Ocean Dynamics (2014) 64:1047-1059
DOI 10.1007/s10236-014-0736-3

Along-shelf hydrographic anomalies in the Nordic Seas
(1960-2011): locally generated or advective signals?

Vidar S. Lien - Yvonne Gusdal - Frode B. Vikebg

Received: 30 September 2013 / Accepted: 14 May 2014 /Published online: 7 June 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The northward flow of warm and saline Atlantic
Water through the eastern Nordic Seas sustains a spring-
bloom ecosystem that hosts some of the world’s largest com-
mercial fish stocks. Abrupt climatic changes, or changes be-
yond species-specific thresholds, may have severe effects on
species abundance and distribution. Here, we utilize a numer-
ical ocean model hindcast to explore the similarities and
differences between large-scale anomalies, such as great sa-
linity anomalies, and along-shelf hydrographic anomalies of
regional origin, which represent abrupt changes at subannual
time scales. The large-scale anomalies enter the Nordic Seas to
the south and propagate northward at a speed one order of
magnitude less than the Atlantic Water current speed. On the
contrary, wind-generated along-shelf anomalies appear simul-
taneously along the Norwegian continental shelf and propa-
gate northward at speeds associated with topographically
trapped Kelvin waves. This process involves changes in the
vertical extent of the Atlantic Water along the continental
slope. Such a dynamic oceanic response both affects thermal
habitats and has the potential to ventilate shelf waters by
modifying the cross-shelf transport of nutrients and key prey
items for early stages of fish.
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1 Introduction

The heat content and water mass characteristics of the Nordic
Seas are controlled by the inflow of warm and saline Atlantic
Water (AW) in the southeast (e.g., Hansen and @sterhus 2000)
and cold and less saline Arctic-influenced water masses in the
northwest (e.g., Rabe et al. 2013). The water masses partly
flow through the Nordic Seas to the Arctic Oceans and North
Atlantic, respectively, partly mix at the Arctic front, or ex-
change with the interior basins (Mauritzen et al. 2011; Segtnan
et al. 2011). Variability in the flux and characteristics of these
water masses exists on a multitude of temporal and spatial
scales (Skagseth et al. 2008) and cascades up through the
ecosystem, impacting marine species (Hatun et al. 2009;
Drinkwater 2011). This variability has resulted in a number
of correlation studies in which time-series analyses have re-
vealed periods of significant covariation between the physical
environment and its inhabitants but break down during other
periods (Ottersen et al. 2013). The response of marine organ-
isms to ocean climate variability and change depends on the
regularity of ocean climate variation and possible long-term
trends. Abrupt changes, or changes beyond species-specific
thresholds (Ottersen et al. 2013), may have severe effects on
the development of the species abundance and distribution.
Several distinct, negative salinity anomalies, commonly
termed Great Salinity Anomalies (GSAs), have been identi-
fied in the northeastern North Atlantic and downstream
(northward) in the eastern Nordic Seas during the last 50 years.
The most distinct GSAs appeared in the 1960s, late 1970s,
mid-1980s, and mid-1990s (Dickson et al. 1988; Belkin et al.
1998; Belkin 2004; Sundby and Drinkwater 2007). The prop-
agation time of these anomalies through the Nordic Seas has
been estimated to be approximately 2 years from the Faroe-
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Shetland Channel to the Barents Sea Opening (BSO). These
estimates are based on repeated hydrographic measurements
at sections intercepting the main branches of the AW flowing
northward. That propagation time corresponds to an advection
speed of 0.02-0.03 m/s (Furevik 2001; Sundby and
Drinkwater 2007). For comparison, this is approximately an
order of magnitude less than the typical current speed in the
Norwegian Atlantic Slope Current (NASC; Orvik et al. 2001).
Generally, the temperature of the northward flowing AW
varies in phase with the salinity (Furevik 2001). Thus, GSAs
are also associated with anomalously low temperatures, al-
though along-path atmospheric interaction affects the
temperature and salinity differently.

Sundby and Drinkwater (2007) argued that the GSAs can
be explained by perturbations in the balance between salt
diffusion and salt transport along the boundaries of the north-
ern North Atlantic. In the northeastern North Atlantic, the
salinity decreases downstream (northward) from the Faroe-
Shetland Channel towards the Arctic Ocean. Assuming a
constant salt diffusion, a reduced (increased) volume transport
through the Faroe-Shetland Channel causes a reduction
(increase) in the downstream salt transport. This relationship
explains why the advection speed of a GSA is much lower
than the AW current speed. Moreover, Sundby and
Drinkwater (2007) identified positive salinity anomalies and
found that the anomalies tended to have larger advection
speeds compared with negative anomalies. Sundby and
Drinkwater (2007) attributed both positive and negative
GSAs to large-scale forcing, such as the North Atlantic
Oscillation (NAO; Hurrell 1995), which either spins up (pos-
itive NAO and positive salinity anomaly) or slows down
(negative NAO and negative salinity anomaly) the AW
circulation.

In this study, we assess a numerical ocean model’s ability to
capture variations in the AW flowing along the Norwegian
continental shelf. We then use the model to investigate short-
term oceanic responses to anomalies in the regional atmo-
spheric circulation and compare these oceanic responses to
the situation of passing GSAs. Anomalous hydrography could
either be short-term responses to passing low-pressure sys-
tems or an adjustment to multi-year changes in the strength
and location of atmospheric pressure systems (e.g., NAO, AO,
and Scandinavian Pattern, see Bader et al. 2011), as indicated
by Sundby and Drinkwater (2007). Similarities and differ-
ences between hydrographic anomalies associated with low-
frequency GSAs and short-term upwelling/downwelling
events are investigated in terms of vertical structure, horizon-
tal extent, and duration. We argue that the short-term oceanic
adjustments to transient changes in regional atmospheric cir-
culation, although less durable than the GSAs, may play an
important role in the ecosystem functioning. Our understand-
ing of these processes and ability to distinguish between them
in time-series analyses that relate climate signals to biological
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effects has great implications for our general understanding of
how marine species in the Nordic Seas ecosystem may re-
spond to expected changes in their environment.

2 Data and methods
2.1 Ocean model

We utilize results from the Regional Ocean Modeling System
(ROMS), a three-dimensional baroclinic ocean general circu-
lation model that uses topography-following s-coordinates in
the vertical (Shchepetkin and McWilliams 2005) and is
coupled to an ice module (Budgell 2005). The model is
implemented with a horizontal grid resolution of 4 km cover-
ing the Nordic, Barents, and Kara Seas as well as parts of the
Arctic (Fig. 1). The model setup has 32 vertical s-coordinates
and a minimum depth of 10 m. The advection scheme chosen
for momentum and tracers are fourth-order centered and third-
order upstream, respectively, with the harmonic horizontal
mixing coefficient set to zero. The generic length-scale
(GLS) mixing scheme (Umlauf and Burchard 2003; Umlauf
et al. 2003) is used for the vertical turbulent mixing of mo-
mentum and tracers.

For atmospheric forcing, six-hourly values of winds, tem-
perature, pressure, humidity, cloud cover, and accumulated
precipitation from the Norwegian Reanalysis 10-km
(NORA10) high-resolution archive (Reistad et al. 2011) are
applied. Short- and net long-wave radiations are computed
internally. The archive is a dynamic downscaling based on
ERA40 (Uppala et al. 2005) for the period January 1958 to
August 2002 and EC analysis from September 2002 and
onward, producing atmospheric fields at a 10-km resolution.
The archive covers most of the interior of the ocean model
domain but has been expanded with ERA40 and EC analysis,
respectively, in the boundary regions.

The Simple Ocean Data Assimilation data set (SODA;
Carton et al. 2000; Carton and Giese 2008) and sea ice from
a simulation using the ocean model MICOM (Sandg et al.
2012) are used as initial and boundary conditions by applying
the boundary condition scheme proposed by Marchesiello
et al. (2001). Tidal forcing based on a global ocean tides
model (TPXO4) is included by imposing surface elevation
and corresponding barotropic velocity components at the open
boundaries, as proposed by Flather (1976) and Chapman
(1985), respectively. Regarding freshwater input from rivers,
the model uses monthly mean climatological values of river
runoff. Interannual variability has been accounted for by scal-
ing the climatological values based on precipitation extent
from ERA40 and ERA Interim. The sea surface salinity is
relaxed toward the SODA monthly mean values, with an e-
folding time of 180 days to prevent drift in the model salinity.
To account for model spin up, the first 2 years are neglected in
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Fig. 1 Model domain. The gray contour lines represent the bottom
topography (with a minimum depth of 300 m). Open squares show the
repeated sections: SNW Svingy Northwest, BSO Barens Sea Opening,

the following analysis. For further details on the model sim-
ulation, see Lien et al. (2013a).

2.2 Observational data

Hydrographic data (temperature and salinity) from three re-
peated sections (Svingy Northwest (SNW), the BSO, and the
Varde North (VAN); Fig. 1) are obtained from the Norwegian
Marine Data Center database (www.imr.no/forskning/
faggrupper/norsk _marint_datasenter nmd). To obtain an
adequate data set for statistical calculations at each section,
only 5-week periods containing observations at all stations
within each section (Fig. 1) throughout the climatic period
1980-2009 are included in the analysis (see Kangas et al.
2006). The resulting measurement frequencies of the repeated
sections are three times a year in the SNW, four times a year in
the VAN, and six times a year in the BSO. Temperature and
salinity anomalies are calculated for both the observations and
the model results when observations are available and at
observation station locations using the 30-year period 1980—
2009 as a climatological normal period. The salinities and
temperatures are spatially averaged within the AW, here de-
fined by 7>3 °C and $>34.8 between 50 and 200 m. This
salinity criterion is below the value of 35.0 that is commonly
used to define AW (e.g., Skagseth et al. 2008) to ensure a
continuous time series during strong GSA events. In the SNW,
we only include stations with a bottom depth of less than
1,000 m to focus on the NASC. In addition to the daily
averages, modeled monthly temperature and salinity
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VAN Varde North. Orange squares show position of current meter mea-
surements. Crosses show position of wind stations. FSC Faroe-Shetland
Channel

anomalies relative to the climatological period 1980-2009
are calculated for the entire simulation period (Fig. 2).

Volume transport estimates from the SNW are based on
hourly current meter data from a single current meter (Orvik
and Skagseth 2003) for the period 1995-2011. The observa-
tions are filtered with a 30-day moving average and re-sampled
every 15th day of each calendar month and compared with
monthly mean model results. The model grid cell in the SNW
section displaying the highest correlation with the observational
time series is used for comparison with the observations. Note
that the model grid cell with the largest modeled speed (i.e.,
representing the AW core) shows qualitatively similar results
but with a slightly lower correlation. Correspondingly, current
meter data in the BSO are processed into monthly averaged
volume transport estimates for the period 19972011 (see, e.g.,
Ingvaldsen et al. 2004 for further details) and compared with
the modeled volume transports of AW. In these calculations, we
use the full section between Norway and Bear Island and define
the AW by 7>3 °C and §>34.9, i.e., the salinity is adjusted for
the model-observation bias/root mean square error (rmse)
(Table 1). For the current speed comparison, the current meter
data are processed into daily averages and compared with
modeled daily averages at 50 m depth and at the bottom in
BSO and at 100 m depth in the SNW. In the BSO, we only
apply the observations in the central part of the section (Fig. 1)
where the core of AW inflow occurs.

Additionally, we extract the along-slope wind component
parallel to the 500 m isobath based on the NORA10 atmo-
spheric data set at three locations along the Norwegian

@ Springer



1050

Ocean Dynamics (2014) 64:1047-1059

Anomaly Temperature [Celcius]

SNW, R=0.51

Anomaly Salinity [ppt]

SNW, R=0.52

2.0 T

T 0.20

BSO, R=0.70

BSO, R=0.62 40.15
0.10
0.05
0.00
—0.05
-0.10
1-0.15

-0.20

I VAN, R=0.88

VAN, R=0.68 _—

Year

Fig. 2 Time series of temperature (/eff) and salinity (right) anomalies in
the core area of the Atlantic Water from modeled monthly averages
(black), observations (red), and modeled daily averages at time of obser-
vations (blue). Base period is 1980-2009 with the seasonal variability

continental shelf break (Fig. 1). The six-hourly time series of
along-slope winds are smoothed by applying a 30-day moving
average and re-sampled at the 15th of each calendar month.
The along-slope wind component is then used as a proxy for
the cross-slope Ekman transport and subsequent vertical dis-
placement of the AW along the Norwegian continental slope
(see Lien et al. 2013b).

To investigate the oceanic vertical response to atmospheric
forcing, we compare the along-slope wind components de-
scribed above and the monthly mean NAO index (Climate
Analysis Section, NCAR, Boulder, USA; Hurrell et al. 2003)
with the modeled maximum depth of the AW (defined by the
3 °C isotherm) along the continental slope limited by the 500-
and 1,000-m isobaths. The difference of using, e.g., the 5 °C

6062646668707274767880828486889092949698000204060810 6062646668707274767880828486889092949698000204060810

Year

removed. Top, the Sviney Northwest section; middle, the Barents Sea
Opening; and bottom, the Varde North section. Horizontal lines show 0.5
standard deviations. Shaded areas show periods of positive (red) and
negative (blue) salinity anomalies within each section

isotherm is small (the depths of the 3 and 5 °C isotherms are
highly correlated; R=0.94; p<0.001).

We define negative (positive) GSAs as periods of at least
12 consecutive months with a salinity anomaly more than 0.5
standard deviations below (above) the long-term mean (based
on the modeled monthly time series shown in Fig. 2). Thus,
we use the term “GSAs” for both negative and positive long-
term anomalies. Negative (positive) regional wind-generated
anomaly (RWA) are defined as months where the along-slope
wind anomaly is more than 1.5 standard deviations below
(above) the long-term mean. Thus, the RWAs are allowed to
be of shorter durations than the GSAs and are therefore less
likely to be observed based on repeated hydrographic sections
with the sampling rate of today. By applying this definition,

Table 1 Integrated values of bias and root mean square error (rmse) for temperature and salinity in the core area of the Atlantic Water from observations

and daily average model results

Section Bias rmse

Temperature (°C) Salt (ppt) Temperature (°C) Salt (ppt)
Svingy Northwest section -1.02 —0.11 1.27 0.14
Barents Sea Opening —0.62 —0.09 0.79 0.10
Varde North -0.29 —-0.07 0.55 0.08

The results cover the period 1980 to 2009 in the Svingy Northwest section, the Barents Sea Opening, and the Varde North section
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the RWAs occupy approximately 10 % of the total time series
(approximately 5 % positive and 5 % negative anomalies). To
estimate the propagation time and speed of the modeled
GSAs, we use the modeled AW salinity time series (by ap-
plying a 12-month moving average) at each section (Fig. 2).
The propagation times and speeds are determined by identi-
fying the time lag (months) that yields the maximum correla-
tion for each individual GSA period.

In this study, we use the Pearson’s correlation coefficient to
compare various time series. For hydrography, we correlate
de-seasoned and de-trended anomalies sampled a few times a
year. For the AW depth, along-slope wind and the NAO index,
we correlate monthly averages. The persistence of the NAO is
typically less than a month (Barnes and Hartmann 2010);
whereas, the along-slope winds are mainly driven by passing
low-pressure systems (time scales of ~days). Therefore, the
number of degrees of freedom in each time series is set to N—1,
where N is the length of the time series or the sample size. The
NAO index, AW depth, and the along-slope wind are neither
de-seasoned nor de-trended prior to the correlation analysis.

3 Results
3.1 Model evaluation

The modeled temperature and salinity at the three sections
(SNW, BSO, and VAN) exhibit similar features of low-
frequency variability on inter-annual to decadal timescales,
as is evident from the observations (Fig. 2). Distinct maxima
are present in the early 1960s, early 1970s, mid-1980s, early
1990s, and mid-2000s. Pronounced minima are observed
during the mid-1960s, late 1970s, late 1980s, and mid-
1990s, which is consistent with the chain of both positive
and negative GSAs reported by Sundby and Drinkwater
(2007). The most notable discrepancies are linked to the
GSA during the mid-1990s and distinct modeled temperature
and salinity anomalies during the early 2000s. A freshwater
anomaly within the Nordic Seas in the mid-1990s has been
documented (Carton et al. 2011). Although the model exag-
gerates the salinity anomaly associated with the GSA of the
1990s, the modeled temperature is close to the observed
temperature during this period (Fig. 2). The modeled anomaly
in the early 2000s has not, to our knowledge, been document-
ed through observations presented in literature. There are at
least two potential explanations for this discrepancy. First,
consistent with the standard monitoring of AW properties
(Blindheim and Loeng 1981), we use the 50- to 200-m depth
range within the AW part of the sections to represent the AW
core. Therefore, our analysis is sensitive to the vertical extent
of the anomaly, which may differ in the model and in nature.
Second, only including observations from 5-week periods a

few times per year limits the temporal data coverage. The
early 2000s is therefore not treated as a GSA, although it
fulfills the definition given above, but is investigated in more
detail in the following discussion.

Table 1 shows the bias and rmse between the observed and
modeled salinity and temperature. The model has a negative
bias that decreases downstream in both temperature and sa-
linity in the repeated sections over the period 19802011,
—0.11 (SNW), —0.09 (BSO), and —0.07 (VAN) in salinity
and —1.02 (SNW), —0.62 (BSO), and —0.29 (VAN) in temper-
ature. The corresponding rmse values also decrease down-
stream from 0.14 (SNW), 0.10 (BSO) to 0.08 (VAN) for
salinity and 1.27 (SNW), 0.79 (BSO) to 0.55 (VAN) for
temperature.

The correlations between modeled and observed tempera-
ture (Ry) and salinity (Rs) (Fig. 2) generally increase down-
stream from Rt=0.51 and Rg=0.52 in the SNW, Ry=0.70 and
Rs=0.62 in the BSO, to Rt=0.88 and Rs=0.68 in the VAN
(»<0.001 for all values). The increasing correlations down-
stream reflect the better representation of variability also on
shorter timescales (intra-annual to annual) in the Barents Sea
compared with the Norwegian Sea. The correlation between
the observed and modeled volume transport is R=0.63
(»<0.001) in the SNW. If the seasonal signal is removed, the
correlation coefficient reduces to R=0.46 (p<0.001). In the
BSO, the correlation is R=0.41 (p<0.001) while adjusting for
the seasonal signal yields a correlation coefficient R=0.38
(»<0.001). The estimated net AW volume transports and
standard deviations through the BSO for the period 1997-
2011 are 2.0+1.0 Sv and 1.9+1.0 Sv for observations and
model results, respectively. We find a close agreement be-
tween the observed and the modeled current speed distribution
at a depth of 50 m and at the bottom in the BSO (Fig. 3). The
model generally overestimates the current speeds with a bias
of 1.5 cm/s at 50 m and 0.2 cm/s at the bottom at station 1,
while at station 2, the model underestimates the current speeds
with a bias of —2.0 cm/s (50 m) and —1.1 cm/s (bottom). At
station 3, the model underestimates the current speeds at the
bottom (—1.0 cm/s) and slightly overestimates the current
speeds at 50 m (0.5 cm/s). Upstream in the SNW, the model
underestimates the observed current speeds (Lien et al. 2013a;
Fig. 3) with a bias of —12.1 cm/s. This discrepancy was
attributed to possible differences in the bathymetry, as well
as the problem of comparing a 4-by-4-km grid cell to point
measurements when considering the narrow core of the
NASC (10 km; Orvik et al. 2001). The rmse of the current
speeds are between 5.1 and 6.4 cm/s at the bottom and
between 6.9 and 10.2 cm/s at a depth of 50 m in the BSO
and 22.3 cm/s at a depth of 100 m in the SNW.

According to Lien et al. (2013a), the modeled AW depth is
realistic within the southern basin in the Norwegian Sea,
although the vertical temperature and salinity gradients in
the transition layer between the AW and the Norwegian Sea
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Fig. 3 Quantile—quantile plot

BSO - Current meter 1

BSO - Current meter 2

(qq-plot) between daily average 50 . 5 Orﬁ v 50 . 5 Orﬁ ' -
observed and modeled current 45l . 212m * ,\' { a5l + 294m ,\'
speed at a depth of 50 m (blue) ’ k2
and at the bottom (red) in the 40f A 1 40f g
Barents Sea Opening (BSO) and 35l &, | a8l K . *
at a depth of 100 m (black) in the — _ ¢ *;\'*
. . *
Svinegy Northwest section (SNW). %’ 30+ Ra 30} -
For positions of the current meter S, ¥ ,«'*' * ,«';*
moorings, see Fig. 1 oy 25¢ 2 257 ’
-8 20 7 20 < o
r k4 r 7’
= < ’
15¢ 8 bias: 1.5 15F o7 bias: -2.0
; rmse: 8.9 ’ rmse: 6.9
10 {1 10 .
bias: 0.2 4 bias: -1.1
S rmse: 6.4 19 rmse: 5.1
00 1 IO 2IO 3I0 4I0 50 C'0 1 IO 2I0 SIO 4I0 50
BSO - Current meter 3 SNW
50 : : - - 100 : , :
~som .
45H « 373m \*4.\** 1 90t \I\
\‘{* R
40t R 8ot i
!
35} 701
2 30f A { 60
o
: 25¢ ek 50+
[}
.8 201 40r
=
15¢ bias: 0.5 301 "
10} rmse: 10.2 20 ‘ bias: -12.1
bias: -1.0 rmse: 22.3
S rmse: 6.2 101
0 - : ; - 0 : : : -
0 10 20 30 40 50 O 20 40 60 80 100

Observations [cm/s]

Intermediate Water (NSIW) is weaker than observed.
Compared with the observed heat content within the Nordic
Seas (Skagseth and Mork 2012), the major part of the modeled
heat content within the Nordic Seas is contained within the
NASC at the expense of especially the Lofoten Basin (Lien
etal. 2013a). Using ROMS with a similar setup, Isachsen et al.
(2012) found too-small shelf-basin AW exchanges when in-
vestigating the surface eddy heat fluxes in the Lofoten Basin,
which explains the lack of modeled heat within the interior
Lofoten basin. For a further evaluation of the model perfor-
mance, see Lien et al. (2013a).

3.2 Great salinity anomalies

The estimated GSA propagation speeds are summarized in
Table 2. The results show different propagation speeds for the
GSA60s (~0.02 m/s), GSA70s (~0.13 m/s), and GSA90s
(~0.08 m/s) from the SNW to the BSO. The lesser modeled
basin scale heat and freshwater inertia could be possible
explanations for the larger modeled GSA propagation speeds,
compared with the observation-based estimates of ~0.03 m/s
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(Furevik 2001; Sundby and Drinkwater 2007). Between the
BSO and the VAN, however, the estimated propagation
speeds are in the range of 0.01-0.02 m/s for all three GSAs
investigated. We identify two positive salinity anomalies that
are simultaneously present in all three sections; one during the
late 1960s and early 1970s and one during the mid-2000s
(Fig. 2). The propagation speeds of these two differ consider-
ably from the SNW to the BSO (0.04 and 0.17 m/s,

Table 2 Propagation times (months) for the Great Salinity Anomalies
between various sections, with corresponding propagation speed (1m/s) in
parenthesis

Section SNW-BSO (~1,360 km) BSO-VAN (~375 km)
GSA60s 27 (0.019) 10 (0.015)
GSA70s 4(0.13) 7(0.021)
GSA90s 7(0.075) 11 (0.013)

The propagation time corresponds to the downstream time lag of the
maximum correlation between the sections, with a 12-month moving
average applied to the time series. Section names: Svingy Northwest
(SNW), Barents Sea Opening (BSO), and Varde North (VAN)
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respectively) but are consistently low from the BSO to the
VAN (0.03 and 0.04 m/s, respectively). Thus, the proposed
difference in propagation speeds between positive (faster) and
negative (slower) anomalies, as proposed by Sundby and
Drinkwater (2007), remains inconclusive based on this study.

3.3 Regional wind-generated anomalies

To investigate the relation between atmospheric forcing and
dynamic response in the ocean, we look at the modeled
maximum depth of the AW (represented by the 3 °C isotherm)
and its covariation with the along-slope wind components
(Fig. 4). Negative (positive) values of the along-slope wind
anomaly favor offshore (onshore) Ekman transport and sub-
sequently an ascending (descending) boundary layer between
the warm and saline AW overlying the colder and less saline
NSIW. Based on the monthly averages, we find significant
correlations between the maximum depth of the AW and the
along-slope wind both at station 1 (R=0.46; p<0.001) and at
station 2 (R=0.43; p<0.001). If we use values of the along-
slope wind anomaly that are outside the 1.5 standard deviation
range only, the correlations increase to R=0.76 (p<0.001; N=
79) and R=0.63 (p<0.001; N=88), respectively. At station 3,
we find no significant correlation between the along-slope
wind component and the maximum depth of the AW, neither
for the entire model period nor for extreme values only.
Considering the clearly coherent response in the maximum
AW depth northward (Fig. 4; Supplementary Fig. S1), we
extend our analysis to include the correlation between the
along-slope wind at station 2 and the maximum AW depth
at station 3. We then find a significant correlation (R=0.22;
p<0.001) at zero time lag, increasing to R=0.35 (p<0.001) at
I-month time lag. For extreme values (outside +1.5 standard
deviations; N=_88), we find a significant correlation of R=0.37
(»<0.001) at zero time lag, which increases to R=0.57
(»<0.001) at 1-month time lag.

Acknowledging that our along-slope wind represents the
local atmospheric forcing, we continue by comparing the
maximum depth of the AW with the large-scale atmospheric
circulation represented by the NAO index. The NAO is rep-
resentative for the large-scale atmospheric circulation and has
been proposed as a driving mechanism for the GSAs (Sundby
and Drinkwater 2007). The correlation between the monthly
NAO index and the combined along-slope wind anomaly at
stations 1 and 2 (as depicted in Fig. 4) is R=0.41 (»p<0.001).
We obtain correlations between the NAO index and the AW
depth of R=0.35 (p<0.001) at station 1, R=0.49 (p<0.001) at
station 2, and R=0.21 (p<0.001) at station 3 using monthly
averages. Including extreme values of the NAO index only
(i.e., outside 1.5 standard deviations of the long-term mean;
N=73) we obtain R=0.58 (»p<0.001) at station 1, R=0.76
(»<0.001) at station 2, and R=0.49 (»p<0.001) at station 3.

Clearly, there is a large temporal variability in the maxi-
mum depth of the AW at monthly to annual timescales
(Fig. 4). On average, the maximum depth of the AW is
approximately 500 m from the inflow area at 61° N to the
BSO at approximately 71° N. The depth then rapidly de-
creases northward (Fig. 4). During periods of positive NAO
and downwelling favorable along-slope winds, the AW may
reach depths exceeding 700 m from the SNW to the Fram
Strait. In contrast, during periods of negative NAO and
upwelling-favorable along-slope winds, the AW is moved up
to 200 m upslope (monthly average).

3.4 Great salinity anomalies versus regional wind-generated
anomalies

Figure 5 shows the modeled temperature and salinity anoma-
lies in the SNW and the BSO during months representing (1)
GSAs (negative), (2) negative RWAs, (3) GSAs (negative)
combined with negative RWAs, and (4) winter 2000/2001.
The motivation for investigating winter 2000/2001 in more
detail is the apparent GSA that occurs in the model but not in
the observations. To account for the advection time from the
continental slope to the BSO, a 1-month time lag is applied
between the wind anomalies at station 2 and the hydrographic
anomalies in the BSO in cases 2 and 3. To reduce the influence
of RWAs on the GSAs and vice versa, months representing
RWAs are omitted when compiling the GSAs. Similarly,
months defined to be inside a GSA are omitted when compil-
ing the RWAs. We then find that in the SNW, the GSAs are
associated with a general reduction of both temperature and
salinity within the AW. On the contrary, RWAs are associated
with a subsurface reduction in temperature and salinity, mostly
confined to the continental slope, and an increase/decrease in
surface temperature/salinity (Fig. 5). This relationship is con-
sistent with an uplift of the boundary layer between the NSTW
and the overlying AW through offshore advection of warm
and less saline coastal water in the surface layer. The relation-
ship is further substantiated by the negative sea surface height
anomaly along the coast during negative RWAs, pointing
towards offshore Ekman transport (Fig. 5, bottom). During
GSAs, we find no such pattern in the sea surface height
anomaly.

In the BSO, the difference between the GSAs and the
RWAS is less clear. Consistent with the findings in the SNW,
there is a general cooling and freshening during GSAs. During
months with negative RWAs, the salinity tends to be slightly
higher than normal, while there is a weak cooling in the
southern part of the section. Most notably, the anomalies in
both temperature (negative) and salinity (positive) are most
pronounced within the Norwegian Coastal Current. When
combining all of the months that are found to be inside both
a GSA and a RWA, there is a tendency of a negative, bottom-
intensified anomaly in temperature. In salinity, there is also a
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Fig. 4 HovMoller diagram showing the depth in meters (color) of the
3 °C isotherm against time (x-axis) and latitude (y-axis). Time series show
standardized anomalies of monthly NAO index (thick, gray line) and the

general reduction throughout the section, but the strongest
anomaly is located in the surface layer in the southern part
of the section.

The temperature and salinity anomalies associated with the
GSAs are more pronounced at a depth of 200 m compared
with the anomalies associated with the RWAs, which are
instead more pronounced at a depth of 400 m (Fig. 5). The
2000/2001 event especially displays a large anomaly in tem-
perature at a depth of 400 m in the model.

3.5 2000/2001 anomaly

During winter 2000/2001, the depth of the 3 °C isotherm was
displaced approximately 200 m upward from the SNW to the
BSO and surfaced northward toward the Fram Strait (Fig. 4).
As a consequence, the AW-NSIW boundary layer ascended
above the bottom depth of the largest troughs, and NSIW-
influenced water masses were transported onto the Norwegian
continental shelf, including the western Barents Sea (Fig. 6).
In the model, this occurrence is manifested as a negative,
subsurface (200-600 m depth) temperature anomaly (|7;|>
2 °C) occurring simultaneously in the SNW and BSO sections
(Fig. 5). As a consequence, the standard hydrography
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average along-slope wind at stations 1 and 2 (Upw; black line). Bottom,
the whole simulation period; fop, the years 1995-2005

monitoring procedure used here (covering only 50-200 m)
likely miss at least part of the RWAs. To substantiate this,
negative temperature (|7;,|=2 °C) and salinity (|S,|=0.1) anom-
alies were observed in the SNW on 29 November 2000
(Supplementary Fig. S2). This observation is, however, out-
side the pre-defined 5-week periods included in our time
series analysis. The anomalies were located somewhat deeper
(300-600 m depth) and confined to the 1,000 m isobath
(Supplementary Fig. S2) compared with the modeled anoma-
lies (Fig. 5).

The bottom temperature anomaly depicted in Fig. 6 ex-
pands the modeled geographically coherent evolution of the
hydrographic response to the wind-induced AW shoaling
during winter 2000/01. The mean sea level pressure over the
Norwegian Sea during the period October 2000 through May
2001 is shown in Supplementary Fig. S3 for comparison with
the modeled oceanic response depicted in Fig. 6. Initially in
October 2000, a negative temperature anomaly (|7,|~1 °C) is
observed along the path of the AW, bounded onshelf by the
300-m isobath. During November and December 2000, the
along-path temperature anomaly intensifies and spreads onto
shelf areas deeper than 300 m (200 m in the BSO). During the
same months (Oct-Dec), there was anomalous low-pressure
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activity (Supplementary Fig. S3; anomalies are not shown)
along the southern boundary of the Norwegian Sea, with an
associated anomalous easterly component in the winds further
north. By January 2001, a negative temperature anomaly | 7,|>
2 °C extends into all troughs and channels that are directly
connected to the continental slope. At this stage, it is also
evident that the temperature anomaly is advected eastward

Longitude [Deg E]

through the BSO and into the northern parts of the BSO.
During the period February through May 2001, the bottom
temperature anomaly slowly becomes weaker. A similar
evolution, but with positive temperature anomalies is
found during the event of downwelling-favorable winds
and subsequent deepening of the AW in winter
2004/2005 (Supplementary Fig. S4).
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Fig. 6 Temperature anomalies at the bottom during winter 2000/2001 (October through May). All anomalies are adjusted relative to season. The gray
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4 Discussion

The northward flow of warm and saline AW through the
eastern Nordic Seas sustains a spring-bloom ecosystem
hosting some of the world’s largest commercial fish stocks.
Although disentangling the different links from climate
change and variation to responses in marine species is a major
challenge, the focus in this study has been on the vertical
structure, duration and propagation of salinity and temperature
anomalies on the eastern side of the Nordic Seas. Large-scale
temperature and salinity anomalies associated with GSAs may
affect the thermal habitat within the Atlantic-dominated part
of the Nordic Seas, whereas the dynamic response to changes
in regional atmospheric forcing in addition affects the basin-
shelf interaction. The latter has the potential to affect key
processes in this relatively simple arcto-boreal spring-bloom
ecosystem (Skjoldal 2004). One such process is the dispersal
of Calanus finmarchicus onto shelves inhabited by the highly
migratory Norwegian spring-spawning herring (Clupea
harengus) and the Northeast Arctic cod (Gadus morhua),
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whose offspring are dependent on the availability of early
stages of C. finmarchicus (e.g., Sundby 2000). Therefore,
understanding the mechanisms behind variability in the ocean
projected onto proxy data is crucial for predicting the expected
ecosystem response.

The ocean model successfully recaptures the main features
of observed variability in AW temperature, salinity and vol-
ume transports, with episodic discrepancies. Specifically, all
major GSAs (positive and negative) according to Sundby and
Drinkwater (2007) are reproduced. Additionally, the BSO
volume transport of AW, which is continuously monitored
by five current meter moorings, is near identical in terms of
the mean and standard deviation.

We have identified positive and statistically significant
correlations between the depth of the AW along the upper
continental slope in the Norwegian Sea and both the NAO
index and the along-slope wind at zero time lag. Based on
CTD measurements, Mork and Blindheim (2000) found a
positive but weak correlation between the NAO in winter
and the 100- to 400-m average temperature and salinity in
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the SNW the following summer. Our study differs in that we
compare monthly NAO with the modeled AW depth for the
period 19602011, whereas Mork and Blindheim (2000) used
winter-NAO and hydrographic observations from the period
July/August 1978-1996. We interpret these results as the
NAO and variability in the along-slope wind inducing tran-
sient responses in the upper-slope AW depth on timescales of
a few months. Given the general intensification of the NAO
during winter, either positive or negative, the anomalies in the
AW depth are generally amplified during winter. Thus, the
RWAs are more short lived and more frequent compared with
the GSAs. While our model results suggest a total of six GSAs
(four negative, including the 2000/2001 event, and two posi-
tive), during the 52-year period 1960-2011, we find annually
occurring anomalies in the AW depth, although large ampli-
tudes occur less frequently and usually in correspondence
with large anomalies in the NAO and/or the along-slope wind.

Whereas the GSAs are well documented in literature (e.g.,
Dickson et al. 1988), the RWAs and their impacts are less well
documented, although their origin is based on well-known
atmosphere—ocean interactions. The general lack of observa-
tions at high spatiotemporal resolution is a likely explanation
why reports of the RWAs are scarce. One source of observa-
tions at high temporal resolution is moored instruments.
Anomalously low AW volume and heat transport was ob-
served in the BSO during late winter 2001 (Skagseth et al.
2008, Fig. 2.6) based on an array of five oceanographic
moorings. Although reduced current speeds through the
BSO would have resulted in such an anomaly, a reduction in
temperature and salinity would also create an anomaly in AW
volume and heat transport due to the temperature- and
salinity-dependent definition of AW. A two-degree tempera-
ture drop beginning in mid-December 2000 and persisting
throughout the winter was recorded close to the bottom at
mooring position 3 (Ingvaldsen, personal communication; see
Fig. 1 for position), consistent with a modeled bottom-
intensified temperature anomaly (Fig. 5). This result suggests
a reduction in the amount of AW present in the BSO in favor
of NSIW-influenced water masses because the AW-NSIW
boundary layer is elevated within the mainly barotropic cur-
rents in the BSO. As for the SNW, the temperature and salinity
anomalies are confined to the lower part of the water column
and are not captured by the standard 50-200 m depth AW
monitoring.

Figure 4 and Supplementary Fig. S1 suggest that the anom-
alies in the AW depth are occurring more or less simultaneous-
ly along the Norwegian continental slope (i.e., south of 70°
N). This is consistent with the passing of high- or low-pressure
systems, which traverse the area on a timescale of days. Based
on daily averages of AW depth plotted against time and
latitude (not shown), we find that the positive AW depth
anomalies (downwelling) are propagating northward from
station 2 at speeds approximately 0.1 to 0.4 m/s (propagation

of negative AW depth anomalies (upwelling) is less clear).
This result is substantiated by the higher correlation between
the AW depth at station 3 and the wind forcing at station 2 one
month earlier, compared with the wind forcing at station 3 at
no lag. A possible mechanism for such propagation is topo-
graphically trapped Kelvin waves, which can be expected to
play a role in oceanic adjustment to changes in atmospheric
forcing on timescales on the order of a few months and less
(Primeau 2002; Marshall and Johnson 2013). Using an
idealized model setup for the Nordic Seas basin, Yang and
Pratt (2013) calculated a typical traveling speed of 0.9 m/s for
a baroclinic Kelvin wave along the Nordic Seas rim, about
three times the speed indicated in our model simulation, which
corresponds to a propagation time of approximately 15 days
from stations 2 to 3.

The modeled propagation speeds of 0.02—-0.04 m/s
between the BSO and the VAN for both the positive and
negative GSAs as well as the 2000/01 anomaly event are
comparable to the observed (Ingvaldsen et al. 2002) and
modeled (Fig. 3; Lien et al. 2013a, b) mean current speed
through the BSO. This result indicates plume advection of
the temperature and salinity anomalies onto the shelf and
is further substantiated by the damping of the amplitudes
between the BSO and the VAN (Figs. 2, 6, and
Supplementary Fig. S4). Contrary to a GSA, the wind-
driven shoaling of the AW along the continental slope
allows for more NSIW-influenced water masses to be
advected onshelf through troughs. This mechanism has
been identified as being important for the renewal of the
water masses at the shelf (Connolly and Hickey 2014).
Such water mass renewal impacts both the hydrographic
properties and the exchange of tracers between the shelf
and the open ocean. Thus, the renewal affects the thermal
habitat and food availability of early stages of fish
spawned at the shelf, such as the Norwegian spring-
spawning herring (C. harengus) and Northeast Arctic
cod (G. morhua). Moreover, the renewal may also con-
tribute to replenishing the nutrients at the shelf. Therefore,
wind-driven shoaling events potentially play important
roles in the marine ecosystem functioning.
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