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Abstract With a depth-averaged numerical model, the tidally
induced Lagrangian residual current in a model bay was
studied. To correctly reflect the long-term mass transport, it
is appropriate to use the Lagrangian residual velocity (LRV)
rather than the Eulerian residual velocity (ERV) or the
Eulerian residual transport velocity (ETV) to describe the
residual current. The parameter κ, which is defined as the
ratio of the typical tidal amplitude at the open boundary to
the mean water depth, is considered to be the indicator of the
nonlinear effect in the system. It is found that the feasibility of
making the mass transport velocity (MTV) approximate the
LRV is strongly dependent on κ. The error between the MTV
and the LRV tends to increase with a growing κ. An additional
error will come from the various initial tidal phases due to the
Lagrangian drift velocity (LDV) when κ is no longer small.
According to the residual vorticity equation based on the
MTV, the Coriolis effect is found to influence the residual
vorticity mainly through the curl of the tidal stress. A signif-
icant difference in the flow pattern indicates that the LRV is
sensitive to the bottom friction in different forms.

Keywords Lagrangian residual current .Mass transport
velocity . Coriolis effect . Bottom friction . Numerical
computation .Model bay

1 Introduction

It has been noticed for a long time that in tidally dominant
shallow seas and estuaries, the long-term mass transport pro-
cess, which is closely related with the material cycle of the
marine ecosystem, is determined by the residual current rather
than the periodic tidal current. However, due to a complex
nonlinear effect in shallow seas, how to describe the residual
current has not yet reached a consensus.

The most straightforward approach to depicting the resid-
ual current is the Eulerian residual velocity (ERV), which is
defined as the average of the tidal current velocity at a fixed
point in space for several tidal periods (e.g., Abbott 1960).
However, the ERV was found to violate the law of mass
conservation at the sea surface when it was used to study the
baroclinic residual circulation in the 3D case by Feng et al.
(1984). Furthermore, an annoying term, “tidal dispersion,”
appeared in the intertidal transport equation when the ERV
acted as the advective transport velocity (Fischer et al. 1979).
Despite these disadvantages, the ERV is still widely used as a
result of its easy access in practice (e.g., Marinone 1997;
Salas-de-León et al. 2003; Lopes and Dias 2007; Carballo
et al. 2009; Cheng et al. 2010; Basdurak and Valle-Levinson
2012; Burchard and Schuttelaars 2012).

As a partial modification of the ERV, the Eulerian residual
transport velocity (ETV) was proposed in the depth-averaged
case by Robinson (1983). Meeting the mass conservation of
the residual transport, the ETV has been employed in the
research of the residual current by some researchers (e.g., Li
and O’Donnell 1997, 2005; Li et al. 2008; Winant 2008).
Nevertheless, Zimmerman (1979) pointed out that the ETV
was nothing but a velocity vector that could be used to
calculate the local residual discharge.

The third approach to describing the residual current is the
Lagrangian residual velocity (LRV), which is loosely defined
as the mean velocity calculated by dividing the net
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displacement of a labeled water parcel by one or several tidal
periods (Zimmerman 1979). The Lagrangian mean theory was
first introduced to the study of the residual mass flux in the
time-varying ocean currents by Longuet-Higgins (1969).
When able to cope with the disadvantages of both the ERV
and the ETVmentioned above, the LRV has been widely used
to delineate the residual current in practice (e.g., Cheng and
Casulli 1982; Feng et al. 1986a, b; Ridderinkhof and Loder
1994; Delhez 1996; Loder et al. 1997; Jiang and Sun 2002;
Wei et al. 2004; Ju et al. 2009; Muller et al. 2009; Liu et al.
2012; Charria et al. 2013).

Since the 1980s, a systematic theory of the LRV has been
proposed and developed by Feng and his cooperators (Feng
1986, 1987, 1990; Feng et al. 1986a, b, 2008; Lu 1991; Feng
and Lu 1993; Feng andWu 1995). Recently, it was used in a
narrow bay by Jiang and Feng (2011). On the assumption of
the weak nonlinearity in the tidal system, Jiang and Feng
(2011) deduced the depth-averaged equations for the first-
order LRV, i.e., the mass transport velocity (Longuet-
Higgins 1969), and obtained the results for a specific bottom
profile. In their study, the differences between the various
residual velocities were discussed. To make a more quantita-
tive comparison, a 2D numerical model is employed in this
paper to complete the work. In view of the weak nonlinearity
in which Jiang and Feng’s (2011) results strongly depended,
the feasibility of the analytic solutions in the case of a general
nonlinearity will also be examined. Moreover, the Coriolis
effect and the quadratic bottom friction, both of which were
neglected or modified by the analytic solutions, will be taken
into consideration, and their effects on the LRV will be
discussed in the present work.

This paper consists of five sections. Subsequent to the
section of introduction is section 2, which presents the meth-
odology of the present study, including the definitions of the
various residual velocities (section 2.1), the introduction of the
numerical model setup (section 2.2), and the method to com-
pute the LRV (section 2.3). Section 3 makes a comparison of
the various residual velocities (section 3.1), followed by a
detailed discussion about the feasibility of the mass transport
velocity (MTV) with a general nonlinearity in the system
(section 3.2). The influences of the Coriolis effect and the
bottom friction in different forms on the LRV are studied in
section 4.1 and section 4.2, respectively. The major conclu-
sions are summarized in section 5.

2 Methodology

2.1 Definitions of the various residual velocities

Before computing the different residual velocities mentioned
above, it is necessary to define them first. Discussions in this
paper are only conducted in the depth-averaged case.

Fixed at a point in space, the ERV can be defined as
follows:

u
*
E ¼< u

*
x
*
0; t

� �
>; ð1Þ

where the tidal average operator is defined as
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and x
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0 x0; y0ð Þ , u*¼ u; vð Þ are the initial position of the water

parcel at time t0, the velocity, and its components in x and y
directions, respectively. T is the tidal period and m is the
number of tidal periods used to compute the average.

As a partial modification of the ERV, the ETV is expressed
by taking the surface elevation ζ into consideration, i.e.,
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where h refers to the water depth at x
*

0
when the water is

static.
With a specific physical meaning, the LRV, which focuses

on a labeled water parcel rather than just a fixed point in space,

can be defined as the ratio of the net displacement ξ
*

mT afterm
tidal periods to the corresponding temporal interval, namely
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where x
*¼ t; x

*
0; t0

� �
denotes the position of the labeled

water parcel at time t, with x
*
0; t0

� �
being its initial position.

In Feng et al. (2008), the LRV was further expressed as the
differentiation of the water parcel displacement ξ

*
with re-

spect to another independent time variable τ, which can be
used to describe the intertidal process associated with the
time–mean water circulation, i.e.,

u
*
LR ¼ ∂ ξ

*

∂τ
ð5Þ

where ξ
*¼ ξ

*
τ ; t0ð Þ .

In the case of a weak nonlinearity, theMTV can be taken as
the first-order approximation of the LRV, i.e.,

u
*

LR ¼ u
*

L þ κu*ld þ ο κ2
� �

; ð6Þ

where u
*
L is the MTVand u

*
ld is the Lagrangian drift velocity

(LDV). The MTV can be further written as the sum of the
ERVand the Stokes drift velocity (SDV), namely,

u
*
L ¼ u

*
E þ u

*
S; ð7Þ
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where u
*

S is the SDVobtained by the zeroth-order astronomic
tide (denoted by the subscript “0”) in light of Feng et al.
(1986a)
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For comparison with Eq. 3, the SDV can also be rewritten
by using the continuity equation (Eq. 15) and <ξ0u0>=
<η0v0>=0 to the lowest order, as

u
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h
< u0ζ0 >;< v0ζ0 >ð Þ

þ 1

h

∂ < hu0η0 >
∂y

;
∂ < hv0ξ0 >

∂x

� �
;

ð9Þ

ξ0 ¼
Z t

t0

u0 x
*

0; t
0

� �
dt

0
; ð10Þ

η0 ¼
Z t

t0

v0 x
*
0; t

0
� �

dt
0
: ð11Þ

The Lagrangian drift velocity, which is the second-order
term in the LRV, was defined by Feng et al. (1986a) as
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where the variables with a subscript “1” denote the first-order
terms in the instantaneous motion. Compared with the MTV’s
independence of time, the LDV is a function of the initial tidal
phase which can vary continuously from 0 to 2π in a tidal
cycle.

2.2 Numerical model and configurations

A depth-averaged 2D numerical model in light of Flather and
Heaps (1975) is adopted in the present study for a better focus
and simplification of the physical problem. The governing

equations are modified to keep the same forms as those used
by Jiang and Feng (2011), which can be shown as follows:

∂ζ
∂t

þ ∂ hþ ζð Þu
∂x

þ ∂ hþ ζð Þv
∂y

¼ 0 ð15Þ
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−
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u ð16Þ
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þ v
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þ fu ¼ −g
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−
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hþ ζ
v ð17Þ

u
* ⋅ n*¼ 0; at the fixed boundary ð18Þ

ζOB ¼ ζcsin ω⋅t þ ϕ0ð Þ; ð19Þ

where u, v, ζ, and h follow the same meanings as mentioned
above. g, f, and β are the gravitational acceleration, the
Coriolis parameter, and the bottom fiction coefficient, respec-
tively. n

*
refers to the outer normal direction of the fixed

boundary. ζOB denotes the surface elevation at the open
boundary. ζc, ω, and φ0 are the amplitude, the angular frequen-
cy, and the phase lag, respectively.

Relevant computations are carried out in a semi-enclosed
bay where a Cartesian coordinate system is set up with the x-
axis along the bay (with the open boundary at x=0) and the y-
axis across the bay. In view of some typical estuaries and bays
around the world, such as the Hudson River estuary (70 km
long and ∼1 km wide), the York River estuary (55 km long
and ∼4 km wide), the San Francisco Bay (97 km long and 5∼
20 km wide), and the Xiangshan Bay in China (70 km long
and ∼10 kmwide), the model bay is set to be 100-km long and
10 kmwide. The topography varies only in the y direction and
the lateral depth profile is expressed as:

h yð Þ ¼ h1 þ h2⋅e−
B
α⋅

y
B−

1
2ð Þ½ �2 ; ð20Þ

where B is the breadth of the bay and h1, h2, and α are all
constants. Let B=10 km, h1=5 m, h2=10 m, and α=1,750 m,
respectively. In this way, a nondimensional depth profile
identical to that in Jiang and Feng’s (2011) study can be
obtained when B and the mean depth hc (8.1 m) are taken as
scales (Fig. 1). As a result, the Rossby deformation radius
Rd ¼

ffiffiffiffiffiffiffi
ghc

p
⋅ f −1 (about 90 km since f=10−4s−1 in the current

situation) is much longer than B. Hence, the Coriolis effect can
be neglected. Meanwhile, the velocity component in the y
direction will also be greatly limited.
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The other parameters in this paper are all kept identical to
those adopted by Jiang and Feng (2011) to make the results
comparable. Correspondingly, g and β are 9.8 m s−2 and
1.76×10−3 m s−1, respectively. Here, a tidal wavelength
λ ¼ T ⋅

ffiffiffiffiffiffiffi
ghc

p
about 400 km is taken as the length scale in

the x direction when a semidiurnal tidal period T is adopted.
The model grid is 200 (in the x direction) by 1,000 (in the y

direction) cells with a spatial resolution of 500 m×10 m (the
minimum in the y direction to ensure the numerical stability).
Therefore, the time step is set as 0.2 s. Only the tidal constit-
uent M2 (T=12.4 h, ζc=1 m, φ0=0) is imposed at the open
boundary to drive the model.

2.3 Computation of the Lagrangian residual velocity

A method named “labeled particle tracking” is employed to
calculate the LRV on the basis of the definition in Eq. 4.
Taking the elevation as the center of the grid (the size of which
is still 500 m×10 m), components u and v are located at the
east–west and north–south boundaries of the grid, respectively

(Fig. 2). By taking the lower left corner of the grid as the
origin, another independent coordinate system is embedded in
a united coordinate system for the entire bay for each grid.
Thus, the components u and v can only vary along the x and y
directions separately. For instance, the component u on the
east and the west boundaries of the grid can be separately
expressed as ue and uw. Expand u into series and just keep the
first-order approximation as

u ¼ uw þ x
∂u
∂x

: ð21Þ

In a local coordinate system of the grid, the west side is
considered to be at x=0. The east–west gradient of the com-
ponent u is

∂u
∂x

¼ ue−uw
Δx

¼ const; ð22Þ

Fig. 1 The nondimensional depth profile across the bay (see from the
bay head)

Fig. 2 Illustration for the net displacement of a labeled particle during an
interval Δt in a grid

Fig. 3 The nondimensional form streamline of the LRV (a), the MTV
(b), the ETV (c), and the ERV (d) in the model bay

Fig. 4 The initial positions of the selected particles in the model bay
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where Δx is the length of the grid. Assuming that a labeled
particle moves from position x1 to x2 after an intervalΔt, it is
easy to acquireZ x2

x1

dx ¼
Z t0þΔt

t0

uw þ x
∂u
∂x

� �
dt: ð23Þ

Eq. 23 can be rewritten into

Δξ ¼ x2−x1 ¼ uw
∂u=∂x

þ x1

� �
⋅ e

∂u
∂xΔt−1

� �
; ð24Þ

whereΔξ is the displacement of the particle in the x direction
duringΔt. ue and uw will be updated in time when the particle
strides over the grids. IfΔξ is accumulated during eachΔt for
m tidal cycles, the net displacement ξmT will be obtained.
Thus, the component of the LRV in the x direction can be
acquired as

uLR ¼ ξmT
mT

: ð25Þ

The other component vLR can also be gained likewise.

3 Discussions on the various residual velocities

To address the controversy over the description of the residual
current, the validity of each residual velocity mentioned above
will be discussed in this section.

3.1 Comparisons among the various residual velocities

In this study, the model ran for 30 tidal cycles, and the labeled
particles were released at the beginning of the 29th cycle. The
instantaneous velocities of the particles were recorded in real
time from which the various residual velocities were separate-
ly derived according to their definitions in Eqs. 1, 3, 4, and 7 in
subsection 2.1. In order to ensure the comparability between
these residual velocities and the analytic solutions (Jiang and
Feng 2011), the corresponding results were normalized in this
paper. The scales for the different variables were taken as tc=

T, xc=λ, yc=B, uc ¼
ffiffiffiffiffiffiffiffiffiffi
g=hc

p
ζc , and vc=Bζc/(hcT).

The flow patterns, which are almost identical to those in
Jiang and Feng’s (2011) study when the same extents from the
bay head are compared, are presented in Fig. 3. In the flow
field of the LRV, there are a couple of gyres at the head of the

Table 1 Errors between the displacements of the particles retracked by the different residual velocities for two tidal cycles and those in the actual flow
field

No. LRV MTV ETV ERV

M (%) D (°) M (%) D (°) M (%) D (°) M (%) D (°)

1 3.44 0.92 7.52 2.70 115.68 12.90 138.67 11.78

2 2.29 0.64 24.50 11.94 158.67 23.13 185.86 6.90

3 2.76 0.51 40.96 0.24 95.48 179.10 322.10 179.42

4 1.22 0.38 24.27 11.78 157.99 23.08 185.03 6.90

5 1.54 0.85 7.56 2.74 115.80 12.99 138.67 11.91

6 2.66 0.66 2.44 3.06 105.51 20.97 140.33 11.17

7 1.95 0.09 30.09 12.04 188.11 25.36 215.91 15.39

8 0.79 0.12 19.78 0.09 94.03 10.00 19.44 179.14

9 0.48 0.12 29.67 11.92 187.18 25.27 214.93 15.36

10 1.15 0.21 2.41 3.09 105.08 21.12 139.99 11.23

11 0.18 1.31 0.79 0.58 45.03 26.23 60.20 43.08

12 0.65 0.24 44.83 24.72 157.93 110.57 278.87 107.25

13 1.47 0.30 8.96 0.04 19.13 0.33 59.98 0.68

14 0.27 0.82 43.69 24.59 156.34 109.54 277.47 106.49

15 0.18 1.19 0.79 0.57 44.68 26.02 59.35 42.84

16 1.06 0.29 0.16 0.61 35.32 2.85 18.96 9.51

17 1.01 0.13 5.32 0.74 26.57 2.59 19.70 3.83

18 4.29 1.23 0.66 0.04 12.08 0.10 12.25 0.12

19 1.40 0.22 5.28 0.74 26.79 2.52 19.66 3.73

20 2.36 0.81 0.17 0.61 35.39 2.86 18.83 9.54

Mean 1.56 0.55 14.99 5.64 94.14 31.88 126.31 38.81

Standard deviation 1.12 0.40 15.78 7.89 59.86 46.48 100.40 57.12

M magnitude, D direction
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bay (Fig. 3a). At the open boundary, water flows into the bay
from the shoal and flows out along the deep channel. The flow
pattern of the MTV (Fig. 3b), which is exactly the analytic
results obtained by Jiang and Feng (2011), is well consistent
with the flow pattern of the LRV except for the difference at
the open boundary, where the water flows into the bay from
both the shoal and the deep channel but flows out just along
the slope of the bay. In spite of the size of the gyres at the head

of the bay, the flow pattern of the ETV (Fig. 3c) shares the
same features with that of the LRV. By contrast, the flow field
of the ERV seems to be much simpler in which the exchange
flow exhibits a violation of the law of mass conservation
because the water all flows out of the bay (Fig. 3d).

Now that the qualitative differences have been illustrated, a
quantitative comparison seems to be much more necessary.
Since the long-term mass transport is determined by the

Fig. 5 The starting and terminal points of the no. 5 (a), no. 6 (b), no. 14
(c), and no. 17 (d) particles by integrating for two tidal cycles with the
actual velocity (denoted by the exaggerated black dots), the LRV (denot-
ed by the red dots), the MTV (denoted by the green dots), the ETV
(denoted by the orange dots), and the ERV (denoted by the blue dots),

respectively. The dots, all of which overlap with each other, denote the
starting points otherwise denote the terminal points. The thinner crosses
in the picture represent the trajectories of the particles corresponding to
different velocities mentioned above
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residual current, whether the various residual velocities could
exactly reflect the process should be taken as a convincible
examination of their validities. Therefore, 20 particles (Fig. 4)
were selected to get retracked for two tidal cycles by using the
different residual velocities. The displacements of the particles
by retracking are compared with those in the actual flow field
which includes both the tidal and the residual currents. The
relative errors in the magnitude and the absolute errors in the
direction (limited to 0∼180°) have been listed in Table 1. With
a small mean error of 1.56% in the magnitude and 0.55° in the
direction, the results obtained by the LRV perfectly coincide
with the reality. However, both the ETV and the ERV are far

from the real situation since the mean errors are both more
than 50 % in the magnitude and 40° in the direction. To give a
better illustration, the results of no. 5, 6, 14, and 17 particles
are picked out and demonstrated in Fig. 5. The terminal points
of the particles computed by the LRV and the actual velocity
almost overlap each other. Nevertheless, those based on the
ETV and the ERV tend to deviate from the actual results
greatly in space. Therefore, it is confirmed that the long-term
transport of a labeled particle in the actual flow field can be
directly calculated by the residual velocity. It is also verified
that the LRV rather than the ERV or the ETV is a more
appropriate description of the residual current.

Fig. 6 The nondimensional form streamline of theMTV (left panelwith the suffix “1”) and the LRV (right panelwith the suffix “2”) when κ is equal to
0.123 (a), 0.185 (b), 0.247 (c), 0.309 (d), 0.370 (e), and 0.432 (f), respectively
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As to the results based on the MTV, the mean errors in the
magnitude and the direction are found to be 15.78 % and 7.89°,
respectively. Thereinto, the particles with a prominent deviation
(M>10 %, D>10°) mainly exist in the center and on the border
of the gyres, where the currents vary so dramatically in space that
it is difficult to conduct a precise computationwith such a limited
resolution.Meanwhile, it is easy to introduce a considerable error
to the MTV due to the complex numerical discretization of the
gradient terms in the SDV. Moreover, an additional error comes
from the error accumulation during the particle retracking. In
spite of these errors, the corresponding displacement vectors in
Fig. 5 show a good consistency with the actual situation.
Therefore, despite the inevitable discrepancy induced by the
numerical computation, the closeness between the results of
the MTV and the reality is satisfactory. In other words, the
MTV can be a reasonable approximation of the LRVin this case.

3.2 Feasibility of the MTV with a general nonlinearity
in the system

The achievement of the analytic solutions based on theMTV by
Jiang and Feng (2011) is strongly dependent on a weak nonlin-
earity in the system. It is necessary to figure out whether the
MTV can keep an effective approximation of the LRV when it
comes to a generally nonlinear problem. Therefore, a nondimen-
sional parameter κ=ζc/hc, which is considered to be a conser-
vative estimation of the nonlinearity in the system, is modified
by enhancing ζc from 1 to 3.5 m (the maximum restricted by the
numerical stability) with an interval of 0.5 m. Moreover, it was
found by Jiang and Feng (2011) that more differences among
the various residual velocities can be revealed if the length of the
bay is extended to a tidal wavelength. In order to ensure a better
comparability with the analytic results, the geometry of the
model bay was modified to make it identical to that in Jiang
and Feng (2011), namely with a length of 400 km and a breadth

of 2 km. Then, a comprehensive comparison between the MTV
and the LRV will be made in this subsection.

Figure 6 presents the flow patterns of the MTV and the
LRV with an increasing κ. There is only a slight discrepancy
between the two patterns when κ<0.185. However, the two
patterns tend to be more and more different when κ becomes
considerably large. With significant deviations mainly con-
centrated in the region x<0.6, which implies a notable differ-
ence in the exchange flow at the mouth of the bay. For the
LRV, the couple of semi-gyres in the deep channel gets re-
strained and tend to vanish with the increase of κ.
Consequently, the inflow gradually takes over the region and
confines the outflow only to the deep channel. As to the MTV,
the water still flows into the bay both from the shoal and the
deep channel and flows out from the slope region. The most
noteworthy change in the pattern of the MTV is that a new
couple of eddies appear over the slope region when κ>0.370.

Since the qualitative difference has been clearly exhibited,
a quantification should be sequentially carried out. The spa-
tially averaged errors between the MTV and the LRV in the
entire bay are shown in Fig. 7. It is found that the discrepan-
cies do increase both for the magnitude and for the direction
when κ gets enhanced. Moreover, the curves tend to rise
rapidly when κ>0.185. Thus, a rough estimation of κ for the
validity of the MTV can be acquired here. In order to further
highlight the relationship between the error and the nonline-
arity in space, the regions with a prominent discrepancy (more
than 50 % in the magnitude and more than 30° in the direc-
tion) are shaded in Fig. 8. Meanwhile, the distributions of the
local κ, which is defined as the ratio of the local tidal ampli-
tude to the depth, are displayed in Fig. 9. Besides those located
in the center and on the border of the gyres mentioned above,
significant errors are found in the regions where the local κ is
considerably big and varies rapidly in space by comparing
Figs. 8 and 9. In view of the strong current and the large
topographic gradient in these regions, the nonlinear advection
will become very significant both in its magnitude and in its
spatial variation. The considerable κ in such regions results in
the invalidity of the perturbation method used by Feng et al.
(1986a) to compute the MTV. Actually, this is exactly the
main source of the growing error mentioned above. As a
result, the MTV in such regions will fail to approximate the
LRV without any doubt. Considering the effect of the local
scale on the nonlinearity, another nondimensional parameter ε
proposed by Ju et al. (2009), i.e.,

ε ¼ κ⋅
λ
L

� �
; ð26Þ

where L is the horizontal scale of the current field can be a
better indicator of the nonlinearity for a realistic ocean with a
more complex topography and geometry. However, for the
context of the theoretical study in this paper with a simple

Fig. 7 Spatially averaged relative error in the magnitude (a) and absolute
error in the direction (b) with an increasing κ
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topography, κ is still an effective indicator to distinguish the
various residual velocities conceptually.

It is pointed out by Feng et al. (1986a) that the MTV is
independent of time, while the LDV included in the LRV
is a function of the initial tidal phase when the particles
are released. In light of Feng et al. (1986a), the LDV was
considered to be one order of magnitude smaller than the
MTV when the nonlinearity of the system was weak. In
fact, the LDV in the present study is found to be only
0.001 % of the MTV when κ=0.123. It means that the
LRV in this case is insensitive to the initial tidal phase
since the LDV is negligibly small. However, with the
growth of κ, it is revealed in Fig. 10 that the dots (the

LRV) with different initial tidal phases are scattered on
the hodograph plane in contrast to the overlapped trian-
gles (the MTV). Although the difference is slight, it does
indicate that an additional error between the MTV and the
LRV will come from the various initial tidal phases when
the Lagrangian drift velocity cannot be ignored in the case
of a general nonlinearity.

4 Discussions on the factors affecting the LRV

Now that the LRV has been proven to be an appropriate
description of the residual current, it is necessary to focus on

Fig. 8 Regions with a prominent relative error more than 50 % in the
magnitude (shaded in red with the suffix “1”) and absolute error more than
30° in the direction (shaded in blue with the suffix “2”) between the MTV

and the LRV when κ is separately equal to 0.123 (a), 0.185 (b), 0.247 (c),
0.309 (d), 0.370 (e), and 0.432 (f). The nondimensional form streamlines in
the pictures describe the flow patterns of the LRV with the varying κ
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the factors affecting its generation and variation. Because the
Coriolis effect was neglected by Jiang and Feng (2011), its
effect on the LRV will be discussed in the present work. In
addition, the bottom friction linearized by Jiang and Feng
(2011) will also return to the quadratic form to examine its
effect on the LRV.

4.1 Coriolis effect on the LRV

In the previous section, the model bay was so narrow that the
Coriolis effect, which is significant in geophysical fluid dy-
namics, could be neglected. Hence, it is necessary to find out
what will happen to the LRV if the Coriolis effect is taken into
consideration. In order to do this, four contrast experiments
were conducted in the present study. The breadth of the bay is
extended to 20 km, and the parameter α in Eq. 16 is corre-
spondingly modified to keep the mean depth invariant. In this
way, a laterally uniform elevation can still be imposed at the
open boundary due to a relatively small aspect ratio. All the
other parameters in the model remain unchanged for compa-
rability with the previous study. Then, two main variables, the
Coriolis force and the topography, are separately manipulated
in the contrast experiments to define their roles in the LRV.

The flow patterns of the LRV in different cases are
displayed in Fig. 11. There is a slight difference in the sym-
metry between a and b of Fig. 11, indicating that the Coriolis
effect is weak but does affect the LRV under the current
circumstances. For further illustration, the topography is first-
ly turned into a flat bottom with a constant depth hc=8.1 m,
and only the Coriolis effect is taken into consideration. It can
be seen that an anticlockwise residual circulation comes into
being (Fig. 11c). Then, the Coriolis effect is removed, and the

residual current is found to disappear with it (not shown here).
For the sake of quantification, the total tidally averaged kinetic
energy of the whole bay and the component related to the LRV
are calculated at the same time (Table 2). The ratio of the latter
to the former is found to just decrease a little when the Coriolis
effect is ignored. By contrast, the ratio tends to reduce by one
order of magnitude when the flat bottom is adopted. However,
it is almost zero if the Coriolis effect and the varying topog-
raphy are both excluded. On the basis of the qualitative and
quantitative results, the Coriolis effect is confirmed to be
important to the generation of the Lagrangian residual circu-
lation, although it is obscured by the effect of the topography
in the present case.

In view of the weak nonlinearity here, the MTV is consid-
ered to be a good approximation of the LRV. Thus, a depth-
averaged residual vorticity equation based on the MTV is
obtained for a dynamic diagnosis (see Appendix 1 for the
derivation):

βωL ¼ f u
*

L⋅∇hþ β

h
∇h� u

*
L⋅ k

*
−
1

h
∇h� Π

*
⋅ k
* þ∇� Π

*
⋅ k
*

ð27Þ

ωL ¼ ∇� u
*
L⋅ k

* ð28Þ

Πx ¼ −gh
∂
∂x

<
1

2
ξ
*

0⋅∇ζ0 > þ β
h
< u0ζ0 >

þ β
1

h

∂ < hu0η0 >
∂y

þ < ξ0∇⋅u
*

0 > þ < η0⋅∇� u
*
0 >

� �
ð29Þ

Fig. 9 Distributions of the local κ corresponding to the cases in Fig. 8
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Πy ¼ − gh
∂
∂y

<
1

2
ξ
*

0⋅ ∇ ζ0 > þ β
h
< v0ζ0 >

þβ
1

h

∂ < hv0ξ0 >
∂x

þ < η0∇⋅u
*
0 > þ < ξ0⋅∇� u

*
0 >

� �
ð30Þ

where ωL is the residual vorticity, k
*

is the unit vector along
the z-axis, and Π

*
, which was termed as the “tidal stress” by

Feng (1991), is the integral of the tidal body force along the
water column; the other variables all follow the same mean-
ings as mentioned above. The term on the left-hand side of
Eq. 27 represents the dissipation of the residual vorticity due
to the bottom friction, while the four terms on the right-hand
side stand for four types of mechanisms with which the
residual vorticity is induced. The first mechanism is due to
the cross-isobath flow induced by the Coriolis force. The

Fig. 10 Scatter diagram of the nondimensional MTV (denoted by
triangles) and LRV (denoted by dots) on a hodograph plane for the no.
5 (a), no. 6 (b), no. 14 (c), and no. 17 (d) particles in Fig. 4 when κ=
0.247. Symbols in red denote the initial tidal phase of 0 when the particles
are released. Similarly, those in black, orange, and green denote the initial

tidal phases of π/2, π, and 3π/2, respectively (Since the symbols are very
close to each other, different scales of the coordinates are used for each
subgraph to clearly distinguish the symbols in space. For the same
purpose, the origin (u,v)=(0,0) is not shown in the figure as well.)

Ocean Dynamics (2014) 64:471–486 481



second mechanism is the result of the slope-induced bottom
stress torque (Lee et al. 2001). The third mechanism is the
interaction between the varying topography and the tidal
stress. The fourth one is the curl of the tidal stress. Different
from the first two mechanisms well discussed by many re-
searchers (e.g., Zimmerman 1978; Robinson 1981), the last
twomechanisms, which exactly epitomize the nonlinear effect
of the tidal system to connect the astronomic tide with the
residual current, have rarely been studied. In order to figure
out the role of each term in Eq. 27, the time series of the
instantaneous velocity for the five particles released at section
x=0.4 are exhibited in Fig. 12 for an illustration.

When the Coriolis effect is taken into consideration and the
depth is set as a constant, the first three terms on the right-hand
side of Eq. 27 are all zero. Although the Coriolis parameter f is
not explicitly expressed in the residual vorticity equation, it
should be noted that a shear of the u component and a weak v
component to ensure a nonzero fourth term on the right-hand
side of Eq. 27 have been induced by the combination of the
rotation and the lateral boundaries (Fig. 12a). As a result, the

Coriolis effect will still generate the residual vorticity through
the curl of the tidal stress.

When the Coriolis effect is neglected and only the varying
topography is taken into consideration, the first term on the
right-hand side of Eq. 27 can be eliminated. Analogous to the
Coriolis effect, the topography with a lateral variation can also
cause a shear of the u component and a weak v component
(Fig. 12b). Therefore, the other three terms on the right-hand
side of Eq. 27 are all nonzero. The residual vorticity finally
results from the slope-induced bottom stress torque, the inter-
action between the varying topography, and the tidal stress, as
well as the curl of the tidal stress.

When the Coriolis effect and the varying topography are
both included, the residual vorticity will arise from the com-
bination of the first two cases (Fig. 12c). Moreover, the first
term on the right-hand side of Eq. 27 starts to work since the
cross-isobath flow is induced by the Coriolis effect.
Consequently, a more complicated pattern of the residual
circulation comes into being in Fig. 11a.

By contrast, when the Coriolis effect and the varying
topography are both excluded, the first three terms on the
right-hand side of Eq. 27 are firstly eliminated. The tidal
current retreats to a simple reversing style without the lateral
variation (Fig. 12d). As a result, the fourth term also vanishes
since the constituents including v0, η0, and ∂/∂y are all equal to
zero. In this case, there is no residual vorticity.

It was verified by Feng et al. (1986a) that the velocity shear
was not a necessary condition for the existence of the LRV in
an infinite domain. However, for a semi-enclosed bay, the
velocity shear is important for the formation of a Lagrangian
residual circulation to meet the law of mass conservation on a
long-time scale. According to Eq. 27, any mechanism which
can introduce the velocity shear will make a great contribution
to inducing the residual vorticity. Therefore, the Coriolis effect
works on the residual vorticity in a similar way as the varying
topography since both of them can cause the tidally averaged
nonzero velocity shear with the help of the nonlinear effect in
the tidal system. For the Coriolis effect, the process operates
mainly through the curl of the tidal stress. It is interesting that
the Coriolis effect, which does no work at all, will be of great
importance to the energy transfer from the astronomical tide to
the residual current.

4.2 Sensitivity of the LRV to the bottom friction in different
forms

In the last subsection, the Coriolis effect was confirmed to
play an important role in inducing the residual vorticity. In
fact, the effect of the bottom friction on the LRV seems to be
much more significant. If the fluid is inviscid, Eq. 27 will be
reduced to an equation for some geostrophic motions (see
Appendix 2 for the derivation), which has been discussed by
Moore (1970) and Feng (1987). Since the model bay is

Fig. 11 The nondimensional form streamline of the LRV with the
Coriolis effect and the varying topography (a), with the varying topogra-
phy but without the Coriolis effect (b), and with the Coriolis effect and a
constant depth (c)

Table 2 The total tidally averaged kinetic energy in the entire bay and its
component related to the LRV in different cases

C=1, T=1 C=0, T=1 C=1, T=0 C=0, T=0

Total <KE> (J) 1.61×109 1.64×109 1.24×109 1.26×109

KE of the LRV (J) 4.18×106 4.16×106 4.59×105 41.28

Ratio (%) 0.26 0.25 0.04 ≈0

The value of 1 or 0 means whether the condition is available or not

C Coriolis effect, T topography
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laterally bounded and contains no closed geostrophic con-
tours, the residual current will vanish everywhere even if the
Coriolis effect is taken into consideration. Therefore, the
bottom friction is essential to the generation of the LRV and
should be further studied. InMoore (1970) or Feng (1987), the
LRV cannot be determined if no bottom friction is assumed.
Huthnance (1981) made this kind of geostrophic motion sol-
uble by introducing a weak bottom friction. He found that the
type of the friction is important in the control of the LRV, and
the magnitude is not of importance. Yet the situation is differ-
ent in this paper with the bottom friction being dominant in the
momentum balance which is similar to the case of Ianniello
(1977) and Feng (1987). So, the sensitivity of the LRV to the
bottom friction in different forms will be discussed here.

The term of the bottom friction, which was linearized in the
previous section to make the numerical results comparable
with the analytic solutions in Jiang and Feng (2011), will
return to the quadratic form in light of Proudman (1953):

−
Cd u

*�� ��⋅ u*
hþ ζ

; ð31Þ

where Cd ¼ 3πβ
8U denotes the bottom drag coefficient and U is

the mean amplitude of the tidal current in the entire bay. In
order to ensure the same energy dissipation during a tidal

Fig. 12 The time series of the instantaneous velocity (u in the left panel
and v in the right panel) of the particles released at the same positions as
those (no. 6∼10) in Fig. 4 (separately denoted by the lines in mauve, red,
green, blue, and black) for the case with the Coriolis effect and a constant

depth (a), with the varying topography but without the Coriolis effect (b),
with the Coriolis effect and the varying topography (c), and with a
constant depth but without the Coriolis effect (d)

Fig. 13 The nondimensional form streamline of the LRV with the
quadratic bottom friction

Fig. 14 The distribution of the local κwhen the quadratic bottom friction
is adopted
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cycle,Cd is set to be 2.59×10
−3. This subsection will focus on

the effect of the quadratic bottom friction on the LRV.
The nondimensional streamline of the LRV with the qua-

dratic bottom friction is shown in Fig. 13. A significant
difference can be seen in Fig. 13 in comparison with Fig. 3a.
There is a change in the position of the gyre centers at the head
of the bay. The gyres located at x=0.6 get extended and are
completely independent. Moreover, a new couple of gyres
appear at x=0.4 and push the semi-gyres towards the mouth
of the bay. The exchange flow pattern remains unchanged
except for a restriction of the inflow in the deep channel.

To figure out the difference, the distribution of the local κ is
checked in Fig. 14. In contrast with those in Fig. 9a, all of the
local κ in the region x>0.3 tend to increase due to an enhance-
ment of the elevation amplitude. This indicates that the non-
linearity of the system has been significantly changed. This can

be explained by the fact that Cd u
*�� �� in the quadratic bottom

friction is continuously modified by the local instantaneous
velocity in comparison with the constant β. Therefore, the
instantaneous energy dissipation will be very different despite
the same accumulation during a tidal cycle. As a result, a
greater complexity is brought in the LRV through the nonlinear
effect of the tidal currents, which have become much stronger
with a more complicated spatiotemporal variation. Therefore,
researchers should be careful to choose the scheme of the
bottom friction for the numerical computation of the LRV.

5 Conclusions

In this paper, the tidally induced Lagrangian residual current
in a model bay was studied with a depth-averaged numerical
model. The correctness of the LRV in physics and the feasi-
bility of its first-order approximation (i.e., the MTV) are
examined in succession. In addition, two factors affecting
the LRVare discussed in detail.

The LRV is proven to be a more suitable description of the
residual current than any other residual velocity. Besides a
qualitative difference in the flow pattern, there is a quantitative
discrepancy among the LRV, the ERV, and the ETV. The
results of the particle retracking indicates that only the LRV
can perfectly reflect the process of the long-term mass trans-
port, whereas both the ERV and the ETV are far from the
reality due to their defects in physics.

The validity of the MTV to approximate the LRV is found
to strongly depend on the nonlinear effect of the system,
which can be indicated by a parameter κ. In spite of the
numerical error, the MTV is very close to the LRV when the
nonlinearity is weak. However, with the growth of κ, the
perturbation method to obtain the MTV is broken, which
results in an increasing error between the MTV and the LRV.
Moreover, in the case of a general nonlinearity, the effect of
the initial tidal phase on the LRV cannot be ignored anymore.

In consequence, a time-dependent error is also appended
when κ remains the same.

The Coriolis effect is verified to make a contribution to the
generation of the Lagrangian residual vorticity. In view of the
weak nonlinear effect in the system, a residual vorticity equa-
tion based on the MTV is obtained for a dynamic diagnosis. It
is found that the Coriolis effect can induce the residual vor-
ticity by causing a velocity shear in the nonlinear tidal system,
which is finally embodied in the curl of the tidal stress.

The LRV seems to be sensitive to the bottom friction in
different forms. With the same energy dissipation in a tidal
cycle, the LRV tends to be more complex when the quadratic
bottom friction rather than the linear one is adopted. It may be

caused by the varying Cd u
*�� �� in the quadratic bottom friction

in comparison with the constant β in the linear one.
Because of the 3D nature of the LRV, the 2D model

employed in the present work is inadequate. Hence, research
will be extended to a 3D case in the future.
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Appendixes

Appendix 1: The derivation of the residual vorticity equation

By releasing the limitation of a small aspect ratio and retriev-

ing the Coriolis force and the vL to the u
*
L equations obtained

by Jiang and Feng (2011), the equations can be rewritten into
the dimensional form as follows:

∂huL
∂x

þ ∂hvL
∂y

¼ 0 ð32Þ

− f vL ¼ −g
∂ζE
∂x

−β
uL
h

þ πx ð33Þ

f uL ¼ −g
∂ζE
∂y

−β
vL
h
þ πy ð34Þ

ζE ¼< ζ1 > ð35Þ

πx ¼ −g
∂
∂x

<
1

2
ξ
*

0⋅∇ζ0 > þ β

h2
< u0ζ0 >

þ β
h

1

h

∂ < hu0η0 >
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þ < ξ0∇⋅u
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*
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ð36Þ
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πy ¼ −g
∂
∂y

<
1

2
ξ
*

0⋅∇ζ0 > þ β

h2
< v0ζ0 >

þ β
h

1

h

∂ < hv0ξ0 >
∂x
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*
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*
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� �
ð37Þ

where ζE is the Eulerian residual elevation by averaging the
first-order elevation ζ1 over a tidal cycle; π* is the depth-
averaged tidal body force; all the other variables follow the
same meanings as mentioned above.

Perform ∂(h×Eq.34)/∂x−∂(h×Eq.33)/∂y to get

f
∂huL
∂x

þ ∂hvL
∂y

� �
¼ ∂h

∂x
−g

∂ζE
∂y

� �
−
∂h
∂y

−g
∂ζE
∂x

� �
−βωL þ ∇� Π

*
;

ð38Þ

where Π
*¼ h π* .

The residual vorticity equation (Eq. 27) can be obtained by
substituting Eqs. 32–34 into Eq. 38.

Appendix 2: The derivation of the residual velocity
for the inviscid fluid in a semi-enclosed bay

Equation 27 can also be written as

βωL ¼ f u
*
L⋅∇hþ β

h
∇h� u

*
L⋅ k

*
− h∇� π*
� �

⋅ k
*
: ð39Þ

If the fluid is inviscid (i.e., β=0), Eq. 39 will be reduced to
an equation for the geostrophic motion as

f u
*
L⋅∇h ¼ 0: ð40Þ

Considering h=h(y) in the present work, Eq. 40 can be
simplified as

vL
∂h
∂y

¼ 0: ð41Þ

So, it is easy to obtain

vL ¼ 0: ð42Þ

Substitute Eq. 40 and Eq. 42 into Eq. 32 and yield

∂uL
∂x

¼ 0: ð43Þ

Here, the model bay is laterally bounded, so

uL
���x¼l ¼ 0; ð44Þ

where x=l denotes the head of the model bay.

According to Eqs. 43 and 44, uL will vanish everywhere,
namely

uL ¼ 0: ð45Þ
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