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Abstract We present an idealised model of the tidal
response in a main channel with multiple secondary basins,
co-oscillating with an adjacent sea. The sea is represented
as a semi-infinite strip of finite width, anywhere between
the limits of a channel extension (narrow) and a half-plane
(wide). The sea geometry controls the extent to which radia-
tive damping takes place and hence the type of conditions
that effectively apply at the channel mouth. These condi-
tions range between the two extremes of prescribing eleva-
tion (deep sea limit) and prescribing the incoming wave (sea
as channel extension of the same depth, as done in an ear-
lier study). The closer to this first extreme, the stronger the
oscillations in the secondary basins may feed back onto the
channel mouth and thus produce an amplified or weakened
response in the system as a whole. The possibly resonant
response is explained by analysing the additional waves that
emerge on either side of the entrance of the secondary basin.
Finally, we show that the simultaneous presence of two
secondary basins may amplify or weaken the accumulated
responses to these basins individually.
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1 Introduction

Recent studies have shown that the construction of reten-
tion basins may influence the tidal motion in estuaries. Such
measures are considered, e.g., to reduce both high waters
and turbidity (Ems Estuary, see Donner et al. 2012) or to
achieve nature compensation (de-poldering to compensate
for the loss of natural values associated with the deepening
of the Western Scheldt, see Stronkhorst and Mulder 2014).
Alebregtse et al. (2013) showed that the response at the
channel head to a single secondary basin depends on its
distance δ to the channel head relative to the tidal wave-
length λ. An alternating pattern is found: reduction occurs
if δ < 1

4λ, amplification if 1
4λ < δ < 1

2λ, reduction again
if 1

2λ < δ < 3
4λ, and so on. Maximum reduction or max-

imum amplification is found halfway along these intervals.
It should be emphasized that this result applies to the case
without friction. Moreover, the secondary basins are repre-
sented as short linear channels that are small in the sense
that the combined effect of multiple retention basins is a
linear superposition of the individual effects of each basin
separately. In a nonlinear follow-up study, Alebregtse and de
Swart (2014) found that quadratic friction produces spatial
variations in tidal range landward of the secondary channel.
Moreover, the effects on suspended sediment transport are
stronger (net transport may locally reverse) than those on
bedload transport.

However, the conditions applied at the channel mouth
deserve attention here, particularly regarding the concept
of resonance, which implies high values of the ratio of
elevation amplitude at the channel head and the ampli-
tude of the wave that forces the problem. By imposing

mailto:p.c.roos@utwente.nl


312 Ocean Dynamics (2015) 65:311–324

Fig. 1 Top view of model
geometry, showing a main
channel of length l and width b,
connected to a sea of width bs
infinitely stretching to the left.
Dashed lines denote the
coastlines in the two limiting
cases of a half-plane (bs → ∞)
and a channel extension
(bs = b). This is an example
with two secondary Helmholtz
basins (J = 2) at x = x1 and
x = x2. Black circles indicate
the channel mouth, the vertex
points and the channel head
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the incoming tidal wave, the above studies rule out the
possibility of resonance of the system as a whole and thus
also neglect the potential influence of the secondary basin
on these resonance properties. In other words, interference
of the ingoing and outgoing wave at the main channel mouth
cannot affect the response in the system. This assump-
tion implies that the channel is effectively treated as being
infinitely long. Indeed, the results were found to depend on
the distance from secondary basin to channel head only and
not on the distance to channel mouth (and hence on channel
length).

The goal of this study is to investigate the resonance
properties of the main channel with multiple secondary
basins. As the main innovation, we specifically focus on
the forcing of the system and thus on the interaction of
the basin with the adjacent sea. Sea geometry is crucial
herein, because it controls the amount of water available to
absorb the wave radiating away from the channel mouth. As
shown in Fig. 1, the widest possibility is a half-plane, the
narrowest an extension of the main channel, as effectively
considered by Alebregtse et al. (2013). To connect these
two limiting cases, we will in fact consider the intermediate
configuration where the sea is represented as a semi-infinite
strip of finite width bs. Importantly, the forcing wave men-
tioned above when characterising resonance is in the sea
and not in the main channel. A further innovation is that
a broader range of basin characteristics will be systemat-
ically analysed, regarding both single basin response and
the interaction among basins. This range includes basins
that are not small and basins that turn out to display oppo-
site behaviour (i.e. reversed patterns of amplification and
reduction).

This paper is organised as follows. Section 2 contains the
model formulation. Section 3 is the solution method. Next,
the results for one and two secondary basins are presented
in Section 4. Finally, Sections 5 and 6 contain the discussion
(including an explanation of the physical mechanism) and
conclusions, respectively.

2 Model formulation

Consider a straight tidal channel of length l, uniform width
b and uniform depth h were connected to a sea and a number
of secondary basins (the case with two basins is sketched in
Fig. 1). We adopt a two-dimensional coordinate system with
horizontal coordinates x and y. The x-coordinate is aligned
with the main channel, with the mouth located at x = 0 and
its head at x = l. The y-coordinate follows the coastline of
the adjacent sea, with the channel mouth located between
y = ± 1

2b.
Regarding hydrodynamics, our model combines two

approaches. A cross-sectionally averaged approach suffices
for the main channel and secondary basins. However, to ade-
quately describe the wave radiating from channel mouth into
the sea, we must adopt a two-dimensional approach describ-
ing depth-averaged flow and variations in two horizontal
directions. The cross-sectionally averaged flow velocity
and surface elevation in the main channel are denoted
u(x, t) and η(x, t), respectively. Conservation of momen-
tum and mass in the main channel is expressed by the
cross-sectionally averaged linear shallow water equations

∂u

∂t
+ ru

h
= −g

∂η

∂x
,

∂η

∂t
+ h

∂u

∂x
= 0, (1)

where g is the acceleration of gravity. Moreover, r is
a bottom friction coefficient, as specified according to
Lorentz’ linearisation (Lorentz 1922; Zimmerman 1982) in
Appendix A. As boundary conditions for the main channel,
we require its elevation and volume transport at the mouth
(x = 0) to match those in the adjacent sea, as well as no
flow at the closed end (x = l):

η = 〈ηs〉 and bhu = bhs〈us〉 at x = 0, (2)

u = 0 at x = l. (3)

Angle brackets denote averaging over the seaward side
of the main channel mouth, i.e. 〈·〉 = b−1

∫ b/2
−b/2 ·dy.

Equation 2 thus connects the two-dimensional flow
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approach in the sea with the cross-sectionally averaged
description in the main channel.

The adjacent sea, of uniform depth hs, is represented as a
semi-infinite strip of width bs, which becomes a half-plane
in the limit bs → ∞ and a channel extension if bs = b.
The solution in the sea satisfies the two-dimensional lin-
earised shallow water equations including bottom friction
(Appendix B). It is the superposition of a (partially) stand-
ing wave ηforc that forces the system and a radiating wave
ηrad, both of angular frequency ω (see Fig. 1). The former
wave, which has a prescribed amplitude Nforc at x = 0, can
be viewed as the superposition of a normally incident wave
and a reflected wave as if the channel mouth were closed.
The radiating wave, which radiates away from the channel
mouth, actually results from the interaction with the chan-
nel system and is therefore an unknown of the problem. The
elevation in the sea can thus be written as

ηs = ηforc + ηrad, (4)

with

ηforc = Nforc� {cos(ksx) exp(iωt)} , (5)

where ks = γsks0 is the (complex) wave number in the sea,
with frictional correction factor γs = √

1 − irs/(ωhs) and
frictionless shallow water wave number ks0 = ω/

√
ghs.

Next, we consider J secondary basins, the j -th one
located at x = xj . Each secondary basin is represented
as a Helmholtz basin, which is motivated by its relatively
simple description and the agreement with the plans in prac-
tise (such as for the Ems estuary in Northern Germany; see
Donner et al. 2012). Helmholtz basins are characterised by
the dimensions of a short inlet channel (length lj , width
bj , depth hj ) and the surface area Aj of the basin. The
unknowns are the channel velocity vj (t), measured positive
when pointing towards the basin, and the basin level βj (t),
which is assumed uniform, relative to its still water level.
The model equations for these scalar quantities read

dvj

dt
+ rj vj

hj

= −g
βj − ηj

lj
, Aj

dβj

dt
= bjhj vj , (6)

where rj is a friction coefficient (see Appendix A) and ηj

is the surface elevation in the main channel at x = xj . The
possibility of considering alternative secondary basin types,
such as linear channels, will be discussed in Section 5.3.

The formulation in Eq. 6, assuming a linearly sloping sur-
face elevation in the inlet channel, guarantees continuity of
elevation at each of the J vertex points. At those locations,
we must further require continuity of volume transports
according to

bh
[
u�

j − u⊕
j

]
= bjhj vj at x = xj , (7)

where superscripts � and ⊕ denote the limits to the left and
right of x = xj , respectively.

3 Solution method

We seek solutions in dynamic equilibrium with the periodic
forcing of angular frequency ω. For the main channel, we
thus write

η(x, t) = � {N(x) exp(iωt)} , (8)

u(x, t) = � {U(x) exp(iωt)} , (9)

with complex amplitudes N(x) and U(x). For the
Helmholtz basins, we let Vj denote the complex amplitude
of the inlet channel velocity.

To proceed, let us define the following J + 2 complex
elevation amplitudes

N = [ N0,︸︷︷︸
mouth

N1, N2, · · · , NJ ,
︸ ︷︷ ︸

vertex points

NJ+1︸ ︷︷ ︸
head

]T, (10)

referring to the channel mouth, vertex points and chan-
nel head (black dots in Fig. 1). The solution will now be
obtained by deriving a set of linear equations for these J +2
unknowns. To this end, we first seek a solution in the main
channel, that attains these yet unknown elevation amplitudes
Nj while satisfying the model equations for the main chan-
nel in Eq. 1. These equations can be combined into a single
equation for N(x):

d2N

dx2
+ k2N = 0. (11)

Here, k = γ k0 is the wave number in the main channel
(complex due to bottom friction), with frictional correction
factor γ = √

1 − ir/(ωh) and frictionless shallow water
wave number k0 = ω/

√
gh. The solution to Eq. 11 is a

superposition of waves travelling in opposite directions, i.e.
N(x) = Â exp(ikx) + B̂ exp(−ikx), i.e. a partially standing
wave with coefficients Â and B̂. In each of the J + 1 main
channel sections xj < x < xj+1, with for notational con-
venience x0 = 0 (mouth) and xJ+1 = l (head), this can be
written as

N(x) = Nj+1
sin(k[x − xj ])

sin(k[xj+1 − xj ]) − Nj

sin(k[x − xj+1])
sin(k[xj+1 − xj ]) , (12)

U(x) = i

γ

√
g

h

[

Nj+1
cos(k[x − xj ])

sin(k[xj+1 − xj ]) − Nj

cos(k[x − xj+1])
sin(k[xj+1 − xj ])

]

.

(13)

The velocities follow from iωγ 2U = −gdN/dx. This
solution automatically satisfies N(xj ) = Nj and, hence,
continuity of surface elevation at each of the vertex points.
To also satisfy the remaining conditions in Eqs. 2, 3, and 7,
we must turn to the volume transports on either side of each
vertex point.

To this end, let U�
j and U⊕

j represent the left and right
limits of the complex velocity amplitudes at the points x =



314 Ocean Dynamics (2015) 65:311–324

xj , respectively, if they exist in the channel.1 From Eq. 13,
we now find

bhU⊕
j = iωb

k

[
Nj+1

sin ϕ⊕
j

− Nj

tan ϕ⊕
j

]

, (14)

bhU�
j = iωb

k

[
Nj

tan ϕ�
j

− Nj−1

sin ϕ�
j

]

, (15)

with phase angles ϕ⊕
j = k(xj+1 − xj ) and ϕ�

j = k(xj −
xj−1).

We will now revisit the conditions at channel head, ver-
tex points and channel mouth and express these in terms
of the unknown elevation amplitudes Nj , either directly or
indirectly through the velocity amplitudes U⊕

j and U�
j and

using Eqs. 14–15. Firstly, imposing the closed boundary
condition at the channel head simply implies

U�
J+1 = 0. (16)

With the aid of Eq. 15, this effectively boils down to
NJ+1 = NJ/ cos(k[l − xJ ]).

Secondly, Eq. 7, expressing continuity of mass at each
vertex point, becomes

bh
[
U�

j − U⊕
j

]
= bjhjVj = YjNj , (17)

for j = 1, · · · , J . The last equality herein shows that the
mass transport through the entrance is proportional to the
elevation amplitude, with the basin admittance Yj as pro-
portionality coefficient (Miles 1971; Garrett 1975; Lighthill
1978). The basin admittance thus equals the complex ratio
of volume flux and elevation amplitudes at the entrance.
This quantity depends on the secondary basin character-
istics as well as the forcing frequency and follows from
solving the corresponding model equations. To facilitate the
solution and interpretation, it is convenient to represent the
admittance in dimensionless form. We thus write

Yj = iωb

k
Ỹj , (18)

with dimensionless admittance Ỹj given by

Ỹj = Ajk

b

[

1 −
(

γjω

ω0,j

)2
]−1

. (Helmholtz basin)

(19)

Here, we have used the frictional correction factor
γj = [1 − irj /(ωhj )]1/2, the eigenfrequency ω0,j =
[gbjhj/(Aj lj )]1/2 (of the frictionless Helmholtz oscilla-
tor). A subcritically forced Helmholtz basin (ω < ω0,j )
has Ỹj > 0 (in the absence of bottom friction) and is
termed a positive basin. Conversely, a supercritically forced
Helmholtz basin (ω > ω0,j ) has Ỹj < 0 and is termed

1The velocity amplitudes U�
0 and U⊕

J+1 are meaningless here as they
refer to limits taken in regions outside the main channel.

a negative basin. Positive basins experience inflow (out-
flow) during rising (falling) tide at the entrance; for negative
basins, the opposite is true. This terminology will be used
later when presenting and interpreting the results (Sections 4
and 5).

Thirdly, we need to formulate a condition for the main
channel mouth, where the elevations and mass transports on
either side of x = 0 must match according to Eq. 2. As noted
in Eq. 4, the elevation in the sea is the sum of the forcing
wave and radiating wave, whereas the volume transport is
entirely due to the radiating wave (the flow field of the forc-
ing wave gives no transport through the mouth). The mouth
conditions in Eq. 2 can thus be recast as

N0 = Nforc + 〈Nrad〉, (20)

bhU⊕
0 = bhs〈Urad〉 = Yrad〈Nrad〉, (21)

where the last equality shows that also the wave radiating
into the sea satisfies an admittance relationship, now with
radiative admittance Yrad, again following from solving the
model equations. Eliminating Nrad (and Urad) from Eqs. 20–
21 yields a single relationship involving N0, U⊕

0 , and Nforc:

N0 − ZradbhU⊕
0 = Nforc, (22)

where, instead of admittance, it is more convenient to
use the radiative impedance Zrad = Y−1

rad . The radiative
impedance, equal to the complex ratio of elevation and vol-
ume flux amplitudes, depends on sea geometry relative to
channel geometry and on the forcing frequency. Analogous
to the basin admittance, it is convenient to represent the
impedance in dimensionless form, i.e.

Zrad = k

iωb
Z̃rad, (23)

with dimensionless radiative impedance Z̃rad given by

Z̃rad =

⎧
⎪⎪⎨

⎪⎪⎩

−i ks
k

ksb
2

(
1+ 2i

π

[
3
2 −�−log( 1

2 ksb)
])

, (half-plane)

−i ksb
kbs

[
1 + ∑∞

m=1
2ks

νmξ2
m

sin2 ξm

]
, (semi-inf. strip)

−i ks
k
, (channel extension)

(24)

for the half-plane, semi-infinite strip and channel exten-
sion, respectively. In the upper expression (Buchwald 1971;
Miles 1971; Garrett 1975), � = 0.5772.. is Euler’s con-
stant. In the second expression, we use ξm = mπb/bs and
νm satisfying ν2

m = k2
s − (2mπ/bs)

2 as well as 	{νm} < 0
(see Appendix C). The radiative impedance depends on the
width ratio bs/b and (through ks/k) also on the depth ratio
hs/h. Based on the dependency of Z̃rad on the depth ratio,
as shown in Fig. 2 for the channel extension, we identify
two limiting mouth conditions:

– The deep sea limit, characterised by Z̃rad = 0, pre-
scribes elevation at the channel mouth. It is obtained
by letting hs/h → ∞ in any of the expressions in
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Eq. 24, by which ks/k ↓ 0. As will be shown in
Section 4, this limit is also well approximated by a
wide sea with a depth identical to that of the main
channel.

– The channel extension of same depth (CESD) limit,
characterised by Z̃rad = −i, prescribes the incoming
wave (equivalent to Alebregtse et al. 2013). In this limit,
both the width and depth of the sea and main channel
are identical, i.e. bs = b and hs = h such that also
ks = k in (the third expression of) Eq. 24.

The dependency of Z̃rad on the ratio of sea width and chan-
nel width will be investigated in Section 4.2 and discussed
in Section 5.2.

Finally, combining the conditions in Eqs. 16–17 and 22
with the vertex transport Eqs. 14–15 gives a set of linear
equations, which is solved analytically. Here, we present the
cases without secondary basin (J = 0) and with one or two
secondary basins (J = 1 or J = 2) in matrix form:
[

1+Z̃radτ
⊕
0 −Z̃radσ

⊕
0−σ�

1 τ�
1

][
N0

N1

]

=
[

Nforc

0

]

, (25)

⎡

⎣
1+Z̃radτ

⊕
0 −Z̃radσ

⊕
0 0

−σ�
1 τ⊕

1 +τ�
1 −Ỹ1 −σ⊕

1
0 −σ�

2 τ�
2

⎤

⎦

[
N0
N1
N2

]

=
[

Nforc
0
0

]

, (26)

and

⎡

⎢
⎢
⎣

1+Z̃radτ
⊕
0 −Z̃radσ

⊕
0 0 0

−σ�
1 τ⊕

1 +τ�
1 −Ỹ1 −σ⊕

1 0
0 −σ�

2 τ⊕
2 +τ�

2 −Ỹ2 −σ⊕
2

0 0 −σ�
3 τ�

3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

N0
N1
N2
N3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

Nforc
0
0
0

⎤

⎥
⎥
⎦ .

(27)
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Fig. 2 Dependency of dimensionless radiative impedance Z̃rad on
the ratio hs/h of sea depth and channel depth according to the third
expression in Eq. 24, assuming no bottom friction. As �{Z̃rad} = 0,
only the imaginary part is plotted. The dashed line denotes the deep
sea limit, the point hs/h = 1 the so-called CESD-limit

Here, we have used the following shorthand notation:
τ⊕
j = 1/ tan ϕ⊕

j , τ�
j = 1/ tan ϕ�

j , σ⊕
j = 1/ sin ϕ⊕

j and

σ�
j = 1/ sin ϕ�

j with angles as defined below Eq. 15.

4 Results

4.1 Approach and reference parameter settings

We focus on the relative effect of the secondary basins com-
pared to a reference situation without secondary basins. To
present our results, we consider the elevation at the head
of the main channel (x = l) and we define the complex
amplification factor

A = Nhead/N
ref
head. (28)

The absolute value |A| shows the so-called amplitude
gain, its phase arg(A) the phase shift due to the presence
of secondary basin. The reference value N ref

head follows from
solving Eq. 25, which gives, after applying trigonometric
identities, the following result:

N ref
head = Nforc

cos kl − Z̃rad sin kl
. (29)

In the deep sea limit, this reduces to Nhead =
Nforc/ cos kl, whereas in the CESD-limit we obtain Nhead =
Nforc exp(−ikl).

To fully expose the dependencies of the amplification
factor A, we vary the main channel length in the range 0 <

l < lmax for parameter values taken from Table 1 (reference
or alternative values). Basin position(s) will be varied in the
range 0 < xj < l. In Sections 4.2 and 4.3, we present results
without bottom friction (rs = r = rj = 0); the influence of
bottom friction will be investigated in Section 5.4.

4.2 One secondary basin

The elevation amplitude at the head for a single secondary
basin follows from solving Eq. 26, and we find

Nhead = Nforc

cos kl − Z̃rad sin kl − Ỹ1[sin ϕ�
1 + Z̃rad cos ϕ�

1 ] cos ϕ⊕
1

.

(30)

In the deep sea limit, the amplification factor
reduces to A = [1 − Ỹ1 sin ϕ�

1 cos ϕ⊕
1 / cos kl]−1.

Alternatively, in the CESD-limit, we obtain Nhead =
Nforc/[exp(ikl) + iỸ1 exp(iϕ�

1 ) cos ϕ⊕
1 ], such that

A = [1 + iỸ1 cos ϕ⊕
1 exp(−iϕ⊕

1 )]−1. This last result
reproduces the findings by Alebregtse et al. (2013). It
depends on the distance l − x1 from secondary basin
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Table 1 Overview of model parameters, their reference values and alternative values

Description Symbol Reference value Alternative values

Forcing amplitude Nforc 0.5 m

Angular frequency M2-tide ω 1.404 × 10−4 rad s−1

Sea depth hs 10 m

Sea width bs 10 km 1 km, 2 km, infinite

Main channel length (max. value in plots) lmax 700 km

Main channel depth h 10 m

Main channel width b 1 km

Helmholtz basin: basin area Aj 20 km2 10 km2 (‘small’), 100 km2 (‘large’)

Helmholtz basin: channel length lj 1 km 2 km (‘negative’ basin)

Helmholtz basin: channel depth hj 5 m 1 m (‘negative’ basin)

Helmholtz basin: channel width bj 100 m 50 m (‘negative’ basin)

Helmholtz basin: eigenfrequency ω0,j 4.95 × 10−4 rad s−1 7.00 × 10−4 rad s−1 (‘small’), 2.21 × 10−4 rad s−1 (‘large’)

0.50 × 10−4 rad s−1 (‘negative’ basin)

to head only. Moreover, only if Ỹ1 is real and small
(|Ỹ1| � 1), this further simplifies to A ≈ 1 − 1

2 Ỹ1 sin 2ϕ⊕
1 ,

producing the specific alternating pattern of reduction
and amplification already mentioned in the Introduction
(Section 1).

For the reference parameter settings, Fig. 3 displays the
situation without basin, with basin as well as the ampli-
tude gain |A| defined in Eq. 28. This is done for a range of
main channel lengths l and for a range of secondary basin
positions x1, which obviously must satisfy x1 < l thus

explaining the triangular plotting domain. To facilitate inter-
pretation, l and x1 have been scaled against the frictionless
shallow water wavelength λ = 2π/k0 ≈ 443 km. Figure 3a
displays |Nhead/Nforc| according to Eq. 29, showing large
amplification at l/λ ≈ 1

4 , 3
4 , · · · . This is the well-known

quarter wavelength resonance (and odd multiples of the
quarter wavelength), here slightly modified due to radia-
tive damping (e.g. Defant 1961). This pattern of straight
tongues is independent of x1 because there is no secondary
basin. Figure 3b shows how the presence of a secondary
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Fig. 3 Dimensionless elevation at channel head |Nhead/Nforc| for a
situation (a) without secondary basin, (b) with one secondary basin at
x = x1. (c) amplitude gain |A| (black lines denoting the unit contour).
All quantities have been plotted as a function of basin position x1 in

main channel (distance to mouth, which has no influence in case a)
and main channel length l, both scaled against the frictionless shallow
water wavelength λ ≈ 443 km. Parameter values in Table 1 (no bottom
friction, bs = 10b)
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Fig. 4 Amplitude gain |A| as in Fig. 3c, but now for a variety of sea configurations, all with hs = h: (a) CESD-limit (bs = 1 km), (b) sea with
double width (bs = 2 km), (c) half-plane (bs → ∞), (d) deep sea limit (Z̃rad = 0, for which the sea width does not matter). Other parameters as
in Table 1 (no friction)

basin turns the straight resonance tongues into a curly pat-
tern, according to Eq. 30. In terms of the amplitude gain
|A| displayed in Fig. 3c, this leads to an intricate pattern
of amplification and reduction as well as combinations of x

and l that produce no change in elevation amplitude at the
head (|A| = 1).

Figure 4 shows how the patterns of amplitude gain
depend on sea geometry (see Table 1). We observe a smooth
transition when gradually increasing the sea width bs from
the CESD-limit (Fig. 4a, with |A| depending only on the dis-
tance δ = l − x1 to channel head) to the more pronounced
pattern of the half-plane (Fig. 4c). Finally, the deep sea limit
plotted in Fig. 4d turns out to be a good approximation of
the amplitude gains for the reference case (Fig. 3c, with
bs/b = 10) and that of the half-plane.

Next, Fig. 5 shows how the patterns of amplitude gain
change depend on the basin characteristics (see Table 1).
The examples in Fig. 5a, b and c show how increasing
the basin area Aj reduces the regions of amplification and
intensifies the response. Increasing Aj further would turn
the system from subcritically forced (‘positive’ basin, i.e.
Ỹj > 0) to supercritically forced (‘negative’ basin, i.e.
Ỹj < 0), for which the pattern of amplification and reduc-
tion roughly reverses. Another example of such a negative

basin is provided by Fig.5d, here obtained for an inlet chan-
nel that is longer, shallower and narrower than the reference
case (Table 1).

4.3 Two secondary basins

For a situation with two secondary basins, the elevation at
the channel head is found to be

Nhead = Nforc

cos kl − Z̃rad sin kl − f1Ỹ1 − f2Ỹ2 + f12Ỹ1Ỹ2
,

(31)

with coefficients given by

f1 = [sin ϕl − Z̃rad cos ϕl] cos ϕcr , (32)

f2 = [sin ϕlc − Z̃rad cos ϕlc] cos ϕr, (33)

f12 = [sin ϕl + Z̃rad cos ϕl] sin ϕc cos ϕr . (34)

Here, we have used the shorthand notation ϕl = kx1,
ϕc = k[x2 − x1], ϕr = k[l − x2] as well as ϕlc = ϕl + ϕc

and ϕcr = ϕc + ϕr . The above result follows from apply-
ing trigonometric identities to the analytical solution of
Eq. 27.
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Fig. 5 Same as Fig. 4, but now for a variety of basin configurations: (a) small Helmholtz basin (Aj = 10 km2), (b) reference basin (same as
Fig. 3c), (c) large basin (Aj = 100 km2), (d) example of a ‘negative’ basin (lj = 2 km, hj = 1 m, bj = 50 m)
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Fig. 6 Amplitude gain at
channel head for a situation with
two identical secondary basins,
as a function of their positions
x1 and x2. The top row shows
the amplitude gain |A1+2|
according to Eq. 31 for different
values of the main channel
length l: (a) 550 km, (b) 625 km
and (c) 700 km. The bottom row
shows the corresponding ratio
Q = |A1+2/(A1A2)|, showing
an amplified (red shades) or
weakened (blue) response
compared to the separate effects.
Black lines are the unit contours.
The basin positions x1,2 have
been scaled against the
frictionless shallow water
wavelength
λ = 2π/k0 ≈ 443 km.
Parameter values as in Table 1

0 0.5 1 1.5
0

0.5

1

1.5

Y~
1
=Y~

2
=0.31

x
1
/λ (−)

x 2/λ
 (

−
)

(a) |A
1+2

| (l=550 km)

0 0.5 1 1.5
0

0.5

1

1.5

Y~
1
=Y~

2
=0.31

x
1
/λ (−)

(b) |A
1+2

| (l=625 km)

0 0.5 1 1.5
0

0.5

1

1.5

Y~
1
=Y~

2
=0.31

x
1
/λ (−)

(c) |A
1+2

| (l=700 km)

 

 

0

1

2

0 0.5 1 1.5
0

0.5

1

1.5

Y~
1
=Y~

2
=0.31

x
1
/λ (−)

x 2/λ
 (

−
)

(d) |A
1+2

/(A
1
A

2
)|

0 0.5 1 1.5
0

0.5

1

1.5

Y~
1
=Y~

2
=0.31

x
1
/λ (−)

(e) |A
1+2

/(A
1
A

2
)|

0 0.5 1 1.5
0

0.5

1

1.5

Y~
1
=Y~

2
=0.31

x
1
/λ (−)

(f) |A
1+2

/(A
1
A

2
)|

 

 

0

1

2

Particularly, one may wonder to what extent the ampli-
tude gain from two secondary basins A1+2, based on Eq. 31,
differs from the product A1A2 of the individual amplitude
gains of the subbasins separately, as obtained earlier using
Eq. 30 in Sections 4.2. To investigate this, we define the
quantity Q = |A1+2/(A1A2)|. If Q > 1, the interaction
between the basins leads to an amplified response compared
to the response of two noninteracting basins; if Q < 1
the interaction leads to a weakened response. Both situa-
tions may occur. See Fig. 6, where this is illustrated for two
identical retention basins and different values of the main
channel length l.

To analyse this interaction further, we derive expressions
for the amplitude gains A1+2 and A1A2. Combining Eqs. 31
and 29 gives

A1+2 = 1

1 − f1Ỹ1+f2Ỹ2

cos kl−Z̃rad sin kl
+ f12Ỹ1Ỹ2

cos kl−Z̃rad sin kl

, (35)

whereas with the aid of Eq. 30 we obtain

A1A2 = 1

1 − f1Ỹ1+f2Ỹ2

cos kl−Z̃rad sin kl
+ f1f2Ỹ1Ỹ2

(cos kl−Z̃rad sin kl)2

, (36)

These results differ only regarding the so-called interac-
tion term, i.e. in the third term in the denominator, which
is proportional to Ỹ1Ỹ2. Comparison of the third term in the
denominators of Eqs. 35 and 36 shows that whether ampli-
fication (Q > 1), reduction (Q < 1) or no change (Q = 1)
occurs, depends on the basins’ locations and on channel

length. The analysis also shows that stronger interaction
occurs for basins with larger dimensionless admittances,
which is confirmed by other simulations not reported here.

5 Discussion

5.1 Physical mechanism

To unravel the physical mechanism, we will analyse the
system’s response to a single secondary basin at x = x1, rel-
ative to the reference situation without basin. For clarity, we
consider the case without bottom friction (see Fig. 7). This
reference case is a standing wave in the main channel pro-
ducing an elevation amplitude N ref

1 at x = x1 (Fig. 7a) that
can be assumed to be real-valued and positive.2

If N ref
1 �= 0, adding the secondary basin triggers oscil-

lations inside the secondary basin as well as an oscillatory
volume transport through the entrance. To accommodate
this transport, additional waves must develop in the main
channel on either side of the inlet (while respecting the con-
ditions at the vertex point as well as channel mouth and
head). This is accompanied by a yet unknown change in ele-
vation amplitude N ′

1 at x = x1 (see Fig. 7b, c), which will
also affect the amplitude at the channel head. From Eq. 17,
the matching of volume fluxes at the vertex point can be

2This can be assumed without loss of generality (by a suitable defini-
tion of the moment t = 0).
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Fig. 7 Sketch of the physical mechanism for two limiting sea geome-
tries. The solution is the superposition of (a) the standing wave in the
reference case without basin and the response to the secondary basin.
This response consists of a standing wave at the landward side and a

wave on the seaward side of x = x1. For the limiting sea geometries,
the latter is either (b) a standing wave (deep sea limit) or (c) a seaward
progressive wave (CESD-limit)

written as

(Yseaw − Ylandw)N ′
1 = Y1(N

ref
1 + N ′

1), (37)

where we have introduced landward and seaward channel
admittances Ylandw and Yseaw, respectively.

Just like the reference case, the additional landward wave
is a standing wave with an elevation antinode at x = l, cor-
responding to a dimensionless admittance Ỹlandw = tan ϕ⊕

1
(Appendix D, Fig. 7b, c). Analogous to the definition of
positive and negative basins in Section 3, a positive Ỹlandw-
value physically means inflow into the landward end during
rising tide at the vertex point (a negative value implying the
opposite). Because the seaward admittance depends on sea
geometry relative to channel geometry, we will now anal-
yse the additional seaward wave for the two limiting mouth
conditions introduced earlier in Section 3.

– For the deep sea limit, the additional seaward wave is
a standing wave with an elevation node at the mouth
(Fig. 7b), for which the dimensionless admittance reads
Ỹseaw = 1/ tan ϕ�

1 (Appendix D). A positive Ỹseaw-
value physically means outflow from the seaward end
during rising tide at the vertex point (a negative value
implying the opposite).

– For the CESD-limit, the additional seaward wave is an
outgoing progressive wave (Fig. 7b), for which Ỹseaw =
i (Appendix D).

Equation (37) can be solved to obtain

N ′
1

N ref
1

= 1

(Ỹseaw − Ỹlandw)/Ỹ1 − 1
, (38)

now expressed in terms of dimensionless admittances.
Hence, it is the imbalance between Ỹseaw and Ỹlandw, that,
along with Ỹ1, controls the response. Amplification at the
vertex point and hence also at the channel head occurs if
|N ref

1 + N ′
1| > N ref

1 , reduction if |N ref
1 + N ′

1| < N ref
1 . Alter-

natively, there are three distinct cases in which no change
occurs, i.e. |N ref

1 + N ′
1| = N ref

1 . Here, we will analyse them
for each of the two limiting mouth conditions (Fig. 8).

– Case I: The reference standing wave has a node at
x = x1, i.e. N ref

1 = 0. This leaves the secondary basin
unforced. This case, independent of sea geometry, is
denoted with the blue diagonal lines in Fig. 8.

– Case II: The additional waves are such that only a phase
shift occurs at x = x1 and, hence, also at the channel
head. For the deep sea limit, this occurs if N ′

1/N
ref
1 =

−2, implying a 180◦ phase shift. For Ỹ1 � 1 implies
cos kl ≈ 0 and hence l/λ ≈ 1

4 , 3
4 , · · · , denoted by the

red curly lines in Fig. 8a. In the CESD-limit, this case
tan ϕ⊕

1 = − 1
2 Ỹ1 and the phase shift depends on Ỹ1.

For small basins, this reduces to the situation already
described by Alebregtse et al. (2013): tan ϕ⊕

1 = 0, i.e.
[l − x1]/λ = 1

2 , 1, 3
2 , and so on. These conditions are

indicated by the red diagonal lines in Fig. 8b.
– Case III: The additional seaward wave had a node at

x = x1, i.e. N ′
1 = 0. Its volume transport is then suffi-

cient to accommodate the oscillations in the secondary
basin, without triggering an additional wave at the land-
ward side. This occurs if Ỹseaw = 1/ tan ϕ�

1 → ∞, i.e.
if x1/l = 1

2 , 1, 3
2 , and so on, as shown by the green

vertical lines in Fig. 8a. Case III is not possible in the
CESD-limit.
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Fig. 8 Cases in which no amplitude change, for the two limiting
mouth conditions: (a) deep sea limit, (b) CESD-limit. The cases are
sketched as coloured (|A|=1)-contours in grey-shade copies of Fig. 4a
and d. For an explanation of case I (blue contours), case II (red) and
case III (green), see main text
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Fig. 9 Dependency of dimensionless radiative impedance Z̃rad on
the ratio bs/b of sea width and channel width according to the sec-
ond expression in Eq. 24: a real part, b imaginary part. The symbols
represent three cases depicted in Section 4: channel extension (cir-
cle, Fig. 4a), double width (square, Fig. 4b) and the reference case

(triangle, Fig. 3). The dashed line indicates the half plane (Fig. 4c).
Parameter values as in Table 1 (except bs which is varied, no bottom
friction, ksb = 0.0142). The grey solid lines denote Z̃rad of the model
by Zimmerman (1992) according to Eq. 39

For small secondary basins, i.e. for basins with |Ỹ1| � 1,
the last term on the right-hand side of Eq. 37 is negligible.
The influence of the elevation change N ′

1 on the transport
into and out of the basin, i.e. the contribution of N ′

1 on the
right-hand side of Eq. 7, is then a higher order effect that can
be neglected. For larger secondary basins, this can no longer
be neglected. Increasing the value of |Ỹ1| to a sufficiently
large value will turn situations where amplification occurs
into a situation with amplitude reduction, because the addi-
tional mass transport (due to N ′

1) is then so large that it can
no longer be accommodated by the difference in transport
across the vertex point in the main channel. As a result, the
sign of N ′

1/N1 changes. Hence, large secondary basins are
generally more likely to produce amplitude reduction than
small basins. This is apparent from the amplification regions
in Fig. 5a, b and c.

5.2 Sea geometry

The dimensionless radiative impedance Z̃rad introduced in
Eqs. 22–24 is the key parameter through which the sea
geometry enters our analysis. Our model results show a
smooth transition between the CESD-limit and the deep
sea limit (see Fig. 4). To further clarify this, Fig.9 shows
how the radiative impedance Z̃rad depends on the width
ratio bs/b. Particularly, increasing bs/b from 1, the radiative
impedance quickly approaches the value of the half-plane
limit (bs/b → ∞), which in turn strongly resembles the
deep sea limit. This result was obtained for hs = h; if the
sea is deeper than the main channel, the mouth condition
will be even closer to that of the deep sea limit.

The asymptotes showing up in Fig. 9 for certain
values of bs/b are associated with a transverse resonance

phenomenon. These peaks occur when the sea width is a
multiple of the shallow water wavelength,3 i.e. if bs =
mλs. One of the normal modes then has a longitudinal
wave number equal to zero (νm = 0 in the terminology
of Appendix C); it is then on the border between being
free (propagating in the negative x-direction) and being
bound (exponentially decaying in the negative x-direction).
Increasing bottom friction causes these peaks to damp.

Including Coriolis effects in our model would make the
forcing at sea more realistic, producing a Kelvin wave prop-
agating along the coast. However, as the forcing acts only at
a single point on the main channel, the spatial pattern of the
forcing wave in itself is not relevant. What is relevant is the
way in which sea geometry affects the radiating wave and
hence the radiative impedance. Coriolis effects only have a
minor effect on the radiative sea impedance (Garrett 1975).

As an alternative to the semi-infinite strip depicted in
Fig. 1, the sea geometry can also be represented as an
infinite channel of width bs , stretching to +∞ and −∞
in the y-direction, i.e. perpendicular to the main chan-
nel (Zimmerman 1992). The forcing wave would then be
a progressive tidal wave, propagating in the positive or
negative y-direction. Adopting a cross-sectionally averaged
approach also in the sea, the corresponding dimensionless
radiative impedance is given by

Z̃rad = −iksb

2kbs
. (model by Zimmerman 1992) (39)

3In addition to these even multiples of half the wavelength 1
2 λs,

also odd multiples may cause resonant peaks. However, the symmet-
ric position of the channel mouth prevents these odd modes from
appearing here.
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Fig. 10 Same as Fig. 3, but now for moderate friction

This result resembles that for the channel extension in
the third expression of Eq. 24, except for the factors 1

2 and
b/bs, accounting for the two directions in which the channel
stretches and the difference in width, respectively. The
width-dependency of Eq. 39 is plotted using grey lines in
Fig. 9.

5.3 Basin characteristics

The dimensionless basin admittance Ỹj introduced in
Eqs. 17–19 is the key parameter through which the basin
characteristics enter our analysis. This can for example be
seen from the matrix systems Eq. 26 and the solutions in
Eqs. 30–31. For Helmholtz basins, Ỹj was found to depend
on the geometry of the basin (surface area) and inlet chan-
nel (length, depth, width and friction coefficient), relative
to that of the main channel (width, depth and friction coef-
ficient), as well as forcing frequency. On the basis of Ỹj ,
we have made a distinction into small basins (|Ỹj | � 1)
and basins that are not small. Only for small basins in the
CESD-limit, the pattern obtained by Alebregtse et al. (2013)
is obtained. For larger |Ỹj |-values, the pattern is distorted.
In general, larger |Ỹj |-values imply stronger interactions, in
the case of multiple basins. In the frictionless case, we have
furthermore seen that subcritically forced Helmholtz basins
act as positive basins (Ỹj > 0) and that supercritically
forced Helmholtz basins act as negative basins (Ỹj < 0, for
which the amplification/reduction pattern roughly reverses).

Importantly, our approach is not restricted to Helmholtz
basins. Instead, one may for example consider a linear
channel, characterised by its length lj , width bj , depth hj

and friction coefficient rj . As derived in Appendix E, the

dimensionless basin admittance is given by

Ỹj = kbj

kjb
tan kj lj , (linear channel) (40)

where kj = γjω/
√

ghj is the shallow water wave num-
ber, with frictional correction factor γj as defined earlier
below Eq. 19. This result is identical to the ‘secondary chan-
nel factor’ used by Alebregtse et al. (2013). According to
Eq. 40, also linear channels can be classified as small or
not small, and (for the case without bottom friction) as pos-
itive or negative. They are positive if lj < 1

4λ, negative if
1
4λ < lj < 1

2λ, positive again if 1
2λ < lj < 3

4λ and so
on (λj = 2π/kj being the shallow water wavelength in the
linear channel).

Alternatively, the value of Ỹj can also be derived from a
separate model, e.g. in the case of basins with a more com-
plex geometry. A prerequisite is that this separate model is
also linear such that the linear admittance relationship in
Eq. 17 can indeed be applied.

Finally, we note that this study, focused on tidally forced
systems, can also be applied to investigate the resonance
characteristics of harbours forced by, e.g., long gravity
waves.

5.4 Role of bottom friction

So far, results have been presented without bottom fric-
tion. Figure 10 shows the amplitude gain patterns in Fig. 3
change, if we set the friction coefficients to one-tenth of
the values presented in Appendix A. Dissipation of the
wave damps the amplitudes, more strongly for larger val-
ues of the channel length (Fig. 10a, b). The amplitude
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gain thus becomes closer to unity and also the pattern
looks different (Fig. 10c). Even higher friction leads to a
more strongly damped pattern. Including channel (width)
convergence, neglected in our study, would provide a
mechanism that counteracts the damping due to bottom
friction.

Finally, we remark that including bottom friction distorts
the physical mechanisms presented in Section 5.1, making
the distinction between cases I, II, and III less apparent (see
contours in Fig. 10c).

6 Conclusions

We have developed an idealised model study of tidal
dynamics in channels with multiple secondary basins and
investigated the effect of one or two basins on the tidal ele-
vation amplitude at the channel head. The amplitude gain,
which may imply amplification, reduction or no change,
is found to depend on the geometries of sea and channel,
the type/geometry and position of the secondary basin and
bottom friction.

Sea geometry affects the way radiative damping mani-
fests itself and thus controls the conditions that effectively
apply at the main channel mouth. This is reflected in the
dimensionless radiative impedance Z̃rad, ranging from one
extreme of prescribing the incoming tidal wave (sea repre-
sented as a channel extension of same depth) to the other
extreme of prescribing the elevation (deep sea). In these
limits, the physical mechanisms underlying the response
are fundamentally different. Channel geometry matters as it
controls the proximity to resonance, and secondary basins
may bring the system closer to resonance or further away
from it.

Next, the role of the secondary basin is contained in its
position as well as in the dimensionless basin admittance
Ỹj , which inspires two classifications: (i) between positive
and negative secondary basins, depending on whether — in
the frictionless case — they attract or release water during
rising tide at the entrance (positive implying Ỹj > 0, nega-
tive Ỹj < 0); (ii) between basins that are small (|Ỹj | � 1)
and basins that are not small. Secondary basins of this last
class may interact such as to significantly amplify or weaken
their individual responses. Moreover, the position of the
basin is important. Because of the general mouth condi-
tions not only the distance to the head matters (as in the
extended channel case), but now also the distance to mouth
matters.

Bottom friction modifies each of the above aspects, gen-
erally leading to dampened response. We expect that includ-
ing channel (width) convergence, as observed in, e.g., the
Ems Estuary and Western Scheldt, will affect the response
patterns only quantitatively.
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Appendix A: Friction coefficients from Lorentz’
linearisation

We use Lorentz’ linearisation (Lorentz 1922; Zimmerman
1982) to determine the values of the friction coefficients in
Eqs. 1 and 6, i.e.

r = 8cdû

3π
, rj = 8cdv̂j

3π
. (41)

Apart from a drag coefficient cd = 2.5×10−3, this involves
typical scales û and v̂j for the velocities in main channel
and secondary basins, respectively, which require further
specification.

For the main channel, we let û be equal to the velocity
amplitude of a frictionless shallow water wave of elevation
amplitude Nforc. For the secondary basins represented as
Helmholtz basins, we take the channel velocity amplitude
if it were frictionless and forced by an elevation amplitude
Nforc. The above considerations lead to

û = Nforc
√

g/h, v̂j = gωNforc

�j |ω2 − ω2
0,j |

, (42)

with eigenfrequency ω0,j = [gbjhj/(Aj �j )]1/2. More
complicated approaches, such as an iterative approach to
determine the velocity scales (e.g., Roos and Schutte-
laars 2011), are beyond the scope of this study.

Appendix B: Model equations in sea region

In the sea region, conservation of momentum and mass is
expressed by the two-dimensional shallow water equations
in including bottom friction:

∂us

∂t
+ rsus

hs
= −g

∂ηs

∂x
, (43)

∂vs

∂t
+ rsvs

hs
= −g

∂ηs

∂y
, (44)

∂ηs

∂t
+ hs

[
∂us

∂x
+ ∂vs

∂y

]

= 0. (45)



Ocean Dynamics (2015) 65:311–324 323

Here, rs is a friction coefficient. Analogous to Appendix A,
we use rs = 8cdûs/(3π) with ûs = Nforc

√
g/hs. Bound-

ary conditions require zero normal flow at the closed sea
boundaries, as well as an incoming wave from the left
and matching of elevation and transport across the channel
mouth.

Appendix C: Radiative impedance for sea
as semi-infinite strip

Let us consider the problem of depth-averaged flow in a
semi-infinite strip of width bs, defined by the domain � =
{(x, y) | x < 0, |y| < 1

2bs}. Model equations are as spec-
ified in Appendix B. The problem for the radiating wave
is forced by a spatially uniform4 flow Urad at the channel
mouth (in the positive x-direction), i.e. at x = 0 and for
|y| < 1

2b. The complex amplitude of the along-basin flow
of the radiative wave is given by

Urad(x, y) = 〈Urad〉 b

bs

[

exp(iksx) +
∞∑

m=1

2 sin ξm

ξm

× exp(iνmx) cos

(
2ξmy

b

)]

, (46)

with ξm = mπb/bs and wave number νm, satisfying ν2
m =

k2
s − (2mπ/bs)

2 and 	{νm} < 0. The elevation pattern
follows from applying the along-basin momentum equa-
tion, i.e. from using iωγ 2Urad,s = −g

∂Nrad,s
∂x

. The complex
amplitude of the surface elevation thus becomes

Nrad(x, y) = −hsksb〈Urad〉
ωbs

[

exp(iksx) +
∞∑

m=1

2ks sin ξm

νmξm

× exp(iνmx) cos

(
2ξmy

b

)]

. (47)

Averaging this last expression over the channel mouth gives

〈Nrad〉 = −hsksb〈Urad〉
ωbs

[

1 +
∞∑

m=1

2ks sin2 ξm

νmξ2
m

]

, (48)

which is equivalent to the admittance relationship in Eq. 21
and the second expression in Eq. 24.

Appendix D: Landward and seaward admittances
in the main channel

Here, we will derive the channel admittances used in
Section 5.1. To this end, we define the complex amplitudes
N ′ and U ′ of surface elevation and channel velocity, respec-
tively, both corresponding to the additional waves emerging

4According to Miles (1971), the impedance is insensitive to the shape
of the cross-channel velocity profile.

in response to the secondary basin. The standing wave at the
landward side of the vertex point satisfies

N ′
landw(x) = N ′

1
cos(k[x − l])

cos ϕ⊕
1

, (49)

U ′
landw(x) = − iN ′

1

γ

√
g

h

sin(k[x − l])
cos ϕ⊕

1

, (50)

such that, analogous to Eq. 17 and using Eq. 18, Ỹlandw =
tan ϕ⊕

1 .
For the deep sea limit, the wave on the seaward side is

also a standing wave. However, because the mouth condition
permits no elevation change, it must have an elevation node
at x = 0:

N ′
seaw(x) = N ′

1
sin kx

sin ϕ�
1

, (51)

U ′
seaw(x) = iN ′

1
γ

√
g
h

cos kx

sin ϕ�
1

, (52)

such that Ỹseaw = 1/ tan ϕ�
1 .

Alternatively, in the CESD-limit, the wave on the sea-
ward side is not a standing wave but a wave propagating
toward the mouth. Equations 51–52 must then be replaced
with

N ′
seaw(x) = N ′

1 exp(ik[x − x1]), (53)

U ′
seaw(x) = −N ′

1

γ

√
g

h
exp(ik[x − x1]). (54)

giving Ỹseaw = i.

Appendix E: Admittance of a linear secondary channel

A linear prismatic channels is characterised by its length lj ,
width bj and depth hj . Unknowns are the cross-sectionally
averaged channel velocity vj (y, t), positive when pointing
into the channel and surface elevation βj (y, t), both func-
tions of the along-channel coordinate y and time t , and
satisfying conservation laws similar to those for the main
channel in Eq. 1. We thus write

∂vj

∂t
+ rj vj

hj

= −g
∂βj

∂y
,

∂βj

∂t
+ hj

∂vj

∂y
= 0. (55)

Analogous to the description of the main channel in
Appendix A, we introduce a linear friction coefficient rj =
8cdv̂j with velocity scale v̂j = Nforc

√
g/hj . Boundary con-

ditions require matching of elevation at mouth (βj = ηj at
y = 0) and zero flow at the closed end (v = 0 at y = lj ).

Analogous to Eqs. 8–9, we define βj (y, t) =
� {

Bj(y) exp(iωt)
}

and vj (y, t) = � {
Vj (y) exp(iωt)

}
,
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with complex elevation and velocity amplitudes Bj(y) and
Vj (y), respectively. These amplitudes are given by

Vj (y) = − iNj

γj

√
g

hj

sin(kj [x − lj ])
cos kj lj

, Bj (y) = Nj

cos(kj [y − lj ])
cos kj lj

,

(56)

where kj = γjω/
√

ghj is the shallow water wave number,
with frictional correction factor γj as defined earlier below
Eq. 19. The (dimensional) basin admittance thus becomes

Yj = bj hjVj (0)

Nj

= ibjω

kj

tan kj lj , (57)

giving the dimensionless admittance Ỹj as presented in
Eq. 40.
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