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Abstract Biogeochemical cycles associated with mesoscale
eddies in the South China Sea (SCS) were investigated. The
study was based on a coupled physical–biogeochemical
Pacific Ocean model (Regional Ocean Model System–
Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE)
simulation for the period from 1991 to 2008. A total of 568
mesoscale eddies with lifetime longer than 30 days were used
in the analysis. Composite analysis revealed that the cyclonic
eddies were associated with abundance of nutrients, phyto-
plankton, and zooplankton while the anticyclonic eddies de-
pressed biogeochemical cycles, which are generally con-
trolled by the eddy pumping mechanism. In addition, diatoms
were dominant in phytoplankton species due to the abundance
of silicate. Dipole structures of vertical fluxes with net upward
motion in cyclonic eddies and net downward motion in

anticyclonic eddies were revealed. During the lifetime of an
eddy, the evolutions of physical, biological, and chemical
structures were not linearly coupled at the eddy core where
plankton grew, and composition of the community depended
not only on the physical and chemical processes but also on
the adjustments by the predator–prey relationship.

Keywords Mesoscale eddy . Biogeochemical cycles . South
China Sea . Numerical model

1 Introduction

Mesoscale eddies are ubiquitous in world oceans. Comparing
rotational speed with translational speed, most mesoscale
eddies are found to be nonlinear in nature (Chelton et al.
2011b). Such nonlinearity implies that mesoscale eddies keep
a coherent structure with fluid trapped in the eddy interior
when propagating. Studies revealed that mesoscale eddies
make great contributions to heat, salt, and mass transfers
(Jayne and Marotzke 2002; Qiu and Chen 2005; Volkov
et al. 2008; Dong et al. 2014; Zhang et al. 2014).

Nonlinear mesoscale eddies are also known to influence
marine ecosystems. Biogeochemical cycles related to meso-
scale eddy depend not only on the initial biogeochemical con-
ditions of the water mass trapped inside the mesoscale eddy
but also on nutrient supply. Several mechanisms have been
proposed on how mesoscale eddies influence marine ecosys-
tems: (1) During the formation of a mesoscale eddy, a cyclonic
eddy shoals the isopycnal, which injects nutrients into the
euphotic zone; an anticyclonic eddy deepens the isopycnal,
which transports nutrients out of the euphotic zone in the
eddy’s interior. This mechanism is called eddy pumping
(Siegel et al. 1999, 2011). In the Sargasso Sea, upwelling in
cyclonic eddies was found to sustain an additional growth of
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phytoplankton that cannot be fuelled by entrainment and
diffusion-induced nutrient supply (McGillicuddy et al. 1998;
McGillicuddy et al. 1999; Siegel et al. 1999). (2) Interaction of
surface current and wind generates upwelling inside anticy-
clonic eddies and downwelling inside cyclonic eddies (Martin
and Richards 2001; McGillicuddy et al. 2008; Gaube et al.
2013). These processes are called eddy-induced Ekman
pumping (Siegel et al. 2011; Gaube et al. 2013). Upwelling
generated by surface current and wind interaction was ob-
served to cause phytoplankton blooms in anticyclonic eddies
in the South Indian Ocean and in mode-water eddies in the
subtropical Atlantic (McGillicuddy et al. 2007; McGillicuddy
et al. 2008; Gaube et al. 2013). (3) Horizontal advection due to
rotational velocities within an eddy results in meridional dis-
placements of gradients of biological variables, such as nutri-
ent and chlorophyll a (CHL). The advection of CHL due to
horizontal rotation inside an eddy is called eddy advection
(Siegel et al. 2008; Chelton et al. 2011a; Siegel et al. 2011).
(4) Submesoscale processes are also reported to influence bio-
geochemical processes greatly (Lima et al. 2002). Due to in-
stabilities, buoyancy loss or down-front wind, strong vertical
flux or horizontal transport occurs in the euphotic zone in
submesoscale processes (Thomas et al. 2013; Zhong and
Bracco 2013). The intensity of horizontal and vertical fluxes
can change the time that phytoplankton spend in the euphotic
layer; so, submesoscale eddies can change not only the prima-
ry production and export but also the composition of the spe-
cies (Lévy et al. 2012).

In the South China Sea (SCS), mesoscale eddies are ubiq-
uitous (Wang et al. 2003). Approximately 33 mesoscale
eddies appeared per year mainly in the northeast–southwest
zone from the west of the Luzon Strait to the east of Vietnam,
covering an area equivalent to 9.8 % of deep-sea area (water
depth greater than 1000 m) in the SCS (Xiu et al. 2010). West
of the Luzon Strait, due to fluctuations of the Kuroshio path-
way and strong monsoon, mesoscale eddy kinetic energy is
strong especially during the northeast monsoon (Chen et al.
2011; Nan et al. 2011). East of Vietnam, the dipole structure of
the wind stress combined with complex topography produces
high mesoscale eddy activities (Hwang and Chen 2000; Chen
et al. 2010).

Impacts of mesoscale eddies on biogeochemical cycles and
ecological systems in the SCS have been widely recognized.
Previous studies have examined possible mechanisms based
on which mesoscale eddies influence biogeochemical
processes. A cyclonic eddy and two anticyclonic eddies
were observed during cruises and studied by Chen et al.
(2007) and Huang et al. (2010). Responses of ecological com-
munities in both cyclonic and anticyclonic eddies were also
studied using a model simulation (Xiu and Chai 2011).
Enhanced primary productions in cyclonic eddies and defi-
cient nutrients in anticyclonic eddies found by these studies
suggested that eddy pumping may be a key factor in

biogeochemical cycles. Composite analysis of sea surface
CHL anomaly based on satellite data revealed that eddy-
induced advection of CHL contributed to the propagation of
CHL in the northern SCS where phytoplankton blooms were
usually observed in winter (Wang et al. 2010; Liu et al. 2013).
Other studies found that eddy-induced Ekman pumping could
explain high CHL concentration in the interior of anticyclonic
eddies in the SCS (Li et al. 2014). A 234Th-based particle
export study demonstrated that submesoscale processes com-
bined with horizontal advection might enhance particle ex-
ports in anticyclonic eddy cores in the SCS (Zhou et al. 2013).

Since different physical processes were shown to influence
the biogeochemical cycles of mesoscale eddies in the SCS, an
analysis on general biogeochemical cycles of mesoscale
eddies using a statistical method is necessary. However, pre-
vious studies about biogeochemical effects of mesoscale
eddies in the SCS did not investigate general biogeochemical
cycles in the eddy interior. Responses of biogeochemical pro-
cesses inside eddies with the same polarity may be different if
these eddies are controlled by different physical processes. For
instance, eddy pumping in anticyclonic eddies transports
nutrient-depleted water downward and suppresses the growth
of phytoplankton, while eddy-induced Ekman pumping in
anticyclonic eddies induces upward nutrient flux and contrib-
utes to phytoplankton growth (McGillicuddy et al. 1999; Ning
et al. 2008; Gaube et al. 2013). In situ eddy observations
revealed distributions of nutrients, phytoplankton community,
and primary production in some eddies (Chen et al. 2007;
Huang et al. 2010). But, these observations were based on
limited sampling stations and therefore cannot reflect general
biogeochemical cycles of mesoscale eddies in the SCS.
Satellite-based ocean color data resolvedmesoscale variability
of sea surface CHL in time and space (Doney et al. 2003).
However, studies based on satellite data cannot be used to
investigate variability of nutrient distribution and evolution
of biology communities at different water depths in the eddy
interior. In fact, due to nutrient supply and predator–prey re-
lationship, phytoplankton and zooplankton species were ob-
served to change in time (Chai et al. 2002; Dugdale et al.
2002; Chai et al. 2007). Numerical simulations nowadays
are capable of simulating physical and biological processes
of mesoscale eddies over a long time period (Xiu et al.
2010, 2012; Xiu and Chai 2011). The goal of this study is to
analyze general biogeochemical cycles of mesoscale eddies
using a statistical method based on a coupled physical–bio-
logical ocean model simulation.

In this paper, we statistically analyze the biogeochemical
cycles in the interior of mesoscale eddies in the SCS based on
17 years of output from a 3-D physical–biological coupled
model simulation. We describe the data used to track eddies
and the method used in the statistical analysis in Section 2. We
focus on the influence of mesoscale eddies in sea surface
CHL, biogeochemical cycles, and the evolution of ecological
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communities, and discuss the mechanisms of mesoscale
eddies on the biogeochemical cycles in Section 3. The find-
ings of this study are summarized in Section 4.

2 Data and methods

2.1 Satellite data

In order to detect and track mesoscale eddies based on their
sea surface height (SSH) signatures in satellite data, the
merged sea level anomaly (SLA) field covering the study area
from 5° N to 26° N and from 99° E to 120° E was obtained
from the Archiving, Validation and Interpretation of Satellite
Data in Oceanography (AVISO). The data is at 7-day interval
on a grid of 1/4° by 1/4°. We use the data during a period from
Jan. 1, 1998 to Dec. 31, 2007 in this study.

Daily sea surface CHL concentration from Jan. 1, 1998 to
Dec. 31, 2007 was obtained from the National Aeronautic and
Space Administration (NASA). The data was based on the
measurements of Sea-Viewing Wide Field of View Sensor
(SeaWiFS) that began its operation on Sep. 18, 1997 and
stopped data collection on Dec. 11, 2010. The original grid
resolution of the data is 9 km. Since the CHL concentration is
derived from the ocean color, data at a location covered by
clouds is not available. In order to reduce data gaps due to
clouds, the daily CHL was log10-transformed and binned into
a grid of 1/4° by 1/4°. After that, the time series of data at each
grid point were low-pass filtered with a Loess window span of
30 days and averaged over 7-day interval. The regridded CHL
data was then inverse-transformed using the inverse function
of log10 (Gaube et al. 2013). The spatial resolutions of satellite
SLA and CHL fields are now both 1/4° by 1/4°. In order to
analyze these datasets using the same resolution of the model
output, the satellite SLA and CHL were regridded again, to a
grid with the resolution of 1/8° by 1/8°.

2.2 A coupled 3-D physical and biogeochemical model

In order to investigate the biogeochemical cycles in the inte-
rior of mesoscale eddies of the SCS, output from a Pacific
basin physical–biogeochemical model simulation is analyzed
in this study. The physical model is based on the Regional
Ocean Model System (ROMS), which discretizes the primary
equations over realistic topography and boundary using a
stretched terrain-following coordinate (S coordinate system)
in the vertical direction and orthogonal curvilinear coordinates
on a staggered Arakawa C-grid in the horizontal direction
(Song and Haidvogel 1994; Shchepetkin and McWilliams
2003, 2005). The model domain for the Pacific Ocean covers
45° S to 65° N and 99° E to 70° W. The resolution is 1/8° by
1/8° horizontally and 30 layers in the vertical. The model is
first forced by climatological monthly heat and wind from the

National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanalysis
(Kalnay et al. 1996). The model is then run from 1991 to 2008
with daily heat fluxes, evaporation, and precipitation from the
NCEP/NCAR reanalysis and daily sea surface winds from the
NOAA multiple-satellite blended sea surface winds (Zhang
et al. 2006). The output from both physical and biogeochem-
ical models in the SCS (5° N to 26° N, 99° E to 120° E) is used
to study the biogeochemical cycles inside mesoscale eddies.
The vertical coordinate in the ROMS-Carbon, Silicate, and
Nitrogen Ecosystem (CoSiNE) is also the S coordinate sys-
tem. In our study, the vertical resolution between 0 and 200 m
is uniformwith a grid interval of 10m. The model output from
the ROMS-CoSiNE was interpolated into this vertical resolu-
tion before analysis.

The biogeochemical part of the model is based on the
Carbon, Silicate, and Nitrogen Ecosystem (CoSiNE) model
considering dissolved oxygen (O2), carbon dioxide (CO2),
silicate (SiO4), nitrate (NO3), ammonium (NH4), pico-
phytoplankton (S1), diatom (S2), micro-zooplankton (ZZ1),
meso-zooplankton (ZZ2), two detritus pools associated with
ZZ1 and ZZ2, detrital nitrogen (DD), and detrital silicon
(DDSi) (Chai et al. 2002; Dugdale et al. 2002). S1 represents
phytoplankton in small size (<10 μm) that is grazed by Z1
(Chavez et al. 1991). S2 represents diatom (>10 μm) whose
growth is limited by nitrogen and silicon bioavailability
(Coale et al. 1996). The CoSiNE is initialized with nutrients
from the World Ocean Atlas (WOA) 2001 and is run parallel
with the physical model at every time step (Chai et al. 2007).
The outputs of the model were averaged and saved every
3 days.

The model results have been used to study physical–bio-
geochemical processes in the Pacific Ocean. An oceanic car-
bon cycle study in the tropical–subtropical Pacific Ocean
using a coarse grid revealed that the model can simulate the
distribution of SST and the temporal variation of dissolve
inorganic carbon (Fujii et al. 2009). The model output was
used to study the dynamics of physical–biological processes
in coastal and offshore area of the central California current
system (Guo et al. 2014). Themodel was also used in studying
the biogeochemical processes and eddy activities in the SCS.
An eddy census study revealed that the model is capable of
simulating the eddy distribution and inter-annual variability of
eddy genesis number and eddy kinetic energy in the SCS (Xiu
et al. 2010). The model was also used to study the temporal
biogeochemical variance in cyclonic and anticyclonic eddies
of the SCS (Xiu and Chai 2011). A study of biological re-
sponses to the jet off Vietnam revealed that the model can
simulate the physical and biogeochemical processes east of
Vietnam (Chen et al. 2014). Studies on biological productivity
showed that the model reproduced the vertical distribution and
annual variability of nutrients, CHL, and primary production
(Chai et al. 2009; Liu and Chai 2009; Xiu et al. 2012). All
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these studies demonstrated that the model simulation can be
used to study the biogeochemical processes of mesoscale
eddies in the SCS.

In summer, the area off the northwest of Luzon Island is
mainly occupied by anticyclonic eddies, and concentrations of
CHL are observed to be low (Yuan et al. 2007). Eddy pairs
occur east of Vietnam at this season as well (Chen et al. 2010).
Due to upwelling and offshore transport by a jet, enhanced
concentrations of CHL were frequently observed east of
Vietnam (Zhao and Tang 2007; Chen et al. 2014). In order
to validate the model, we compared the spatial distribution of
climatological SLA and CHL in August between model out-
put and satellite data (Fig. 1). Signals of the anticyclonic
eddies off the northwest of Luzon Island and of Vietnam di-
pole east of Vietnam can be seen in both satellite and model
results (Fig. 1a, b). Comparing with the satellite result, the
modeled SLA off the northwest of Luzon Island is weaker
while that east of Vietnam is stronger. For CHL, although
the simulated CHL in oligotrophic area is lower than the sat-
ellite results, the model is capable of reproducing phytoplank-
ton blooms east of Vietnam and low CHL concentrations off
the northeast of Luzon Island (Fig. 1c, d).

We also examined the seasonal and inter-annual variations
of model simulation. The time series of SLA averaged over
the deep area where water depth is greater than 1000 m show
that the model simulation agrees well with the satellite data in
terms of seasonal and inter-annual variations, with a correla-
tion coefficient of 0.80 (Fig. 2). The high correlation can be

clearly seen in the comparison of sea surface CHL averaged
over deep area as well (Fig. 3). Although the modeled CHL
tends to overestimate the seasonal variability, the correlation
between model and satellite is significantly high with a corre-
lation coefficient of 0.87. The discrepancy is probably due to
that one set of model parameters being insufficient to cover
the entire SCS including diverse biological provinces.

2.3 Eddy tracking

The Okubo–Weiss method is widely used to detect mesoscale
eddies (Okubo 1970; Weiss 1991; Frenger et al. 2013).
However, its criterion based on strain and vorticity of the eddy
to identify eddy core has been found to underestimate eddy-
occupied area (Basdevant and Philipovitch 1994). In this
study, the procedure based on the Okubo–Weiss with an im-
provement in determining eddy core was used to identify and
track mesoscale eddies. Detail of this procedure can be found
in Xiu et al. (2010). Mesoscale eddies were identified and
tracked from the SLA field of both satellite data and model
output. Since the SLA is not reliable in shallow waters, we
only considered SLA in the area whose water depth is greater
than 1000m. An individual eddy identified at each time step is
referred as eddy realization. In the coordinate grid, the grid
points in the interior of each eddy realization are marked as
eddy points. The position of eddy realization centroid is spec-
ified by averaging the locations of all eddy points belonging to
this eddy in the zonal and meridional coordinate, respectively.
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Zonal scale (LZ) and meridional scale (LM) of each eddy real-
ization are defined as the difference of maximum and
minimum coordinates of eddy points belonging to this eddy
realization in the zonal and meridional coordinate,
respectively. Eddy radius R is then defined as half of the
averaged LZ and LM. In the procedure, eddy realizations
with radius less than 45 km are all discarded. After
identifying all possible eddy realizations, eddy trajectories
are specified using a connectivity algorithm described in Xiu
et al. (2010) so that eddy lifetime can be calculated. In our
study, eddies with lifetime less than 28 days in satellite SLA
field or less than 30 days in model SLA are also discarded.

2.4 Making composite

To investigate general biogeochemical cycles of meso-
scale eddies in the SCS, the mesoscale eddies tracked in
both satellite and model SLA fields are first normalized in
space so that they can be used in composite analysis
(Chelton et al. 2011a; Gaube et al. 2013). The radii of
these eddies range from 45 km to more than 200 km
(Fig. 4), with an averaged radius of 89.22 km in the mod-
el and 86.35 km in the satellite data. In order to normalize
the eddies in space, snapshots in weekly or 3-day time
step along the eddy trajectories were extracted following
the steps below:

1. At each time step along the trajectory of an eddy, taking
the eddy realization centroid as the coordinate origin, a
rectangular area is determined from −2R to 2R in both
zonal and meridional directions, where R is the radius.
The eddy realization area is defined as a circular area that
is based on the coordinate origin and the radius. So, this

rectangular area includes the eddy and its surrounding
water area.

2. The spatial scale (−2R to 2R) in both zonal and meridional
directions is then projected into (−2 to 2) so that the rect-
angular area is normalized as a box that has a range of (−2
to 2) in both zonal and meridional directions.

3. The rectangular area obtained in step 2 is then interpolated
into a uniform grid that ranges from −2 to 2 and has a grid
size of 0.1 in both x and y directions.

4. Steps 1–3 are conducted for every time step along the
eddy trajectory, and snapshots at each time step are ex-
tracted for this eddy track.

5. Since the snapshots of all eddies have the same uniform
grid, they can be composited to obtain the averaged phys-
ical and biogeochemical variables.

2.5 Time normalizing

By analyzing the variation of plankton (S1, S2, ZZ1, and ZZ2)
and detritus (DD and DDSi) biomass during eddy lifetime,
evolutions of biological community in the interior of meso-
scale eddies can be investigated. As Fig. 4 (right) shows, eddy
lifetime L ranges from 30 to 162 days. If we want to analyze
the general evolution of biological communities among sev-
eral eddies, each eddy lifetime should be normalized first so
that time series of plankton and detritus biomass following
eddy lifetime can be constructed from different eddies. The
normalization procedure is as follows:

1. At each grid point, integrated biomasses of plankton and
detritus from 0 to 100 m are calculated. For each eddy
realization, integrated biomass is averaged at each grid
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−20

0

20

AVISO MODEL

R=0.8021
Fig. 2 Time series of SLA
averaged over area of the SCS
whose water depth is greater than
1000m based onmodel output (in
red) and AVISO data (in blue)
from Nov. 11, 1992 to Dec. 24,
2008
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Fig. 3 Time series of sea surface
CHL averaged over area of the
SCS where water depth is greater
than 1000 m based on model
output (in red) and SeaWiFS data
(in blue) from Jan. 1, 1998 to
Dec. 31, 2007
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point that is in the interior of the eddy realization.
Following eddy lifetime, the time series of integrated bio-
mass for each eddy are obtained.

2. The time grid for the time series of integrated biomass
of each eddy ranges from 0 to L with an interval of
3 days. The value at each time step of the time grid is
divided by L so that the normalized time grid is from
0 to 1.

3. A uniform time grid ranging from 0 to 1 with a time
interval of 0.05 is then created. Integrated biomass of
plankton and detritus as a function of time grid described
in step 2 is interpolated into this uniform time grid.

Steps 1–3 were performed for all the eddies used in this
study to analyze the evolution of biological communities.
After that, time series of composite averaged biomass are con-
structed from these eddies.

3 Results

3.1 Satellite and model comparison

Using the procedure described in Section 2.3, 329 cyclonic
eddies with 5678 snapshots and 239 anticyclonic eddies with
4586 snapshots were tracked in the model SLA field over
18 years. Similarly, 1237 snapshots from 173 cyclonic eddies
and 1159 snapshots from 146 anticyclonic eddies were obtain-
ed in the satellite SLA field from 1998 to 2007. On average,
the number of eddies was 31.6/year in the model SLA field
and was 31.9/year in the satellite SLA field; they are close to
32.9/year in Xiu et al. (2010).

In order to assess whether the model is able to simulate
eddies in the SCS, comparison of eddy characteristics be-
tween model and satellite data is done. Histograms of
eddy lifetime and radius over 1998–2007 for both the
model and satellite data are shown in Fig. 4. The model
is capable of reproducing the most frequently occurred
eddy scales, which range from 60 to 80 km (see
Fig. 4a). The mean radius in the model is 89.22 km,
which is greater than 86.35 km in the satellite data, owing
to an underestimation of distribution for the eddies with

radius in the range of 60 km<R<80 km and to an over-
estimation of distribution for eddies with radius in the
range of 120 km<R<150 km. The average eddy lifetime
in the model is 54.5 days, which is close to 50.2 days of
the satellite data. To evaluate eddy spatial distribution, the
number of eddy realization centroids in each 1°×1° bin
over the period of 1998–2007 is counted, and their ratio
to total eddy centroids counted over the entire SCS is
shown in Fig. 5. Comparing with the satellite result, the
model is capable of simulating the spatial distribution of
eddy centroids. High frequency of eddy centroid occur-
rence west of the Luzon Strait and the area off southwest
of Luzon Island is reproduced in the model. The high
eddy activity to the west of the Luzon Strait is due to a
combination of wind (Yang and Liu 2003), eddy shedding
from the Kuroshio (Jia and Liu 2004), and instability of
the Kuroshio path (Nan et al. 2011). The model, however,
overestimates the eddy centroid occurrence along the
northern continental slope. The model also underestimates
the distribution of eddy centroids in the area off northwest
of Luzon Island and off Vietnam. A previous study re-
vealed that the interaction between wind-driven coastal
currents and shelf topography in the nearshore waters
plays a crucial role in eddy generation (Gan and Qu
2008). The underestimation of eddy activities is likely
due to topography smoothing in our model setup.

In summary, the average numbers of mesoscale eddies
tracked in both model and satellite fields are found to be close
to those in previous studies (Wang et al. 2003; Xiu et al. 2010;
Chen et al. 2011). Distribution of eddy centroid, and censuses
of eddy lifetime and radius in the model are also consistent
with the satellite results. We conclude that the ROMS-
CoSiNE Pacific model is able to simulate the activity of me-
soscale eddies in the SCS.

In the SCS, eddy advection, eddy pumping, and eddy-
induced Ekman pumping greatly influence distribution of
sea surface CHL concentration based on satellite observations
(Liu et al. 2013; Chen et al. 2014; Li et al. 2014). Sea surface
CHL in the eddy interior can be different among eddies if
biogeochemical cycles are controlled by different physical
processes. In order to study the main contribution of meso-
scale eddies on CHL, composite averages of SLA and CHL
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are constructed from thousands of normalized eddy snapshots
described in Section 2.3.

Composite averages of SLA are shown in Fig. 6. The shape
of composite SLA is centrosymmetric despite that the zonal
scale LZ and meridional scale LM for each eddy realization are
usually not the same. Here, eddy amplitude is defined as the
difference of SLA in the centroid and edge of the constructed
eddy. In the satellite data, the amplitude for cyclonic eddies is
7.4 cm and that for anticyclonic eddies is 7.9 cm. The

amplitudes from the satellite data are close to the global mean
amplitude of 8 cm (Chelton et al. 2011b). In the model results,
the amplitude is 10.6 cm for cyclonic eddies and 10.9 cm for
anticyclonic eddies. So, our model overestimates the ampli-
tudes of eddies in the SCS.

Composite averages of CHL are shown in Fig. 7. In the
satellite results, background northwest–southeastward CHL
gradients with maximum CHL of 0.18 mg/m3 at the northeast
corner are shown clearly in panels a and b. Although the
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mesoscale eddies were identified in the deep-sea area (water
depth >1000 m), snapshots for each eddy realization have
double length of eddy radius in the zonal and meridional di-
rections. Therefore, high CHL values over the northern conti-
nental shelf and the coastal area off Vietnam appear at the
northwest corner of these panels. The average CHL at eddy-
occupied area is 0.14 mg/m3 for the cyclonic eddies and
0.12 mg/m3 for the anticyclonic eddies. Comparing CHL
values at eddy cores with background CHL at the northeast
edge, high CHL is associated with the cyclonic eddies while
low CHL is associated with the anticyclonic eddies. A mean-
der of CHL distribution around the cyclonic eddy core indi-
cates eddy advection of CHL.

The background CHL gradients in the model are shown in
panels c and d, with the maximum value of 0.16 mg/m3.
Underestimation of CHL at the northwest corner is partly be-
cause our model does not consider river input and partly be-
cause the SeaWiFS data in the coastal area is unreliable (Liu
et al. 2002). High CHL at the cyclonic eddy core and lowCHL
at the anticyclonic eddy core can be seen in the model results
as well. The high CHL at the cyclonic core is consistent with
cruise observations (see Table 1). The average CHL at the core
is 0.14 mg/m3 for the cyclonic eddies and 0.076 mg/m3 for the
anticyclonic eddies. High CHL at the west edge of model-
based cyclonic eddy core indicates eddy advection of CHL
more clearly.

An interpretation for high CHL at the cyclonic eddy core
and low CHL at the anticyclonic eddy core is that eddy
pumping plays an important role on surface CHL distribution

of eddies (McGillicuddy et al. 1998, 1999; Siegel et al. 1999).
This interpretation has been tested statistically in biooptical
footprint studies (Chelton et al. 2011a; Siegel et al. 2011;
Liu et al. 2013). Horizontal advection of CHL by eddy rota-
tion was investigated in previous studies (Chelton et al. 2011a;
Siegel et al. 2011). In our study, high CHL at the west edge of
cyclonic-eddy-occupied area suggests that anticlockwise rota-
tion in the west part of an eddy advects high CHL from north-
west to west. A previous study showed that larger amplitude
results in higher rotational velocity (Chelton et al. 2011a).
Owing to overestimation of eddy amplitude, the advection
of CHL in the model results is stronger than that in the satellite
results.

3.2 Biogeochemical cycles

To investigate the main influence of mesoscale eddies in the
SCS on biogeochemical cycles, composite averages of nutri-
ents, phytoplankton, and zooplankton were constructed from
the 329 cyclonic eddies with 5678 snapshots and 239 anticy-
clonic eddies with 4586 snapshots detected from 1991 to
2008.

3.2.1 Nutrients

Composite averages of nitrate and silicate concentrations av-
eraged in the top 50 m for the cyclonic eddies are shown in
Fig. 8a, b. Black contours represent the composite SLA.
Comparing with the surrounding waters, concentrations of
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nutrients are high in eddy-occupied areas. Statistical result
suggests that cyclonic eddies enhance nutrients in the interior
of cyclonic eddies. The maximum concentrations are found to
be in the centroid, with values of 0.82 mmol N/m3 for nitrate
and 3.11 mmol Si/m3 for silicate. The abundance of nutrients
in the interior of a cyclonic eddy is consistent with a study
using cruise data in the SCS (see Table 1) (Chen et al. 2007).
The average concentration of silicate in the eddy interior was
about four times as that of nitrate, indicating that the fluid

inside the cyclonic eddy was silicate dominant. The phenom-
enon that concentration of silicate was higher than that of
nitrate was found in a previous study using cruise observations
(see Table 1) (Chen et al. 2007). Distribution of nutrients in the
background reflects a basin-scale northwest–southeast gradi-
ent since nutrients in the northern continental shelf and off
Vietnam are usually higher than those in the open ocean area.

In the case of the anticyclonic eddies, the background gra-
dient distribution of nutrients averaged in the top 50 m was

Table 1 Comparison of near-sea-
surface physical and biogeo-
chemical variables between mod-
el composite and Chen’s sam-
pling stations in Chen et al. (2007)

Variables Chen’s sampling observation Model composite

Eddy station SCS stations Center Periphery

Temperature (°C) 25.8 26.9 23.2 24.6

Salinity (psu) 34.49 34.36 34.48 34.38

NO3+NO2 (mmol N m−3) 0.107 0.014 0.82 0.59

SiO2 (mmol Si m−3) 2.43 1.89 3.11 2.82

CHL (mg m−3) 0.4 0.13 0.12 0.1

Picophytoplankton 216.89 (106 L−1) 183.9 (106 L−1) 0.052 mmol N/m3 0.045 mmol N/m3

Diatoms 2837 (cells L−1) 84 (cells L−1) 0.116 mmol N/m3 0.106 mmol N/m3

SCS South China Sea, CHL chlorophyll a
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also southeastward disregarding eddy-occupied areas (Fig. 8c
for nitrate and Fig. 8d for silicate). Although the concentra-
tions of silicate and nitrate were both low at the constructed
eddy core, their distributions were different. For nitrate, the
concentration decreased from 0.39 mmol N/m3 at the centroid
to 0.37 mmol N/m3 at the edge. However, considering the
entire eddy core, nitrate concentration is still significantly low-
er than that in surrounding waters. For silicate, the lowest
concentration was at the eddy centroid.

3.2.2 Phytoplankton

In this study, pico-phytoplankton (S1) and diatoms (S2) are
considered. In our model, pico-phytoplankton feeds on nitrate
and diatoms using both nitrate and silicate (Chai et al. 2002;
Dugdale et al. 2002). In the cyclonic eddies, as the nutrients in
the core are found to be more abundant compared to those in
the periphery water from the composites (Fig. 8), S1 and S2 in
the eddy core are expected to be higher than in the surround-
ing water. These results can be found from the composite of
phytoplankton concentration averaged in the top 50 m and
biomass integrated in the top 100 m. Figure 9a, b shows that
the concentrations of S1 and S2 in the eddy center are 0.052

and 0.116 mmol N/m3 and decrease to 0.045 and
0.106 mmol N/m3 at the edge, respectively. In cruise data,
the concentrations of S1 and S2 were abundant in the cold
eddy comparing with the surrounding water (see Table 1)
(Chen et al. 2007). In the model result, depth-integrated bio-
masses of S1 and S2 are higher in the core than those in the
periphery (Fig. 10). Biomass of S2 decreased from
13.27 mmol N/m2 in the centroid to 11.73 mmol N/m2 at the
edge. In S1 composite, the maximum biomass was a bit off the
eddy center, with a value of 3.51 mmol N/m2. Because of the
abundance of silicate (Fig. 8a, b), the ratio of S2 to total phy-
toplankton integrated in the euphotic zone was up to 70 % in
the eddy core (right panel in Fig. 10). Our study shows that
dominance of diatoms existed in the interior of mesoscale
eddies. Analogous abundance of diatoms in cold eddies was
observed in subtropical North Atlantic and Pacific. In their
research, Bibby and Moore (2010) found that the relative
abundance of silicate over nitrate determines the abundance
of diatoms in mesoscale eddies.

In the anticyclonic eddies, the composites of S1 (Fig. 9c)
and S2 (Fig. 9d) in the top 50 m show that the average con-
centrations of S1 and S2 in the core are 0.017 and
0.076 mmol N/m3. In the periphery area, the average
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concentrations of S1 and S2 are 0.02 and 0.08 mmol N/m3.
The concentrations of phytoplankton are notably lower in the
eddy core than those in the periphery. This result is consistent
with the model study of Xiu and Chai (2011). The concentra-
tion of diatoms increased from 0.074 mmol N/m3 at the edge
to 0.078 mmol N/m3 in the eddy center. This indicates that
some anticyclonic eddies might have induced upward nutrient
flux and caused increase of diatoms, but note that the increase
was only about 5 % from the edge to the core. Actually, given
the entire eddy core, diatom concentration was significantly
lower than that in surrounding waters.

3.2.3 Zooplankton

In the marine ecosystem, phytoplankton is a food source for
zooplankton. The growth of ZZ1 depends on S1, and that of
ZZ2 depends on S2 and ZZ1 (Chai et al. 2002; Dugdale et al.
2002). In order to study the influence of mesoscale eddies on
zooplankton, the composites of ZZ1 and ZZ2 averaged in the
top 50 m are constructed for both cyclonic and anticyclonic
eddies (Fig. 11). Since the concentrations of S1 and S2 were
high in the cyclonic cores, the concentrations of ZZ1 and ZZ2
were larger in the cyclonic eddy interior than in the periphery.
The concentrations of ZZ1 and ZZ2 increased gradually from
the edge with the values of 0.015 and 0.033 mmol N/m3 to-
ward the eddy center with average concentrations of 0.018 and
0.043 mmol N/m3, respectively. In order to confirm the abun-
dance of zooplankton in the cyclonic eddies, the biomass com-
posites of ZZ1 and ZZ2 integrated in the euphotic zone are
also constructed (see left and middle panels of Fig. 12), which
show that the biomasses of ZZ1 and ZZ2 varied from 0.930
and 2.905 mmol N/m2 to 3.597 and 1.051 mmol N/m2,
respectively.

In the anticyclonic eddies, the composite averages
(Fig. 11c, d) show that the concentrations of ZZ1 (Fig. 11c)
and ZZ2 (Fig. 11d) in the top 50 m were all low in the eddy-
occupied area compared with those in the background. The
concentrations of ZZ1 and ZZ2 decreased slightly from the

edge with values of 0.004 and 0.011 mmol N/m3 to the center
with values of 0.002 and 0.008 mmol N/m3, respectively.

3.2.4 Horizontal currents, vertical nutrient flux, and net
primary production

To understand how mesoscale eddies induce upward nutrient
flux to the euphotic zone and what causes the distribution of
nutrients and plankton, composite averages of horizontal cur-
rent velocity averaged in the top 50 m, the nutrient flux (de-
fined as the sum of silicate and nitrate concentrations multi-
plying the vertical velocity) at the bottom of euphotic zone,
and net primary production at 50 m are constructed from the
mesoscale eddies tracked in the model SLA. Figure 13a, c
shows the composite averages of vertical nutrient fluxes
(colors) and horizontal currents (arrows) for the cyclonic
eddies and anticyclonic eddies, respectively. Both vertical nu-
trient fluxes had a dipole structure. Strong upwelling and
downwelling occurred at the edge of the mesoscale eddies.
In the cyclonic eddy composite, the upward flux core with a
maximum flux of 2.3E-03 mmol N/m2/s was located at the
northern edge, and the downward flux core with a maximum
value of 1.9E-03 mmol N/m2/s was located in the southwest-
ern edge. The average vertical nutrient flux was 5.2E-
04 mmol N/m2/s, indicating that the vertical nutrient flux in
the cyclonic eddies was upward. In the anticyclonic eddy re-
sults, the upward and downward motions were at the south-
eastern and northwestern edges, with maximum fluxes of
8.8E-04 and 1.4E-03 mmol N/m2/s, respectively. The net flux
in the eddy interior was −1.0E-04 mmol N/m2/s. In the
composites, the constructed horizontal velocities are also
shown. The composites of net primary production are
shown in the second column of Fig. 13. The spatial distri-
butions of net primary production were homogenous in
both cyclonic and anticyclonic eddies. The value increased
from 0.032 mmol N/m3/day at the edge to 0.039 mmol N/
m3/day at the centroid of the cyclonic eddies and decreased
from 0.015 mmol N/m3/day at the edge to 0.014 mmol N/
m3/day at the centroid of the anticyclonic eddies.
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3.2.5 Discussion of biogeochemical cycles

The abundance of nutrients, phytoplankton, and zooplankton
in the cold eddies of the SCS was investigated using cruise
observations (Chen et al. 2007) and model output (Xiu and
Chai 2011). These studies were based on individual sampling
analysis. In our research, the statistical analysis confirmed that
the cyclonic eddies enhanced nutrients and stimulated the
growth of phytoplankton and zooplankton. In the case of
anticyclonic eddies, our results showed that the anticyclonic

eddies decreased nutrients and suppressed the growth of
phytoplankton and zooplankton. This is consistent with
Huang et al. (2010) using cruise data and with Xiu and Chai
(2011) using model output. The dominance of diatoms is co-
incident with a phytoplankton structure study in the SCS (Ma
et al. 2013). It was proposed that the community structure in
mesoscale eddies is controlled by the ratio of silicate to nitrate
(Bibby and Moore 2010). This explains the dominance of
diatoms in the mesoscale eddies in the SCS. The cores with
weak upward motion in the anticyclonic eddies also made it
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possible for the growth of diatoms in some anticyclonic
eddies.

From the horizontal currents, eddy advection was found to
play an important role in redistributing concentrations of nu-
trients, phytoplankton, and zooplankton. This is consistent
with the analysis in the SCS by Liu et al. (2013) and with
satellite-based global observation by Chelton et al. (2011a).

Mechanism for the vertical nutrient flux structure is still
unclear. In the eddy pumping theory, isopycnal displacement
that occurs at the beginning of eddy formation induces upward
nutrient flux in cyclonic eddies and downward flux in anticy-
clonic eddies (Siegel et al. 1999). The greatest vertical nutrient
flux should occur at the eddy center because isopycnal dis-
placement is the largest at eddy center. This interpretation
cannot explain the structure of vertical nutrient flux in our
study. Some studies suggested that the nonlinear Ekman
pumping caused by wind and current interaction can induce
both upward and downward motions in mesoscale eddies
(Mahadevan et al. 2008; McGillicuddy et al. 2008). Some
studies also revealed that net vertical motion induced by
wind/eddy interaction should be upward in anticyclonic
eddies and downward in cyclonic eddies (Gaube et al.
2013). This means that the wind/eddy interaction cannot

explain our vertical nutrient flux structure. Further study is
needed to explore the mechanism.

Combining with previous results, the possible processes of
biogeochemical cycles in mesoscale eddies can be described
as follows. Strong upwelling and downwelling occur at the
edge of mesoscale eddies with net upward motion in cyclonic
eddies and net downward motion in anticyclonic eddies. Due
to strong horizontal advection, the nutrients in the euphotic
zone of mesoscale eddies will be transported and mixed to
generate a homogenous distribution in space (see Fig. 8).
Due to the homogenous structures of nutrients and net primary
production, the distribution of phytoplankton becomes ho-
mogenous as well.

3.3 Evolution of plankton communities and detritus

According to marine ecosystem simulations (Chai et al. 2002;
Dugdale et al. 2002), an iron fertilization experiment (Chai
et al. 2007), and a biogeochemical cycle study (Xiu and
Chai 2011), the evolution of community structure was found
to be caused by the predator–prey competition. Statistical
analysis based on the spatial composite averages in
Section 3.2 revealed that the cyclonic eddies enhanced
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nutrients in the euphotic zone and stimulated the growth of
plankton. But, the evolution cannot be observed in the spatial
analysis.

By analyzing the biological processes within the cyclonic
eddies, we find an evolution of biology community that can be
described as growth–blooming–decay process during the
whole lifetime in some short-lived cyclonic eddies or during
a certain fragment of lifetime in some long-lived cyclonic
eddies. The fragments are extracted from these long-lived
eddies to be considered as Bnew eddies.^ As a result, we find
a total of 79 eddies whose lifetime ranges from 27 to 117 days
with an average lifetime of 43.2 days. Using the method de-
scribed in Section 2.5, the constructed SLA, nutrient, biomass
of plankton, and detritus during the eddy lifetime are calculat-
ed (Fig. 14). During the growing stage, cyclonic eddies inten-
sified with the averaged SLA decreasing from −19.8 to
−22.5 cm, and during the decaying stage the averaged SLA
increased with a relatively lower rate. The nutrients were
found to increase and decrease during the growing and decay
stages, respectively, following closely with changes of SLA.
At the beginning of the growth period, S1 grew fast due to the
stimulation of nutrient flux from 5.23 mmol N/m2 to a peak of
6.40 mmol N/m2 after 8.2 days. After that, biomass of S1 fell
and reached a minimum of 4.87 mmol N/m2 due to the food
competition by S2 and the increase of grazer ZZ1. During the
decay period, biomass of S1 increased slightly. This phenom-
enon was observed in an iron fertilization numerical

experiment (Chai et al. 2007). The possible reason for the
second bloom is that the growth of ZZ2 grazed on S2 and
ZZ1, which reduced grazing pressure on S1 (Chai et al.
2007). After getting the second peak of about 5.08 mmol N/
m2, S1 biomass decreased until the disappearance of the eddy.
ZZ1 grew with a time lag to S1 and reached the peak value of
2.60 mmol N/m2 about 8.6 days after the first peak of S1.
During the end stage of the eddy life, the biomass of ZZ1
increased slightly due to the increase of S1 during the decay
process. Comparing with S1, S2 increased with a larger mag-
nitude but grew more slowly. S2 reached the maximum value
at the half-time of the eddy life but fell because of the exhaus-
tion of nutrients and the grazing of ZZ2. Feedingmainly on S2
and ZZ1, ZZ2 grew after the increases of S2 and ZZ1,
reaching the peak of 7.4mmolN/m2with a time lag of 8.4 days
with respect to the peak of S2. As an indicator of export, DD
reached the peak of 14.4mmolN/m2with a time lag of 10 days
with respect to the first peak of S1, and DDSi reached the peak
of 12.7 mmol N/m2 5.2 days after S2 reached its maximum
value.

Now, we analyze the evolution of plankton community in
the cyclonic eddies. During the eddy’s lifetime, the phyto-
plankton bloomed due to the stimulation of nutrients and
zooplankton grew because of increasing food supply. This is
consistent with the spatial analysis in Section 3.2 and with the
model simulation by Xiu and Chai (2011) and observational
study by Chen et al. (2007) using cruise data. The results show
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that both phytoplankton and zooplankton were regulated by
the predator–prey relationship and followed a grow–decay
period during their lifetimes. This kind of regulation of com-
munity evolution by the predator–prey relationship has been
simulated in models (Chai et al. 2002; Dugdale et al. 2002).
The community structure change during the eddy lifetime is
consistent with the iron fertilization experiment conducted in
equatorial Pacific (see Fig. 5 in Chai et al. 2007), but with
larger time lags of ZZ2 with respect to S2 and of ZZ1 with
respect to S1.

4 Conclusions and discussions

This study utilized a composite method to statistically analyze
the mean characteristics of biogeochemical cycles associated
with mesoscale eddies in the SCS. The analysis was based on
the output from a three-dimensional physical–biogeochemical
model simulation over 18 years and on satellite data over
10 years. A total of 568 and 315 eddies were tracked from
the model and satellite SLA fields, respectively.

Our analysis about sea surface CHL for eddies revealed
that cyclonic eddies were associated with high CHL and that
anticyclonic eddies were associated with low CHL in the SCS.
The subsequent analysis of biogeochemical variables showed
that cyclonic eddies were mainly associated with abundance
of nutrients, phytoplankton, and zooplankton while the anti-
cyclonic eddies were associated with insufficient nutrients and
with suppressed plankton concentrations. These results dem-
onstrate that biogeochemical cycles associated with mesoscale
eddies in the SCS are mainly controlled by eddy pumping
mechanism, especially at the eddy core. Within most cyclonic
eddies, the eddy pumping process induces upward nutrient
flux and plankton blooms. And, within anticyclonic eddies,
the eddy pumping process induces downward nutrient flux
and suppresses the growth of phytoplankton and zooplankton.

From the composite results, high CHL at the west edge of
the cyclonic eddies showed downstream eddy advection of
CHL. Nutrients and biomasses of phytoplankton and zoo-
plankton were distributed by anticlockwise rotational veloci-
ties in the cyclonic eddies and clockwise rotational velocities
in the anticyclonic eddies. These results demonstrate that eddy
advection of biogeochemical variables is probably another
important physical process that influences biogeochemical cy-
cles associated with the edge of mesoscale eddies in the SCS.

Previous studies in the Sargasso Sea and Southern Indian
Ocean suggested that eddy-induced Ekman pumping consid-
ering wind–current interaction was capable of enhancing phy-
toplankton blooms in anticyclonic eddy cores and depressing
the growth of phytoplankton inside cyclonic eddy cores (e.g.,
McGillicuddy et al. 2007; McGillicuddy et al. 2008; Gaube
et al. 2013). Since our composite results showed that cyclonic
(anticyclonic) eddy cores were mainly associated with high

(low) concentration of biological variables, eddy-induced
Ekman pumping mechanism is only a minor controlling pro-
cess in the SCS. Amore relevant case study on an anticyclonic
eddy in the SCS suggested that dramatic vertical fluctuation
existed when wind–current interaction was strong (Zhang
et al., 2015). Two processes were discussed in Zhang et al.
(2015). The first one is in horizontal direction where the im-
balance of radial momentum in anticyclonic eddies can force
particles to move outward and aggregate at the eddy edge. The
imbalance occurs only when Rossby number is larger than
0.25, which depends on the eddy’s rotation. The particles will
be stable if the Rossby number is smaller than 0.25. The sec-
ond process discussed in Zhang et al. (2015) is the vertical
fluctuations in anticyclonic eddies triggered by eddy-induced
Ekman pumping and maintained by pressure and density
anomalies, as they observed isopycnals moving up and down
inside anticyclonic eddies. Their results imply that anticyclon-
ic eddies with eddy-induced Ekman pumping may also show
low phytoplankton biomass at the core and high values at the
edge, which is similar to the eddy pumping. But, note that
their study was based on one observational case and they did
not include actual biogeochemical dynamics in their analysis.
Our composite results represent the general biogeochemical
cycles averaged over all the anticyclonic eddies spanning a
dynamic range of Rossby number. Moreover, strong eddy-
induced Ekman pumping from their calculations which is al-
most half of the upwelling velocity observed by Argo only
lasts a few days, much shorter compared with the eddy’s
lifespan that we are considering in this study. On the other
hand, if their proposed radial imbalance and eddy-induced
Ekman pumping were the dominant processes, we probably
expect to see evenly distributed high concentrations of plank-
ton and nutrients at the eddy edge surrounding the core area,
which is not the case in our composite results. Therefore, we
think that low concentrations of plankton and nutrients in the
core of anticyclonic eddy are largely related to the eddy
pumping mechanism.

In both cyclonic and anticyclonic eddies, vertical nutrient
fluxes were found to have a dipole structure in the composite
results. Strong upwelling and downwelling occur at the edge
of eddies, with net upward motion in cyclonic eddies and net
downward motion in anticyclonic eddies. As discussed be-
fore, both the eddy pumping and eddy-induced Ekman
pumping theories appear to be inconsistent with the dipole
structure of vertical flux. Some studies suggested that eddy-
induced Ekman pumping caused by wind and current interac-
tion can induce both upward and downward motions in me-
soscale eddies (Mahadevan et al. 2008; McGillicuddy et al.
2008), and the net vertical motion induced by wind–eddy
interaction should be upward in anticyclonic eddies and
downward in cyclonic eddies (Gaube et al. 2013), which con-
tradicts to the directions of net vertical flux in our study.
According to the eddy pumping theory, isopycnal
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displacement that occurs during the growing stage induces
upward nutrient flux in cyclonic eddies and downward flux
in anticyclonic eddies (Siegel et al. 1999). During the
decaying stage, there are downward nutrient flux in cyclonic
eddies and upward flux in anticyclonic eddies. Although the
directions of net vertical flux are consistent, the greatest ver-
tical nutrient flux induced by the eddy pumping mechanism
normally occurs at the eddy center for instantaneous observa-
tion because isopycnal displacement is the largest at eddy
center. It seems to contradict to the dipole structure of vertical
flux as well. One possible reason for this contradiction to the
eddy pumping mechanism is that our composite analysis av-
erages all mesoscale eddies including eddy growing and
decaying stages, which probably smooths the response signal
at the eddy core leading to the dipole structure showing up at
the eddy edge that could be caused by nonlinear Ekman or
submesoscale processes. Further study is needed to explore
the dynamic controlling mechanism.

The time evolution of plankton community was ana-
lyzed based on 79 long-lived cyclonic eddies. We found
the decoupling evolutions of physical (e.g., SLA), biolog-
ical (e.g., phytoplankton), and chemical (e.g., nutrients)
structures inside mesoscale eddies (Fig. 14). Most of the
previous studies were derived from instantaneous mea-
surements that cannot cover the whole eddy evolution
process, which often leads to the simple conclusion that
strong cyclonic eddies can induce high nutrients, more
phytoplankton, and more particles. However, our results
indicate that this is not always true during the eddy’s
lifespan with different temporal evolution curves of dif-
ferent variables. For example, phytoplankton and zoo-
plankton in eddies depend not only on the physical and
chemical processes but also on the predator–prey relation-
ships among different species of the communities. Pico-
phytoplankton grew first and experienced two blooms.
Micro-zooplankton, which depended on pico-phytoplank-
ton, grew with a time lag to pico-phytoplankton. Diatoms
grew in a larger magnitude than pico-phytoplankton and
reached their peak value in the half-time of the eddy life.
Meso-zooplankton grew after the increases of diatoms and
micro-zooplankton.

Our study exhibited the general biogeochemical cycles of
mesoscale eddies averaged in the SCS spatially and temporal-
ly. Further studies are needed to explore mechanisms for ver-
tical motions at the eddy center and edge.
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