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Abstract For well-mixed estuaries, key physical mecha-
nisms are identified and quantified that cause changes in
characteristics of the semi-diurnal sea surface elevation and
lateral velocity due to modifications of the lateral bottom
profile, channel deepening, and sea level rise. This is done
by decomposing solutions of a new analytical model into
components relating to different physical processes. The
default geometry and parameter values are representative
for the Ems estuary, with a converging width and a reflec-
tive landward boundary. The default Gaussian lateral bottom
profile is modified to obtain profiles with the same cross-
sectional area, but with a different skewness or steepness.
Results show that a steeper lateral bottom profile leads to
amplification of the sea surface elevation. The width conver-
gence is shown to influence the resonance characteristics.
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Channel deepening and sea level rise result in amplifica-
tion of the sea surface elevation until a resonance peak is
reached. When flooding is incorporated, the amount of sea
level rise at which maximum tidal amplification occurs is
found to be about two times lower. When using a sym-
metric Gaussian bottom profile, the lateral tidal flow is
determined by Coriolis deflection of longitudinal flow and
lateral density gradients caused by differential salt advec-
tion. However, an additional lateral tidal flow component
incorporating the effect of continuity related to sea level
variations and longitudinal gradients in longitudinal flow is
shown to become increasingly important for skewed lateral
bottom profiles. Furthermore, the lateral flow due to the lat-
eral density gradient is enhanced for bottom profiles with
increased steepness.

Keywords Idealised model · Shallow water equations ·
Tidal flow · Ems estuary · Resonance

1 Introduction

Tides are an important, and often dominant constituent of
the water motion in partially to well-mixed estuaries. It is
well known (cf. Defant 1961) that they are mainly forced
by co-oscillation with tides present in the sea or ocean adja-
cent to these estuaries and that their characteristics strongly
depend on estuarine shape and friction (Prandle and Rah-
man 1980). A distinctive characteristic of tidal currents in
estuaries is that they are modified by their interaction with
the density field. An important mechanism is differential
advection of salt: as longitudinal currents are large in chan-
nels and weak over shoals, they cause differential advection
of the longitudinal estuarine salinity gradient, which results
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in a lateral density gradient driving a transverse tidal flow
(Nunes and Simpson 1985).

Knowledge of tidally induced sea surface variations
and currents is important for navigation, design of coastal
defence structures and ecology. The latter is because tidal
currents instigate net transport and mixing of, e.g., salt,
sediment and nutrients, and thereby may cause zones of
high turbidity (Allen et al. 1980) where oxygen values will
be low (Talke et al. 2009b). Field data (see Jiang et al.
2012, Schuttelaars et al. 2013 and Winterwerp et al. 2013)
indicate that tidal characteristics in many estuaries have
changed during the last decades, probably in response to
anthropogenic measures such as large-scale deepening of
navigation channels and construction of jetties and groynes.
Tides also change on longer time scales due to, e.g., sea
level rise and changes in tidal forcing related to altered tidal
motion in seas and oceans (Van der Spek 1997; Hall et al.
2013; Mudersbach et al. 2013).

Over the years, different types of models have been
developed and analysed to quantify the behaviour of estu-
arine tides. Detailed numerical models allow for accu-
rate simulations of tides in estuaries like, e.g., Chesa-
peake Bay (Zhong et al. 2008), the Yangtze (Hu et al.
2009) and the Scheldt (De Brye et al. 2010). Alterna-
tively, highly idealised models have proven to be success-
ful in yielding basic process knowledge. Moreover, such
models are fast and flexible, and thus allow for exten-
sive sensitivity analyses. Cross-sectionally averaged models
(Defant 1961; Prandle and Rahman 1980; Friedrichs 2010;
Toffolon and Savenije 2011, and references therein)
revealed the importance of friction, width convergence
and reflection in determining the longitudinal distribu-
tion of amplitude and phase of tidal constituents. Width-
averaged models (Ianniello 1977; Chernetsky et al. 2010;
Schuttelaars et al.2013 provided additional insight into the
vertical and longitudinal distribution of tidal currents, while
Friedrichs and Hamrick (1996) and Huijts et al. (2009)
studied the distribution of tidal currents over estuarine
cross-sections with models that assume local longitudi-
nally uniform conditions. Li and Valle-Levinson (1999)
investigated the dependence of depth-averaged (2DH) lon-
gitudinal and transverse tidal velocity on lateral depth pro-
files. A three-dimensional, semi-analytical model for tides
in a semi-enclosed basin was presented and analysed by
Winant (2007), and for a system of connected basins by
Waterhouse et al. (2011).

This study aims at gaining further physical insight into
the dynamics of estuarine tides and it has three specific
goals. The first is to assess the dependence of the sea sur-
face elevation on the width convergence and the shape of
the lateral bottom profile. The second goal is to assess the
relative contribution of changes in sea surface elevation due
to projected climate change (sea level rise and altering tidal

forcing at the seaward boundary) and due to anthropogenic
measures, like deepening of a fairway. Here, the hypothesis
to be tested is that on time scales of 50–100 years, changes
in tides due to climate change cannot be ignored with
respect to those induced by, e.g. deepening of fairways. The
third goal is to quantify the effect of changing the lateral bot-
tom profile shape on the lateral tidal velocity, and to identify
the underlying physical processes. A specific hypothesis
that will be tested is that the structure of lateral and vertical
tidal flow is strongly affected by lateral density gradients
and a contribution from three-dimensional continuity. This
hypothesis is based on discrepancies between modelled and
measured transverse tides found in the study of Huijts et
al. (2009). Gaining this information is important because
lateral flow advects longitudinal tidal momentum, thereby
affecting the mean transport of water in the longitudinal
direction (see Lerczak and Geyer 2004).

To meet these goals, a modified version of the model
of Winant (2007) will be presented and analysed. This
three-dimensional analytical model is designed such that it
accounts for all basic processes that determine the dynamics
of co-oscillating tides in narrow estuaries (width small com-
pared to the Rossby radius of deformation). The necessary
modifications include an exponential width convergence of
the estuary and a module that accounts for lateral density
gradients as a result of differential advection. Moreover, the
turbulence closure scheme is adjusted, such that it accounts
for partial slip at the bed and for an eddy viscosity that
depends on the local depth. Also, asymmetrical lateral depth
profiles will be considered.

The model is applied to a prototype estuary that rep-
resents the upper Ems estuary on the border of Germany
and The Netherlands. The Ems faces a multitude of prob-
lems related to ecology and navigation and it has undergone
large-scale deepening between 1980 and 2005. Measured
sea surface heights for 2005 were used in this study. Addi-
tionally, measurements of tidal flow through a single cross-
section at 16 km upstream from Knock were conducted
using an ADCP in 2012. These measurements are used to
verify output of the three-dimensional analytical model used
in this study.

In Section 2, the model equations and their analytical
solutions will be presented. The different experiments are
described in Section 3. Results for a default configuration
are discussed first in Section 4. After that, the sensitiv-
ity of tidal elevations and velocities to changes in width
convergence and bottom profile shape are considered. Sub-
sequently, the effect of adding sea level rise and deepening
of the navigation channel on the tidal elevations is con-
sidered. In Section 5, modelled tides are compared with
observed tides in the Ems to explore the validity of the anal-
ysis and limitations of the analytical model are discussed.
Finally, Section 6 contains the conclusions.
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2 Analytical model

2.1 Model description

2.1.1 Domain

The domain represents an estuary with an exponentially
converging width towards the closed landward end (Fig. 1).
This estuary has lengthLc, maximum depthHmax and width
B at the seaward end. The x-coordinate measures distance
along the estuary to the seaward boundary (where x = 0), y
is the across-estuary coordinate (y = 0 is the central axis),
and z is measured positive up from the undisturbed water
surface (where z = 0). The bottom is located at z = −H ,
where H is the undisturbed local water depth. The side
boundaries of the estuary are located at y = −b and y = b,
where b is half the width prescribed by

b = B

2
exp

(
− x

Lb

)
, (1)

with Lb the width convergence length.
The estuary has an arbitrary cross-sectional depth profile,

which is the same along the entire estuary, except it is scaled
with the local width. Thus, the maximum depth Hmax of the
cross-sectional profile along the entire estuary remains the
same.

2.1.2 Assumptions with regard to dynamics

The tidal dynamics are assumed to be governed by the
three-dimensional shallow water equations. The character-
istic amplitude AM2 of the tidal sea surface elevations is
assumed to be small compared to the typical estuarine depth.

Fig. 1 Sketch of the modelled estuary. As an example, a skewed
transverse depth profile is shown. The sketch shows the length of the
domain Lc, the width at the seaward end B and the maximum depth
Hmax . Also, the direction and origin of the x-, y-, and z-axes (of the
Cartesian coordinate system) are shown

As a result, non-linear terms are ignored with respect to
linear terms and the level z = η of the free surface is
approximated by the undisturbed sea surface z = 0 (see
Electronic Supplement A). Also, this imposes a minimum
value on the water depth H , as H � AM2 . Locations
with depths below a certain minimum Hmin are assumed to
belong to the tidal flats, which are not taken into consider-
ation here. It is also assumed that lateral variations in depth
are mild, such that topographic variations between the min-
imum depth Hmin and the maximum depth Hmax occur on
length scales that are of the order of B or larger. The estu-
ary is long and narrow, i.e. its length Lc is in the order of
Lt = √

gHref ω−1 and B � Lc. Here, Lt is the friction-
less tidal wavelength (apart from a factor 2π ), Href is a
reference maximum depth and ω is the angular frequency
of the tide. Consequently, lateral tidal velocities v are much
smaller than longitudinal velocities u, and lateral variations
in sea surface height are small compared to its longitudinal
variations.

Horizontal pressure gradient forces in the model result
from gradients in sea surface height and from density
gradients. The density field is written as

ρ = ρw + ρ∗(x, y, z, t), (2)

where ρw is a constant reference density equal to the density
of fresh water and the magnitude of density fluctuations ρ∗
is much smaller than ρw (Boussinesq approximation). The
density field is related to the salinity s through the equation
of state

ρ∗ = ρwβscs, (3)

with βsc (∼ 7.6 · 10−4 psu−1) the coefficient of saline con-
traction. The estuary is assumed to be vertically and laterally
well-mixed, which implies that

s = s̄0(x) + s′
1(x, y, z, t), (4)

with s̄0 the tidally and cross-sectionally mean salinity and
s′
1 small fluctuations. From Eqs. 3 and 4 it follows that

ρ∗ = ρ̄0(x) + ρ′
1(x, y, z, t). (5)

In this model, the mean salinity field is prescribed,
following Warner et al (2005), as

s̄0(x) = ssea

2

{
1 − tanh

(
x − xc

Ls

)}
, (6)

where ssea is the reference salinity of sea water, xc is the
position of the maximum salinity gradient, and Ls is the
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length scale over which salinity varies. Values of the param-
eters were obtained by fitting mean salinity profiles to
Eq. 6.

A simple turbulence closure is adopted, with a verti-
cal eddy viscosity and eddy diffusion coefficient that are
independent of the vertical coordinate z and time t , and a
partial slip condition is applied at the bed. Horizontal eddy
viscosity and effects of wind are not considered.

2.1.3 Equations of motion

The assumptions in Section 2.1.2 lead to the identification
of two small parameters, i.e.

ε = AM2

Hmax

, α = B

Lt

. (7)

Making the three-dimensional shallow water equations
dimensionless by using appropriate scales for all variables
(see Electronic Supplement A) and assuming α = O(ε),
approximate solutions are constructed as perturbation series
in the small parameter ε:

	 = 	0 + 	1 + O(ε2), (8)

with [	1]/[	0] ∼ ε, etc. Here, 	 represents any state vari-
able (e.g., velocity components u, v and w in the x−, y−
and z−direction, sea surface elevation η or salinity s), and
the first subscript denotes the order of the component. Note
that many estuaries are characterised by α � ε. The
assumption α = O(ε) is nevertheless made to obtain a sys-
tem of equations that governs tidal dynamics for any value
α ∼ ε or smaller. Retaining only the highest order terms
yields the linear equations

∂u0

∂t
= −g

∂η0

∂x
+ ∂

∂z

(
Av

∂u0

∂z

)
, (9a)

∂v0

∂t
+ f u0

= −g
∂η′

∂y
+ g

ρw

∫ z

0

∂ρ′
1

∂y
dz′ + ∂

∂z

(
Av

∂v0

∂z

)
, (9b)

∂u0

∂x
+ ∂v0

∂y
+ ∂w0

∂z
= 0. (9c)

Here, u, v and w are the velocity components in x-, y-
and z-direction, η is the free surface elevation, t is time, f

is the Coriolis parameter, g is the gravitational acceleration,
∂ρ′/∂y is the tidally varying lateral density gradient, and Av

is the vertical eddy viscosity.
As is detailed in Electronic Supplement A, the sea sur-

face elevation can be written as

η = η0(x, t) + η′(x, y, t), (10)

where η′=η1 + η2 is the higher order sea surface elevation,
the first subscript denotes the order of the component and
the magnitude of η′ is a factor AM2/Hmax smaller than that
of η0. As the longitudinal coordinate x scales with Lt and
the lateral coordinate y scales with B and B � Lt , the sea
surface gradients ∂η/∂x and ∂η/∂y are of the same order of
magnitude.

From the equation of state (Eq. 3), it follows that the tidal
lateral density gradient in Eq. 9b is given by

∂ρ′
1

∂y
= ρwβsc

∂s′
1

∂y
, (11)

where the salinity s′
1 is governed by

∂s′
1

∂t
+ u0

ds̄0

dx
= ∂

∂z

(
Kv

∂s′
1

∂z

)
, (12a)

with Kv the vertical eddy diffusion coefficient. This equa-
tion describes differential advection of salinity s̄0 by the
tidal flow u0 (Geyer and MacCready 2014). The salinity
fluctuations s′

1 and the resulting lateral density gradient
∂ρ′

1/∂y are still functions of z. The problem of Eq. 12a is
that it yields unstable stratification during part of the tidal
cycle. In order to avoid this problem, the lateral density gra-
dient in Eq. 9b is replaced by the lateral gradient of the
depth-mean density. The second term on the right-hand side
of Eq. 9b thus becomes

gz

ρw

∂

∂y

(
1

H

∫ 0

−H

ρ′
1 dz′

)
. (13)

Note that the procedure followed in this study is similar
to that of Winant (2007). The crucial differences are that
here α = O(ε) and that the effect of salinity on density is
taken into account with inclusion of differential advection
over the width of the estuary. In addition, in this study, width
convergence and a partial slip bottom boundary condition
are considered.

Regarding the boundary conditions, at the surface the no-
stress condition and the kinematic condition are applied:

Av

∂u0

∂z
= Av

∂v0

∂z
= 0, w0 = ∂η0

∂t
at z = 0. (14)

At the bottom (z = −H ), a partial slip condition and
impermeability are imposed:

Av

∂u0

∂z
= Su0, Av

∂v0

∂z
= Sv0,

w0 = −u0
∂H

∂x
− v0

∂H

∂y
at z = −H, (15)

where S is the slip parameter. This condition implies a
linearisation of the friction (Engelund 1970). As was first
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applied in a tidal setting by Bowden (1983) and further elab-
orated on in, i.e. Maas and van Haren (1987) and Chernetsky
et al. (2010), the partial slip condition must be evaluated
at the top of the constant stress layer instead of at the true
bottom.

The side boundaries are impermeable, indicating that the
transport perpendicular to the lateral boundaries (y = ±b)
vanishes:

∫ 0

−H

v0 dz = ± ∂b

∂x

∫ 0

−H

u0 dz at y = ±b, (16)

At the seaward boundary (x = 0), the water motion is
forced by a semi-diurnal (M2) sea surface elevation, and
at the landward boundary (x = Lc) the tidal transport is
required to vanish at every lateral location y. Hence,

η0 = AM2 cos (ωt) at x = 0, (17a)

∫ 0

−H

u0 dz = 0 at x = Lc, (17b)

where ω is the M2 angular tidal frequency and AM2 is the
amplitude of the M2 tidal elevation.

The boundary conditions imposed for salinity involve a
vanishing salinity (and density) flux at the bottom and at the
surface:

∂s′
1

∂z
= 0 at z = 0, z = −H. (18)

Following Friedrichs and Hamrick (1996), it is assumed
that both viscosity and diffusivity increase with H(x, y)

because the size of eddies scales with the local water depth,
so

{Av(x, y), Kv(x, y)} = {
Av,ref , Kv,ref

} H(x, y)

Href

, (19)

with Av,ref and Kv,ref , the values of the vertical eddy vis-
cosity and diffusivity, respectively, at the reference depth
Href , which is equal to the maximum depth Hmax of the
default case. The slip parameter S is also assumed to depend
on the local depth, following Schramkowski and de Swart
(2002):

S = Sref

H(x, y)

Href

, (20)

where Sref is the value of the slip parameter at the reference
depth Href . Note that since Av , Kv and S are all functions
of the local depth, the differential influence of friction that
occurs for laterally varying bottom profiles is taken into
account in a parametric way.

Equations 9a through 20 constitute a closed system. It is,
however, convenient, for later use, to derive two additional
equations that directly relate sea surface elevation to hori-
zontal velocity components. The first equation is obtained
by integrating the continuity equation over the full depth and
applying boundary conditions for w at the surface and the
bottom (Eqs. 14 and 15). The result is

∂η0

∂t
= − ∂

∂x

∫ 0

−H

u0 dz − ∂

∂y

∫ 0

−H

v0dz. (21)

The second equation is obtained by integration of Eq. 21
over the full width and application of the boundary condi-
tions in Eq. 16. This yields

∂η0

∂t
= − 1

2b

∂

∂x

(∫ b

−b

∫ 0

−H

u0 dz dy

)
. (22)

2.2 Analytical solutions

Since the equations of motion (Eqs. 9a through 12a) are lin-
ear and the forcing is time-periodic (see Eq. 17a), solutions
are of the form

(
u0, v0, w0, η0,

∂η′

∂y
, s′

1,
∂ρ′

1

∂y

)
=

Re

{(
û0, v̂0, ŵ0, η̂0,

∂η̂′
∂y

, ŝ′
1,

∂ρ̂′
1

∂y

)
e−iωt

}
, (23)

with û0, etc. the complex amplitudes that depend on the spa-
tial coordinates. For example η0 = ∣∣η̂0∣∣ cos (ωt − φ), where
the phase φ = arg

(
η̂0

)
and arg the argument of a complex

number.
The following variable substitution is applied for the lat-

eral coordinate: y′ = y/b(x), where y′ varies between −1
and 1. This variable substitution is convenient when inte-
grating over the width and when prescribing the bottom
profile.

The structure of the equations allows for an elegant solu-
tion method. First, the longitudinal momentum equation
(Eq. 9a) is combined with mass balance (Eq. 22). This yields
an ordinary differential equation for sea surface elevation
η̂0, which in fact governs the spatial structure of the wave
equation for the M2 sea surface elevation. Solutions are

η̂0 = AM2 exp

(
x

2Lb

)
·

d0 cos (d0[Lc − x]) + 1
2Lb

sin (d0[Lc − x])
d0 cos (d0Lc) + 1

2Lb
sin (d0Lc)

, (24)
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where

d0 =
√

κ2
0 − 1

4L2
b

, (25)

with

κ2
0 = 2ω2

g

(∫ 1

−1

∫ 0

−H

p0 dz dy′
)−1

. (26)

Furthermore, p0 is given as

p0 = 1 − cosh (γ z)

cosh (γH) + γ
δ
sinh (γH)

, (27a)

with

γ =
√

−iω

Av

and δ = S

Av

. (27b)

Here, d0 is the complex wavenumber of the tide, which
depends on friction (through parameters γ and δ), width
convergence (through parameter Lb) and the shape of the
cross-section (through the function p0 that depends on
H ). Note that γ −1 is the thickness of the Stokes layer
(in which friction is important) and δ−1 is the thick-
ness of the layer in which vertical shear of the horizon-
tal velocity is significant. Thus, Eqs. 23–24 describe a
tidal wave that is subject to reflection, friction and width
convergence.

The solution for the complex amplitude of the longitudi-
nal tidal flow û0 follows from substitution of Eq. 23 into the
longitudinal momentum balance (Eq. 9a) and by applying
boundary conditions (Eqs. 14–15), yielding

û0 = − ig

ω

dη̂0

dx
p0. (28)

It shows that longitudinal tidal flow is driven by
barotropic pressure gradients and modulated by friction.
The complex amplitude of the sea surface gradient dη̂0/dx

is only a function of x and determines the magnitude of
û0, while the function p0 is a function of y′ and z and
determines how the flow is distributed throughout the cross-
section. The magnitude of û0 decreases towards the bottom
and it decreases if the local depth H becomes smaller
(Eq. 27a).

The solution for lateral tidal flow follows from the
y-momentum equation (Eq. 9b), the continuity equation
(Eq. 21), the solution structure (Eq. 23) and the solution

for longitudinal tidal flow (Eq. 28) (see Electronic Supple-
ment A). The solution v̂0 is written as as the sum of three
mechanisms:

v̂0 = v̂0,f︸︷︷︸
Coriolis deflection

+ v̂0,ρy︸︷︷︸
lateral density gradient

+ v̂0,c︸︷︷︸
continuity

. (29)

Here, v̂0,f is the lateral tidal flow component due to Cori-
olis deflection of longitudinal flow, v̂0,ρy is the component
due to a tidal lateral density gradient, and v̂0,c is a con-
tribution associated with continuity. The solutions of the
individual physical components read

v̂0,f = fg

ω2

dη̂0

dx
v̆0,f , (30)

v̂0,ρy = ig

ωρw

∂

∂y

(
1

H

∫ 0

−H

ρ̂′
1 dz

)
v̆0,ρy , (31)

v̂0,c = igb

ω

(
ω2

g
η̂0v̆0,c,0 + 1

Lb

dη̂0

dx
v̆0,c,1 + d2η̂0

dx2
v̆0,c,2

)
,

(32)

where v̆0,f , v̆0,ρy , v̆0,c,0, v̆0,c,1 and v̆0,c,2 are dimensionless
functions describing the distribution of the different com-
ponents throughout the cross-section, which depend on y, z
and model parameters (for exact definitions see Electronic
Supplement A).

The continuity contribution v̂0,c originates from the depth
integrated continuity equation (Eq. 21), which contains time
variations of the free surface ∂η0/∂t and longitudinal gradi-
ents in the volume transport ∂

∂x

∫ 0
−H

u0 dz. In the work of,
e.g. Huijts et al. (2011), these variations and gradients are
not taken into account and the term in Eq. 32 is identically
zero. Winant (2007) also incorporates v̂0,c, but he employs a
different method to compute them, as his scaling is designed
for different systems (semi-enclosed seas like the Adriatic
Sea or the Gulf of California) than considered here.

The lateral gradient of the depth-mean density in Eq. 31
is calculated using the equation of state (Eq. 11) as

∂

∂y

(
1

H

∫ 0

−H

ρ̂′
1 dz

)
= ρwβsc

∂

∂y

(
1

H

∫ 0

−H

ŝ′
1 dz

)
. (33)

The depth mean salinity is found by integrating the salt
balance (Eq. 12a) over the full depth and by applying its
boundary conditions (Eq. 18) and the solution structure of
Eq. 23. The salinity equation then reduces to

−iω
1

H

∫ 0

−H

ŝ′
1 dz + 1

H

∫ 0

−h

û0 dz
ds̄0

dx
= 0. (34)
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Substitution of the solution for û0 (Eq. 28) yields the
solution

1

H

∫ 0

−H

ŝ′
1 dz = − g

ω2

dη̂0

dx

ds̄0

dx

1

H

∫ 0

−H

p0 dz, (35)

from which the term in Eq. 33 follows by straightforward
means.

3 Experiments

3.1 Default case

As a prototype estuary, the upper Ems estuary has been
selected in this study. This estuary is located on the bor-
der between The Netherlands and Germany. Its upper part
extends from Knock up to the weir at Herbrum and has a
length of 64 km. Figure 2 shows a map of this area, on which
also the location is indicated of a transect where ADCP
depth and velocity data were collected in June 2012. In this
study, these data are used for deriving a fitted bottom profile
and for model-data comparison. Table 1 shows the default
values representative for this estuary during the year 2005.
As the maximum depth in the analytical model does not vary
with x, the water depths used here represent average depths
over the longitudinal direction. In the lateral direction, by
default, a Gaussian bottom profile was used. For Av,ref and
Sref , fitted values obtained by De Jonge et al. (2014) were
used.

Values for the parameters that determine the longitudinal
salinity profile (ssea , xc and Ls in Eq. 6) were taken from
an analysis by Talke et al. (2009a), assuming an average
river discharge of 100 m3 s−1. The position of the maximum
salinity gradient lies just seaward of the domain considered

Fig. 2 Map of the upper Ems estuary from Knock up to the tidal weir
in Herbrum. The location of the transect (at around 16 km) where
ADCP data were collected is also shown

here (which only incorporates the upper reaches), hence the
negative value for xc.

3.2 Sensitivity experiments

Additional model runs are performed to assess the effect
of changing the skewness and the steepness of the cross-
sectional bottom profile shape on the tidal elevations and
the lateral velocity field. To investigate this, special for-
mulations for the bottom profile shapes were established.
In addition, the effect of changing the width convergence
length Lb, changing the depth of the main navigation chan-
nel and adding sea level rise on the tidal elevation were
considered. In each of the sensitivity analyses, only one
parameter was varied, while keeping the other parameters at
their default values. In the following three subsections, the
details of the used cross-sectional bottom profiles, deepen-
ing only the main navigation channel and adding sea level
rise are discussed.

3.2.1 Varying bottom profile shape

AGaussian profile was used in the default run. Several other
bottom profiles were also designed to investigate the effect
of different bottom profile shapes on both sea surface ampli-
tudes and tidal velocities. The total cross-sectional area
was kept equal to that of the Gaussian profile for each of
these shapes. To study the effect of asymmetry of the cross-
sectional bottom profile, a skewed profile was designed.
This profile is described by

H = Hmax exp
(
−Y 2C

)
, (36a)

where C is the steepness parameter that increases with
increasing lateral bottom slope:

C = log (Hmax/Hmin), (36b)

with Hmin the minimum depth of the Gaussian bottom pro-
file and the profiles with varying skewness and steepness.
Furthermore,

Y = −1 + √
1 + a2 + 2ay′

a
(36c)

is a mapping of y′ (= y/b(x)) which transforms the Gaus-
sian profile using a skewness parameter a, which is allowed
to vary from−1 to 1. For a = 0, Eq. 36c has no solution, but
when taking the limit a → 0 and applying L’Hôpital’s rule
Y reduces to y′, reducing the skewed profile to the Gaussian
profile. Therefore, Y is replaced by y′ for a = 0. Figure 3a
shows the default Gaussian profile, a left skewed profile
(with a = −0.8) and a right skewed profile (with a = 0.8).
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Table 1 Default parameter values representative for the upper Ems estuary in 2005

Parameter Symbol Value

Default maximum water depth (Gaussian profile) Hmax 10.5 m

Minimum water depth (Gaussian profile) Hmin 2.0 m

Reference water depth Href 10.5 m

Width at seaward end B 1200 m

Estuary length Lc 64 km

Width convergence length Lb 30 km

Frictionless M2 tidal wavelength divided by 2π Lt 72 km

Amplitude of M2 tidal elevation at the seaward end AM2 1.35 m

Angular frequency of the M2 tidal component ω 1.41 · 10−4 s−1

Gravitational acceleration g 9.81 m s−2

Coriolis parameter f 1.16 · 10−4 s−1

Vertical eddy viscosity at reference depth Av,ref 1.3 · 10−2 m2 s−1

Slip parameter at reference depth Sref 1.8 · 10−2 m s−1

Reference density ρ0 1000 kg m−3

Reference salinity of sea water ssea 25 psu

Position of the maximum salinity gradient xc −4 km

Length scale over which salinity varies Ls 11 km

When varying a for the skewed profiles, the average
slope of the cross-sectional bottom profile does not change.
To investigate the effect of average cross-sectional bot-
tom slope on tidal elevation and the three-dimensional
flow field, profiles were constructed with a varying steep-
ness C. To construct profiles with a different maximum
depth Hmax and average lateral bottom slope, but with the
same minimum depth Hmin, the following four steps were
taken:

1. The Gaussian profile (H = HG, with HG given by
Eq. 36a with a → 0) was used and the slope parameter
C was varied, resulting in a number of profiles Htemp.

2. The minimum depth was subtracted from the resulting
profiles Htemp.

3. The surface area of the remaining profile (Htemp −
min(Htemp)) was set equal to the surface area of (HG −
Hmin) by altering the maximum depth Hmax of the
remaining profile.

4. Hmin was added to the resulting profile.

This was done such that the cross-sectional area was
maintained. This resulted in profiles with a different maxi-
mum depth Hmax , which was substituted in Eq. 36b to find
the new steepness C after step 4. Two examples of profiles
constructed using this method are shown in Fig. 3b.

3.2.2 Fitted bottom profile and deepening

In order to facilitate comparison of modelled and measured
tidal velocities and to investigate the effect of deepening

for navigation, a fit to a profile observed in the upper Ems
estuary was also used in this study. This fit was constructed
by taking the sum of a constant depth and several Gaussian
components. The shape of this fit is similar to that of the
depth functions used by Li and Valle-Levinson (1999). The
expression for the fitted bottom profile is

Hf it = Hmax

⎧⎨
⎩F0 +

J∑
j=1

Fj exp
(
−Cj

(
y′ + Dj

)2)
⎫⎬
⎭ ,

(37)

where Fj are the magnitudes of the components, Cj are the
steepness parameters and Dj are shifts indicating the loca-
tion of the maximum depth for each component. For the
cross-section observed in the Ems around x=16 km, a fit
was made using one flat and two Gaussian components (so
J = 2), with values as shown in the first row of Table 2.
This profile, hereafter referred to as Fit to observations, is
shown by the green curve in Fig. 3c. For this profile, a value
for Hmax of 10.0 m was used. This was done to make the
tidal amplification at x = Lc approximately equal to that
of the default case, so that the modelled cases are compa-
rable before applying changes like deepening or sea level
rise.

To study the effect of deepening the main channel of
an estuary, a bottom profile similar to the Fit to observa-
tions profile was constructed with a deeper main channel.
To obtain this, the value of F2 was increased. The param-
eters of this profile, called Future deepening, are given in
Table 2. The corresponding profile is also shown in Fig. 3c.
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Table 2 Fitting parameters for the profiles Fit to observations, Prior to deepening and Future deepening

Bottom profile F0 F1 F2 C1 C2 D1 D2

Fit to observations 0.23 0.36 0.76 1.98 2.30 0.75 −0.50

Future deepening 0.23 0.36 0.94 1.98 2.30 0.75 −0.50

3.2.3 Sea level rise

The increase in water depth due to sea level rise is modelled
with a spatially uniform sea level rise (hereafter SLR). In
this case thus not only the main channel is deepened, but
the water depth is increased by the same amount throughout
the whole estuary. As a low and high sea level rise scenario
in this study, the lower and upper limits of the IPCC low
emission scenario (RCP 2.6) were used, which amounts to
a rate of 3 mm/year for the low scenario and 6 mm/year for
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Fig. 3 Examples of cross-sectional profiles used to investigate vary-
ing the skewness parameter a (a), the steepness parameter C (b) and
deepening of the main channel (c)

the high scenario (Church et al. 2013). With these rates, the
expected rise in sea level SLR in the year 2100 with respect
to the default 2005 case is used in the model runs.

Two ways were considered to include the effect of
increased sea level on the cross-sectional bottom profile.
It is either assumed that the estuary is dyked, or that also
flooding of adjacent banks occurs due to the increase in
water level. These two scenarios are depicted in Fig. 4. In
case of flooding, it is assumed that the minimumwater depth
at the lateral sides remains equal to Hmin. The width of the
banks bf l is obtained by equating HG + SLR = Hmin at
y′ = 1 + bf /b, with HG given by Eq. 36a with a → 0.

4 Results

4.1 Sea surface elevation and longitudinal tidal velocity

4.1.1 Default case

Here, results are discussed for the default model run, which
uses the Gaussian profile with a maximum depth Hmax of
10.5 m. Figure 5a, b show the amplitude (blue lines) and
phase (green lines) of the tidal elevation η0 and the longitu-
dinal tidal velocity u0 at the surface in the main channel for
theM2 tidal wave, respectively. The longitudinal tidal veloc-
ity is shown as it is later used as a forcing for the lateral tidal
flow (through Coriolis deflection and through continuity).

Fig. 4 Sea level rise scenarios used in this study. The default mean
wetted area with maximum width 2b is shown in blue, sea level rise
(SLR) causes an increase of this wetted area, coloured orange. When
flooding is included the wetted area extends sideways with bf l on each
side and the green areas are included
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Fig. 5 The amplitude |η̂0| (blue) and phase arg (η̂0) (green) of the M2
tidal elevation (a), and the amplitude |û0| (blue) and phase arg (û0)

(green) of theM2 longitudinal tidal velocity at the surface in the middle
of the channel (b). The squares (circles) denote amplitudes (phases)
measured in the Ems estuary in 2005

It appears that the amplitude |η̂0| of the M2 tide increases
near the end of the estuary, while its gradient and there-
fore |û0| gradually decreases. The phase of both η0 and u0
gradually increases towards the landward end of the estuary,
while their derivatives decrease with x. The latter indicates

that the M2 tidal wave is a more travelling wave at the sea-
ward side. The fact that the phase becomes almost constant
near the landward side indicates that the tidal wave gains a
standing wave character there. Data were available for both
the amplitude and the phase of the M2 tidal wave in the
Ems estuary during 2005, shown as squares and circles in
Fig. 5a respectively. Clearly, the behaviour of the tidal wave
is reasonably well represented by the model for this case
respectively.

4.1.2 Width convergence and bottom profile shape

The width convergence factor μ = Lt/Lb is varied by
varying the convergence e-folding length Lb, while using a
constant frictionless wavelength Lt = √

gHmax/ω of the
M2 tidal wave. In Fig. 6a, b, the effect of varying the width
convergence factor μ on the normalised tidal amplitude and
on the phase is shown. The normalised tidal amplitude is
defined as the ratio of the local tidal amplitude over the
amplitude at the seaward side (x = 0). Red (blue) colours
indicate an increase (decrease) of the tidal amplitude with
respect to the amplitude at x = 0. Tidal amplification
(dampening) is defined as an increase (decrease) of the
tidal sea surface amplitude with respect to the default case
(denoted by a dashed line in Fig. 6). In the absence of width
convergence (μ = 0), the tidal wave is dampened as fric-
tion is dominant in that case. For larger values of μ, the
tidal wave first amplifies. It turns out that there is a crit-
ical μ = μcrit = 4.3 (corresponding to Lb ≈ 17 km)
for which the tidal amplification at x = Lc is maximal
(cf. Jay 1991). Beyond μcrit , the tidal wave dampens again,
indicating that the resonance characteristics are a complex
function of μ.

Fig. 6 The normalised
amplitude (with respect to the
amplitude at the seaward side)
and phase of the M2 sea surface
elevations as a function of the
width convergence parameter
μ = Lt/Lb (resp. panels a, b)
and the steepness parameter C

(resp. panels c, d). Dashed lines
indicate the default parameter
values
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An important aspect of the solution for η0 is that it
also depends on the cross-sectional distribution of flow
described in Eq. 27a, which is controlled by the imposed
bottom profile H(y′). Here, considered changes are the
skewness of the bottom profile, using the skewness param-
eter a (see Eq. 36c), and the average slope of the cross-
sectional bottom profile, through the steepness parameter
C (as determined at the end of the four steps described in
Section 3.2.1).

Model results indicate that the amplitude of the tidal sea
surface elevation |η0| is independent to changes in the skew-
ness parameter a (not shown). This is because both the
average depth of the cross-section and the variation around
this average depth (or the average slope) remain unchanged
when using the bottom profile described in Eq. 36a. In
that case, the wave number d0 in Eqs. 24 and 25 remains
unchanged.

The effect of varying the average bottom slope through
the steepness parameterC on the normalised tidal amplitude
and the phase is shown in Fig. 6c, d. As can be seen, the M2

tidal wave is amplified by about 4 % more at the landward
end of the channel if the steepness C increases from 1.66 to
1.83. Amplification thus increases with increasing average
lateral bottom slope. The phase towards the landward end
of the estuary also decreases slightly with increasing steep-
ness. The increase in tidal propagation due to a deeper main
channel thus outweighs the effect of shallower shoals if the
steepness C increases. Note that the differential influence
of friction, taken into account parametrically in Eq. 19, also
plays a role here. As the eddy viscosity Av varies linearly
with the local depth H(x, y), the deeper main channel has
a larger friction, while the shallower shoals have a lower
friction. This slightly counteracts the effects of the depth
changes on the tidal propagation.

4.1.3 Channel deepening and sea level rise

Next, the effect of deepening of the main channel and sea
level rise on the amplitude and phase of the sea surface ele-
vation is investigated. The blue and green lines in Fig. 7
show the amplitude and phase of the M2 tidal wave, respec-
tively. It is shown that the amplitude increases significantly
and more towards the landward end both when deepening
the main channel and when applying sea level rise (with-
out flooding). For a clear comparison between the effect
of sea level rise and channel deepening, these results were
obtained by using the Fit to observations profile for both
these experiments. The phase decreases in case of deepen-
ing or sea level rise. In addition to having a larger amplitude,
the tidal wave will thus also propagate faster through the
estuary.

Figure 8a, b show that for deepening by about 5.0 m
and for SLR ≈ 2.8 m (without flooding), a maximum in

Fig. 7 The amplitudes |η̂0| (blue lines) and phases arg (η̂0) (green
lines) of the M2 sea surface elevation for the default case with the
Fit to observations profile, (a) for deepening of the main channel by
1.5 m (Future deepening profile) and (b) for a sea level rise of 3 and
6 mm/year until 2100 (without flooding)

tidal amplification at x = Lc occurs. Below these criti-
cal values, an overall water depth increase due to sea level
rise brings the system closer to resonance than deepening
only the main channel, as the relative depth change over
the shoals is larger in the former case. However, the maxi-
mum amplification attained when applying sea level rise is
lower compared to that when applying deepening. This is
explained by considering that a local increase in depth also
increases the local eddy viscosity Av (Eq. 19) and thereby
the friction. In case of sea level rise, the overall increase in
friction is larger, as the friction increase over the shoals is
relatively large, causing a stronger dampening of the tidal
wave.

When including flooding of adjacent banks, the average
depth decreases again. However, the width of the estuary
also increases by 2bf (see Fig. 4). The effect on the tidal
amplification when including sea level rise without and with
flooding when using a Gaussian bottom profile is shown
in Fig. 8c, d. The reason for using the Gaussian bottom
profile here is that it allowed for a straightforward extrapo-
lation of the bottom profile over the flooded areas. It turns
out that the amount of SLR at which the maximum ampli-
fication in tidal range occurs reduces from 2.8 to 1.4 m
when including flooding. The model results thus suggest
that under the influence of sea level rise the system will
reach a state of maximum amplification about two times
faster when flooding of adjacent banks is taken into account.
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Fig. 8 The normalised
amplitude (with respect to the
amplitude at x = 0) of the M2
sea surface elevation as a
function of deepening (a), sea
level rise without flooding (b, c)
and sea level rise with flooding
of adjacent banks (d). For the
top panels, the Fit to
observations bottom profile was
used, while in the bottom panels
the Gaussian profile was used

4.2 Lateral tidal velocities

4.2.1 Default case

The lateral tidal velocity v0 is considered at two differ-
ent times, namely at maximum flood and slack after flood.
Figure 9 shows results for three different longitudinal loca-
tions, namely the seaward side x = 0, the middle x = 1

2Lc

and the landward end x = Lc. Positive (negative) lat-
eral velocities indicate a flow towards the right (left) when
looking landward. Clearly, both the magnitude and the dis-
tribution of v0 over the cross-section are quite different at
the three longitudinal positions. Near the seaward side, three
(two) circulation cells arise during maximum flood (slack
after flood). However, during maximum flood at x = 0, the

negative lateral velocities of the third cell are suppressed
by additional positive velocities on the left side of the
cross-section. Towards the middle of the channel, a single
circulation cell remains at both maximum flood and slack
after flood, while a flow towards the sides (centre) is seen
at maximum flood (slack after flood) at the landward side.
The plusses (crosses) in Fig. 9a, c, f indicate the weighted
centres (in terms of y and z) of areas that are separated by
zero contours and contain only positive (negative) lateral
velocities. The locations of these weighted centres at max-
imum flood were determined throughout the estuary for all
x. In addition, the average velocity within each of the areas
of positive (negative) lateral velocities was determined. In
Fig. 10a, the lateral location of the weighted centres corre-
sponding to areas of positive (negative) lateral velocities at

Fig. 9 Lateral M2 tidal velocities at x = 0 (a, b), x = 1
2Lc (c, d) and

x = Lc (e, f), at maximum flood (a, c, e) and slack after flood (b, d,
f) for the default case. Red (blue) colours indicate positive (negative)

velocities towards the right (looking landward). The plusses (crosses)
in (a, c, f) indicate the centroids of areas that are separated by zero
contours and contain only positive (negative) lateral velocities



Ocean Dynamics (2015) 65:933–950 945

Fig. 10 Panel a shows the lateral locations of weighted centres of indi-
vidual areas (separated by zero contours) of positive (red) and negative
(blue) lateral velocities at maximum flood, with average velocities
within each area as indicated by the colour bar. Panel b shows the
cross-sectionally averaged amplitude of the lateral tidal velocity and
its components

maximum flood are shown in red (blue), where the intensity
of the colour indicates the average velocity magnitude. It
turns out that three circulation cells merge into a single cell
around x = 8 km and that the positive and negative veloc-
ities of the single cell switch sides (in the lateral direction)
around x = 45 km. The differences in both magnitude and
cross-sectional structure of the lateral flow at different lon-
gitudinal positions is explained by analysing the different
physical components of Eq. 29. Figure 10b shows the cross-
sectionally averaged amplitude of v0 and its components.
From this figure, it is clear that the lateral flow due to Corio-
lis deflection v0,f and the lateral flow due to lateral density
gradients v0,ρy are the dominant components throughout
most of the estuary for the default case. However, their mag-
nitudes decrease with increasing x. The magnitude of v0,f
decreases as the Coriolis deflection scales with the longi-
tudinal velocity u0, which obviously decreases towards the
landward end because the longitudinal transport must van-
ish at that location. The magnitude of v0,ρy decreases more
rapidly, as it scales both with u0 (which advects the salin-
ity s̄0) and with the longitudinal salinity gradient ds̄0/dx.
As shown in Fig. 11, ds̄0/dx is strongest at the seaward
boundary and gradually decreases towards the landward
side, since the maximum lies just outside the domain con-
sidered by our model. Near x = Lc, both v0,f and v0,ρy are

Fig. 11 The longitudinal salinity s̄0(x) as a function of along-estuary
distance x. The longitudinal distance on the x-axis extends 30 km out-
side of the considered model domain to clearly show the maximum
salinity value ssea = 25 psu and the location of the maximum salinity
gradient xc = −4 km

negligible and the lateral flow due to continuity v0,c is the
dominant component. However, through most of the estu-
ary, the magnitude of v0,c is much smaller than that of the
other components in this default case. The magnitude of v0,c
shows a dip around x = 45 km (Fig. 10b), which is the
location at which the positive and negative lateral velocities
switch sides (Fig. 10a). This is attributed to the fact that the
continuity component v0,c, which becomes relatively more
important towards the landward end of the estuary, changes
sign at this location as well.

The magnitudes of v0,f and v0,ρy are approximately
equal around x = 10 km. At this location, the joint action
of these components is therefore visible. In Fig. 12, the dis-
tribution of v0 and its components throughout the default
Gaussian cross-section at x = 10 km is shown. It appears
that v0,f is symmetric around the central axis, while v0,ρy

and v0,c are both antisymmetric. Combined this leads to an
asymmetric distribution of the lateral tidal flow, with pos-
itive velocities mostly on the right side near the surface
and negative velocities on the right side near the bottom
for maximum flood. During maximum flood, v0,f and v0,ρy

are both significant, while during slack after flood v0,ρy

dominates. The latter results in a double circulation cell at
slack after flood. When comparing the cross-sectional struc-
ture of the different lateral flow components from Fig. 12
with the structure of the lateral flow at different longitudi-
nal locations from Fig. 9, some interesting similarities arise.
It can clearly be seen that v0,ρy with its double circulation
structure is dominant at x = 0, while v0,f with its single cir-
culation cell is clearly represented at x = 1

2Lc. At x = Lc

the lateral tidal flow takes on the structure of v0,c, which is
the only non-zero component at that location.

4.2.2 Effect of bottom profile asymmetry on lateral tidal
velocities

As the tidal wave propagation is not influenced by the asym-
metry parameter a (see Section 4.1.2), the cross-sectionally
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Fig. 12 Lateral M2 tidal velocities due all components (a, b), Cori-
olis deflection (c, d), continuity (e, f) and the lateral density gradient
(g, h) at maximum flood (top panels) and slack after flood (bottom

panels) for the Gaussian profile at x = 10 km. Red (blue) colours indi-
cate positive (negative) velocities towards the right (looking landward)

integrated longitudinal M2 tidal flow is also not altered
when a is varied and the flow is thus only redistributed
over the cross-section. The longitudinal flow u0 is redis-
tributed such that the velocity distribution has the same
skewness as the bottom profile (not shown). As they are
determined by the distribution of u0, the lateral velocities
due to Coriolis deflection v0,f and the lateral density gradi-
ent v0,ρy are also redistributed over the cross-section in this
way.

The lateral locations and magnitudes of the positive and
negative lateral velocities as shown in Fig. 10a for the

default Gaussian profile are shown in Fig. 13a, d for a
left skewed (a = −0.8) and right skewed (a = +0.8)
asymmetric bottom profile, respectively. Interestingly, the
positive (negative) velocities are enhanced for a = −0.8
(a = +0.8). This is also seen when considering the distri-
bution of v0 at maximum flood throughout the cross-section
at x = 10 km, as shown in Fig. 13b, e (for a = −0.8 and
a = +0.8, respectively), and comparing it with Fig. 12a.
It turns out that the lateral tidal flow due to continuity v0,c,
shown in Fig. 13d, f, is responsible for this. Note that v0,c
does not only result from ∂η0/∂t but also from ∂u0/∂x.

Fig. 13 Panels a, d show the lateral locations of weighted centres
of individual areas (separated by zero contours) of positive (red) and
negative (blue) lateral velocities at maximum flood, with average
velocities within each area as indicated by the colour bar, for a = −0.8

and a = +0.8, respectively. Panels b, c, respectively, show the total lat-
eral velocity v0 and the lateral velocity due to continuity v0,c through
the cross-section at x = 10 km, at maximum flood for a = −0.8.
Panels e, f are similar to b, c, but for a = +0.8
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Since u0 is redistributed throughout the cross-section as a

varies and becomes asymmetric around the central axis, the
lateral flow due to continuity also becomes asymmetric. In
addition, the magnitude of v0,c increases from about 0.3
to 0.6 cm/s at x = 10 km for the skewed profiles (with
a = +0.8 and a = −0.8), causing it to become 20–25 % of
the total lateral flow. For significantly skewed bottom pro-
files, the cross-sectional average of v0,c (and therefore of
v0) is non-zero and at maximum flood its sign is opposite to
the sign of a.

4.2.3 Effect of varying lateral bottom slope on distribution
of lateral tidal velocities

The lateral locations and magnitudes of the positive and
negative lateral velocities (as shown in Fig. 13a, d for the
skewed bottom profiles) are shown in Fig. 14a, d for a steep-
ness C (see Eq. 36b) of 1.54 and 1.83, respectively. For C =
1.54, the magnitudes of the circulation cells are decreased
with respect to the default case (which uses C = 1.66),
due to the decrease in magnitude of the lateral velocity due
to the lateral density gradient v0,ρy (shown in Fig. 14c, f).
As v0,ρy is small in this case, the lateral flow component
due to Coriolis v0,f dominates and a single circulation cell
appears. For C = 1.83, the magnitudes of the circulation
cells are increased. When the steepness C increases, the dif-
ference between the minimum and the maximum depth is
larger, leading to larger differences in longitudinal velocity
magnitude and phase between the shoals and the main chan-

nel. These larger differences subsequently lead to stronger
lateral density gradients, enhancing v0,ρy with its double
circulation structure. This is expected, as this lateral flow
component scales quadratically with depth (Huijts et al.
2011).

5 Discussion

In this section, first modelled and measured M2 sea sur-
face elevations and longitudinal velocities are compared for
the Ems estuary. The limitations on the geometry in the
model is then discussed shortly. Lastly, the effect of sea level
rise on tidal forcing conditions at the seaward boundary is
discussed.

5.1 Model-data comparison

The model outcome was compared to measurements from
the Ems estuary. Measurements of sea surface elevation in
the longitudinal direction from 2005 were obtained from
Chernetsky et al. (2010). Figure 5a shows that the qualita-
tive behaviour of the tidal wave is well represented by the
model for the 2005 case.

Data obtained with an ADCP by the ICBM in Germany
on the 12th of June 2012 allow for comparison of mea-
sured and modelled longitudinal tidal velocities through a
cross-section around x = 16 km. The ADCP data were sub-
jected to a harmonic analysis to find the M2 component

Fig. 14 Panels a, d show the lateral locations of weighted centres
of individual areas (separated by zero contours) of positive (red) and
negative (blue) lateral velocities at maximum flood, with average
velocities within each area as indicated by the colour bar, for C = 1.54

and C = 1.83, respectively. Panels b, c, respectively, show the total
lateral velocity v0 and the lateral velocity due to the lateral density gra-
dient v0,ρy through the cross-section at x = 10 km, at maximum flood
for C = 1.54. Panels e, f are similar to b, c, but for C = 1.83
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Fig. 15 Modelled (a, b) and
observed (c, d) longitudinal M2
tidal velocities respectively at
maximum flood and slack after
flood through a cross-section
located at x = 16 km. Positive
(negative) values indicate
landward (seaward) velocities.
The dashed line indicates the
part of the cross-section in which
measurements were available

of the longitudinal and lateral flow velocities. The lateral
velocities obtained from the ADCP measurements were not
found suitable to be compared with the model results. This
is attributed to the presence of local geometrical character-
istics, such as the proximity of a storm surge barrier, the
presence of a side channel and a slight local divergence of
the estuarine width. These local geometrical properties alter
the distribution of the lateral tidal flow such that they can-
not be represented by the analytical model. The model runs
performed for this comparison use the Fit to observations
bottom profile, an eddy viscosityAv,ref = 1.0·10−2 m2 s−1

and an M2 tidal amplitude AM2 = 1.40 m to better represent
the 2012 case. Figure 15 shows a model-data comparison
for the longitudinal tidal velocities. Clearly, the longitudi-
nal velocities are both qualitatively and quantitatively well
represented by the model.

5.2 Limitations on the geometry

The present model is designed to gain fundamental insight
on tides in estuaries. Consequently, its direct application
to natural estuaries is limited. Some geometric properties
that are apparent in many estuaries around the world are
not accounted for by this model. Examples are longitudinal
variations in depth, meandering of the main channel, river
bends and tidal flats. Longitudinal changes in depth, fric-
tional properties and convergence can be considered when
using a segmented version of the model, as long as proper
boundary conditions are applied between the segments. By
using a segmented model employing and using formulations
of the equations in terms of natural coordinates, meandering
and river bends might be taken into account while keeping
the model analytical.

5.3 Effect of sea level rise on external forcing

As a result of sea level rise, the amplitudes and phase dif-
ferences of the tides in oceans in coastal seas will change.
If such changes in the coastal sea adjacent to the considered
estuary are significant, they should be taken into account in
the forcing conditions at the seaward side of this estuary.
Changes in tidal characteristics due to sea level rise have
been identified in the North Sea and are related to shifts in
the amphidromic patterns of the tide. Pickering et al. (2012)
showed that the changes in the M2 tidal amplitude related
to sea level rise near the Ems estuary are negligible. When
forcing the estuarine model with an M2 tidal amplitude, as
is done in this study, these changes can thus be neglected.
However, in other parts of the North Sea or in other regions
of the world, changes in the tidal amplitude at sea due to
sea level rise affect the tidal forcing at the mouth of estuar-
ies. As an example, at Cuxhaven (at the mouth of the Elbe
estuary), which is located only 150 km North East from
the Ems estuary, Mudersbach et al. (2013) found a signifi-
cant increase in M2 tidal amplitude of 1.76 mm/year due to
mean sea level rise in historical data from 1953 to 2008. The
results of Pickering et al. (2012) support these findings.

6 Conclusions

In this study, the dependence of the semi-diurnal sea surface
elevation on width convergence, the lateral bottom profile
shape, channel deepening and sea level rise were investi-
gated. Also the effect of changing both the skewness and the
average slope of the bottom profile on the lateral tidal flow
was considered. This was done using an analytical model
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that included width convergence, a partial slip boundary
condition and differential advection of salt. This model was
applied to a prototype estuary with a geometry that was
designed to represent the upper Ems estuary on the border
between The Netherlands and Germany.

With respect to a default case, representing the 2005 situ-
ation, width convergence was shown to cause the amplitude
of the sea surface elevation to first increase with increasing
width convergence, but below a critical convergence length
the tidal amplitude reduced again. Results pointed out that
skewing the lateral bottom profile had no effect on tidal
elevations, while increasing the average slope of the cross-
sectional bottom profile caused increased amplification of
the semi-diurnal sea surface elevation.

Realistic amounts of deepening (∼1–2 m) and sea level
rise over the coming 50 to 100 years (∼30–60 cm) were
shown to have a significant amplifying effect on the semi-
diurnal tidal sea surface elevation in the Ems estuary.
Furthermore, taking into account the effect of flooding of
adjacent banks significantly lowers the critical amount of
sea level rise after which dampening of the tidal wave occurs
(from 2.8 to 1.4 m).

For symmetrical bottom profiles, the dominant lateral
tidal components are those due to Coriolis deflection and
the lateral density gradient throughout most of the estuary.
Seaward of x = 15 km, the lateral density gradient becomes
dominant and landward of x = 15 km Coriolis deflection
is the determining process. Due to this, the lateral flow dis-
tribution shows two or three circulation cells close to the
seaward boundary and only one circulation cell in the rest
of the estuary. Laterally skewing the lateral bottom profile
was shown to amplify the lateral flow due to the contribution
from continuity. These velocities show a distribution that is
antisymmetric in the lateral direction (around y = 0) when
a symmetric bottom shape is used, while their distribution
becomes asymmetric for skewed bottom profiles. Increas-
ing the average slope, by varying the steepness parameter,
leads to an enhanced lateral component due to the lateral
density gradient, increasing the magnitude of the multiple
circulation cells found at the seaward side of the estuary.
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