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Abstract Water level forecasting using recorded time series
can provide a local modelling capability to facilitate local
proactive management practices. To this end, hourly sea water
level time series are investigated. The records collected at the
Hillarys Boat Harbour, Western Australia, are investigated
over the period of 2000 and 2002. Two modelling techniques
are employed: low-dimensional dynamic model, known as the
deterministic chaos theory, and genetic programming, GP. The
phase space, which describes the evolution of the behaviour of
a nonlinear system in time, was reconstructed using the delay-
embedding theorem suggested by Takens. The presence of
chaotic signals in the data was identified by the phase space
reconstruction and correlation dimension methods, and also
the predictability into the future was calculated by the largest
Lyapunov exponent to be 437 h or 18 days into the future. The

intercomparison of results of the local prediction and GP
models shows that for this site-specific dataset, the local
prediction model has a slight edge over GP. However,
rather than recommending one technique over another,
the paper promotes a pluralistic modelling culture,
whereby different techniques should be tested to gain a
specific insight from each of the models. This would
enable a consensus to be drawn from a set of results
rather than ignoring the individual insights provided by
each model.
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1 Introduction

Sea water level is a dynamic variable and its variations are
controlled by many environmental forcing, such as lunar
and solar gravitational attraction, ocean waves and currents,
atmospheric pressure and wind forcing, as well as the shape
of the continental shelf. Thus, the values of sea water level
are affected by several, sometimes interconnected and
nonlinear, physical variables. Their predictions in near-
shore environments are often required for design purposes,
and their knowledge is used as management information
necessary for reducing risk along coastal and low-lying
regions or for monitoring and predicting changes in
fishery and marine ecosystems. Different models of time
series analysis include fuzzy logic (Zadeh 1965), neuro-
fuzzy (Lee and Han 2005), genetic programming (GP),
artificial neural networks (ANN) (Makarynskyy et al.
2004) and recently chaos theory. This paper is focussed
on chaos theory and GP.
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A low-dimensional chaotic system largely behaves in a
deterministic manner, but its behaviour is sensitive to small
changes in the initial conditions leading to a completely
different behaviour in the future. Since its first presentation
by Lorenz (Wilks 1991), chaotic behaviours have been
observed in diverse systems by many researchers. The
applicability of the chaos theory has been widened to a
large class of problems in many areas of natural sciences.
Notwithstanding this, the presence of chaotic signals is not
obvious in irregular time series in the first place, and
therefore, this is a motivation for researchers to identify
their presence by applying chaos theory. The identification
of chaotic signals is still a novel approach in ocean-related
problems.

The focus of research on the identification of the
presence of low-dimensional deterministic chaotic behav-
iours is more on river flow time series than that on sea
water level. For a review on river applications, see, e.g.
Sivakumar (2009).

Chaotic signals have also been identified in time series
of coastal water and investigations as follows: (1) Frison et
al. (1999) use data at 6-min intervals from seven ‘tide’
stations with different water level characteristics operated in
the USA, measuring ocean surface motions, and they find
chaos theory to be an attractive real-time forecasting tool
for its simple data requirements, low computational burden
and the need far few decisions on the parameters. (2)
Zaldivar et al. (2000) use chaos theory in Venice, Italy, for
tidal data at an hourly interval and report a predictability
between 8 and 13 h ahead using the Lyapunov dimension,
though they identify chaotic signals but find that chaos
theory fails to forecast the ‘high water’ phenomenon more
than 2–3 h ahead. (3) Solomatine et al. (2000) model the
surge time series in the North Sea in itself using nonlinear
chaos models, identify the presence of chaotic signals and
produce quite accurate results for the short-term prediction.
There seems to be no investigation for identifying chaotic
signals in sea level time series over longer time horizon
such as a month and this makes the focus of this
investigation.

Since the 1990s, time series analysis methods employing
GP have become viable, and this paper uses GP for
comparisons with the performance of chaos theory. The
GP methods, first proposed by Koza (1992), are wide
ranging, similar to genetic algorithms (Goldberg 1989).
Generally, GP techniques are robust applications of optimi-
sation algorithms and represent one way of mimicking
natural selection. The techniques have the capability for
deriving a set of mathematical expressions to describe the
relationship between the independent and dependent vari-
ables using such operators as mutation, recombination
(or crossover) and evolution. These are operated in a
population evolving in generations through a definition of

fitness and selection criteria, where the subsequent techni-
ques are data driven. GP techniques are particularly
applicable to cases where: (1) the interrelationships among
the relevant variables are poorly understood or suspected to
be wrong; (2) finding the size and shape of the ultimate
solution is itself a major part of the problem; (3)
conventional mathematical analyses are constrained by
restrictive assumptions but approximate solutions are
acceptable; (4) small improvements in performance are
routinely measured, easily measurable and highly prized;
and (5) the amount of data is large (e.g. satellite observation
data), which requires examination, classification and inte-
gration (Banzhaf et al. 1998).

Borelli et al. (2006) introduced an approach based on the
GP for extracting the trend in noisy data series. Kalra and
Deo (2007) applied the GP for the completion of missing
data in wave records along the west coast of India.
Ustoorikar and Deo (2008) used the GP for filling up gaps
in datasets of wave heights. Gaur and Deo (2008) applied
the GP for real-time wave forecasting. Ghorbani et al.
(2010) apply GP for modelling sea level at Hillarys Boat
Harbour and compare its performance with observed and
that of artificial neural networks. Their results indicate an
edge for GP compared with ANN and hence the GP
performance is used for comparison in this paper.

Sea level variations are subject to combined influences
of tides as well as to other hydrometeorological factors such
as barometric pressure, sea water temperature, wind forcing
and wave setup. The non-tidal signals are generally referred
to as residuals (computed as observations minus tidal
predictions) and can contribute up to 30% of the measured
values at the Hillarys tide gauge (Makarynskyy et al. 2004).
Therefore, the proposed chaos theory and GP models for
sea level variations cannot be compared to any other tide
prediction method (e.g. harmonic analysis) in any mean-
ingful way. As such, the results obtained here may not
necessarily be applicable to other locations on the Western
Australian coast, where independent site-specific studies
should be performed.

This paper aims at investigating the possible presence of
chaotic signals in sea water level time series at Hillarys
Boat Harbour. Section 2 presents the methodology for
chaos theory, which is implemented by four techniques: the
phase space reconstruction is carried out by average mutual
information (AMI) and the false nearest neighbours
technique; the correlation dimension method; Lyapunov
exponent and local prediction but only the latter is
implemented for prediction purposes; and this is compared
with the GP model. Section 3 outlines the gauging site and
specifies the data. Section 4 presents the results in terms of
identifying chaotic signals in the data and predicting future
values by both chaos theory and GP. Section 5 discusses the
results and their implied issues.
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2 Methodology of the models used

2.1 Chaos theory

Chaos theory is a method of nonlinear time series analysis.
It involves a host of methods, essentially based on the
phase space reconstruction of the process, from scalar or
multivariate measurements of physical observables. This
study uses four of these techniques, described next, and this
is normal in chaos theory modelling practices, as a way of
avoiding spurious results.

2.1.1 Phase space reconstruction

One way of characterising dynamical systems is by the
concept of phase space, according to which given a set of
physical variables and an analytical model describing their
interactions, the dynamics of the system can be represented
geometrically by a single point moving along a trajectory,
where each of its points corresponds to a state of the
system. The delay-embedding method reconstructs phase
space from a univariate or multivariate time series (Takens
1981), which is assumed to be generated by a deterministic
dynamical system. The Takens theorem states that the
underlying dynamics can be fully recovered by building an
m-dimensional space wherein the components of each state
vector Yt

!
are defined through the delay coordinates:

Yt
!¼ Xt;Xt�t ;Xt�2t ; :::;Xt�ðm�1Þt

� � ð1Þ

where m is known as embedding dimension, t as delay time
and Xt={x1, x2, …xN} with N-observed values. If the
dynamics of the system can be reduced to a set of
deterministic laws, trajectories converge towards a subset
of the phase space with fractional dimension, called
attractor. This delay-embedding method is sensitive to both
embedding parameters of t and m, which are unknown a
priori. As suggested by Cellucci et al. (2003), AMI is used
to estimate t; and the minimisation of the false nearest
neighbours to do that of the optimal values for the
embedding dimension, m.

AMI (Fraser and Swinney 1986) defines how the
measurements X(t) at time t are related, from an information
theoretic point of view, to measurements X(t+C ) at time
t+C . The average mutual information is defined as:

I tð Þ ¼
X

X ðiÞ;X iþtð Þ
P X ðiÞ;X iþ tð Þð Þ log P X ðiÞ;X iþ tð Þð Þ

P X ðiÞð ÞP X iþ tð Þð Þ
� �

ð2Þ
where the sum is extended to the total number of samples in
the times series. P(X(i)) and P(X(i+C )) are the marginal
probabilities for measurements X(i) and X(i+t), respectively,

whereas P(X(i), X(i+t)) is their joint probability. The
optimal delay time t minimises the function I(t): for t=t,
X(i+t) adds the maximum information on X(i).

The false nearest neighbours procedure (Kennel et al.
1992) is a method to obtain the optimum embedding
dimension for phase space reconstruction. By checking the
neighbourhood of points embedded in projection manifolds
of increasing dimension, the algorithm eliminates 'false
neighbours': This means that points apparently lying close
together due to projection are separated in higher embed-
ding dimensions. When the ratio between the number of
false neighbours at the dimension m+1 and m is below a
given threshold, generally smaller than 5%, each m'>m+1
is an optimal embedding. However, if m' is too large, a poor
reconstruction of few embedding states with several
components is obtained and the next analyses should not
be performed.

2.1.2 Correlation dimension

Correlation dimension is a nonlinear measure of the
correlation between pairs lying on the attractor. For time
series whose underlying dynamics is chaotic, the correla-
tion dimension gets a finite fractional value, whereas for
stochastic systems it is infinite. For an m-dimensional phase
space, the correlation function Cm(r) is defined as the
fraction of states closer than r, (Grassberger and Procaccia
1983; Theiler 1986):

CmðrÞ ¼ lim
N!1

2

N � wð Þ N � w� 1ð Þ

�
XN
i¼1

XN
j¼iþ1þw

H r � ~Y i �~Y j

�� ��� � ð3Þ

where C is the correlation dimension, r is the radius of
hypersphere within phase space, H is the Heaviside step
function, Yi

!
,Yj
!

are the ith and jth state vectors defined by
Eq. 1, and N is the number of points on the reconstructed
attractor. The number w is called Theiler window and it is
the correction needed to avoid spurious results due to
temporal correlations instead of dynamical ones. For
stochastic time series Cm(r)∝rm holds, whereas for chaotic
time series the correlation function scales with r as:

CmðrÞ / rD2 ð4Þ

where D2, correlation exponent, quantifies the degrees of
freedom of the process, and defined by:

D2 ¼ lim
r!0

lnCmðrÞ
ln r

ð5Þ

and can be reliably estimated as the slope in the lnCm(r)
versus ln(r) plot.
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2.1.3 Lyapunov exponents

Lyapunov exponents is a measure of exponential divergence of
nearby trajectories in the phase space, along a given direction.
Given two nearby states and their Euclidean distance d(t0) at
time t0, the largest Lyapunov exponent lmax, corresponding to
the dominant divergence direction, is defined as:

lmax ¼ lim
t!1

1

t � t0
log

dðtÞ
d t0ð Þ ð6Þ

In the present work, the method proposed by Rosenstein
et al. (1993) was adopted for the estimation of lmax, which
makes use of stretching factor, defined as:

SðtÞ ¼ Δt

t

Xt=Δt

i¼1

log
1

Ωij j
XN
j2Ωi

~Y i �~Y j

�� ��" #
ð7Þ

along an orbit of Δt/t time steps, where |Ωi| is the number
of neighbours in the neighbourhood Ωi of the reference
state Yi

!
, and Δt is the sampling time of measurements. For

a chaotic dynamics, the stretching factor S(t) is expected to
be proportional to time, the largest Lyapunov exponent lmax

being the proportionality constant.

2.1.4 Local predictions

Local prediction techniques are generally adopted for
predicting/forecasting the future states of the process under
investigation, with no explicit use of an analytical model.
The first method of local prediction was suggested by
Lorenz (1969). In this approach, if the value of the
measurement xt is known at time t, the prediction of the
measurement xt+1 at time t+1 is given by xT+1, where xT is
the nearest neighbour to xt in the phase space. This method
is called first-order approximation (Farmer and Sidorowich
1987a). Another popular method is to choose a collection
of k nearest neighbours and to use the average value of
their images for forecasting. However, a more sophisticated
local prediction method was suggested by Farmer and
Sidorowich (1987b), who approximated the local mapping
of successive states with higher-order polynomials, whose
coefficients should be determined by means of nearest
neighbours and fitting procedures. In an m-dimensional
space, prediction is thus performed by estimating the
trajectory changes with time. Let us assume that the
relationship between two embedding states Xt

!
and X

!
tþp on

the attractor, delayed by a time p, can be approximated by
the mapping F

!
as

~Xtþp ffi ~F ~X t

� � ð8Þ
and the evolving dynamics of the state Xt

!
is that one of the

nearby states. In the present study, the future state X
!

tþp is

determined by the first-order polynomial mapping f
!

(Itoh
1995) as follows:

~Xtþp ffi ~F ~X t

� � ¼~aþ~f ~X t; ~X t�t ; :::; ~X t� m�1ð Þt
� � ð9Þ

Although this mapping is linear, the prediction is
nonlinear because, during the prediction procedure, every
state on the trajectory corresponds to a different neighbour-
hood, therefore to a different expression for F

!
and the

linear map f
!

(Porporato and Ridolfi 1997).

2.2 Genetic programming

This study employs GP to reference the performance of the
low-dimensional dynamic model. GP is selected as it makes
no assumption on the structure of the relationship between
the independent and dependent variables but an appropriate
relationship is identified for any given time series. The
mathematical form of such a relation can be shown as
below:

HtþdΔt ¼ f Ht;Ht�Δt; :::Ht�wΔtð Þ ð10Þ
where f is a function, H is the height of sea water level with
respect to a reference point and δ(δ=0, 1, 2, 3,…ω)
describes the time step (Δt) used for the forecast water
level. Implementation of GP models involves a number of
preliminary decisions including a set of basic operators

such as þ;�; »; =;^; ffip
; log; a log; sin; a sin; exp; :::

n o
to

construct the function, f.
The GP modelling programmes provide operators like

crossover and mutation to the winners, ‘children’ or
‘offspring’ to emulate natural selection, in which crossovers
are responsible for maintaining identical features from one
generation to another but mutations cause random changes.
The evolution starts from an initially selected random
population of models, where the relationship, f, between the
independent and dependent variables is often referred to as
the ‘model’, the ‘programme’, or the ‘solution’. The
population is allowed to evolve through generations by
the virtue of a selected fitness criterion by replacing old
models with new ones when performing better. For further
details of GP, see Ghorbani et al. (2010).

3 Study area and data

In this study, sea level data were recorded by a SEA-
level Fine Resolution Acoustic Measuring Equipment
station deployed at Hillarys Boat Harbour (Fig. 1) at
latitude 31.82° South and longitude 115.73° East
(GDA94). The accuracy resolution of the gauge is 1 mm
and the data have been collected since 1991 by the
National Tidal Centre, Australia, where the Centre special-
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ises in sea level monitoring and analysis. The purpose for
collecting the data is to derive trends in absolute sea level and
produce national tide predictions, tide streams and related
information and hence its high level accuracy. Hillarys Boat
Harbour is the first major marina in the north metropolitan
region of Perth with the primary function of accommodating
yachts and small boats.

The raw measurements demonstrate a prominent seasonal
variability with annual minima during the Southern Hemi-
sphere summers and maxima in the winters, which occur
mainly due to the astronomical forcing of the Sun’s and
Moon’s gravitational attractions. The observed values
oscillate between −140 mm (December 1993) and 1,680 mm
(July 1995) with respect to the unspecified local datum on this
decadal time scale, while in a usual year, the range of
variations does not exceed 1,200 mm. The quasi-diurnal
(K1, O1 and P1) and quasisemidiurnal (M2) tide waves are the
dominant ones in the area of Hillarys Boat Harbour (e.g.
Australian National Tide Tables 2003). The data used in this
study cover 30 months of observations from January 2000 to
June 2002 and are measured at hourly intervals with some of
their important statistics presented in Table 1.

For the present investigation, sea level data observed
over a period of 30 months (January 2000–June 2002) are
considered. Figure 2 shows the variations of hourly data
series. The entire dataset of 30 months was divided into two
parts. The first 29 months of data was used in training for
the phase space reconstruction, but the subsequent 1 month
of data was used as observed data in the prediction phase.

4 Results

In this study, the characterisation of the sea level dynamics
employs the following methods: the correlation integral
analysis together with the false nearest neighbours algo-
rithm, where the appropriateness and accuracy of such a
reconstruction depends on the delay time, C ; correlation
dimension, as well as the Lyapunov exponent to estimate
the predictability of the data into the future and the local
prediction method to predict the future values. These
predicted time series are compared with those by GP, in
running which its default values are given in Table 2. The
following software applications were used: the TISEAN
package (Hegger et al. 1999) is used for the implementation
of chaos theory but local prediction was run, as in Koçak
(1997), and GP was implemented using GeneXPro software
application (Ferreira 2001a, b).

4.1 Characterisation of sea level dynamics

Phase space reconstructions for the sea level time series are
presented in Fig. 3a–d through examples. These figures
show reconstructions in two dimensions, i.e. the projection
of the attractor on the plane {Xi, Xi+C} and with delay time
C =1, 50, 100, 200. A reasonably clear attractor is present

Fig. 1 Location of the gauge site (star) at Hillarys Boat Harbour
(Makarynskyy et al. 2004)

Table 1 Statistics of hourly sea level data—Hillarys Harbour

Statistics Hourly sea level (mm)

Number of data 21,888

Mean 722.7

Standard deviation 221. 6

Maximum value 1,475

Minimum value 30

Coefficient of variation 0.31

Skewness 0.15

Kurtosis −0.24

Fig. 2 Hourly sea level time series at the Hillarys Boat Harbour
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for C =1, 50 but those for C =100 and 200 occupy larger
space in the phase space diagram. An appropriate τ of the
phase space reconstruction is used in the prediction stage to
separate neighbouring trajectories within the minimum
embedding phase space.

The AMI method may be used to compute C by varying
delay time in the range of 1–100 h. The value of delay time is
calculated as the first (local) minimum in the variation of AMI
against varying delay time from 1 to 100 h. As shown in
Fig. 4, this method shows well-defined first minima at delay
time of 12 h, which is then used for the determination of the
sufficient embedding dimension using the percentage of false
nearest neighbours for the time series. Figure 5 shows the
results of the false nearest neighbours method for embedding
dimension so that the value of embedding dimension is 6.

4.2 Estimation of correlation dimension

The correlation function is calculated for the dataset using
the delay times (C =12), determined by the AMI method in

the previous section, and embedding dimensions, m, by
allowing it to vary from 1 to 20. The presence of chaotic
signals in the data is further confirmed by the correlation
dimension method. Figure 6 shows the relationship be-
tween correlation function C(r) and radius r (i.e. lnC(r)
versus ln(r)) for increasing m, whereas Fig. 7 shows the
relationship between the correlation dimension values
D2(m) and the embedding dimension values m. It can be
seen from Fig. 7 that the value of correlation exponent
increases with the embedding dimension up to a certain
value and then saturates beyond it. The saturation of the
correlation exponent is an indication of the existence of
deterministic dynamics. The saturated correlation dimen-
sion is ∼6.45, (D2=6.45). The value of correlation
dimension also suggests the possible presence of chaotic
behaviour in the dataset. The nearest integer above the
correlation dimension value (D2=7) is taken as the
minimum dimension of the phase space.

4.3 Estimation of the largest Lyapunov exponent

The curves for the stretching factor versus the number of
points N show the expected linear increase and flat regions
(Fig. 8) with some fluctuations superimposed on the linear
part of the curve. The slope value corresponding to the
largest Lyapunov exponent is obtained after the least-
squares line fit for the sea level time series and is found
to be 0.0023. The inverse of this parameter value defines
the maximum predictability, and for this time series, it is
equal 1/0.0023 or less than 437 h (18 days) into the future.

Table 2 Default values in running the GP model

Generation without improvement 150

Generation since start 200

Maximum numbers of runs 150

Maximum programme size 256

Population size 200

Mutation rate 95%

Crossover rate 20%

Fig. 3 Reconstruction of phase space by using four different delay time values for sea level time series: a C =1—sharper attractor; b C =50—
somewhat diffused attractor; c C =100—the attractor is noisy; d C =200—the attractor is very noisy
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4.4 Sea level prediction

The local prediction technique explained in Section 2.1.4 is
employed to study the possible presence of chaotic signals
in sea level in the data (the first 29 months used as the
training data). The embedding dimension is varied system-
atically from 2 to 10 until they identify the optimum value
of the dimension corresponding to the highest R2 and
possibly the lowest root mean square error (RMSE).
Statistics in Table 3 indicate that reasonably good predic-
tions (with R2>0.94) were overall achieved for all 10
embedding dimensions. A closer look at the statistics
however reveals that the best predictions were achieved
when the embedding dimension was mopt=9 (i.e. highest R2

and lowest RMSE and delay time=12 h). With these
training parameter values, the model is run in the prediction
mode to produce future values. Figure 9 compares visually
the predicted sea water levels with their corresponding
observed values, which also displays their scatter plot.
Whilst the results will be discussed in the next section, the
successful performance of the local prediction method
clearly complements those in Figs. 3, 4, 5, 6, 7 and 8 that
(a) there is a clear deterministic chaotic signal in the dataset
at the Hillarys Boat harbour, and (b) using this information,
chaos theory is also a versatile prediction tool.

For comparison with the results of the local prediction
model, the GP model was run for the same data using
GeneXpro software. A number of combinations of inputs
(sea level with different lead times) were tested. The best
combination was selected with RMSE=55.8 mm and R2=
0.94. Figure 10 presents the recorded and simulated values
and their scatter plot.

5 Discussion

A visual comparison of the results by the local prediction
model with that of the GP model demonstrates that both
these models explain the data adequately. The model
performances are estimated in terms of RMSE and R2 and
presented in Table 4, according to which the RMSE value
of the local prediction model is smaller and R2 is higher
than those of the GP model for the prediction period. The
performance of the local prediction model is slightly better
than that of the GP model.

The significance of the difference between the results of
the respective models is not obvious, as the minimum and
maximum differences produced by both the local prediction
and GP models are approximately ±150 mm, and these
differences do not arise on the peak values but on the rising
or falling limbs. Using a time scale of 3 h rather than 1 h

Fig. 5 Percentage of false nearest neighbours of the sea level time
series in embedding dimension

Fig. 4 Average mutual information (AMI) function of the sea level
time series

Fig. 6 Convergence of logC(r) versus log(r) for hourly sea level data—
signifying chaotic signals

Fig. 7 Saturation of correlation dimension D2(m) with embedding
dimension m—saturation signifies chaotic signals
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slightly deteriorates the results and more fluctuating but the
performances of both models remain robust.

There are two issues, which require explanation. (1) The
presence of chaotic signals in the data reveals that site-
specific sea levels undergo a sudden loss of temporal
correlation in response to small perturbations in initial
conditions. The likely causes for this sudden loss of
correlation include the harbour site geomorphology, where
either there is a sudden expansion or funnelling at a given
water level, there can be specific local wave/current and/or
reflection/refraction patterns at such sea level and/or
specific meteorological conditions contributing to this.
Based on engineering judgement, such complexity is quite
likely in a harbour situation. (2) Contrary to chaos theory
stipulating a sudden loss of temporal correlation, GP is
essentially a regression model and assumes continuity in
the functional relationship. However, modelling experience
accumulating since the 1950s is indicative that models are
not exact replica of the real systems but surrogate
representations. Each model is likely to unravel a certain
feature that otherwise is not obvious without applying the
particular model. The emerging consensus is to use
different modelling techniques in a pluralistic modelling
culture and draw a consensus from them rather than rule in
or rule out a single model as superior to the others.

Application of chaos theory to sea level predictions
provides another technique adding to the pluralistic modelling
capabilities. The capabilities are diverse depending on a
range of factors including the data availability, the time
horizon and the required lead time for the predictions.
Both chaos theory and GP are used for time series
analysis to make use of the information within the time
series, and as such, they differ from distributed models
capable of modelling hydraulic processes.

Time series are datasets with a natural temporal ordering,
and as such, they are quite different than event data describing
a dynamic situation of change created by a meteorological,
hydrological or hydraulic event within a specific time period.
Time series normally cover long periods of time, e.g. from a
month to years, or to centuries, but event data cover a period
normally less than a month and can be a few hours. The time
horizon for the prediction into the future is referred to as lead
time and its different ranges have given rise to different
management practices, including:

& Nowcasting: these are confined to a very short-range
weather forecasting for say the impending12-h period,
using data for a very specific geographic area based on
very detailed observational data.

Fig. 8 Estimating the largest Lyapunov exponent using the method by
Rosenstein et al. (1993)

Table 3 Values ofR2 and RMSE for different embedding dimensions—
local prediction method

Embedding dimension R2 RMSE (mm)

2 0.943 53.7

3 0.946 52.2

4 0.949 50.7

5 0.951 49.9

6 0.952 49.4

7 0.950 50.1

8 0.954 48.5

9 0.954 48.2

10 0.951 49.9
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Fig. 9 Performance of local prediction: a comparison of predicted
and observed time series and b their scatter diagram
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Fig. 10 Performance of GP: a comparison of predicted and observed
time series and b their scatter diagram
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& Real-time forecasting: these types of modelling are
widespread and normally cover full events of periods in
the range of a few hours to a few weeks, which are
normally based on detailed distributed models but their
lead time for flood warning may be in the range of a
few hours to not more than a few days. The lead time
may be enhanced with near real-time forecasting
capabilities integrating satellite and radar imagery with
hydrological, hydraulic and meteorological models and
telemetric capabilities.

& Early warning capabilities: these modelling capabilities
seek a lead time of 3–10 days to aid the management of
impending flooding incidents and they employ distributed
models with coarser resolutions compared with real-time
modelling. For longer lead times, modelling capabilities
include seasonal forecasting and long-term predictions.

Generally, the longer the lead time, the greater inherent
uncertainty and less useful the results are but even such
noisy predictions are vital for resource management.
Notably, the above time horizons of lead time are based
on distributed models, although transfer functions and
stochastic time series analysis may also be used by
modelling researchers and practitioners. Time series analysis
based on GP and chaos theory has not penetrated
coastal modelling practices. For instance, a survey of
coastal flood forecasting techniques by the Environment
Agency has no mention of such techniques, see Khatibi
et al. (2003), Hawkes et al. (2004) and EA (2004). So
there is a gap in knowledge on the suitability of such
techniques as GP and chaos theory to aid practical
problems.

Arguably, as time series measure local information, their
applicability is confined to the measurement locations and
not beyond. The time horizon for the prediction of time
series into the future has not been adequately discussed in
the past but normally time series has a long tail back into
the past. Depending on the time scale of the data, the
prediction model can be formulated within the lead time of
real-time forecasting, early warning and seasonal forecast-
ing or even predicting over annual cycles. The lead time of
chaos theory is estimated by the Lyapunov exponent, which
provides the information into the future predictability of the
time series, but there is no such a technique available for
the other time series techniques.

Research approaches on time series normally implement
a technique by dividing the available dataset into two
training and prediction data and studying its predictability
by such parameters as the coefficient of correlation and
RMSE or other parameters. The literature review presented
above shows that chaos theory is applied to a storm surge
event as well as sparse applications to long-term records of
data, including this study. However, the authors are not
aware of any systematic study through systematically
varying the future time horizon of lead time. Such a study
will undoubtedly help the uptake of these modelling
capabilities from research to practice.

As the trends in policymaking are towards both basin
management and local management, the availability of
capabilities for both types of management is necessary.
Management strategies normally require proactively con-
structed models and an insight into possible future patterns.
Arguably, both models offer versatile, compact and less
resource incentive capabilities for nowcasting, forecasting
and seasonal forecasting of site-specific sea level. In
particular, such capabilities make it feasible to implement
cloud computing facilities to enable a diverse range of
stakeholders to look after their interests by having access to
predicted sea levels for taking timely actions to protect
human health and lives, materials and investments. This
study addressed sea level, but a host of other water quality
variables can be modelled in a similar way by these
emerging modelling capabilities to facilitate the following
services:

& Navigations in and out of harbours or along coasts
& Managing stormy waters or flooding incidents, partic-

ularly boat owners concerned with the safety of their
boats

& Managing legal obligations toward bathing water
directives/policies

& Providing appropriate services to fish farmers to ensure
optimum feeding of the fish depending on the variation
of salt and temperature or to anglers concerned with
locating cold water where the salmon may be plentiful

& Ecological information including timely warnings on
noxious algae

& Reliable prediction of sea level variations, which affect
both groundwater tables in low-lying coastal areas and
hydrological regimes of coastal rivers

Table 4 Statistical analysis of performances of both local prediction and GP

Model RMSE (mm) R2 Max error (mm) Min error (mm) Remarks

Local prediction 48.2 0.95 153 154 Local prediction model seems to have a slight
edge over that of GPGenetic programming 55.8 0.94 −155 −157
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6 Conclusions

This paper references the performance of a low-dimensional
dynamic model, known as the deterministic chaos model,
with a genetic programming model. Both techniques are
applied to the sea water level time series observed at the
Hillarys Boat Harbour over 30 months (January 2000–
June 2002). In the study, the dynamic model was
implemented by using the TISEAN package (Hegger et
al. 1999) and GeneXPro to implement GP. The existence
of chaotic signals in the data was identified by the
reconstruction of the phase space of the data and the
delay time was quantified by using the mutual information
function and the embedding dimension by the false nearest
neighbours, where their values were identified to be 12
and 9, respectively. The presence of chaotic signals in the
data was further confirmed by (1) the correlation dimen-
sion method, according to which the finite correlation
dimension is 6.45, and (2) by Lyapunov exponent, in
which the positive largest Lyapunov exponent is 0.0023
and this means that the predictability of the results into the
future is 437 h or 18 days.

A local prediction model has been applied to sea level
time series. The dynamics of the system are described step
by step locally in the phase space. The predicted values are
in good agreement with the observations. The correlation
coefficient and root mean square error have values of 0.95
and 48.2 mm, respectively. These model results were
further referenced with the performance of the GP model,
and the intercomparison of their results indicates that in this
case the local prediction model has a slight edge over the
performance of GP but both can be used, each having their
own strengths and weaknesses.

The paper raised issues on the applicability of both
techniques and explained them recommending a pluralistic
modelling culture, in which each modelling technique might
offer a specific insight into the data, helping consensus to be
drawn for better implementation of modelling results.
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