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Abstract In the Adriatic Sea, storm surges present a signifi-
cant threat to Venice and to the flat coastal areas of the
northern coast of the basin. Sea level forecast is of paramount
importance for the management of daily activities and for
operating the movable barriers that are presently being built
for the protection of the city. In this paper, an EPS (ensemble
prediction system) for operational forecasting of storm surge
in the northern Adriatic Sea is presented and applied to a 3-
month-long period (October–December 2010). The sea level
EPS is based on the HYPSE (hydrostatic Padua Sea elevation)
model, which is a standard single-layer nonlinear shallow
water model, whose forcings (mean sea level pressure and
surface wind fields) are provided by the ensemble members of
the ECMWF (European Center for Medium-Range Weather
Forecasts) EPS. Results are verified against observations at
five tide gauges located along the Croatian and Italian coasts
of the Adriatic Sea. Forecast uncertainty increases with the
predicted value of the storm surge and with the forecast lead
time. The EMF (ensemble mean forecast) provided by the
EPS has a rms (root mean square) error lower than the DF
(deterministic forecast), especially for short (up to 3 days) lead
times. Uncertainty for short lead times of the forecast and for
small storm surges is mainly caused by uncertainty of the

initial condition of the hydrodynamical model. Uncertainty
for large lead times and large storm surges is mainly caused by
uncertainty in the meteorological forcings. The EPS spread
increases with the rms error of the forecast. For large lead
times the EPS spread and the forecast error substantially
coincide. However, the EPS spread in this study, which does
not account for uncertainty in the initial condition, underesti-
mates the error during the early part of the forecast and for
small storm surge values. On the contrary, it overestimates the
rms error for large surge values. The PF (probability forecast)
of the EPS has a clear skill in predicting the actual probability
distribution of sea level, and it outperforms simple “dressed”
PF methods. A probability estimate based on the single DF is
shown to be inadequate. However, a PF obtained with a
prescribed Gaussian distribution and centered on the DF value
performs very similarly to the EPS-based PF.

Keywords Venice surge forecast . Ensemble prediction
system . Probabilistic forecast . Floodmanagement

1 Introduction

Efficient managing of coastal defenses, such as movable
dams, and delivery of flood warning to alert population are
critically depending on the quality of the information that is
delivered by a storm surge forecast system. A recent develop-
ment is the extension of existing storm surge operational
forecasts to ensemble prediction systems (EPS), whose main
advantage is the production of information on forecast uncer-
tainty (Flowerdew et al. 2012; De Vries 2009; Di Liberto et al.
2011; Mel and Lionello 2014; Mel et al. 2014). Storm surge
ensemble predictions are already operationally used by the
UK Environment Agency, for issuing coastal flood warnings
in England and Wales and by the Storm Surge Warning
Service (SVSD) of Rijkswaterstaat, the Public Works and
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Water Management Authority in The Netherlands, for the
Dutch coast.

In the Adriatic Sea, floods are a recurrent problem for the
city of Venice. Their frequency has increased since the 1950s
(Battistin and Canestrelli 2006; Lionello et al. 2012) due to
increase in sea level (SL) relative to the land, which is caused
by a combination of mean SL increase and local subsidence
(see Lionello 2012 for a discussion). The hazard posed by the
Adriatic Sea storm surges has been shown by the event of 4
November 1966, which produced severe damage and relevant
economic losses (see De Zolt et al. 2006 for a description of its
evolution).

A system of movable dams (called MOSE; MOdulo
Spe r imen t a l e E l e t t r omeccan i co , expe r imen t a l
electromechanic module) is presently been built across the
three inlets of the Venetian Lagoon and will be operated to
prevent the flooding of the city center during storm surges. An
accurate forecast of SL and of its uncertainty is extremely
useful for operating this movable dam system efficiently,
which requires the decision on lifting the barriers to be taken
about 8 h before water reaches 84 cm above the present mean
SL (Eprim et al. 2005).

A tide forecast center (ICPSM—Istituzione Centro
Previsione e Segnalazione Maree) has been established by
the town council of Venice in 1980 and operates a set of
models for SL prediction (Massalin et al. 2007). These models
are

& BIGSUMDP, which is the evolution (Tosoni and
Canestrelli 2011) of a linear statistical autoregressivemod-
el (Tomasin 1972). BIGSUMDP is calibrated using ob-
served sea level time series and predicts the water level in
the lagoon using observed local SL and observed mean
sea level pressure (MSLP) at stations along the coast of the
Adriatic Sea.

& SHYFEM (shallow water hydrodynamic finite element
model, Umgiesser et al. 2004), which is a hydrodynamical
model based on the finite element method. SHYFEM
integrates the shallow water equations and computes the
evolution of current and sea level from a sequence of
MSLP and surface wind atmospheric fields.

& HYPSEAM (hydrostatic Padua Sea elevation and adjoint
model, Lionello et al. 2006), which is a hydrodynamical
model based on the finite difference method and forced by
the same meteorological fields as SHYFEM. HYPSEAM
adopts an orthogonal grid and includes a data assimilation
module based on the adjoint method. However, since this
module is not used in this study, the acronym HYPSE is
used in this manuscript.

In their present implementation at ICPSM, SHYFEM and
HYPSEAM use the meteorological fields provided by the
ECMWF prediction system.

This study describes the results of an operational imple-
mentation of an EPS (ensemble prediction system), which
could be used as a further tool by ICPSM or other agencies
for providing more information on SL evolution. This EPS
follows the approach of Flowerdew et al. (2009, 2010, 2012),
and it has previously been described in Mel and Lionello
2014, where it has been applied to ten individual storm surge
events focusing on the prediction of the peak values. Mel and
Lionello 2014 have shown that storm surge peaks correspond
to maxima of uncertainty in the prediction (meaning that in
correspondence with them, the likelihood of significant SL
errors is largest), that such uncertainty increases linearly with
the forecast lead time and it is linked to the uncertainty of the
forcing meteorological fields. In relation to storm surge peak
values, Mel and Lionello 2014 have further shown that the
error of the EMF (ensemble mean forecast, meaning the mean
of all members of the EPS) with respect to tide gauge obser-
vations is correlated with the EPS spread and that the EMF is
more robust than a single deterministic forecast (DF) (mean-
ing that its error is consistently smaller than the error of DF as
the lead time of the forecast varies), though DF is based on
meteorological forcings at higher resolution than EMF. Mel
et al. 2014 have shown that it is possible to estimate forecast
uncertainty via a linear combination of suitable meteorologi-
cal variances, directly extracted from the EPS members, in
order to reduce the computational cost for real-time
application.

This new study contains analysis and statistics that are
based on a 3-month-long period, during which EPS has been
used imitating the operational practice. The analysis is not
focused only on peak values but considers all hourly values.
The aim is to show that the ensemble spread is a reliable
indicator of the uncertainty associated with large surge events
and that the EPS provides a skilled probabilistic forecast for
the Adriatic Sea SL with a lead time sufficient for operating
MOSE and warning the population. Further, the utility of
complementing the hydrodynamic model single prediction
(called “deterministic forecast”, DF, in the rest of this manu-
script) with an EPS probabilistic forecast is investigated and
the possibility of representation of the forecast uncertainty
with algorithms that are computationally cheaper than the
EPS is discussed.

Mel and Lionello (2014) discuss the dynamics of SL in the
Adriatic Sea and of the meteorological forcings causing it. An
essential point is the specificity of the Adriatic Sea SL dy-
namics, where SL peaks are caused not only by astronomical
tide and storm surge but also by seiches (e.g., see Lionello
et al. 2005), which are free oscillations of SL with fundamen-
tal periods of about 22 (main longitudinal seiche wave) and
11 h (transverse seiche wave). Seiches, after being triggered
by a storm surge event, diminish slowly in amplitude,
persisting for several cycles. A correct seiche forecast depends
strongly on the correct timing and level of the initial storm
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surge peak prediction, whose wrong forecast introduces in the
simulation an error that will persist (and spoil the SL forecast)
for several days.

The EPS is a consolidated tool for probabilistic weather
prediction (Leutbecher and Palmer 2008). Its first implemen-
tation has been operational at ECMWF since 1992 (see
Molteni et al. 1996). The original implementation of the
EPS consists of a set of different forecasts based on a set of
different atmospheric initial conditions, which are designed to
represent the uncertainties inherent in the operational analysis.
These initial differences are specified on the basis of the
singular vector technique (Buizza and Palmer 1995) and are
designed to amplify rapidly in time so that forecasts will
deviate substantially from each other. This follows the basic
idea of Lorenz (1965), who explored this effect for a simple
model of weather (a two-dimensional convection system with
three variables) with a crude perturbation design based on
truncation error. The ensemble of different realizations allows
the estimation of the probability distribution function of fore-
cast states and provides a practical tool for estimating how
initial uncertainties affect the forecast. The EPS approach has
been successively extended to include also perturbed forecasts
representing uncertainty on model parameters (Buizza et al.
1999). The approach of Flowerdew et al. (2009, 2010, 2012)
uses a meteorological EPS (namely the resulting MSLP and
surface wind fields) for forcing a storm surge model and pro-
ducing an ensemble prediction of SL. In practice, each member
of the EPS is used for obtaining a corresponding forecast of SL,
from which a SL probabilistic prediction is computed.

The paper is organized in the following way. “Section 2”
describes the shallow water model, the EPS method, the fore-
cast experiment, data, and statistics used for forecast verifica-
tion. “Section 3” describes the results of the EPS for an
interesting event within the 3-month analyzed period.
“Section 4” discusses how the ensemble spread represents
the uncertainty of the forecast and its dependence on the lead
time. “Section 5” discusses whether the EPS distribution de-
scribes correctly the possible conditions of SL in the Adriatic
Sea. “Section 6” summarizes the conclusions of this study.

2 Data and methods

2.1 The hydrodynamical model

This study follows the practice of ICPSM (e.g., Massalin et al.
2007), which is to compute separately the astronomical tide
and add it to the hydrodynamical model results for obtaining
the actual SL. This is justified because of the modest tidal
range on the Adriatic Sea (about 1 m in Venice, Trieste, and
Rovinj and about half meter in Split and Dubrovnik), which
makes nonlinear interactions with the surge negligible. All
data presented here (both for observations and models)

consider exclusively the superposition of storm surge and
seiches (without astronomical tide), which is called surge
residual (SR) in this paper.

The SR EPS forecasts are carried out using the HYPSE
model, which is HYPSEAM, without the data assimilation
module. The version of HYPSE used adopts a latitude–longi-
tude mesh grid of variable size, which has the minimum grid
step (0.03°) in the northern part of the Adriatic Sea, from
where grid step increases with a 1.01 factor in both latitude
and longitude (in practice, resolution varies in the range from
3.3 to 7 km). This grid has been shown to produce more
accurate results with respect to other grids (Lionello et al.
2005), and it has been used in Mel and Lionello 2014. This
study does not explicitly account for the effects of changes of
SL in the Ionian Sea on the Adriatic SL and of the total mass
of water inside the Adriatic basin during each individual
forecast. Further, it does not account for steric effects on SL.
In fact, the model domain contains a unique open boundary
(corresponding to the Otranto Strait connecting the Adriatic
Sea to the Ionian Sea) across which sea level is kept fixed at its
mean value during the forecast. This limitation is compensat-
ed by a bias removal technique (as described in Mel and
Lionello 2014), which add to the SR prediction the effect of
long term (several days to month) variability of the mean sea
level in the Adriatic Sea. This correction is obtained by
subtracting from the forecast the difference between the SR
value at the beginning of the forecast and the value obtained
by linear interpolation of the observed hourly SR data during
the previous day. Figure 1 shows HYPSE domain and the
position of tide gauges used in this study.

2.2 The EPS method for SR forecast

The SR-EPS uses the ECMWF meteorological EPS to force a
hydrodynamic model and producing corresponding EPS fore-
cast in the Adriatic Sea. Every 12 h, the 50 perturbed forecasts
of the ECMWF-EPS are used for forcing HYPSE and

Fig. 1 TheAdriatic Sea and the HYPSE domain with the locations of the
tide gauges used in this study: the ISMAR-CNR platform, Trieste,
Rovinj, Split, and Dubrovnik
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producing a corresponding 50 SR perturbed forecasts, whose
results differ only because the forcing meteorological fields
are different. This approach is meant to represent the SR
forecast uncertainty that is determined by errors or uncertainty
in the meteorological forcings. It neglects modeling errors due
to inaccuracy of the hydrodynamical model and errors caused
by the uncertainty in the initial condition of the SR forecast.
Modeling errors include insufficient spatial resolution, trun-
cation errors in the dynamical equations, approximation errors
to solve them, ad hoc parameterization, bias in the frequency
of initialization, average, and coding errors, which produce
uncertainty in the SR evolution. Errors in the ocean initial
condition of the SR forecast may include wrong timing or
amplitude of the storm surge and/or existing seiches. Because
of the linear and weakly dissipative nature of the SR oscilla-
tions in the Adriatic Sea, this source of uncertainty has a
peculiar oscillatory and slowly decaying behavior (see discus-
sion in section 3).

2.3 The SR forecast

This study simulates the operational use of the SR EPS during
the last 3 months (92 days) of the year 2010. Forcing of
HYPSE is by three different sets of 3-hourly ECMWF 10-m
wind and MSLP fields: the high resolution meteorological
forecast (deterministic forecast, DF), the control run forecast
(CRF, that differs from the DF only for its lower resolution),
and the 50 ensemblemembers of the ECMWFEPS, which is a
total of 52 sequences of meteorological fields representing 52
different evolutions of the weather. The resolution of DF fields
is T1279 and resolution of both CRF and ECMWF EPS fields
is T639. The 10-m wind and MSLP fields have been
downloaded at 0.125° (DF) and 0.25° (CRF and EPS) and
linearly interpolated to the HYPSE grid (which is the same for
all simulations). The corresponding 52 SR simulations of
HYPSE are denoted SR DF, CRF, and EPS. The mean of
the 50 SR EPS simulations is called SR EMF.

This study is based on 92×2×52 simulations of HYPSE. In
the simulated operational prediction stream, the 52 HYPSE
runs are carried out twice per day. They provide a set of 6-day
forecasts forced by the 52 different ECMWF forecasts
launched at 00 and 12UTC. Each HYPSE run is initialized
by a 10-day analysis run (which is identical in all 52 simula-
tions with the same initial date), where HYPSE is driven by
the high resolution (T1279) ECMWF analysis so that the
initial condition and the version of the HYPSE model are
the same in all 52 SR predictions.

The EPS is the ideal tool for proving a probability forecast
(PF) of occurrence of a predefined event. Given a threshold
level h, the event H is defined as the SR exceeding h for at
least one hourly step within a 12-h interval, where a set of 12
intervals is specified covering the whole time range from the
beginning to the end of each forecast, which is 144 h long. The

probability pk(h) of the EPF (ensemble probability forecast) is
given by the fraction of EPS members above the h threshold.

The SR predictions are complemented with a 92-day-long
hindcast (initialized with a previous 10-day-long analysis)
covering exactly the same period as the forecasts, in which
the HYPSE model has been driven by the ECMWF analysis.

2.4 SR forecast validation

Hourly SR data computed from the time series of five tide
gauges along the coast of the Adriatic Sea (Fig. 1) are avail-
able for the analysis of the quality of the SR prediction: the
platform ISMAR-CNR, located 15 km offshore the Venice
lagoon, and the tide gauges in the harbors of Trieste, Rovinj,
Split and Dubrovnik. Instrumental errors of these hourly data
are negligible and not considered in our analysis. Further,
though it might be argued that actual peak values are
underestimated in hourly observations, the smoothness of
the model and observed time series indicate that this is not a
relevant issue. Statistics include only time steps when obser-
vations at all tide gauges are available for all lead–time fore-
casts and include

& The SR EPS spread, which is defined as the standard
deviation of the 50+1 ensemble members (including the
CRF) around the EMF. It allows, for each time and loca-
tion, the SR forecast uncertainty to be computed.

& The SR forecast rms (root mean square) error with respect to
tide gauges, which is computed forDF, EMF, CRF, and for all
the perturbed ensemble members, by comparing the SR
forecast hourly time stepwith the corresponding observations.

& The SR forecast rms error with respect to the hindcast at
the five tide gauges, that is model verification, that is
carried out by sampling the hindcast.

& The Brier score (Brier 1950) to measure the accuracy of
the probability estimated by the EPS. The Brier score
BS(h) is computed referring to a set of six threshold levels
h (h=0.0, 0.1, 0.2, 0.3, 0.4, 0.5):

BS hð Þ ¼ 1

N

X

k¼1

N

pk hð Þ−ok hð Þð Þ2:

Here, N is the number of events, pk(h) and ok(h) are the
probability of a surge higher than h according to the EPS
and to observations, respectively, with ok(h)=1 if the
observed level is less or equal to h, ok(h)=0 otherwise.
BS(h) varies from 0 (perfect prediction) to 1 (the predic-
tion always fails)

& The Brier skill score, (BSS, Wilks 2006). The BSS(h)
measures the improvement of the EPS BS with respect to
the BSref(h) of unskilled standard forecast (DF), and it has a
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range from −∞ to 1 (positive values indicate that the fore-
cast is more accurate than the unskilled standard forecast):

BSS hð Þ ¼ 1−
BS hð Þ

BSre f hð Þ

The BSref(h) is obtained by substituting in the BS(h)
formula the forecast probability with the observed proba-
bility ō(h), computed on the basis of a 30-year-long time
series at the ISMAR-CNR platform (1981–2010) and 2-
years long (2009–2010) at the other four gauges:

BSre f hð Þ ¼ 1
N ∑

k¼1

N
o hð Þ−ok hð Þð Þ2

However, other methods, which are less computationally
expensive than the EPF, can be used for producing a PF by
combining the DF with a prescribed (Gaussian) probability
distribution to obtain a probability density function (PDF):

& DPF. The undressed probability forecast assumes a perfect
forecast with no uncertainty so that the probability of H is
1.0 if it occurs in the DF, 0 otherwise (this can be consid-
ered a limit case in which a Gaussian with zero standard
deviation is adopted).

& MDPF. The mean dressed PF assumes a Gaussian PDF
centered on the DF with a prescribed standard deviation,
which is the rms error of the DF computed at hourly step
from 1 to 144 h lead time.

& MultiDPF. The multiple dressed PF differs from the PF, as
it assumes a standard deviation which is the sum in quad-
rature of two terms: the mean overall DF rms error and a
percentage of the SR predicted by the DF. This percentage
has been assumed equal to 33 % (20 %), when verifying
against observations (hindcast values). This is meant to
describe the increase of uncertainty with the SR level.

3 Analysis of a storm surge event

This section analyzes the events which took place on the
9th and 10th of November 2010, during which a seiche and
storm surge overlapped, causing two SR peaks on the 9th
and 10th and a sequence of subsequent oscillations. The
panels of Fig. 2 show the SR forecasts for different lead
times. All panels consider the same overall time window
(11 days long from the 4th to 15th of November) reporting
the observed SR level at the ISMAR-CNR platform (thick
blue line, identical in all panels). All forecasts in a single
panel have the same initial date, from Fig. 2a showing the
forecasts launched on the 4th of November at 00UT to
Fig. 2f showing those launched on the 9th of November at

00UT (there is a 24-h step between forecasts in two suc-
cessive panels). Each panel shows the 50 simulations of the
EPS (E-members, thin gray lines), the DF (thick green
line), the EMF (thick red line), the CRF (thick brown line),
and the hindcast (thick black line). All forecasts in a single
panel start from the same initial condition because of the
common previous 10-day analysis.

The main weather impulse producing the storm surge in the
Adriatic Sea occurred on the 9th of November. The seiche
triggered by the first storm surge peak returned amplified on
the 10th of November and was followed by a sequence of
seiches with a period of about 22 h. The days before the events
were characterized by a slow steady decrease inMSLP along the
entire Adriatic Sea, during which pressure was almost uniform
in the north and south Adriatic (slightly higher in the south than
in the north). Then, in the 48 h before the surge peak, MSLP
dropped at the north Adriatic coast and the pressure gradient
determined the Sirocco wind (blowing from south-east), which
accumulated water towards the closed end of the basin and
produced the first storm surge peak on the 9th. The situation
triggered the formation of the longitudinal Adriatic 22-h seiche,
whose presence is evident during the following days. On
November 10, the highest SR event in this time window
(62 cm) was caused by the superposition of persisting Sirocco
wind with the seiche. The DF, CRF, and EMF are similar. The
hindcast performs better than the forecasts, especially for simu-
lations launched at the beginning of the considered time win-
dow, possibly suggesting errors in the meteorological prediction
of the conditions leading to the onset of the storm surge.

The panels report that the EPF reached the 50-cm SR level.
This value has been selected to represent a SR threshold that in
combination with the peaks of the astronomical tide would
have required to lift the MOSE barriers for preventing the
flooding of Venice. In this case, the confidence of the predic-
tion increased as the lead time of the forecast decreased and
reaching the threshold was certain in the forecast issued about
2 days in advance.

This event has been used for showing how seiches charac-
terize the effect of uncertainties in the initial condition of the
forecast. A set of 50 different initial conditions has been
generated using the EPS launched on the 9th of November
(panel 2f). After 36 h, on the 10th of November at 12UT
(approximately in correspondence with the maximum SR
level), the state of the circulation and SR fields differ appre-
ciably among the ensemble members. These 50 different
circulations and SR fields are used as initial conditions of 50
simulations driven by the same sequence of meteorological
fields, which have been provided by the ECMWF reanalysis.
Therefore, the behavior of the ensemble shows how the dif-
ferences due to the ocean initial condition evolve under the
action of a commonmeteorological forcing. Figure 3 shows at
the five tide gauge stations (ISMAR-CNR, Trieste, Rovinj,
Split and Dubrovnik) the evolution of the ensemble spread,
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whose decay (with a characteristic time that can be visually
estimated about 3–4 days) is strongly modulated by oscilla-
tions, which correspond to the main Adriatic seiche. Note that
switching off completely the meteorological forcing would
have produced very similar results as Fig. 3 is concerned.
Therefore, this figure shows the relevance of the seiches in
the Adriatic Sea, whose enduring dynamics that are rather
insensitive to small changes in the meteorological forcing.

4 EPS spread and error statistics

In this section, the link between EPS spread and rms errors of
DF, EMF, and CRF at the tide gauges located along the
Adriatic Sea is discussed. The analysis considers data aggre-
gated over all five tide gauges. However, a similar behavior
can be seen if tide gauges were analyzed separately. The aim is
to establish the relation linking EPS spread to the forecast
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Fig. 2 Forecasts of the event from the 9th to the 10th of November
2010 at the ISMAR-CNR platform with different lead times. Each panel
considers the same overall time window (11 days long from the 4th to the
15th of November) reporting the observed SR level (values in meters, left
side of panels) at the ISMAR-CNR platform (thick blue line, identical in
all panels). Panels report a set of forecast with different lead times at 24-h
intervals: from panel a, showing the forecasts launched on the 4th of

November at 00UT to panel f, showing those launched on the 9th of
November at 00UT. Each panel shows the 50 simulations of the EPS
(ENS-MEMBERS, thin gray lines,), the DF (thick green line), the EMF
(thick red line), the CRF (thick brown line), and the hindcast (thick black
line). The pink line shows the probability of exceeding the 50-cm SR level
(values on the right side of panels)
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uncertainty, to analyze how it varies with forecast lead time
and with the SR predicted level.

4.1 SR-EPS spread and rms errors as a function of the lead
time

The spread among EPS simulations represents a measure of
the uncertainty of prediction. It is expected that the EPS spread
increases with the forecast lead time and that cases with large
spread are those when the EMF, DF, and CRF errors are likely
to be large.

Figure 4 shows the evolution of the SR-EPS forecast
spread and rms errors as a function of the lead time. The error
behavior is shown for DF, EMF, CRF, and for the average of
all the ensemble members. The left panel (Fig. 4a) refers to the
verification of predictions against the observed data at tide
gauges, the right panel (Fig. 4b), against the corresponding
hindcast values at those locations.

In both panels, rms errors and spread increase substantially
linearly with lead time up to 100 h, reaching a value of
approximately 10 cm (15 cm for the ensemble average rms)
and stop growing for larger lead time, possibly because of the
limited amplitude of the SR signal, whose standard deviation
lies in the range 13–15 cm and limits the maximum value of
the rms error.

Generally, the EMF presents a slightly lower error than DF
and CRF, but the difference is not significant. CRF and DF
present very similar rms errors, even though DF is based on
meteorological data at a higher resolution than CRF and it
would be expected to provide a more realistic simulation. This
may be due to the “double penalty” effect, where point-wise
comparisons favor smooth forecasts over sharper but slightly
misplaced detail (Flowerdew et al. 2010).

The rms error with respect to observations (Fig. 4a) is
nonzero (4 cm) at lead time zero for all forecasts because of
the error in the initial condition of the hydrodynamical model,
which is an important contribution, being approximately 40%
of the rms error value at the end of the forecast. For lead times
larger than 36 h, the left and right panels of Fig. 4 present very
similar rms values, suggesting that errors of the meteorolog-
ical forcings are the main source of uncertainty for large lead
times, while the atmospheric initial condition error dominates
at short lead times.

The SR-EPS spread, which is obviously zero at the begin-
ning of the forecast, initially grows faster than the rms errors
with respect to observations, and it reaches their value after
about 36 h (Fig. 4a). Therefore, the SR-EPS spread, as com-
puted by this EPS configuration, is not a reliable representa-
tion of the forecast error for short lead times. However, over a
large range of lead times (24–108 h), the SR-EPS spread
matches well the rms error of the EMF, showing that ensemble
members are sampling well the distribution of possible out-
comes and for large lead time, the SR-EPS spread provides an
acceptable description of the forecast uncertainty.
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Fig. 4 Left panel a Time evolution of the SR-EPS spread (m, pink line)
and rms error (m) of ensemble mean forecast (EMF, red line), determin-
istic forecast (DF, green line), control run forecast (CRF, blue line), and all
ensemble members (ENS, blue line) with respect to observations as

function of the lead time (h). The average of the values of individual
gauges is considered. Right panel b shows the same quantities, except the
values of the hindcast at the tide gauges are considered for rms
computation.
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The SR-EPS spread is larger than the EMF rms with respect
to the hindcast (Fig. 4b) for lead times from 36 to 96 h, showing
that is this time range uncertainty is not fully related to the
meteorological fields, but, possibly, it is partially associated
with seiches keeping the memory of previous uncertainty.

4.2 SR-EPS spread and EMF

Figure 5 shows rms spread and rms errors binned by EMF
values aggregated over all five tide gauges and considering all
forecast lead times. The left panel (Fig. 5a) considers rms with
respect to observations, the right panel (Fig. 5b) with respect
to the corresponding hindcast values. Figure 5 reports also the
percent of data in each bin and shows the asymmetry of
positive and negative anomalies (Table 1 shows the actual
values). Small (large) negative anomalies are more (less)
frequent than positive anomalies, which corresponds to the
asymmetry of the conditions leading to these two opposite
conditions (see Conte and Lionello 2013 for a climatological
analysis along the Mediterranean coastline).

Results show that the highest SR forecast values have the
largest uncertainty and are most likely to be appreciably
wrong. However, percent-wise EPS spread is smaller for large
than for small SR anomalies, suggesting a robust prediction of
large storm surges.

For large SR EMF anomalies, EMF rms error is lower than
DF and CRF rms error, showing a clear improvement and
robustness of the EMF with respect to the traditional tech-
niques. For small anomalies, rms errors in Fig. 5b are much
smaller (about 50 %) than those in Fig. 5a, showing that a
substantial fraction of them is, likely, caused by uncertainty in
the initial condition and not in the meteorological evolution.
However, even for small anomalies, EPS spread remains non
negligible (about 5 cm), as the seiches in the Adriatic Sea
keeps for a long time the memory of uncertainty previously

introduced in the system (see Mel and Lionello 2014 and
Fig. 2 of this paper).

4.3 SR-EPS spread and rms error of SR predictions

Figure 6 shows the relation between the EPS spread and the
rms error. When considering the observations (Fig. 6a), the
results show that the EPS spread is linked to the EMF rms
error except for very small errors. This is because in the initial
period of the forecast EMF errors are small, but not nil, while
the corresponding EPS spread is zero. In other words, a small
spread cannot be associated to a vanishing error when the
error is in the initial part of the run. On the contrary, the EPS
spread increases faster than the rms errors so that the largest
errors of EMF (and the DF and CRF as well) are appreciably
smaller than the corresponding EPS spread. This suggests that
the EPS overestimates the uncertainty associated with large
departure of individual ensemble members from the EMF.

When errors are computed with respect to the hindcast
(Fig. 6b), the EPS spread is linked to them by an approxi-
mately linear relation up to values of about 8 cm. In this range,
the EPS spread realistically reproduces uncertainty in the
surge that is produced by errors in the meteorological forcing.
However, for large values (14 cm), the spread overestimates
the uncertainty of the EMF (and of the DF and CRF as well)
and such overestimate is larger than in Fig. 5a. This larger
discrepancy between SR-EPS spread and rms error is not
surprising, as verification against hindcast necessarily under-
estimates actual rms errors.

5 Surge residual Brier skill score

Figure 7 shows the BSS computed on the basis of the EPS as a
function of the lead time for six different thresholds h. The left
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panel (7a) shows the verification against observed values, the
right panel (7b), against the hindcast. Data are aggregated
considering all tide gauges.

Figure 7a shows that BSS remains positive for very large
lead times and diminishes with the threshold. Therefore, the
skill of the PF decreases for increasing thresholds but it
remains positive for 4 days, seven for the highest considered
threshold (50 cm). The values of BSS referring to the hindcast
are larger than those referring to the observations and remain
positive for all lead times that have been considered in this
study (>6 days). This emphasizes the relevance of the initial
condition uncertainty as a factor decreasing the skill of the
prediction and that seiches, when they are introduced in the
forecast, can affect for a long time the results of the SR
forecast. However, when considering large thresholds (h=40
and 50 cm), the differences between verification against ob-
servation (7a) and hindcast (7b) decreases, suggesting that for

large SR values, the uncertainty in the meteorological forcing
can affect the results of the SR forecast for a long time.

The BSS has been computed using the EPS results and
three simple methods (UDPF, MDPF, MultiDPF) for produc-
ing a probabilistic forecast (see “Section 2” for their descrip-
tion). Figure 8 shows the BSS for the thresholds h=0 cm and
h=40 cm (Fig. 8a considers the observed tide gauge data,
Fig. 8b, the corresponding hindcast values). The BSS of the
EPF systematically outperforms those of the other PF
methods. Particularly, the BSS of the UDPF, which does not
account for any error in the forecast, performs poorly. In
Fig. 8a, even for h=0, the value for which the BSS of all other
methods remains consistently above 0.2 for the whole 6-day-
long period, the BSS of UDPF drops below 0.2 already after
48 h. Considering the h=40 cm threshold, the UDPF BSS
drops below 0 after 60 h. This is a strong indication that a
probability estimate based on a plain DF approach cannot
deliver reliable results. TheMultiDPF, though its results are
marginally less accurate than those of the EPF, has a high BSS
and could be used as an alternative to the much more expen-
sive EPF. Finally, Fig. 8 shows that the BSS verified against
the hindcast is consistently higher for all lead times and for all
methods due to the exclusion of the wrong initial conditions
error.

6 Conclusions

An EPS forecasting system has been implemented in the
Adriatic Sea, using the ECMWF EPS for the wind and
MSLP forcing fields for a hydrodynamical SR model. The
analysis of the results is focused on the 3-month period
October–December 2010 during which the operational use
of the EPS has been simulated.

In the example discussed in “Section 3,” the first peak was
predicted with good accuracy already with a 6-day lead time,

Table 1 Number of data and percent for the bins used in Fig. 5 and
represented by the gray line

Range Events Percentage of data

−0.80 to −0.50 23 0.02

−0.50 to −0.32 2668 2.04

−0.32 to −0.24 6700 5.13

−0.24 to −0.16 13,929 10.67

−0.16 to −0.08 19,368 14.84

−0.08 to −0.00 22,077 16.92

0.00 to 0.08 22,943 17.58

0.08 to 0.16 17,709 13.57

0.16 to 0.24 11,731 8.99

0.24 to 0.32 6956 5.33

0.32 to 0.50 5405 4.14

0.50 to 0.80 991 0.76
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Fig. 6 rms errors (m) as a function of the SR-EPS spread (c) for
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while a comparable accuracy for the second peak was
achieved with a 3-day lead time. In any case, the EPS spread
included the observed values at all lead times and would have
allowed a warning of the occurrence of SR levels above
critical thresholds (here 50 cm has been adopted) several days
in advance.

The forecast errors increase with the lead time. The EMF
has a rms error lower than DF, especially for short (up to
3 days) lead times. However, differences are not large, and the
main advantage of EMF appears to be related to a more robust
prediction of the peak values (Mel and Lionello 2014) or large
SR values and not to an overall substantial reduction of the
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rms with respect to DF. In general, in absolute terms, the
uncertainty of the forecast increases with the predicted SR
value, but as percent of the predicted SR, it is lower for large
than for small SR. (this is reflected in Fig. 4).

Results show that uncertainty for short lead times (up to
36 h) of the forecast and for small SR values is caused by
uncertainty of the initial condition of the hydrodynamical
model. This suggests that inserting in a prediction system a
data assimilation procedure such as that proposed by
Lionello et al. 2006, it is essential for a reliable short lead
time forecast. Uncertainty for large lead times and large SR
values is mainly caused by uncertainty on the meteorological
forcings.

The EPS spread is demonstrated to be linked to the rms
error of the forecast, and it increases with the rms error. For
large lead times, the EPS spread and the forecast error sub-
stantially coincides. However, the EPS spread in this study,
which does not account for uncertainty in the initial condition,
underestimates the error during the early part of the forecast
(up to 36 h) and for small SR values. On the contrary, it
overestimates the rms error for large SR values. This is prob-
ably because the EPS spread underestimates the uncertainty
due to the meteorological forcings when large SR anomalies
(both positive and negative) are predicted. The importance of
the uncertainty on the initial condition suggests that it would
be interesting to combine the EPS with an ensemble data
assimilation procedure capable of producing a set of different
initial conditions for the hydrodynamical model. This might
improve the information on the uncertainty of the prediction
for lead times up to 36 h, which are operationally crucial, and
it appears to be a priority for future developments of an
operational prediction system.

The EPF has a clear skill in predicting the actual probability
distribution of SR, while a probability estimate based on a
single DF is shown to be inadequate. However, a PF obtained
with a prescribed Gaussian centered on the DF value account-
ing for the dependence of the DF rms on the predicted SR
values and lead times performs very similarly to the EPS-
based PF. Therefore, MultiDPF can be considered a practical
computationally cheap alternative to EPF, though, however,
EPF outperforms all other PF methods.

The progress of this research will regard the study of
the initial conditions, uncertainties, and the sensibility of
the forecast of them. The future development of the
EPS is to estimate via a linear combination of suitable
meteorological variances the uncertainty affecting storm
surge prediction.
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