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Abstract The main goal of this study is to develop an
efficient approach for the assimilation of the hindcasted
wave parameters in the Persian Gulf. Hence, the third gen-
eration SWAN model was employed for wave modeling
forced by the 6-h ECMWF wind data with a resolution of
0.5°. In situ wave measurements at two stations were uti-
lized to evaluate the assimilation approaches. It was found
that since the model errors are not the same for wave height
and period, adaptation of model parameter does not result in
simultaneous and comprehensive improvement of them.
Therefore, an approach based on the error prediction and
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updating of output variables was employed to modify wave
height and period. In this approach, artificial neural net-
works (ANNSs) were used to estimate the deviations between
the simulated and measured wave parameters. The results
showed that updating of output variables leads to significant
improvement in a wide range of the predicted wave charac-
teristics. It was revealed that the best input parameters for
error prediction networks are mean wind speed, mean wind
direction, wind duration, and the wave parameters. In addi-
tion, combination of the ANN estimated error with numer-
ically modeled wave parameters leads to further
improvement in the predicted wave parameters in contrast
to direct estimation of the parameters by ANN.

Keywords Persian Gulf- Wave hindcasting - Neural
network - SWAN - Error prediction

1 Introduction

Wind waves are the most important environmental factor in
the design of coastal and offshore structures, sediment trans-
port, coastal erosion, etc. Therefore, an accurate assessment
of the wave climate is of great importance in the marine
activities. Estimation of the wave climate can be performed
using three different sources of long-term wave data, namely
instrumentally measured, visually observed, or numerically
modeled data. Due to the lack of long-term measurements
and the recent development of state of the art wind-wave
models, nowadays numerically simulated wave data are
widely used for determining the wave climate. However,
the results of numerical wind-wave model generally contain
some inherent errors due to a number of factors mainly
inaccuracies in the forcing terms (Komen et al. 1994). The
wind forcing in the wind—wave models is generally
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produced by the numerical weather prediction models such
as those operated at the European Center of Medium-range
Weather Forecast (ECMWF). These numerically simulated
wind data contain some inevitable errors that lead to inac-
curate prediction of wind waves (Cavaleri and Bertotti 2004;
Signell et al. 2005; Ardhuin et al. 2007). Therefore, data
assimilation is used to reduce the model errors (Kantha and
Clayson 2000; Babovic et al. 2005; Sannasiraj et al. 2000).

Different data assimilation procedures can be categorized
to four main groups. Updating of input parameters, updating
of state variables such as wave spectrum, updating of model
parameters such as whitecapping dissipation rate, and updat-
ing of output variables (error prediction) are the main data
assimilation procedures (Refsgaard 1997; Babovic et al.
2005). The last one is an appropriate method to improve
the accuracy of the numerical models (Babovic et al. 2001).
Since the numerical model errors are not the same for
different output variables (Moeini and Etemad-Shahidi
2007), the last assimilation procedure can be used to modify
different wave characteristics separately.

Emmanouil et al. (2010) employed the Kalman filter in
combination with the optimum interpolation data assimila-
tion scheme to improve forecasted wave heights in an open
ocean area (southwest US coast). In this study, the Kalman
filters were implemented in the WAM model after the time
integration of the two-dimensional frequency-direction
wave spectra and before the data assimilation. The Kalman
filter parameters were calculated based on the model pre-
dictions and the observations. Then, the correction effect of
the Kalman filters was spread to a wider region by the use of
a data assimilation system that follows the Kalman filters
within the forecasting period. Their approach led to the
extension of the assimilation impact to the whole forecasting
period. A significant reduction of the magnitude and vari-
ability of the discrepancies between final forecasts and
observations was achieved in this way (Emmanouil et al.
2010). Similar results are reported in Galanis et al. (2009) in
that they employed some statistical tools to extend the
impact of data assimilation on ocean wave prediction. In
another study, Zhang et al. (2006) incorporated artificial
neural networks and data assimilation techniques into the
WAM model for wave forecasting. They assimilated altim-
eter significant wave height (H;) data into the wave model
by the statistical interpolation method to improve the accu-
racy of wave height prediction. Then, artificial neural net-
works were employed to mimic the effect of data
assimilation and applied to situations where altimeter wave
data were not available. They showed that by applying this
approach for wind—wave simulation in the South China Sea,
an apparent improvement in the accuracy of the forecasting
can be obtained. Sannasiraj et al. (2005) also employed local
model for wave data assimilation in Taiwan. The local
model in their study was built over the time series embedding
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theorem. They used the WAM model for wave forecasting and
compared their results with buoy measurements. In their
study, the numerical model outputs were updated using error
prediction approach by the local model. According to their
results, using a combination of numerical models and error
prediction method reduce the errors of wave forecasting.
Similar findings are reported by Babovic et al. (2005) and
Sannasiraj et al. (2006).

Some other researchers have studied wave data assimila-
tion, especially altimetry data, into the numerical models.
Skandrani et al. (2004) evaluated the impact of using a
multi-satellite of the altimeter data to improve wave model
analyses and forecasts on a global scale. They employed the
WAM model to generate significant wave height time series.
They showed that the impact of data assimilation, when two
or three sources of data are used instead of one, in terms of
significant wave height, is larger in wave model analyses
but smaller in wave model forecasts. They also showed that
there is no improvement in terms of wave periods, both in
the analysis and forecast periods. Greenslade (2001) assim-
ilated satellite altimeter significant wave height data into the
AUSWAM model (a version of WAM), using a statistical
interpolation scheme. He validated the results of his study
against a number of waverider buoys situated around the
Australian coast. He found that assimilation of the ERS-2
SWH data decreased the systematic bias in analyzed SWH
by approximately 10%, and the Scatter Index was reduced
by 6%. The improvement in model skill was also retained
throughout the forecast period. He showed that the assimi-
lation has the greatest impact at locations on the west coast
of Australia, where the sea state is dominated by swell.
Greenslade and Young (2005) developed models for the
structure of the background errors in the wave data assim-
ilation systems based on the results of previous studies.
They tested their model in a global wave data assimilation
system, and the resulting wave forecasts were validated
against observations from buoys. They showed that fore-
casts of significant wave height substantially improved
while forecasts of peak period were not similarly improved.
Hasselmann et al. (1997) presented an optimal interpolation
scheme for assimilating two—dimensional wave spectra.
They showed that the correction of wind data needs to be
combined with other data in an atmospheric data assimila-
tion scheme. They emphasized the need for the development
of combined wind and wave data assimilation schemes for
the optimal use of satellite wind and wave data. Bender and
Glowacki (1996) evaluated two strategies for the assimila-
tion of wave heights into a spectral wave model. They
assimilated satellite altimetry data from GEOSAT into the
modeled wave data and showed a significant improvement
in the wave prediction. Breivik and Reistad (1994) assimi-
lated the observed significant wave height from ERS-1 in an
operational numerical wave model. They compared their
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results with an independent buoy measurement in the North
Sea. They showed that the assimilation correction has an
impact on 12—24-h prognosis of the wave field. Dunlap et al.
(1998), Young and Glowacki (1996), and Lionello et al.
(1992) have also studied altimeter wave data assimilation
into the wave models.

A few studies have been conducted on wave modeling in
the Persian Gulf. Moeini et al. (2010) evaluated the quality
of two sources of wind data, i.e., the ECMWF modeled
winds and the measured data, for wave modeling in the
Persian Gulf. They employed the third generation SWAN
model for wave simulation and compared the results with
one station recorded wave data. They found that the SWAN
model overestimates the low wave heights and underesti-
mates the higher ones because of the underestimation of
high wind speeds by ECMWEF. They also noted that the
adaptation of the model parameters cannot lead to a com-
prehensive improvement of the model results. This implies
the necessity of using more comprehensive methodologies,
such as, error prediction, for a more accurate prediction of
all ranges of wave data. Taebi et al. (2008) simulated wind
waves in the Persian Gulf and the Gulf of Oman by the
Mike21 SW model forced by ECMWF wind data. They
found that the hindcasted wave heights have the Scatter
Index of nearly 40% after calibration of the model. Al-
Salem et al. (2005) used the third-generation WAM model
to simulate the wind waves in the Persian Gulf with empha-
sis on Kuwait territorial waters. Wind data with a spatial
resolution of 0.5° obtained from the ECMWF were used to
force the model. The model was validated using measured
waves at several locations in Kuwait waters. It was shown
that the WAM model successfully predicts the wave con-
ditions except for some storms where the value of Hy is
underestimated. This underestimation was due to the under-
estimation of the storms by ECMWF. Similar results can be
found in Rakha et al. (2007).

The main goal of this study is to improve the simulation
of wind waves in the Persian Gulf using an error prediction
approach. Hence, the SWAN model (Booij et al. 1999) was
employed for wave hindcasting and reproducing time series
of wave data. The model outputs were compared with field
measurements at two stations to verify the results. After the
wave simulation by the SWAN model, an artificial neural
network was used to improve the results of wave modeling
based on the modelled and measured data. The use of error
prediction approach and updating of output variables has
several advantages compared to other assimilation methods.
At first, it can be used to improve different output variables
such as wave height and period separately. Secondly, a
wider range of output data can be improved using this
method (Moeini et al. 2010). Finally, this assimilation ap-
proach will cover almost all of the error sources including
forcing terms and wave model evolution.

It is worth noticing that using neural networks without
combination with numerical model for wave prediction has
some limitations. Since this method is generally appropriate
for interpolation rather than extrapolation, the available data
for learning process should cover all range of the prob-
able events in the study area. Therefore, it may not be
suitable for the prediction of extreme events. In addi-
tion, when this method is used for wave forecasting, the
potential forecast horizon is typically quite short (Agrawal and
Deo 2002).

This paper is organized as follows. “Section 2” introdu-
ces the study area and the field data. “Section 3” gives a
brief description of the SWAN model and error prediction
technique, and the results and discussions are described in
“Section 4.” Finally, “Section 5 covers the summary and
conclusions.

2 Study area and data

The Persian Gulf, located in the southwest of the Asian
continent is a shallow, semi-enclosed basin in a typical arid
zone and is an arm of the Indian Ocean. It is located between
the longitude of 48-57° E and the latitude of 24-30° N
(Fig. 1). This Gulf is connected to the deep Gulf of Oman
through the narrow Strait of Hormuz. The Persian Gulf
covers an area of approximately 226,000 km? with a length
of 990 km. Its width varies from 56 to 338 km, separating
Iran from the Arabian Peninsula with the shortest distance of
about 56 km in the Strait of Hormuz. This basin has an
average depth of about 35 m, and the deepest water depth is
approximately 107 m (Purser and Seibold 1973; Emery
1956).

In the present study, two sets of recorded wave data
were used for verification of the results. The first
recorded wave data set was collected by a surface buoy
located in 50.7° E and 28.9° N near Bushehr port
(hereinafter called Bushehr station). The water depth in
the location of the buoy was nearly 27 m (Fig. 1). The
wave data were recorded from the first of February,
1995 until the 31st of December 1996. The second
measured station was located at 48.167° E and 29.167° N in
the Kuwait territorial waters (Fig. 1). The wave data were
recorded every 3 h from the first of January, until the
30st of August 1994. This measurement station is called
Kuwait station hereinafter. Each set of wave data was
divided randomly to three parts, i.e., training, testing, and
validation data.

The wind data used were the 6-h 10-m operational
ECMWF data with a spatial resolution of 0.5°. It should
be noted that ECMWF operation was selected because of its
higher spatial resolution than that of ECMWF re-analysis
(1.125° spatial resolution).
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Fig. 1 The Persian Gulf, — — —
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3 Numerical model and error prediction technique

In this study, the third generation spectral SWAN model
(Booij et al. 1999) was employed to simulate wind
waves over the Persian Gulf. The SWAN model is a
spectral wind wave model, developed to obtain reliable
estimates of wave parameters in coastal waters. In this
model, action density spectrum is considered rather than
energy density spectrum because it is conserved in the
presence of currents unlike energy density. The action
density is the energy density divided by the relative
frequency:

N(o,0) = E(0,0)/0 (1)

The relative frequency o and the wave direction 6 are
the independent variables. In this model, the wave spec-
trum evolution in the space (x,y) and time () is de-
scribed by the spectral action balance equation (Booij et
al. 1999). In the present study, SWAN cycle III version
40.72 (The SWAN Team 2007) was used for wave
simulation. The SWAN model was executed in a non-
stationary mode and spherical coordinates. Since the
Komen’s formulation for wind input parameterization
(Komen et al. 1984) leads to better results (Moeini
and Etemad-Shahidi 2007), this formulation was used
for exponential growths of wind input. Additionally,
quadruplet wave interaction was activated for nonlinear
interaction. Dissipation due to bottom friction, whitecap-
ping, and depth-induced wave breaking were considered in
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the simulation. The geographical space was discretized
into a 200x 160 cell grid over the Persian Gulf (Fig. 1)
with a 0.05%0.05 degree resolution in x and y direc-
tions. The spectral space was divided into 20 logarith-
mically spaced frequencies, from 0.06 to 1 Hz and 24
equal directions in the rose (A#=360/24=15). This
depicts that the lowest period of the simulated waves
is 1 s, and the highest was nearly 17 s covering typical
wind waves in the Persian Gulf. The computational time step
was set as 10 min as well.

In the recent decades, artificial neural networks
(ANNSs) have been widely used in the ocean and coastal
engineering applications especially wind and wave mod-
eling (Agrawal and Deo 2002; Makarynskyy et al.
2005). The deviations between the simulations and the
measured values, i.e., the model errors, are usually
serially correlated. Therefore, it is possible to predict
the values of these errors by means of time series
models such as autoregressive moving average model
or neural networks. The simulations can then be im-
proved by adding the error predictions. This method,
which is often referred to as error prediction, has been
used in the real-time forecasting (Refsgaard 1997;
Babovic et al. 2001, 2005). In the present study, a
two-layer feed-forward network with the sigmoid hidden
neurons and linear output neurons was employed for
error prediction of the wave modeling. The network
was trained with Levenberg-Marquardt back-propagation
algorithm. The possible inputs of the ANN for error predic-
tion of wave modeling at the current time step (analysis
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Fig. 2 Comparison of the °©  Measured —— Modeled with default parameter — — =Modeled with updated parameter
modeled wave heights and 3
periods with default and
updated parameter against the
measurements at Bushehr -
station g
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time) are the mean wind speed, mean wind direction, wind
duration, fetch length, the modeled H;, T, and mean wave
direction. Separated networks were employed for error
estimation at each wave measurement station. To determine
the wind duration, the definition of constant wind presented
in the CEM (US army 2006) was used. In this way, a
constant wind is defined when the difference between the

Fig. 3 Comparison of the °  Measured

11/11/1995

Modeled with default parameter

11/21/1995 12/1/1995

Time

current wind speed and mean wind speed at previous time
steps does not exceed a certain value (i.e., 2.5 ms '). In
addition, wind direction should not vary more than 45
degrees. The presented data assimilation algorithm can be
also used for future time steps. More details about neural
network modeling can be found in Agrawal and Deo
(2002).
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Table 1 The summary of statis-

tical analysis of wave prediction Wave characteristics Statistical Parameter Modeled by Modeled by Modified
in the analyzed scenarios for default parameter updated parameter by ANN
Bushehr station
Wave height Bias (m) —0.06 0.16 0.00
RMSE (m) 0.29 0.35 0.09
Scatter index (%) 65.19 78.7 20.20
R 0.42 0.45 0.94
Wave period Bias (s) -0.98 -0.59 0.00
RMSE (s) 1.13 0.80 0.22
Scatter index (%) 37.84 26.91 7.40
R 0.42 0.47 0.91

4 Results and discussion
4.1 Simulation

To investigate the performance of assimilation techniques,
firstly all model parameters were set as default. Figure 2
shows time series of measured and modeled significant
wave heights and mean wave periods during November
1995 at Bushehr station. Figure 3 shows the mentioned
parameters at Kuwait station during January 1994. As seen
in Fig. 2, high waves are generally underestimated by the
SWAN model at Bushehr station mainly due to the under-
estimation of driving wind field (Moeini et al. 2010). The
wave periods are significantly underestimated at this station.
A comparison of the results at Kuwait station (Fig. 3) shows
that H is well predicted by the model except for some
storms where they are underestimated. The wave periods
are underestimated generally at this station too. As seen in
Tables 1 and 2, the RMSE of the prediction of significant
wave height at Bushehr station is nearly two times of that for
Kuwait station. The scatter index of the prediction of sig-
nificant wave height at Bushehr station is almost 11% more
than that of Kuwait station. The wave period is underesti-
mated about 1 second at Bushehr station and half a second at
Kuwait station. These findings are in agreement with those
of Rakha et al. (2007) showing the underestimation of some

modeled H; by the WAM model in Kuwait waters. These
results show that the model errors are not the same for wave

height and period because of the wave model evolution (Lin
et al. 2002; Moeini and Etemad-Shahidi 2007).

4.2 Data assimilation

After assessment of the wave model, the model parameters
were updated to evaluate their effects on the improvement of
the results. In this step, the whitecapping dissipation rate
was used as the tunable parameter. Other physical parame-
ters such as bottom friction and wave breaking had no
significant effect on the model results because of the deep
water location of the buoys. The focus of this step was on
the improvement of the wave height at Iranian waters, i.e.,
Bushehr station. The whitecapping dissipation rate was fi-
nally reduced to about 70%. Figures 2 and 3 also depict the
qualitative comparisons of the hourly time series of the
modeled H; and mean wave period (7},) using the updated
parameter.

As seen in Fig. 2, updating of the model parameter leads
to greater consistency between modeled and measured Hj
especially in case of high waves at Bushehr station. How-
ever, some inconsistencies are observed between the mea-
sured and modeled wave heights because of inaccuracies in
the forcing terms. In this case, low waves are generally

Table 2 The summary of statis-

tical analysis of wave prediction Wave Statistical Modeled by Modeled by Modified
in the analyzed scenarios for characteristics Parameter default parameter updated parameter by ANN
Kuwait station
Wave height Bias (m) 0.051 0.21 0.00
RMSE (m) 0.16 0.28 0.05
Scatter index (%) 54.42 94.73 17.09
R 0.67 0.70 0.96
Wave period Bias (s) —0.535 -0.23 0.00
RMSE (s) 0.79 0.62 0.19
Scatter index (%) 33.04 26.0 8.11
)i& 0.66 0.64 0.96
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Fig. 4 Comparison of the o Measured —— Updated model output by ANN
updated modeled wave heights 3
and periods by ANN against the N
2.5
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overestimated. Similar results can be found in Moeini et al.
(2010) for another area in the Persian Gulf. It is worth
noticing that the wave periods are still underestimated at
this station after adaptation of the model parameter based on
the modeled wave height. The effect of the updating of the
model parameter on the modeled wave data at Kuwait station

Fig. 5 Comparison of the

11/11/1995

o Measured

11/21/1995 12/1/1995

Time

is shown in Fig. 3. This figure shows that updating of the
model parameter based on the modeled wave height at Bush-
ehr station results in the overestimation of wave heights at
Kuwait station. This fact reveals that spatial error of the output
variables is not uniformly distributed probably due to the
spatially nonuniform error covariance of the wind input, since

—— Updated model output by ANN
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the error in the modeled waves is mainly due to the wind
forcing error (Komen et al. 1994). In spite of the general
overestimation of the modeled H; at Kuwait station, Fig. 3
also shows that the wave period is underestimated in this
condition. These findings show that owing to the difference
between accuracy of the model for prediction of wave height
and period, adaptation of the model parameter leads only to
improvement in one variable. In other words, by updating the
model parameter, different output variables cannot be im-
proved simultaneously. On the other hand, adaptation of the
model parameters can only enhance the results of one wave
characteristic up to a certain level, depending on the accuracy
of the wind input. These shortcomings in this data assimilation
technique justify the necessity of employing more compre-
hensive methodologies, such as, error prediction, for a more
accurate prediction of all ranges of different wave parameters.
Therefore, updating of output variables (Hs and T,,) was
considered in the next step for further improvement in the
results.

In this step, ANN was employed to improve the model
results. Different approaches were employed to predict the
correct values of the wave parameters. In the first approach,
the error predictions were combined with the modeled val-
ues. The errors of the modeled parameters, i.e., Hy and T,
were estimated by ANN. In the second approach, the wave
parameters were predicted directly by ANN. It will be
shown that a combination of the ANN estimated error with
modeled wave parameter leads to more accurate results than
the prediction of the wave parameters by ANN. Let X be the
wave parameter, i.e., the H; or T,,. The error of the wave
prediction can be defined as

Emodclcd = chasurcd - Xmodclcdv (2)

where Xiodeleda 18 the modeled wave parameter (by the
SWAN) and Xcasureq 18 the corresponding measured value.
If Epodelea can be estimated by ANN, then the modified
wave parameter can be obtained by

Xmodiﬁed = Xmodeled + Epredited7 (3)

where Epredicied 18 the estimated error of the wave parameter
modelled by ANN. To determine the effective input param-
eters and the best topology, different networks with various
combinations of input parameters were considered. The
wind speed, wind direction, wind duration, wind shear ve-
locity, modeled wave height, period, and direction were
tested as the network inputs. It was revealed that the best
inputs for the error prediction network of the H; are the
mean wind speed, mean wind direction, wind duration, and
the modeled H;. For the error prediction network of the T,
the modeled wave height was replaced with the modeled
wave period. The assessment of the best inputs was per-
formed based on the sensitivity analysis and error statistics
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of the results. The numerically modeled wave parameters
have an important role in the error prediction approach that
will be discussed later.

Figures 4 and 5 illustrate the comparison of time series of
the updated wave parameters using ANN against the meas-
urements at Bushehr and Kuwait stations, respectively. In
contrast to Figs. 2 and 3, it can be seen that combination of
the SWAN numerical model and ANN leads to better
improvements in the wave simulation rather than updating
of the model parameter. As seen, both the updated wave
heights and periods follow the measurements very well. In
addition, there is a great consistency between the measured
and updated wave data for both low and high values. In
other words, the employed assimilation approach success-
fully covers the error sources of the simulation and results in
the improvement in a wider range of output variables. To
have an overall assessment of the employed approaches, the
scatter diagrams of Hy and T, are depicted in Figs. 6 and 7.
In addition, Tables 1 and 2 show the summary of error
measures (bias, RMSE, scatter index, and Rz) at Bushehr
and Kuwait stations for the whole time period that wave data
were available. According to Fig. 6 and Table 1, the wave
heights at Bushehr station modeled by SWAN with default
parameter are underestimated (bias, —0.06 m) and have a
large scatter (scatter index, 65.19%). After the updating of
the model parameter, the modeled wave heights become
overestimated (bias, 0.16 m), but the scatter index increases.
These statistics were computed based on the all range of
wave data. Because of the importance of high waves, updat-
ing of the model parameter was conducted based on the
simulation of high waves. Since the ECMWF wind data are
underestimated especially for high values, the calibration of
high values has led to the overestimation of low wave
heights (Moeini et al. 2010). Therefore, the statistics for all
range of wave data after updating of the model parameter
are worse than those before that. As an example, the SI (for
the measured wave height larger than 1 m) was about 48%
before updating of the model parameter, and it was reduced
to 32% after updating.

The best results are obtained in the third approach that is
the combination of error prediction by ANN and SWAN
outputs. In this case, the simulated wave heights have no
bias and the scatter index is significantly decreased (scatter
index, 20.2%). In the case of T, the scatter index decreases
about 80% after using an error prediction approach. Similar
results are observed for the Kuwait station (Fig. 7; Table 2).
In this station, the scatter index decreases about 69% for
wave height and 75% for wave period after a combination of

Fig. 6 Scatter diagrams of the significant wave height (left panel) andp
wave period (right panel) at Bushehr station (a) SWAN model with
default parameter (b) SWAN model with updated parameter (¢) modified
wave characteristics by ANN
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Fig. 7 Scatter diagrams of the significant wave height (left panel) and

wave period (right panel) at Kuwait station (a) SWAN model with
default parameter (b) SWAN model with updated parameter (¢) modified
wave characteristics by ANN

ANN and numerical model. These findings show that the
output updating approach outperforms updating of the mod-
el parameters, which is in line with the results of Babovic et
al. (2005) and Sannasiraj et al. (2005).

As mentioned before, different approaches were employed
to predict the correct values of the wave parameters. The
measured and modeled wave parameters at Bushehr station
in January were analyzed. At first, ANN was employed to
estimate measured wave parameters. Secondly, an error pre-
diction approach was considered. Table 3 represents the sta-
tistical analysis of the predicted wave parameters in this
period. As seen, the scatter index of predicted wave height
decreases about 11% using the error prediction approach
compared with that of prediction of the correct Hy using
ANN. In the case of T}, error prediction method results in a
decrease of about 29% in the scatter index compared with that
of T}, prediction by ANN.

Finally, it is worth noticing that the numerical wave
modeling has an important role in the employed approach.
The modeled wave parameters contain valuable information
that is very important in the estimation of errors. In addition
to wind forcing parameters, the error of the predictions
depends on the modeled parameter as well. To reveal this
fact, two different networks were considered. The inputs of
the first network were the mean wind speed, mean wind
direction, and wind duration. For the second networks, the
modeled Hy and T, were added to the networks inputs for
error prediction of the wave height and period, respectively.
Table 3 shows the results of this assessment at Bushehr
station in January. As seen, a significant reduction in the
scatter index of the predicted wave height is observed after
adding the modeled H; to the networks input. In this case,
the scatter index shows an improvement of about 43%. In
the case of T, a reduction of about 31% in the scatter index
of predicted T}, is seen where the scatter index decreases

from 9.21% to 6.34%. This is mainly due to the fact that the
wind field error depends also on the dynamics of the wind—
wave system and the modeling of drag in the surface layer.
In addition, waves are an integrated effect of the driving
wind fields in space and time (Cavaleri and Bertotti 1997).
Thus, it is suggested to use the employed approach for
determining long-term time series of wave characteristics
in the Persian Gulf.

The low number of wave measurement stations and the
relatively short recording period may be the drawbacks of
the present study. In addition, discovering the error distri-
bution of the ECMWF winds and the modeled waves over
the domain is also a matter of interest. Thus, it is recom-
mended that more measured data such as satellite observa-
tions be employed for spatial assessment of the modeled
wind and wave data.

5 Summary and conclusions

In this study, an efficient approach for the assimilation of the
hindcasted wave parameters in the Persian Gulf was devel-
oped. To do so, the third generation SWAN model was
employed for wave simulation forced by the 6-hourly
ECMWF wind data with a resolution of 0.5°. In situ wave
measurements in two stations were utilized for the evalua-
tion of the studied approaches. Two main data assimilation
procedures, i.c., updating of model parameters and updating
of output variables, were analyzed for nudging the modeled
data to the real one. Updating of output variables was
carried out by means of ANN for estimation of the devia-
tions between the simulated and measured wave character-
istics. Different networks with various combinations of
input parameters were considered to determine the effective
input parameters and the best combination. The most im-
portant results are summarized as follows.

The model errors are not the same for wave height and
period mainly due to the wave model evolution. Therefore,
adaptation of the model parameter results in the improvement

Table 3 Comparison of the

wave parameters estimated by Wave Statistical Direct prediction Error prediction Error prediction
ANN and error prediction characteristics Parameter by ANN by ANN1 by ANN2
approach

Wave height Bias (m) 0.00 0.00 0.00

RMSE (m) 0.10 0.09 0.16

This table also shows the evalu- Scatter index (%) 15.26 13.58 23.90
ation of the effect of the modeled R? 0.97 0.98 0.92
wave parameters on the accuracy W iod Bi 0.00 0.00 —001
of the error prediction. ANN1 ave peno 125 (5) ’ ' '
are the networks with modeled RMSE (5) 0.30 021 031
wave parameters and ANN2 are Scatter index (%) 8.91 6.34 9.21
the networks without modeled R? 0.90 0.95 0.89

wave parameters
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in only one output variable. In other words, by updating the
model parameter, different output variables cannot be im-
proved simultaneously. Additionally, even for one variable,
adaptation of the model parameters can enhance the results up
to a certain level depending on the accuracy of the wind input.
Large scatter between modeled and measured data may still
exist using this approach.

Updating of output variables outperforms updating of the
model parameters for data assimilation. In this approach,
both updated wave height and period follow the measure-
ments very well. In addition, this assimilation approach
covers almost all of the error sources of the wave modeling
and results in the improvement of low and high values of
output variables.

Combination of the ANN estimated error with numeri-
cally modeled wave parameters leads to better improvement
in the predicted wave data in contrast to direct estimation of
the desired parameters by ANN. In addition, the best inputs
are the mean wind speed, mean wind direction, wind dura-
tion, and the modeled wave parameters. The modeled wave
parameters, as the network inputs, increase the accuracy of
the error estimation significantly.
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