáñez et al. (2014) evaluated jack mackerel fishery
variability through global production models that account for
the abundance index of catch per unit effort (CPUE) and for the
level of catches using variations in SST and fishing effort. One
of these models, which considered only fishing effort, achieved

a correlation of only 32 % but would have achieved a stronger
correlation (r2 = 0.89) by incorporating SST.

According to the sensitivity analysis of the best validated
models, the most influential variables were fe and SST-
NOAA, implying a dependence on anthropogenic and envi-
ronmental effects. A great effort was carried out to reduce-
select the best combination of input variables. The most im-
portant variable for the three models (anchovy, common sar-
dine, and jack mackerel) corresponded to fe(t-0), which seems
obvious because the fishing effort is significantly and linearly
correlated with landings; however, because these models are
used for simulation under different fishing efforts and climate
change scenarios, the predictive capacity of the ANN models
is not needed, as they work as stimulus-response types of
models with no time lags between fishing effort (stimulus)
and landings (response). When the variables were reduced to
include only fe and SST-NOAA in the models, the fit lost
nearly all predictive capacity, especially for the jack mackerel.

The sensitivity analysis clearly showed the importance of
fe in explaining the landings of the fish species (Table 6).

Fig. 9 Anchovy landings projections from 2015 to 2065 and for each fishing effort scenarios: 2010–2012 average, average + 50%, and average − 50%

Table 8 Change in sea surface
temperature (SST) from 2015 to
2065 in the anchovy, common
sardine, and jack mackerel fishing
areas

Scenario Method Anchovy-common sardine Jack mackerel

A2 Start and end of lineal adjustment +1.26 °C +1.2 °C

Future SSTs were obtained from the A2 climate change scenario of high future CO2 emission
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Fig. 10 Common sardine landings projections from 2015 to 2065 and for each fishing effort scenarios: 2010–2012 average, average + 50 %, and
average − 50 %

Fig. 11 Jack mackerel landings projections from 2015 to 2065 and for each fishing effort scenarios: 2010–2012 average, average + 50 %, and
average − 50 %
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However, the fe averages over the last 3 years were main-
tained as constants in the predictions to estimate the net effect
of CC on future landings of the resources. Thus, by 2065,
anchovy and sardine show less pronounced trends than jack
mackerel, though the latter shows higher variability. Under the
A2 scenario and using average fe, anchovy and sardine land-
ings will decrease by 4 and 1 %, respectively; jack mackerel
landings will increase by 13 %. Considering average fe, the
three species will vary by nomore than 7%. It should be noted
that the temperature range in which pelagic species in central-
southern Chile develop is wider (14 to 23 °C) than that shown
in this study as an effect of CC on SST (Yáñez 1998; Bertrand
et al. 2008, 2011; Brochier et al. 2013). Based on predictions
using temperature and scaled primary productivity in bio-
chemical and ecological models for different exclusive eco-
nomic zones, including the Humboldt Current System (HCS),
Merino et al. (2012) estimated a decrease of 3 % in pelagic
fish catches in Chile by 2050. However, Falvey and Garreaud
(2009) forecast a decrease in SST, which may imply increases
in anchovy landings in northern Chile (Yáñez et al. 2014).

Based on SST (A2) and fishing effort scenarios, anchovy
and common sardine landings will decrease, and jack mack-
erel landings will slightly increase (Table 9). However, no
significant differences are shown when comparing estimated
landings for the three fishing effort scenarios. Moreover, the
starting values for landing projections (2010 to 2012 aver-
ages) were maintained as constants, while the SST projections
varied according to the estimated trend.

The results of these simulations provide important infor-
mation about the possible changes in pelagic fishing operation
landings in central-southern Chile in the face of climate
change. Yáñez et al. (2008) suggested that anchovy and
common sardine landings in northern Chile are indicators of
the species abundance given that they show fluctuations that
may be directly related to the abundance of the resource.
Moreover, the positive projections of landings to 2065,
particularly for jack mackerel, could be related to changes in
distribution, which favors availability and catchability. Silva
et al. (2015) found the same relationship in which a climate
change projection favors availability and catchability for
swordfish (Xiphias gladius) distributed to the south and near
the coast.

The influence of climate change on resource abundance
(before spawning, in early life stages, in pre-recruitment and
post-recruitment) cannot be ruled out. In this regard, the key
environmental variables, biological mechanisms involved,
time period of the effects, production lags, and types and signs
(positive + or negative −) of effects on abundance and/or
availability should be identified. Moreover, possible changes
in biodiversity due to climate change and its effects on the
biological interactions (e.g., food, predation, and competition)
that influence these fisheries resources should also be dimen-
sioned. Also to be considered are possibilities of adapting the
different resources depending on whether the changes are tol-
erable or intolerable.

The approach used by this study consisted of modeling
the temporal data (time series), which are restricted to a
specific area. To improve the quality of living marine re-
source assessments and forecasts, spatial–temporal models
formalizing variation over time and across space and
adapted for climate change applications can be used. The
main spatial–temporal models used to make predictions
about living marine resources under climate change include
ecosystem-based approaches, such as habitat suitability or
bioclimate envelope models (Cheung et al. 2009; Silva
et al. 2015), ecotrophic models (Howard et al. 2008),
individual-based models (IBM) (Brochier et al. 2013),
end-to-end models that combine climate, planktonic, fish-
ery, and socioeconomic models (Barange et al. 2010), and
species distribution models such as MAXENT (Jones et al.
2012). Spatial–temporal models use various statistical and
mathematical methods to predict the effects of climate
change on living marine resources. These methods include
predictive GAMs (Willis-Norton et al. 2015), GAM-GLM
(Silva et al. 2015), fuzzy logic (Cheung et al. 2008), and a
machine learning, maximum entropy approach to species
distribution modeling (Gormley et al. 2015).

The results of the present study open the door for further
discussion regarding the need for comparing modeling tech-
niques besides ANN (e.g., GAM, ARIMA, ARMAX, fuzzy
logic, etc.) and the limitations of ANN models, especially
since it is still unclear whether a network trained with data
from the present climate is still applicable in a different cli-
mate scenario due to overtraining of the network. There also
exists a need for improved scaling of the variables incorporat-
ed into the simulations as well as the incorporation of new
variables, such as chlorophyll and salinity. Thus, consider-
ations of regional oceanographic models and the incorporation
of a spatial component are fundamental to the development of
this type of research (Cheung et al. 2010; Merino et al. 2012;
Silva et al. 2015). However, a finer resolution of global cli-
mate models such as the NCAR-CCSM3 are expected to im-
prove climate-based projections and enhance their applicabil-
ity to marine resources and related activities. Finally, more
integrative and complex conceptual models that consider

Table 9 Change in anchovy, common sardine, and jack mackerel
landings projections from 2015 to 2065 and for each fishing effort
scenarios (+50 %, mean, −50 %)

Fishing effort scenarios

+50 % Mean −50 %
Anchovy +3 % −1 % −8 %

Common sardine −6 % −4 % −2 %

Jack mackerel +9 % +13 % +17 %
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oceanographic-biophysical, physiological, environmental-re-
source, and interspecies processes must be implemented.
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