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Abstract The 3D first-order Lagrangian residual velocity
(LRV) equation is established, and its analytical solution is
obtained in a narrow bay. The results show clearly the 3D
structure of the first-order LRV. When the exponential bot-
tom profile is assumed, the upper half layer of the water
flows in through the deep channel from the open bound-
ary directly to the head of the bay. Then the water will
return to the area surrounding the lower half of the inflow
area. The downwelling area is located mainly at the deep
channel, while the upwelling area occupies both sides of
the bay. The inter-tidal water transport, obtained by inte-
grating the 3D first-order LRV through the water column,
has a pattern similar to the previous study in which the 2D
depth-averaged Lagrangian residual current equations were
solved. The inter-tidal water transport is used to analyze
the water exchange, and it is found that the water exchange
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at different cross sections increases smoothly with the dis-
tance between the cross sections and the head of the bay
until about one wavelength. It is also found that the pattern
of the breadth-averaged Lagrangian residual current varies
with the length of the bay if a non-flat bottom profile is used.
The depth-integrated LRV and the breadth-averaged LRV
are mainly determined by the different terms of the tidal
body force, with the former determined by the bottom fric-
tion related term and the latter by the eddy viscosity related
term. When the bay is longer than one wavelength, different
results in the outer bay can be observed.

Keywords Lagrangian residual current · Eulerian residual
velocity · Analytical solution · 3D · Weakly nonlinear tidal
system · Narrow bay

1 Introduction

The tidal current is the principal movement in most shal-
low seas. Yet, the time scale of the tidal period is often
not of major concern to people dealing with environment-
related problems. People tend to pay much more attention
to the fate of the pollutants on a time scale of days or even
months. As a result, the movement of the tidal frequency
needs to be filtered out of the total movement, making the
residual current represent the mass transport in an intertidal
time scale. In order to eliminate the tidal signal, the early
work such as Abbott (1960) used a very direct and simple
way by taking just the average of the current velocity over
one or several tidal periods at a specific location. The so
processed velocity, known as the Eulerian residual velocity
(uE), is still widely used to study the intertidal circulation
nowadays (The definitions related to the residual currents
used in this paper are summarized in Section 2.1). For
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example, Huijts et al. (2009) decomposed uE into several
terms based on different mechanisms, and Burchard and
Schuttelaars (2012) specifically studied in detail the mech-
anism of the tidal straining effect on uE which was used to
represent the estuarine circulation in their study.

In all of these studies, it was implied a priori that
uE could represent the circulation on an intertidal time
scale, but it turns out that this is not the case. Nihoul
and Ronday (1975) deduced the depth-averaged governing
equations of uE from a tide-resolving primitive equation
model and found that the so-called ’tidal stress’ term is
responsible for generating the residual current because of
the system’s nonlinearity. Heaps (1978) reexplored this
problem and systematically derived the depth-averaged
coastal sea circulation equations, which supported the
results in Nihoul and Ronday (1975). These studies showed
the researchers’ attempts to separate the intertidal resid-
ual circulation system from the tidal current system. Feng
et al. (1984) expanded this methodology to a 3D baroclinic
case and found that an additional term called ’tidal surface
source’ exists at the sea surface even with no water supply
imposed, which violates the mass conservation law. More-
over, in Fischer et al. (1979), it was found that there must
be a tidal dispersion term in the intertidal mass transport
equations for the closure of the equations, in which the dis-
persion coefficient is often of several orders’ variations in
different cases.

Another approach to remove the tidal signal to get
the coastal sea circulation is to use the definition of the
Lagrangian residual current. As a matter of fact, this con-
cept originated from the mass transport velocity (uL), which
was first made related to the large-scale ocean circula-
tion by Longuet-Higgins (1969). He pointed out that the
mass transport velocity (uL) equals the sum of the Eulerian
residual velocity (uE) and the Stokes’ drift velocity (uS).
Zimmerman (1979) loosely defined the Lagrangian residual
velocity (uLR) as the net displacement of a labeled water
parcel over one or several tidal periods. Under the weakly
nonlinear condition, Feng et al. (1986a) proved rigorously
that uL is a first-order approximation to uLR and the second-
order of uLR is the Lagrangian residual drift velocity (uld),
which displayed the Lagrangian nature of uLR. Then in
Feng et al. (1986b), uL was used to replace uE to act as
the advective velocity in the intertidal transport equation,
in which the tidal dispersion term disappears. Feng (1987)
deduced the dynamic equations governing uL in a 3D case
with the tidal body force appearing in the inter-tidal momen-
tum equations but with the fictitious ’tidal surface source’
in Feng et al. (1984) vanishing to keep the conservation
of the mass. uL is also applied to the intertidal mass-
transport equation, and the tidal dispersion term in Fischer
et al. (1979) disappears naturally. These studies clearly
show that uL is the appropriate representative of the residual

circulation in tide-dominated shallow seas. A series of stud-
ies extended the idea to the study of the wind-driven baro-
clinic multi-frequency tide-induced system (Feng 1990),
the system which takes into account the turbulence closure
(Feng and Lu 1993) and the system with a zeroth-order
strong background current (Feng and Wu 1995; Feng 1998).
Recently, the Lagrangian mean theory without the restric-
tion of the weak nonlinearity was proposed in Feng et al.
(2008).

Although the application of the Lagrangian residual
velocity to coastal seas is not rare (e.g., Jay and Smith
1990; Foreman et al. 1992; Ridderinkhof and Loder 1994;
Delhez 1996; Wei et al. 2004; Hainbucher et al. 2004;
Muller et al. 2009), and the dynamical equations proposed
in Feng (1987) were also applied successfully under weakly
nonlinear conditions (e.g., Dortch et al. 1992; Wang et al.
1993; Cerco and Cole 1993; Cerco 1995), this concept is
not widely used in dealing with coastal circulation prob-
lems. This may be due to the fact that the residual current is
often more than one-order smaller than the tidal current and
is often of the order of centimeter per second. It is just of
the same order with the measurement error and may be even
smaller than the error in numerical modeling. Therefore, the
difference between uL and uE cannot be clearly defined in
all cases. As a result, the analytical solution becomes very
important to the understanding of the mechanisms.

Ianniello (1977) gave the first analytical solution to the
residual current in a breadth-averaged narrow tidal bay,
with the solution confined to a vertical-longitudinal plane.
In his solution, he clearly showed that uE flowed out of
the bay at all depths, which indicates that the bay will be
empty if uE is assumed to be the intertidal residual veloc-
ity, while uL has a two-layer structure with the inflow at
the surface and the outflow near the bottom, which ensures
the mass conservation. Li and O’Donnell (2005) solved the
depth-averaged tidal system analytically by using the Eule-
rian residual transport velocity (uT) proposed by Robinson
(1983) to describe the intertidal movement. However, uT

is different from the mass transport velocity (uL) defined
by Longuet-Higgins (1969). An interesting point is that uL

used in Ianniello (1977) is of the same form as uT defined
by Robinson (1983), but this is a mere coincidence because
under general conditions an additional term is missing for
uT, as pointed out in Feng et al. (1986b). Jiang and Feng
(2011) proposed and analytically solved the depth-averaged
Lagrangian residual current equations, which were the 2D
counterpart of the 3D equations established by Feng (1987).
This enhances the understanding of the differences between
uL, uT, and uE pointed out in Feng et al. (1986b).

It should be noted that uL has a 3D nature (Feng 1987).
Because the tidal current is generally of 3D, a water col-
umn at the initial time cannot be kept as the same water
column during the whole tidal period, which means that the
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derivation of uL should start from the 3D primitive equa-
tions. Winant (2008) first gave the 3D uL in a narrow
bay. He acquired uE first and obtained uL by adding up
uE and uS following Longuet-Higgins (1969). The results
showed that uE violates the mass conservation but uL does
not, though Winant (2008) did not point this out explicitly.
However, when the residual water transport was studied in
Winant (2008), uT was used again which cannot represent
the real exchange flow situation.

In the present study, the 3D governing equations for uL

are deduced from the 3D primitive equations by applying
the perturbation method and are then solved in a narrow
bay directly. The feature and generating mechanisms of uL

are discussed, and the exchange flow in the bay is obtained
from the 3D uL. The structure of the paper is as follows:
in Section 2, the formulation of the model is given. The
solution procedure of uL is described in Section 3. And in
Section 4, the discussion of the solution under several spe-
cific bottom profiles is made. Finally, the conclusions are
drawn in Section 5.

2 Formulation

2.1 Definitions of residual velocities

As mentioned in the introduction, there are several ways to
define the residual current. For clarity, the definitions used
in this paper are summarized in Table 1 and more detailed
discussion can be found in Jiang and Feng (2011).

The Lagrangian residual velocity uLR is loosely defined
by Zimmerman (1979) as

uLR = ξ(t0 + nT ; x0, t0)

nT
,

where ξ(t; x0, t0) = ∫ t

t0
u(x0 + ξ , t ′)dt ′ defines the dis-

placement of a water parcel with its initial position at x0
when t = t0, u is the tidal current velocity. Because x0
and t0 can be arbitrarily selected, uLR is well defined in
the whole domain for any time which constitutes a Eulerian
field. Thus, uLR is a Eulerian quantity.

In the weakly nonlinear case, the velocity can be
expanded into the power series according to a small non-
dimensional number κ , i.e.,

u = u0 + κu1 +O(κ2)

with κ being the ratio of the tidal amplitude to the water
depth.

Feng et al. (1986a) proved that

uLR = uL +O(κ), (1)

where the mass transport velocity uL defined by Longuet-
Higgins (1969) is

uL = (uL, υL, wL) = uE + uS. (2)

The Eulerian residual velocity uE is defined as

uE = (uE, υE,wE) =< u1 >, (3)

and the Stokes’ drift velocity uS is defined as

uS = (uS, υS, wS) =< ξ0 · ∇u0 >, (4)

where the tidal-averaging operator is defined as follows with
T being the tidal period:

< · >= 1

nT

∫ t0+nT

t0

·dt, (5)

and

ξ0 = (ξ0, η0, ι0) =
∫ t

t0

u0(x, t ′)dt ′. (6)

Thus,

u0 = (u0, υ0, w0) = ∂ξ0

∂t
. (7)

The definition of the Eulerian residual transport velocity
uT is based on the idea that the calculation of the resid-
ual transport should take the water surface oscillation into
consideration, thus,

uT =<

∫ 0

−h

u1dz > +1

h
< u0|z=0ζ0 >, (8)

where ζ0 is the zeroth-order water elevation and h is the
undisturbed water depth.

Table 1 Symbols for major
definitions of the residual
current

Symbol Meaning Definition

uLR Lagrangian residual velocity (LRV) 1
nT

ξ (t0 + nT ; x0, t0)

uE Eulerian residual velocity < u >

uS Stokes’ drift velocity < ξ0 · ∇u0 >

uL first-order LRV, mass transport velocity uE + uS

uT Eulerian residual transport velocity <
∫ 0
−h u1dz > + 1

h
< u0|z=0ζ0 >
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2.2 The non-dimensional tidal equations

The 3D single frequency (e.g., the M2 tide) tidal current
equations will be solved in a semi-enclosed rectangular bay.
The x and y coordinates are along the two horizontal sides
of the bay with x = 0 at the open boundary and x = L

at the end of the bay. y = 0 and y = B are the two lat-
eral boundaries. z = 0 is set at the surface of the still water,
while z = −h is set at the sea bottom. The free surface is
at z = ζ(x, y, t) to represent the tidal elevation. The single
frequency tidal signal with the period being T and the tidal
amplitude being ζc is imposed at the open boundary and the
Coriolis force is omitted in the present study.

In this system, there are five basic characteristic values
which are the spatial scales xc = λc, yc = B , zc = hc, the
temporal scale tc = T , and the scale for the tidal amplitude
ζc, with hc being the average depth of the sea area and λc =√
ghcT denoting the typical tidal wavelength.
In this paper, the water density is assumed to be constant

to study the barotropic case only. Because the barotropic
tidal wave is a long gravity wave, it holds that λc � hc.
Then in the vertical direction, the hydrostatic condition is
a natural inference. It is also clear that the major balance
of the tidal wave system is the local acceleration term and
the pressure gradient force term. The 3D non-dimensional
governing equations for the tidal wave can be deduced from
the normalization of the dimensional equations based on the
notion above. The non-dimensional governing equations are

∇ · u = 0 (9)

∂u

∂t
+ κu · ∇u = −∂ζ

∂x
+ β

∂

∂z

(

ν
∂u

∂z

)

(10)

δ2 ∂υ

∂t
+ δ2κu · ∇υ = −∂ζ

∂y
+ βδ2 ∂

∂z

(

ν
∂υ

∂z

)

(11)

At the sea surface, z = κζ ,

w = ∂ζ

∂t
+ κ

(

u
∂ζ

∂x
+ υ

∂ζ

∂y

)

(12)

∂(u, υ)

∂z
= 0 (13)

At the sea bottom, z = −h,

u = 0 (14)

At the open boundary, x = 0,

ζ = ζopen (15)

where t , u = (u, υ, w), ζ and h are the non-dimensional
time, the velocity and its components in x, y, and z direc-
tions, the sea surface elevation, and the water depth, respec-
tively. L refers to the non-dimensional form of the bay
length which is normalized by the tidal wavelength λc. ζopen

denotes the non-dimensional tidal wave imposed at the open
boundary. ν = ν(x, y, z) is the non-dimensional eddy vis-
cosity coefficient with νc being its characteristic value. For
brevity, they take the forms identical to their dimensional
counterparts. The velocity scales are uc = ζc

√
g/hc , υc =

ζcB/(hcTc), and wc = ζc/Tc, respectively.
Three non-dimensional numbers exist in the system,

which are β = νcTc/h
2
c , κ = ζc/hc, and δ = B/λc. β

reflects the importance of the eddy viscosity force. Since
in the shallow sea, the eddy viscosity can not be neglected,
O

(
β
) = 1 is assumed in general in the present study. The

other two non-dimensional numbers are basic in the whole
system. One is κ , the ratio of the tidal amplitude scale (ζc) to
the depth scale (hc), which reflects the advective nonlinear-
ity in the system, and the other is δ, the aspect ratio, which
reflects the asymmetric feature of the horizontal geometry
of the sea area.

In the present study, the case for O(κ) < 1 is studied,
which means that the tidal motion is of a weakly nonlin-
ear case if the eddy viscosity coefficient is a known value.
O

(
δ
)
< 1 is also assumed so that the system describes a

weakly nonlinear tide in a narrow bay.

2.3 The perturbation in a narrow bay

In reality, O(κ) = 0.1 is very common for a typical bay
and O(δ) = 0.1 is also not uncommon in bays around the
world. Therefore, in the weakly nonlinear case in a narrow
bay considered in the present study, κ and δ are two small
independent parameters. The perturbation method with two
parameters is applied to the system of Eqs. 9–15.

Since in the system of Eqs. 9–15, only κ and δ2 are
present, u and ζ can be expressed in terms of a power series
in small parameters κ and δ2 to the order of O(κδ2),

u = u0 + κu1 + δ2u′
0 + κδ2u′

1 + . . . (16)

ζ = ζ0 + κζ1 + δ2ζ ′0 + κδ2ζ ′1 + . . . (17)

The system of Eqs. 9–15 can then be decomposed into
different subsystems based on the different orders of κ

and δ2.
It should be noticed that at the sea surface z = κζ , the

velocity u can be expanded in a Taylor series about z = 0.
Then, the surface boundary condition Eqs. 12 and 13 can
be changed to their equivalent forms at z = 0 after neglect-
ing the high-order terms from the Taylor expansion. If we
substitute the perturbation series Eqs. 16 and 17 into them,
the surface boundary conditions of different orders can be
obtained at z = 0. For brevity, only the equations used in the
deduction procedure are listed as follows. All the details of
the deduction procedure are supplied in the Supplementary
material.
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2.3.1 The O(1) order equations

∇ · u0 = 0 (18)

∂u0

∂t
= −∂ζ0

∂x
+ β

∂

∂z

(

ν
∂u0

∂z

)

(19)

0 = −∂ζ0

∂y
(20)

At the sea surface, z = 0,

w0 = ∂ζ0

∂t
(21)

∂(u0, υ0)

∂z
= 0 (22)

At the sea bottom, z = −h,

u0 = 0 (23)

At the open boundary, x = 0,

ζ0 = ζopen (24)

2.3.2 The O(κ) order equations

∇ · u1 = 0 (25)

∂u1

∂t
+ u0 · ∇u0 = −∂ζ1

∂x
+ β

∂

∂z

(

ν
∂u1

∂z

)

(26)

0 = −∂ζ1

∂y
(27)

At the sea surface, z = 0,

w1 = ∂ζ1

∂t
+ ∂u0ζ0

∂x
+ ∂υ0ζ0

∂y
(28)

∂(u1, υ1)

∂z
= −ζ0

∂2(u0, υ0)

∂z2
(29)

At the sea bottom, z = −h,

u1 = 0 (30)

At the open boundary, x = 0,

ζ1 = 0 (31)

2.3.3 The O(δ2) order equations

∂υ0

∂t
= −∂ζ ′0

∂y
+ β

∂

∂z

(

ν
∂υ0

∂z

)

(32)

2.3.4 The O(κδ2) order equations

∂υ1

∂t
+ u0 · ∇υ0 = −∂ζ ′1

∂y
+ β

∂

∂z

(

ν
∂υ1

∂z

)

(33)

2.4 The deduction of Lagrangian residual circulation
equations

The mass transport velocity uL is a first-order accurate
approximation to the Lagrangian residual velocity uLR

which represents the water parcel’s net transport in one or
several tidal periods. The physics of uL is revealed by its
governing equations derived by Feng (1987) in general. In
this section, the governing equations of uL will be given
in a narrow bay. The non-dimensional form of the opera-
tor defined in Eq. 5 is listed as follows. It is used in the
following part of the paper.

< · >= 1

n

∫ t0+n

t0

·dt, (34)

2.4.1 The continuity equation of uL

If the divergence operator is applied to both sides of Eq. 2
with noticing Eqs. 18 and 25 to get

∇·uL =<
∂ξ0

∂x
·∇u0 > + <

∂ξ0

∂y
·∇υ0 > + <

∂ξ0

∂z
·∇w0 >

(35)

Because of Eq. 7, the method in Appendix A is applied
to Eq. 35 and noticing the periodicity of the zeroth-order
variables, Eq. 35 can be changed to

∇·uL=− <
∂u0

∂x
·∇ξ0 >−<

∂u0

∂y
·∇η0 >−<

∂u0

∂z
·∇ι0 >

(36)

If we add Eqs. 35 and 36 and expand the right-hand side,
it can be found that

∇ · uL = 0 (37)

2.4.2 The x-direction momentum equation

Equation 34 is applied to Eq. 26, with the periodicity of u1

taken into consideration and based on the assumption ν =
ν(x, y, z), the following equation can be obtained

< u0 · ∇u0 >= −∂ < ζ1 >

∂x
+ β

∂

∂z

(

ν
∂ < u1 >

∂z

)

(38)

According to the definition of uL in Eq. 2, Eq. 38 is
changed to

< u0 · ∇u0 > = −∂ < ζ1 >

∂x
+ β

∂

∂z

(

ν
∂uL

∂z

)

−β
∂

∂z

(

ν
∂ < ξ0 · ∇u0 >

∂z

)

(39)
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Based on the method in Appendix A and Eq. 7, the
following relation can be obtained,

< u0 · ∇u0 >= − < ξ0 · ∇ ∂u0

∂t
> (40)

Then Eq. 39 can be written as

0 = −∂ζE

∂x
+ β

∂

∂z

(

ν
∂uL

∂z

)

+ π1 (41)

where ζE =< ζ1 >, which is independent of y according to
Eq. 27, and

π1 =< ξ0 · ∇ ∂u0

∂t
> −β

∂

∂z

(

ν
∂ < ξ0 · ∇u0 >

∂z

)

(42)

π1 is the x-direction tidal body force named in Feng (1987)
which is composed of two terms. The first term means the
transport of the local inertia, and the other term is the eddy
viscosity term of the Stokes’ drift velocity, uS .

2.4.3 The y-direction momentum equation

Equation 34 is applied to Eq. 33 while noticing the peri-
odicity of υ1 and the assumption ν = ν(x, y, z) to get

< u0 · ∇υ0 >= −∂ < ζ ′1 >

∂y
+ β

∂

∂z

(

ν
∂ < υ1 >

∂z

)

(43)

According to the definition of υL in Eq. 2, Eq. 43 can be
changed to

< u0 · ∇υ0 > = −∂ < ζ ′1 >

∂y
+ β

∂

∂z

(

ν
∂υL

∂z

)

−β
∂

∂z

(

ν
∂ < ξ0 · ∇υ0 >

∂z

)

(44)

Based on the method in Appendix A and Eq. 7, the
following relation can be obtained,

< u0 · ∇υ0 >= − < ξ0 · ∇ ∂υ0

∂t
> (45)

Then Eq. 44 can be written as

0 = −∂ζ ′E
∂y

+ β
∂

∂z

(

ν
∂υL

∂z

)

+ π2 (46)

where ζ ′E =< ζ ′1 > and

π2 =< ξ0 · ∇ ∂υ0

∂t
> −β

∂

∂z

(

ν
∂ < ξ0 · ∇υ0 >

∂z

)

(47)

2.4.4 The kinematic boundary condition at the sea surface

When Eq. 34 is applied to Eq. 28 and based on the period-
icity of ζ1, Eq. 21, Eq. 7 and the method in Appendix A, the
following equation can be obtained

< w1 >= −∂ < ξ0w0 >

∂x
− ∂ < η0w0 >

∂y
(48)

When Eq. 48 is inserted into Eq. 2, using the method in
Appendix A repeatedly, the kinematic boundary condition at
the sea surface can be obtained by noticing the zeroth-order
continuity equation (Eq. 18).

wL = −
〈
∂ξ0

∂x
w0

〉

−
〈
∂η0

∂y
w0

〉

+
〈
∂w0

∂z
ι0

〉

=
〈
∂u0

∂x
ι0

〉

+
〈
∂υ0

∂y
ι0

〉

+
〈
∂w0

∂z
ι0

〉

= 0 (49)

2.4.5 The dynamic boundary condition at the sea surface

Equation 34 is applied to Eq. 29 with its right-hand side
further manipulated by applying the method in Appendix A
repeatedly, and based on Eqs. 18, 22, 21, and 6, the follow-
ing can be obtained

− ∂2

∂z2
〈ζ0(u0, υ0)〉 = ∂2

∂z2
〈w0(ξ0, η0)〉

= − ∂

∂z

〈(
∂u0

∂x
+ ∂υ0

∂y

)

(ξ0, η0)

〉

= − ∂

∂z
〈ξ0 · ∇u0, ξ0 · ∇υ0〉 (50)

Then Eq. 29 is changed to

∂ < u1, υ1 >

∂z
= − ∂

∂z
〈ξ0 · ∇u0, ξ0 · ∇υ0〉 (51)

Based on the definition in Eq. 2, Eq. 51 is changed to

∂(uL, υL)

∂z
= 0 (52)

2.4.6 The boundary condition at the sea bottom

Because at the sea bottom, z = −h, u0 = 0, and u1 =
0, according to Eq. 6, ξ0 = 0. Therefore, according to the
definition in Eq. 2, uL = 0.

2.5 The tide-induced Lagrangian residual current equations

In summary, the tide-induced Lagrangian residual current
equations are listed as follows by rewriting Eqs. 35, 41,
and 47 here,

∂uL

∂x
+ ∂υL

∂y
+ ∂wL

∂z
= 0 (53)

0 = −∂ζE

∂x
+ β

∂

∂z

(

ν
∂uL

∂z

)

+ π1 (54)

0 = −∂ζ ′E
∂y

+ β
∂

∂z

(

ν
∂υL

∂z

)

+ π2 (55)
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with the boundary conditions specified as follows:
At the surface, z = 0,

wL = 0 (56)

∂uL

∂z
= 0 (57)

∂υL

∂z
= 0 (58)

At the bottom, z = −h,

uL = υL = wL = 0 (59)

At the open boundary, x = 0, the residual water elevation
ζE = 0 and ζ ′E = 0.

At the fixed boundary, because of the no water inflow at
the banks of the bay,

UL =
∫ 0

−h

uLdz = 0, x = L (60)

VL =
∫ 0

−h

υLdz = 0, y = 0, 1 (61)

It can be seen that the governing equations of the
Lagrangian residual current are in linear form. The
Lagrangian residual current is driven by the tidal body force
πππ = (π1, π2) which is defined by the zeroth-order linear
tide.

This set of equations clearly shows the dynamics of the
tide-induced Lagrangian residual current. Compared with
the so-called Eulerian residual velocity, the Lagrangian
residual current satisfies the conservation law of the mate-
rial surface. For example, at the sea surface, there is no fake
source/sink term in Eq. 56, while in the case of the Eule-
rian residual velocity, such a term is inevitable (Feng et al.
1984).

3 The solution to the tide-induced residual current
equations

In order to find an analytical solution to the Lagrangian
residual current, the eddy viscosity coefficient is assumed
to be a constant. Since νc is the characteristic value of the
eddy viscosity coefficient, the non-dimensional ν should be
1. It is assumed that the water depth h varies only with y.

Integrate Eq. 54 from z to 0 first and then from −h to z

with noticing the boundary conditions Eqs. 57 and 59, we
get

uL = z2 − h2

2β

∂ζE

∂x
+

∫ z

−h

∫ 0
z1
π1(x, y, z2)dz2dz1

β
(62)

Then, the longitudinal volumic transport UL is

UL =
∫ 0

−h

uLdz = �1

β
− h3

3β

∂ζE

∂x
(63)

where

�1 =
∫ 0

−h

∫ z

−h

∫ 0

z1

π1(x, y, z2)dz2dz1dz (64)

The same procedure, when applied to Eq. 55, results in

υL = z2 − h2

2β

∂ζ ′E
∂y

+
∫ z

−h

∫ 0
z1
π2(x, y, z2)dz2dz1

β
(65)

Then, the latitudinal volumic transport VL is

VL =
∫ 0

−h

υLdz = �2

β
− h3

3β

∂ζ ′E
∂y

(66)

where

�2 =
∫ 0

−h

∫ z

−h

∫ 0

z1

π2(x, y, z2)dz2dz1dz (67)

When Eq. 53 is integrated from −h to 0 in the verti-
cal direction, taking into account the boundary condition
Eqs. 56–59, it becomes

∂UL

∂x
+ ∂VL

∂y
= 0 (68)

The substitution of Eqs. 63 and 66 into Eq. 68 makes,

∂

∂y

(

h3 ∂ζ
′
E

∂y

)

+ h3 ∂
2ζE

∂x2
− 3

∂�1

∂x
− 3

∂�2

∂y
= 0 (69)

If Eq. 69 is integrated across the width of the bay, in
view of the lateral boundary condition Eq. 61 with the
substitution of Eq. 66 into it gives

∂2ζE

∂x2
= 3 ∂

∂x

∫ 1
0 �1dy

∫ 1
0 h

3dy
(70)

The integration of Eq. 70 from L to x with the boundary
condition Eq. 60 with the substitution of Eq. 63 into it gives

∂ζE

∂x
= 3

∫ 1
0 �1dy

∫ 1
0 h

3dy
(71)

When Eq. 70 is substituted into Eq. 69 and integrated
from 0 to y with the lateral boundary condition Eq. 61 taken
into consideration,

∂ζ ′E
∂y

=
3

(

�2 −
∂
∂x

∫ 1
0 �1dy

∫ y

0 h3dy
∫ 1

0 h
3dy

+ ∂
∂x

∫ y

0 �1dy

)

h3
(72)

Then, according to Eqs. 63 and 66, the volumic transport
in the x and y directions are

UL = �1

β
− h3

∫ 1
0 �1dy

β
∫ 1

0 h
3dy

(73)
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VL =
∂
∂x

∫ 1
0 �1dy

∫ y

0 h
3dy

β
∫ 1

0 h
3dy

−
∂
∂x

∫ y

0 �1dy

β
(74)

The substitution of Eqs. 71 and 72 into Eqs. 62 and 65
gives

uL = 3(z2 − h2)
∫ 1

0 �1dy

2β
∫ 1

0 h
3dy

+
∫ z

−h

∫ 0
z1
π1(x, y, z2)dz2dz1

β

(75)

υL =
3(z2−h2)

(

�2− ∂
∂x

∫ 1
0 �1dy

∫ y

0 h3dy
∫ 1

0 h
3dy

+ ∂
∂x

∫ y

0 �1dy

)

2βh3

+
∫ z

−h

∫ 0
z1
π2(x, y, z2)dz2dz1

β
(76)

Then the vertical velocitywL can be deduced by inserting
Eqs. 75 and 76 into the continuity equation Eq. 53, with
the result integrated from −h to z based on the boundary
condition Eq. 59 to obtain

wL = − z(z2 − 3h2)

2βh3

×
∫ 0

−h

∫ z

−h

∫ 0

z1

[
∂π1(x, y, z2)

∂x
+ ∂π2(x, y, z2)

∂y

]

dz2dz1dz

+ 1

β

∫ 0

z

∫ z

−h

∫ 0

z1

[
∂π1(x, y, z2)

∂x
+ ∂π2(x, y, z2)

∂y

]

dz2dz1dz

+3z(z2 − h2)

2βh4

∂h

∂y

(

�2−
∂
∂x
(
∫ 1

0 �1dy)
∫ y

0 h3dy
∫ 1

0 h
3dy

+ ∂

∂x

∫ y

0
�1dy

)

− z(z2 − h2)

2βh2

∂h

∂y

∫ 0

−h

π2(x, y, z)dz (77)

Equations 73–77 constitute the 3D LRV solution in a nar-
row bay, and they are expressed by the zeroth-order solution
of the linear tide which is listed in Appendix B.

4 Results and discussions

In order to demonstrate the features of the residual current,
two types of topography are used, the exponential type and
the parabolic type. The non-dimensional depth profile is as
follows

exponential : h = [5 + 10e−(40y−20)2/49]/8.1 (78a)

parabolic : h = [10 − 9(2y − 1)2]/7 (78b)

In the exponential profile, there is a deep channel in the
middle of the bay and a shoal along either bank of the bay.
The water depth in the channel decreases sharply before it
reaches the shoals. This kind of depth profile can represent
the typical topography in an estuary.

For the parabolic topography, no shoals exists along the
banks of the bay and the water depth decreases smoothly
from the center of the bay towards the banks. This is used
as a comparison to the exponential topography.

β = 1 is selected to reflect the fact that the vertical tur-
bulence effect is always present in the zeroth-order basic
balance. It is found that the bay length is an important factor
in determining the pattern of the residual current(e.g., Li and
O’Donnell 2005, Winant 2008 and Jiang and Feng 2011). In
the present study, the same conclusion can also be drawn.
So the non-dimensional bay length L of 0.3, 1.0, and 1.5 are
chosen to reflect the effect of the bay length in the model.

4.1 The 3D structure of the results

4.1.1 The results of the cross section

In a bay with the exponential topography, the solutions of
uL for different bay length L are displayed in Fig. 1, which
exhibits the uL pattern at different cross sections. For all
the cross sections, the magnitude of the first-order LRV is
approximately the same, that is of O(1). This reflects the
correctness of the nondimensionalization procedure.

It can be seen in all cross sections that the longitudinal
current flows towards the head of the bay in the upper part
of the deep channel. The area with a positive longitudinal
residual velocity at different sections becomes larger and
larger from the open boundary of the bay to the head of
the bay and in the mean time the speed of the current gets
weaker and weaker.

In the shallow part of the bay, that is along both banks
of the bay, the first-order LRV is negative when the cross
section is less than one wavelength away from the head of
the bay. This indicates that the water flows out of the bay
through these areas. However, if the cross section is more
than 1.1 wavelengths away from the head of the bay, two
areas with a positive longitudinal velocity will evolve from
both banks of the bay.

The solutions of uL with parabolic cross sections defined
in Eq. 78b are displayed in Fig. 2. This cross section is
similar to that used in Winant (2008) defined in Eq. 79.

h = 0.1 + 0.9(1 − y2) (79)

Since the nondimensionalization procedure in the present
study is different from that in Winant (2008), the pattern
of the first-order LRV in Fig. 2 is only similar to Fig. 7 in
Winant (2008). However, it can be easily proved that if y ∈
[−1, 1], β = 0.5, and L = 1.5, with the maximum water
depth taken as the characteristic depth and the characteris-
tic value of the longitudinal velocity taken as Lζc

√
g/hc ,

then the present solution is the same as that in Winant (2008)
neglecting the rotation of the earth (figures are omitted).



Ocean Dynamics (2014) 64:1073–1091 1081

L
=

 0
.3

z−
ax

is

0.5 uL 0.1

x=0 x=L/4 x=L/2 x=3L/4

L
=

 1
.0

z−
ax

is

0.5 uL 0.1

L
=

 1
.5

z−
ax

is

0.5 uL 0.1

y−axis y−axis y−axis y−axis

uL<0 uL≥0 land

Fig. 1 The Lagrangian residual current at four cross sections for three
different bay lengths with the depth profile being exponential. The
contour lines denote the magnitude of the axial velocity uL and the

contour interval is 0.1. The axial velocity is negative in the shaded
area, which is towards the mouth of the bay. The arrows represents the
velocity in y-z plane with the scale at the lower-left corner

These two mutually demonstrate the validity of the results
without considering the effects of the rotation.

The pattern of the first-order LRV in bays with the
parabolic bottom topography displayed in Fig. 2 is gener-
ally similar to that in Fig. 1. The water flows in through the
upper layer of the central deeper part and flows out at the
areas either adjacent to the sea bottom or the bank of the
bay. One striking difference occurs near the open bound-
ary when the bay is 1.5 wavelengths long. Almost no inflow
area can be found in Fig. 2 near the open boundary as in
Fig. 1. This reflects the importance of the shoals along the
banks defined in Eq. 78a.

4.1.2 The discussion of wL

The acquisition of wL is important in the study of the
sediment transport and ecosystem modeling. Because nor-
mally wL is too small to get both in the field research
and in numerical modeling, the analytical solution becomes
an important method in discussing the upwelling and the

downwelling process especially for the residual current
study.

It is noticed that the water flows in through the upper half
of the deep channel in Fig. 1. In order to keep the mass con-
servation, the water goes out either through the horizontal
circulation or through the vertical circulation. The horizon-
tal circulation was discussed in the above subsection. The
vertical circulation seems to have a rather stable feature. The
water sinks at the center of the deep channel from the sur-
face down to the bottom as displayed by the arrows in Fig. 1
for different bay lengths and at different depths. On either
side of the downwelling area, there exists an upwelling area,
which expands from the bottom to the surface and extends
to a little more than 0.5 wavelengths from the head of the
bay in the longitudinal direction in Fig. 1. In the latitudinal
direction, the expansion stops at the distance of 0.1 to 0.4
bay widths away from each bank. Another two upwelling
areas also present themselves at the upper half of the water
column and are more than 1.2 wavelengths away from the
head of the bay in Fig. 1.
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Fig. 2 As in Fig. 1, but with the parabolic depth profile

If the results of the parabolic depth profile defined in
Eq. 78b are compared with those of the exponential bot-
tom profile, it can be found that the depth profile plays
an important role in determining the upwelling and down-
welling areas. For the parabolic one, the upwelling areas are
expanded horizontally to the banks of the bay and vertically
to the surface of the water, but are confined within 0.5 wave-
lengths away from the head of the bay. Another difference
between the two depth profiles is that there is no upwelling
area near the open boundary in the parabolic bottom case.
This shows the importance of the bottom topography.

4.2 The results of the water transport

In a bay or an estuary, the horizontal water transport, i.e., the
exchange flow, is important in understanding the environ-
mental problems associated with the water exchange and the
mass transport, such as salt, nutrients, or pollutants. Since
the 3D Lagrangian residual current is obtained in Section 3,
the residual horizontal water transport can be obtained by
integrating it across the depth as defined in Eqs. 73 and 74.

4.2.1 The feature of the water transport

The water transport is displayed in Fig. 3 for the exponen-
tial cross section. In Fig. 3, it can be obviously seen that
the water flows in through the deep channel of the bay
until it strikes the head, where the water is split into two
branches which flow out along the shoals. However, if the
bay is longer than one wavelength, the outflowing water will
detach from the bank of the bay and flows towards the deep
channel, forming a front with the inward flow in the deep
channel. At the outer part of the bay, the water flows in
along the banks of the bay and turns towards the deep chan-
nel before joining the outflow from the inner bay at around
one wavelength away from the head.

The pattern of the water transport in a bay whose length
is shorter than one wavelength is similar to the result in
Fig. 8a of Jiang and Feng (2011) when the 2D depth-
averaged Lagrangian residual current equations were solved
with the linear bottom friction term. However, when the bay
is 1.5 wavelengths long, the water transport shows a more
complex feature in the outer part of the bay than that in
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Fig. 3 The streamline of the depth-integrated Lagrangian residual current in bays with different lengths (a L = 0.3, b L = 1, and c L = 1.5).
The depth profile is exponential and the colorbar represents the magnitude

Fig. 8a of Jiang and Feng (2011) but is similar to that in
Fig. 3a of Jiang and Feng (2011). If the parabolic depth
profile is taken as in Eq. 78b, the transport pattern is sim-
pler than that in Fig. 3 (figures are omitted). For all the
bay lengths, the water goes in from the deep channel to the
head of the bay and goes back along the banks towards the
entrance of the bay. This again demonstrates the importance
of the bottom topography.

This transport pattern, however, is contrary to Fig. 4 in
Winant (2008), in which the transport result was obtained
when f = 0 is assumed, though the solution of the 3D
LRV is the same as that described in the previous text in
this section. Indeed, the transport obtained according to (35)
and (36) in Winant (2008) is the Eulerian residual trans-
port defined by Robinson (1983). It was pointed out in
Feng et al. (1986b) theoretically that the Eulerian residual
transport is different from the Lagrangian residual transport,

the depth-integrated LRV. Therefore, it cannot represent the
net transport behavior of the water and the correspond-
ing material in it after removing the tidal effect. Li and
O’Donnell (2005) calculated the Eulerian residual trans-
port in a 2D narrow bay, which explains why the similar
results are obtained as declared in Winant (2008). Jiang and
Feng (2011) solved the depth-averaged LRV equations ana-
lytically and after comparing their results with those in Li
and O’Donnell (2005), concluded that the Eulerian resid-
ual transport is different from the depth-integrated LRV. In
this study, the same conclusion can also be reached from a
3D analytical solution. Indeed, this conclusion can also be
made if Figs. 4 and 7 in Winant (2008) are examined against
each other. According to the distribution of the contour
lines in the lower-left figure in Fig. 7 of Winant (2008), the
depth-integrated LRV, i.e., the Lagrangian residual trans-
port, should be positive, which is contrary to that in Fig. 4 of
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Fig. 4 The water flux a and residence time b along the section of the
bay with the depth profile being exponential. All the lines are aligned
with each other at x = 1.5 where the head of the bay is located. The
tag denotes the length of the bay and is placed near the open boundary
of the bay

Winant (2008). Therefore, the Eulerian residual transport is
different from the Lagrangian residual transport and cannot
represent the net transport effect after getting rid of the tide.

4.2.2 The effect of the bottom friction

If Eq. 54 is integrated from −h to 0, and the boundary con-
dition at sea surface Eq. 57 is taken into consideration, then

0 = −h
∂ζE

∂x
− βν

∂uL

∂z
|z=−h +

∫ 0

−h

π1dz (80)

When Eq. 63 is inserted into Eq. 80,

βν
∂uL

∂z
|z=−h = −3βν

h2
UL −

(
3�1

h2
+

∫ 0

−h

π1dz

)

(81)

This shows that the bottom friction for uL is in the lin-
ear form. Actually, if the zeroth-order tide is examined, the
bottom friction is also in the linear form. From Eq. 86 in
Appendix B, it can be seen that

∂U0

∂z
|z=−h = i + 1√

2βν
tan

(
(i + 1)h√

2βν

)

×
[√

2βν

i + 1
tan

(
(i + 1)h√

2βν

)

− h

]−1∫ 0

−h

U0dz

(82)

This indicates that the vertical shear of the horizon-
tal velocity at the sea bottom is proportional to the

depth-integrated velocity. This result may be due to the fact
that the eddy coefficient ν is regarded as a constant and this
simplification filters out some complexity of the real nature
of the Lagrangian residual current.

4.2.3 The water exchange in the bay

Water exchange is one of the important processes govern-
ing the environmental problems in a coastal sea, and the
tidal effect is always an important factor in determining the
water exchange. Since uL is obtained in the present elon-
gated narrow bay, the tide-induced water exchange can be
obtained naturally. The water exchange flux can be cal-
culated at each latitudinal cross section by integrating the
residual current of either positive or negative values. The
water flux calculated on the basis of the positive resid-
ual currents is equal in the magnitude but is opposite in
signs to the water flux calculated on the basis of their neg-
ative counterparts, which again reflects the fact that the
mass conservation of the Lagrangian residual current is
kept. The residence time of the water is also calculated at
each section by dividing the volume of the water between
the section and the head of the bay by the water exchange
flux.

The water exchange flux and the residence time for dif-
ferent bay lengths ranging from 0.3 to 1.5 wavelengths with
0.1 wavelengths apart are calculated and six of them are
plotted in Fig. 4. The heads of the bays are aligned with
each other for bays with different lengths. The horizontal
coordinate of the leftmost point of each line in Fig. 4 can be
used as the indicator of different bay lengths. It can be seen
in the upper panel of Fig. 4 that the water exchange flux
increases smoothly with the distance away from the head of
the bay and the increasing trend becomes sharpen at around
one wavelength away from the head of the bay. The water
exchange flux is also related to the length of the bay. In the
present case, the water exchange flux increases with the bay
length if the latter is less than around 0.8 wavelengths. If the
bay is longer than 0.9 wavelengths long, the water exchange
flux will decrease with the bay length. This feature is differ-
ent from that in a 2D model in Jiang and Feng (2011), which
demonstrates the Lagrangian residual currents’ 3D nature
and its complex 3D feature.

The residence time shown in the lower panel of Fig. 4
exhibits a similar feature in accordance with the water
exchange flux, but the change of the residence time along
the bay displays a prominent point at around one wavelength
away from the head of the bay. This point is determined
by the corresponding point in the water exchange flux line.
This means that two separate systems of uL occur with the
separating point at around one wavelength away from the
head of the bay, which is also noted in the previous section
of the present paper.
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4.3 The results of the breadth-averaged currents

In a narrow bay or an estuary, the circulation in the
longitudinal-vertical section is important to the transport
of the materials. The breadth-averaged model is a classi-
cal simplification when studying the estuary circulation,
e.g., the analytical study by Ianniello (1977). But this kind
of simplification ignored the lateral variation of the depth
profile. In the present study, 3D uL is obtained directly
with taking into consideration of the lateral variation of the
topography. Then, the 3D uL can be averaged across the bay
to get the breadth-averaged residual current. The results are
compared with those in Ianniello (1977), and the effects of
the lateral variation of the sea bottom are discussed between
flat and non-flat bottom.

4.3.1 The flat bottom

The breadth-averaged uL in a flat bottom bay is displayed
in Fig. 5 for different bay lengths. It can be found that the

water flows in at the upper half of the bay and turns back
at the lower half, which is just contrary to the gravitational
flow in an estuary. The speed of the current is higher at
the open mouth of the bay than inside the bay. The pattern
remains the same with different bay lengths. The results are
in accordance with those in Ianniello (1977).

4.3.2 The non-flat bottom

Normally, the bottom of a bay cannot be flat and the results
show different features in such non-flat bottom conditions.
The breadth-averaged uL in a bay with the exponential bot-
tom profile as that in Eq. 78a is shown in Fig. 6. The pattern
shown in Fig. 6 is different from that in Fig. 5, the flat bot-
tom case. It can be seen in Fig. 6b, c that an anti-clockwise
gyre exists in the inner part of the bay. At the surface, the
gyre extends to the point where it is 0.8 wavelengths away
from the head of the bay. In the vertical direction, the gyre
does not occupy the whole water column but stops at around

Fig. 5 The streamline of the breadth-averaged Lagrangian residual current in bays with different lengths (a L = 0.3, b L = 1, and c L = 1.5).
The depth profile is flat and the colorbar represents the magnitude
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Fig. 6 As in Fig. 5, but with the exponential depth profile

0.1 water depth above the bottom. In the outer part of the
bay, there is a clockwise semi-gyre, which intrudes into the
bay and squeezes the inner gyre before submerging beneath
it. In Fig. 6a, because the bay length is less than 0.8 wave-
lengths, only two semi-gyres exist. Therefore, in the area
which is less than 0.8 wavelengths away from the head, the
water flows out of the upper layer of the bay, which will
enhance the gravity flow if fresh water is discharged from
the head of the bay. Then, the water goes downward and
flows inside at the near bottom layer. However, in the outer
part of the bay, the water flows inside at the surface layer
and flows outside at the bottom layer, similar to the pattern
shown in Fig. 5. It should be noticed that there is always an
outward flow at the bottom.

The pattern of the breadth-averaged uL for the parabolic
profile Eq. 78b is also studied (figures are omitted). Because
the parabolic bottom is flatter than the exponential bot-
tom, the result is more like that in Fig. 5. The clockwise
semi-gyre occupies almost the whole section with a small

anti-clockwise gyre huddled at the inner surface corner of
the bay. Therefore, the results in Ianniello (1977) are valid
only when the bottom profile is flat. When it is in a com-
plex form, the breadth-averaged LRV becomes complex
accordingly.

4.4 The contribution from each component

In Eqs. 54 and 55, πππ = (π1, π2) is the force to generate
the residual current caused by the tidal movement, which
was called the tidal body force in Feng (1987). Based on
the different dynamic features, the tidal body force can
be decomposed into three components, which are πNπNπN =
(πN1, πN2), the inviscid term, πbπbπb = (πb1, πb2), the bottom
friction related term, andπνπνπν = (πν1, πν2), the turbulent vis-
cosity related term, respectively. The expression for them is
in Appendix C and D, and the detailed decomposition pro-
cedures are described in the supplementary material. The
set of the residual current equations (Eqs. 53–61) describes
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Fig. 7 The streamline of the depth-integrated Lagrangian residual current driven by each component of the tidal body force (a πbπbπb , b πNπNπN , and c
πνπνπν ). The depth profile is exponential and the colorbar represents the magnitude

a linear system, so each component of πππ can act separately.
The contribution of each component to the depth-integrated
and breadth-averaged residual currents is discussed as
follows.

4.4.1 The contribution to the depth-integrated currents

It can be seen that the depth-integrated πππ drives the depth-
integrated residual currents directly if Eqs. 54 and 55 are
integrated from the bottom to the surface. It can be seen in
Fig. 7 that the depth-integrated residual currents driven by
each of the three components have a rather stable pattern.

Among the three components, πbπbπb is the dominant one,
and the pattern of the residual currents is mostly determined
by it. According to the expression of πbπbπb, its value at the
bottom alone contributes to the depth-integrated residual
currents. It is shown in Fig. 7 that the water goes in from
the deep channel till the head of the bay. Then, the water is

split into two branches before returning towards the head of
the bay along the banks. After that, it encounters two revers-
ing gyres, detaches from the banks, and flows out of the
bay at the slope of the channel. In the case of the parabolic
bottom profile, the reversing gyres stay at the corner of the
outer part of the bay (the figure is omitted). This reflects its
sensitivity to the bottom topography.

The general pattern of the residual currents driven by πNπNπN

is similar to that driven by πππ . The water goes in from the
deep part and goes out from the shallow part. But the resid-
ual currents driven byπNπNπN is smoother than those of the other
two components.

The residual currents driven by πνπνπν is generally reverse
to the other two and the total one. The water goes out from
the deep channel till the head of the bay. Two gyres of 0.9
wavelengths long exist at the inner part of the bay. Two
semi-gyres with opposite direction exist at the outer half of
the bay. The water goes in along the banks of the bay and is
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compressed by the two inner gyres to formulate two intru-
sion gyres. The velocity is higher at the open boundary of
the deep channel. But, in general, the value is small, and this
may hint that the detailed structure of the eddy viscosity is
not important to the residual transport circulation.

4.4.2 The contribution to the breadth-averaged currents

The three components of the tidal body force also play
different roles in the breadth-averaged Lagrangian residual
currents displayed in Fig. 8. The component driven by πbπbπb

always goes in at the surface and goes out at the bottom, no
matter what the bottom topography is like. The component
driven by πνπνπν dominates the general pattern. The result in
Fig. 8c looks similar to that in Fig. 6c, but there is a differ-
ence in the location of the contacting line between the two
gyres, with the line in Fig. 6c stretching further into the bay.

The component driven by πNπNπN is sensitive to the bottom
topography, and the results are totally different between the

flat and non-flat bottom profiles. When the bottom is not
flat, the currents caused byπNπNπN will go out at the surface and
go in at the bottom, with the direction of the residual current
components opposite to the direction of those driven by πbπbπb

and πνπνπν .

5 Conclusions

In this paper, the governing equations for the 3D mass
transport velocity (uL), the first-order approximation of the
Lagrangian residual velocity, are deduced by the perturba-
tion method. This set of equations defines an independent
system on an intertidal time scale, with the tidal effect
reflected in the tidal body force. The analytical solution to
uL is given in a narrow bay in this paper, and the results for
several bottom profiles are presented.

The results show clearly the 3D structure of uL. The
water flows in through the deep channel from the open

Fig. 8 As in Fig. 7, but for the breadth-averaged Lagrangian residual current
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boundary directly to the head of the bay. The inflow does not
expand to the whole water column, but occupies the upper
half of the water only, and the inflow layer becomes thicker
when it approaches the head of the bay. When the inflow
reaches the head of the bay, the water will be squeezed to the
bottom and the two sides of the bay. This makes the water
flow out of the bay through the layer just above the bot-
tom. However, when the bay with shoals is longer than one
wavelength, there are also inflows from the shoal area at the
outer bay which is more than one wavelength away from the
head.

If the results are integrated vertically, the intertidal water
transport can be obtained. An obvious feature is that the
water flows in at the deep bay until it strikes the head of
the bay and flows out along the two banks within one wave-
length away from the head of the bay. If the bay length
is greater than one wavelength, the outward flow detaches
from the banks from the point more than one wavelength
away from the head and goes out at the slope with two
branches of water flowing in along the banks. This pat-
tern is generally similar to the results in Jiang and Feng
(2011) in which the 2D depth-averaged Lagrangian resid-
ual current equations were solved. It can be found that in
the present 3D case when the vertical eddy viscosity is
assumed as a constant, the bottom friction is proportional to
the depth-integrated velocity. This may explain the similar-
ity. However, the disappearance of the two small gyres in
Jiang and Feng (2011) may be due to the vertical movement
in the 3D case.

The water exchange flux is then calculated in this paper.
It can be found that the water exchange flux increases
smoothly with the distance to the head of the bay increas-
ing until about one wavelength away from the head, and
the water exchange flux is also related to the bay length.
In the present case, the water exchange flux increases
with bay length until the bay length reaches around 0.8
wavelengths before the trend reverses. This feature is dif-
ferent from that in a 2D model in Jiang and Feng (2011),
which further demonstrates the Lagrangian residual cur-
rents’ 3D nature and its complex 3D feature. However,
as far as the residence time is concerned, another feature
can be detected. Generally, the residence time increases
with the distance away from the head of the bay, but
when the distance is more than one wavelength, the resi-
dence time decreases with the distance away from the head
of the bay. The relationship between the residence time
and the bay length is in accordance with the relationship
between exchange flux and the bay length. When the bay
length is around 0.8 wavelengths, the residence time is the
smallest.

In the vertical direction, the downwelling area covers
most of the bay. In the deep channel area, in particular,
the water sinks down to the bottom. The upwelling area is

centered around the deep channel with two sub-areas near
the head of the bay and another two near the open boundary
when the bay length is greater than one wavelength.

As to the breadth-averaged Lagrangian residual current,
if a flat bottom profile is assumed, the feature is the same
as that in Ianniello (1977), which is against the traditional
density gradient flow. On the other hand, if the bottom pro-
file is non-flat, one may find that the pattern is dependent on
the bay length. In the inner bay which is within 0.8 wave-
lengths, the surface flow is outward as the density gradients
flow, while in the outer bay it is again contrary to that of the
density gradient flow.

The tidal body force can be divided into three terms,
which are πNπNπN , the inviscid term, πbπbπb, the bottom friction
related term, and πνπνπν , the turbulent viscosity-related term. It
is found that the depth-integrated LRV is mainly determined
by πbπbπb, the bottom friction-related term and the breadth-
averaged LRV are mainly determined by πνπνπν , the turbulent
viscosity-related term.
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Appendix A: The method frequently used in the paper

If f (x, y, z, t) and g(x, y, z, t) are two periodic functions
of t and satisfy the relations in Eq. 83,

f = ∂F

∂t
, g = ∂G

∂t
(83)

Then

< Fg >=<
∂

∂t
(FG)− ∂F

∂t
G >= − < fG > (84)

Appendix B: The solution to the zeroth-order tidal
currents

If ν is a constant, the zeroth-order tidal current system
can be solved analytically by using the method similar to
that in Winant (2007). The solution can be assumed in the
following forms.

u0 = Re[U0e
−it ], υ0 = Re[V0e

−it ], w0 = Re[W0e
−it ],

and ζ0 = Re[N0e
−it ]

N0 = cos[μ(L− x)]
cos(μL)

(85)
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where μ−2 = −∫ 1
0 P0dy is a constant, and

P0 =
√

2βν sin (i+1)h√
2βν

(i+1) cos (i+1)h√
2βν

− h.

U0 =
iμ

[
cos (i+1)z√

2βν
− cos (i+1)h√

2βν

]
sin

[
μ(L− x)

]

cos (i+1)h√
2βν

cos(μL)
(86)

V0 = −
iμ2

[
cos (i+1)z√

2βν
− cos (i+1)h√

2βν

]
G cos

[
μ(L− x)

]

cos
[
(i+1)h√

2βν

]
cos(μL)P0

(87)

where G = −∫ y

0 P0(y
′)dy ′ − yμ−2.

W0 = iμ2 cos
[
μ(L−x)

]

cos(μL)

⎡

⎣
(

1

μ2P0
+ ∂h

∂y

G

P0
2

tan2 (i+1)h√
2βν

)

×
⎛

⎝

√
2βν

(
sin (i+1)z√

2βν
+ sin (i+1)h√

2βν

)

−(1 + i) cos (i+1)h√
2βν

+ z+ h

⎞

⎠

+∂h

∂y
sin

(i + 1)h√
2βν

(
sin (i+1)z√

2βν
+ sin (i+1)h√

2βν

)
G

cos2 (i+1)h√
2βν

P0

⎤

⎦ (88)

Appendix C: The decomposition of the tidal body
force π1

π1 = πN1 + πν1 + πb1 (89)

where

πN1 = −1

2

∂

∂x

〈

ξ0
∂ζ0

∂x

〉

(90)

πν1 = −β

2

〈

ξ0
∂2

∂x∂z

(

ν
∂u0

∂z

)〉

− βν

2

〈
∂u0

∂z

∂2ξ0

∂x∂z

〉

−β

〈
∂ξ0

∂z
· ∇

(

ν
∂u0

∂z

)〉

(91)

πb1 = β
∂

∂z

(

ν

〈
∂u0

∂z

(
5

2

∂ξ0

∂x
+ ∂η0

∂y

)

+ ∂υ0

∂z

∂ξ0

∂y

〉)

+β
∂

∂z

〈
∂u0

∂z
ξ0 · ∇ν

〉

(92)

Appendix D: The decomposition of the tidal body
force π2

π2 = πN2 + πν2 + πb2 (93)

where

πN2 = −1

2

∂

∂y

〈

η0
∂ζ ′0
∂y

〉

−
〈

ξ0
∂2ζ ′0
∂x∂y

〉

(94)

πν2 = −β

2

〈

η0
∂2

∂y∂z

(

ν
∂υ0

∂z

)〉

− βν

2

〈
∂υ0

∂z

∂η2
0

∂y∂z

〉

−β

〈
∂ξ0

∂z
· ∇

(

ν
∂υ0

∂z

)〉

(95)

πb2 = β
∂

∂z

(

ν

〈
∂υ0

∂z

(
∂ξ0

∂x
+ 5

2

∂η0

∂y

)

+ ∂u0

∂z

∂η0

∂x

〉)

+β
∂

∂z

〈
∂υ0

∂z
ξ0 · ∇ν

〉

(96)
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