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Abstract Land-based high-frequency (HF) radars have
the unique capability of continuously monitoring ocean
surface environments at ranges up to 200 km off the
coast. They provide reliable data on ocean surface
currents and under slightly stricter conditions can also
give information on ocean waves. Although extrac-
tion of wind direction is possible, estimation of wind
speed poses a challenge. Existing methods estimate
wind speed indirectly from the radar derived ocean
wave spectrum, which is estimated from the second-
order sidebands of the radar Doppler spectrum. The
latter is extracted at shorter ranges compared with the
first-order signal, thus limiting the method to short
distances. Given this limitation, we explore the pos-
sibility of deriving wind speed from radar first-order
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backscatter signal. Two new methods are developed
and presented that explore the relationship between
wind speed and wave generation at the Bragg frequency
matching that of the radar. One of the methods utilizes
the absolute energy level of the radar first-order peaks
while the second method uses the directional spreading
of the wind generated waves at the Bragg frequency.
For both methods, artificial neural network analysis is
performed to derive the interdependence of the rele-
vant parameters with wind speed. The first method is
suitable for application only at single locations where
in situ data are available and the network has been
trained for while the second method can also be used
outside of the training location on any point within the
radar coverage area. Both methods require two or more
radar sites and information on the radio beam direc-
tion. The methods are verified with data collected in
Fedje, Norway, and the Ligurian Sea, Italy using beam
forming HF WEllen RAdar (WERA) systems operated
at 27.68 and 12.5 MHz, respectively. The results show
that application of either method requires wind speeds
above a minimum value (lower limit). This limit is radar
frequency dependent and is 2.5 and 4.0 m/s for 27.68
and 12.5 MHz, respectively. In addition, an upper limit
is identified which is caused by wave energy satura-
tion at the Bragg wave frequency. Estimation of this
limit took place through an evaluation of a year long
database of ocean spectra generated by a numerical
model (third generation WAM). It was found to be at
9.0 and 11.0 m/s for 27.68 and 12.5 MHz, respectively.
Above this saturation limit, conventional second-order
methods have to be applied, which at this range of wind
speed no longer suffer from low signal-to-noise ratios.
For use in operational systems, a hybrid of first- and
second-order methods is recommended.
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1 Introduction

Wind energy provides the majority of forcing on the
surface of the ocean and as such plays an important
role in driving a variety of oceanographic phenomena
including water circulation and wave generation with
implications that extend from local and regional (e.g.,
upwelling) to global (e.g., air–sea gas exchanges) scales.
Wind measurements at sea present one of the first en-
vironmental observations carried out by seamen even
before the advance of technology. It is characteristic
that the first observations were carried out visually
using sea state as a proxy (see Beafourt scale), a prin-
ciple utilized by the remote sensing techniques avail-
able over the last few decades. Microwave radars (e.g.,
scatterometers), give a strong backscatter signal from
the short ripple waves (3–5 cm), which react very fast
to changes in the wind field. This signal is then used
to provide reliable wind measurements from the ocean
surface. Such technologies as those used in spaceborne
scatterometry (cf. Schroeder et al. 1985) and Synthetic
Aperture Radar (SAR) (cf. Monaldo et al. 2001; Fisher
et al. 2008) provide wind information over large areas
but with a temporal resolution that is limited by their
orbit repetition time that may extend to several days.

Stationary, shore-based high-frequency (HF) radars
provide an alternative method for covering large areas,
up to 200 km off the coast and with high temporal res-
olution (≤ 1 h). HF radars can deliver real-time data at
relatively high spatial resolutions (300–1500 m) and can
be installed, operated, and maintained in all weather
conditions at a reduced cost compared with satellite or
in situ sensor technology. HF radars are used routinely
to measure ocean surface currents (e.g., Barrick 1977b;
Wyatt et al. 2006; Parks et al. 2009) , ocean wave spectra
(e.g., Barrick 1977a, c; Wyatt 1986; Gurgel et al. 2006;
Haus et al. 2010), and even wind direction (e.g., Heron
and Rose 1986; Harlan and Georges 1994; Wyatt et al.
2006). However, the measurement of wind speed still
poses a challenge. HF radars couple to much longer (5–
12 m) Bragg resonant ocean waves than microwaves
and, thus, need longer time to respond to changing
wind conditions. Most existing methods (cf. Dexter and
Theodorides 1982; Green et al. 2009) utilize the whole
or part of the wave spectrum obtained from analysis of
the second-order signal (see Section 2) to extract wind
speed information and they assume that the ocean wave
spectrum is in equilibrium with the prevailing wind.
However, the use of the second-order signal suffers

from reduced range coverage (when compared with
the first-order signal) and also there might be parts of
the ocean spectrum contributing to the second-order
signal that are not related to local wind conditions (e.g.,
swell). Stewart and Barnum (1975) suggested wind
speed derivation from the widening of the first-order
Bragg peaks, but their approach using sky-wave HF
radar data was found to be limited (cf. Green et al.
2009). With these limitations in mind, we investigate the
potential of using Bragg resonant ocean waves for wind
speed retrieval as this is a stronger signal compared
with the second-order signal. Vesecky et al. (2005) have
also presented a method for the estimation of wind
information from first-order signals. However, their
method exploits the near-surface current shear that can
be estimated using multi-frequency systems. Applica-
tion of the method with single-frequency systems, as in
this study, requires further research, something beyond
the scope of this paper.

The objective of this work is to develop a new
method to estimate wind speed based on the first-order
Bragg peaks from single-frequency systems. Given the
non-linearity of the problem, artificial neural networks
(ANNs) are used to establish the complex relation-
ship between wind speed and first-order radar signal.
Our hypothesis is that if an ANN is trained with a
sufficiently variable set of in situ data, covering a wide
range of conditions, then it can be used to estimate the
local wind speed from the first-order Bragg peaks.

This paper is organized in sections dealing with
specific issues. Section 2 provides a brief description of
the operation of the HF radars, the signal they record,
and its relation to wind-generated ocean waves. In
Section 3, the relations between wind speed, Bragg fre-
quency, and directional spreading, with respect to radar
signals are explored and new wind inversion methods
are developed. The experimental setups and data used
to test our methods are presented in Section 4. The
results from applying the new methods to the exper-
imental data are shown in Section 5 together with a
discussion on our findings. Finally, the conclusions are
presented in Section 6.

2 Background

The HF radio band covers frequencies 3–30 MHz which
correspond to wavelengths 100–10 m. The radar trans-
mitted electromagnetic (EM) wave is coupled with the
ocean surface at the air–sea interface and propagates
beyond the horizon following the curvature of the
earth. Some energy of the sea-surface-coupled EM wave
is scattered back to the radar by the surface ocean waves.
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Fig. 1 An example of a measured Doppler spectrum at
27.65 MHz radar frequency showing the location of the first-
order Bragg peaks and the second-order sidebands marked in
gray, where the strongest signals within the continuum generated
by second-order interaction can be expected

The strongest signal observed by the radar receiver is
due to scattering from ocean waves with a wavelength
λw which is half the wavelength of the emitted EM
wave λel (cf. Crombie 1955). This process is known as
Bragg scattering and leads to a pair of distinct peaks
located on either side of the 0 Hz line. In case of still
water, i.e., without any ocean current, these first-order
Bragg peaks appear at a Doppler frequency of fB =
±2cp/λel caused by the phase velocity cp = √

gλw/2π

of the Bragg resonant ocean waves moving toward and
away from the radar, where g is acceleration due to
gravity. An example of a radar Doppler spectrum and
the associated Bragg signal is shown in Fig. 1.

The energy found around the two first-order Bragg
peaks is due to second-order interaction between the
transmitted EM wave and two ocean waves which gen-
erates a continuum around the first-order Bragg peaks.
The strongest contributions within the continuum are
usually referred to as “second-order sidebands” and
shown in Fig. 1. Hasselmann (1971) was first to suggest
that the “second-order interactions yield a two sided
image of the surface wave spectrum on either side of the
first-order Bragg line.” This relationship was quantified
initially by Barrick (1972b) and later on by Gill and
Walsh (2001), who introduced the equations for the
first- and second-order cross-sections describing the
EM/ocean wave scattering process.

2.1 Range dependency

The propagation of the radar emitted EM wave de-
pends on the transmitted power Ptr, but it is also

subject to attenuation that reduces the effective range
of the system. Attenuation depends on a number of
parameters including sea conductivity (i.e., salinity and
temperature), radar frequency (cf. Gurgel et al. 1999b),
thermal and atmospheric noise (cf. Shearman 1983),
and radio interference. In addition, sea state influences
propagation of the EM wave (cf. Barrick 1971a, b;
Forget et al. 1982). Range increases with increasing sea
state due to a stronger backscatter signal but at the
same time attenuation increases due to loss of power
by stronger backscatter at shorter ranges. Overall, the
total loss of power with range is usually described by a
“path loss” parameter denoted as Ar.

Figure 2 shows a range-dependent Doppler spec-
trum obtained with a 12.5-MHz Wellen radar (WERA)
radar system. It is noticeable that the first-order peaks
extend as far as 120 km in range while the second-
order sidebands contain less energy than the first-order
peaks and, thus, cannot be traced at ranges exceeding
40 km. This example was obtained under low sea state
conditions (significant wave height Hs = 0.7 m). Under
higher wave conditions the power of the second-order
sidebands increases leading to extended ranges (i.e.,
approximately 60 km at Hs = 1.5 m, not shown here).
As a consequence, utilization of first-order peaks could
lead to extraction of environmental parameters over
longer range than the use of the second-order signal.

Fig. 2 An example of a measured RD spectrum at 12.5 MHz
radar frequency showing the strong first-order Bragg peaks and
the associated second-order sidebands as a function of range.
This spectrum was acquired during the Ligurian Sea experiment
at Palmaria, 05/30/2009, 03:06 UTC with a coherent integration
time of 18 min
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This is particular true for low sea state conditions and
low radar frequencies (cf. Barrick 1977a).

2.2 Wind speed and direction estimation
from HF radars

For over 30 years, first-order Bragg peaks have been
used to estimate the velocity component (radial) of the
ocean surface along the direction of the HF radar beam
(cf. Barrick 1977b). This application is now well ac-
cepted worldwide and HF radars increasingly become
an integral component of ocean monitoring systems (cf.
Gurgel et al. 2011; Savidge et al. 2011). On the other
hand, second-order sidebands can be used to derive non
directional ocean wave spectra (cf. Barrick et al. 1974)
or wave height (cf. Heron and Prytz 2002). Gurgel et al.
(2006) provided an empirical method to estimate the
ocean wave spectrum from the second-order sidebands,
that is extended to the directional spectrum when in-
formation from two stations are available. Also Wyatt
(1986) and Wyatt et al. (2006) have presented a method
to invert Barrick et al.’s (1974) integral equation for
the second-order cross section; it uses the measured
second-order Doppler spectrum to estimate the ocean
directional wave spectrum. More recently, Haus et al.
(2010) suggested a method to correct the bias in ocean
wave height estimates from a single radar site intro-
duced by the angle between the radio beam and wave
direction.

Wind direction can be derived from evaluating the
ratio of the two first-order Bragg peaks from at least
two radar sites. If the radar frequency is high (25–
30 MHz), the Bragg resonant waves are relatively short
(6–5 m) and they closely follow changes in the wind
field.

Except for an early approach by Stewart and
Barnum (1975) and the multi-frequency method by
Vesecky et al. (2005), wind speed derivation techniques
to date are based on the analysis of the second-order
sidebands. Dexter and Theodorides (1982) provided a
method using wave height (Hs) and peak frequency (fp)
to estimate wind speed by relating these parameters to
wind speeds required to generate waves with similar
characteristics. Likewise, if we assume that the ocean
waves are in equilibrium with the wind field, a Pierson–
Moskowitz type ocean wave spectrum (cf. Pierson and
Moskowitz 1964) can be formulated. Green et al. (2009)
used this estimated wave spectrum as a forcing to
simulate the second-order sidebands within the radar
Doppler spectrum with the model described by Gill
and Walsh (2001); a relationship was established that
relates the peak frequency of the simulated second-
order sideband to fp of the wind-driven ocean wave

spectrum. This relationship was then used to extract
wind speed from the observed peak in the radar second-
order sidebands. This method, although promising, was
verified with a limited data set of only 7.5 h covering a
very narrow range of wind conditions.

Overall, the use of second-order sidebands for wind
inversion suffers from the fact that these signals contain
information on the ocean wave spectrum, which might
not always represent only local wind conditions. The
use of a Pierson-Moskowitz or JONSWAP spectrum
(cf. Hasselmann et al. 1980) as a transfer function
between second-order radar signal and wind speed is
valid only if the wind speed is high enough to dominate
the ocean wave spectrum (i.e., U10 ≥ cp, where cp is
the spectral peak-wave phase speed). If the wind speed
decreases, the spectrum is no longer in equilibrium with
the prevailing wind conditions. Also, if swell waves are
present and the full wave spectrum is not available
to distinguish frequency ranges corresponding to wind
conditions, then the assumed Pierson–Moskowitz or
JONSWAP spectra will have a peak frequency which is
shifted toward lower frequencies than the spectra cor-
responding to pure wind-generated waves. In this case,
the assumed transfer relationship between driving wind
speed and ocean waves can lead to incorrect results.

3 Methods

In this section, the relationships between wind speed
and direction to ocean waves at specific frequencies
corresponding to a radar’s Bragg resonant frequency
are developed. This is carried out in order to identify
any limits imposed in relating wind-speed estimates to
first-order radar Doppler spectral peaks.

3.1 Wind speed and Bragg frequency

As explained earlier, radars can only provide signals
that reflect ocean wave conditions. Any attempt to
obtain wind information assumes utilization of the re-
lationship between wind forcing and wave generation.
The use of the first-order peak of the radar Doppler
spectrum restricts the applicability of this transfer func-
tion to a single frequency of the ocean wave spectrum
that corresponds to the radar frequency dependent
Bragg resonant ocean waves. There is also a depen-
dency on the radar look direction which is discussed
in the context of first-order Bragg scattering and direc-
tional spreading in Section 3.3.

The restriction in frequency poses some limitations
on the ranges of wind speeds that the particular Bragg
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frequency responds to. These limitations could be
defined using a theoretical ocean spectrum in equilib-
rium with the prevailing wind conditions (e.g., JON-
SWAP or Pierson–Moskowitz). However, these spec-
tra assume stationary equilibrium conditions with the
wind. An alternative method is to use ocean wave
spectra that have been estimated numerically under
non stationary conditions.

With this in mind, ocean spectra generated in the
frame of HIPOCAS (cf. Soares 2008), have been inves-
tigated. HIPOCAS is an EU-funded project designed
to obtain a 40-year hindcast of wind, wave, sea level,
and ocean current climatology for European waters
and coastal seas. High-resolution wave spectral data
were generated using a third generation version of
WAM (cf. Hasselmann et al. 1988) run in a nested
grid approach. WAM is a non-stationary surface wave
prediction model based on the energy density balance
equation in both frequency and direction coordinates.

One year of three-hourly data of wind speed and
direction as well as ocean wave directional spectra from
seven locations within the North Sea were available.
The hindcasted wave directional spectra used, con-
sisted of 28 frequency bins covering the range 0.04–
0.55 Hz and with a directional resolution of 15◦. An
example of the WAM-generated directional spectra is
shown in Fig. 3 where three wave components can be
identified. The wave system with the highest energy
travels toward the southeast and has a frequency of
approximately 0.1 Hz. These waves are identified as
swell and, thus, they are not related to local wind
forcing. The wave component in the frequency band
0.2–0.4 Hz traveling toward the northeast is aligned
with the local wind direction. These waves represent
the wind sea component of the wave spectrum which is
suitable for wind inversion. The third wave component

traveling toward the southsouthwest is a weak wind
sea component remaining from previous wind forcing.
Another important aspect relevant to this work is the
behavior of the directional spreading. The directional
spreading of the swell is much narrower than that of the
wind seas and this is something that can be exploited
further for identifying wind generated waves.

In order to investigate how the waves at a certain
frequency react to different wind speeds, 1 year of
WAM-generated spectra were analyzed. Spectra from
a single location (3.00◦ E, 55.10◦ N) in the middle of
the North Sea, over 200 km away from the coast were
selected. Each individual frequency band from each
energy spectrum was integrated over all directions, and
the total energy corresponding to frequency bands of
0.28, 0.34, and 0.55 Hz were selected. These frequency
values correspond to the frequency of Bragg resonant
waves fB that could be seen by HF radars operating
at 7.59, 11.11, and 28.81 MHz, respectively. A scatter
plot of each frequency specific wave energy vs. the
corresponding wind speed conditions is shown in Fig. 4.
The scatter plot shows that the wave energy increases
with wind speed, with the rate of increase being higher
at lower frequencies. In addition, at least for the two
highest frequency bands (0.34 and 0.55 Hz) there is a
clear upper limit in wind speed. Beyond that limit the
wave energy at that frequency band seizes increasing
and reaches a saturation point. Saturation levels can
be observed at approximately 9 and 11 m/s for the
28.81 and 11.1 MHz radar frequency bands. Even for
the lowest frequency band of 7.59 MHz a threshold of
15 m/s can be identified. These thresholds denote the
upper wind speeds that can potentially be detected with
the radar systems.

In addition, some lower limits can be identified in
the figure. Theoretical arguments (cf. Hasselmann et al.

Fig. 3 Example of an ocean
wave directional spectrum
(right panel) and its
associated non-directional
wave spectrum (left panel)
estimated by WAM used in
HIPOCAS at 05/03/2004
09:00 UTC, 54.7◦N 5.0◦E
(40 m water depth). Direction
is “going to”
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Fig. 4 Wave energy density levels at specific frequencies cor-
responding to Bragg waves for radars operated at a 7.59 MHz,
b 11.11 MHz, and c 28.81 MHz plotted against local wind speed.
Vertical lines show upper and lower limits of regions where the
rate of increase of wave energy is proportional to wind speed.
The lower limit is derived theoretically (see text), while the upper
limit delineates the wind speed where energy starts saturating.
Wave energy levels were estimated using WAM derived wave
spectra from the North Sea

1980) suggest that for the selected frequencies the wind
speed should be larger than the phase speed of the
particular Bragg ocean waves. Assuming deep water
conditions, wind speeds of 5, 4, and 2.5 m/s are es-
timated as lower limits for radar frequencies of 7.59,
11.11, and 28.81 MHz, respectively. These wind speeds
appear to be close to those identified in Fig. 4 as the
locations of changing slope in the wave power vs. wind
speed diagram.

The relationship between wave power density and
local wind speed for a given wave frequency band
(Fig. 4) suggests that the wind speed can be inverted
from wave power density until a frequency dependent
upper threshold is reached. Beyond that threshold,
however, wave power density reaches a saturation level
where it remains relatively constant despite an in-
crease in wind speed. Note that WAM is estimating the
processes at the ocean surface and does not incorporate
EM scattering processes which, especially at high HF
frequencies (28 MHz), will result in an additional de-
crease of first-order backscatter power with increasing
wind speed (cf. Barrick 1971a, b; Forget et al. 1982).

3.2 Wind speed and wave directional spreading

In addition to the dependency of the wave energy on
wind speed described above, the directional spreading

of the wave directional distribution varies with wind
speed. Although a number of directional distributions
have been identified (e.g., Apel 1994; Donelan and
Pierson 1987; Elfouhaily et al. 1997; Kudryavtsev et al.
2005) in here we focus our discussion on the hyperbolic
secant function presented by Donelan et al. (1985), as
this is identified to give the most realistic up/down wind
ratio conditions for 5 to 20 m long ocean waves (cf.
Gurgel et al. 2006):

G(θ) = 0.5β · sech2(β · θ) (1)

where β is the directional spreading parameter which
has been shown to be a function of the ratio f/ fp, and
θ is an angle referenced to the mean wave direction.
Banner (1990), Banner et al. (1989) using data from
a high-resolution pitch and roll buoy showed that the
directional spreading parameter can be expressed as:

β =
{

2.28( f/ fp)
−0.65 ; 0.97 < f/ fp ≤ 2.56

10−0.4+0.8393 exp[−0.567 ln( f/ fp)] ; f/ fp > 2.56

(2)

In HF radar applications and for the first-order peak
applications discussed in here the frequency f of the
ocean waves in Eq. 2 corresponds to that of the Bragg
resonant waves fB. The wave peak frequency fp, on the
other hand, is related to wind speed and assuming a
JONSWAP wave spectrum (cf. Hasselman et al. 1973)
it is given by:

fp = 11.0

π

[
g2/(U10 F)

]1/3
(3)

where F is the fetch of the wind and U10 is the wind
speed measured at 10 m above the sea surface. Thus,
Eq. 3 together with the radar frequency can be used
to derive the ratio f/ fp which in here corresponds to
fB/ fp. The relationship shown in Eq. 3 indicates that
at locations close to land (i.e., small fetch), the fp

value becomes very large. So care should be taken that
the ratio fB/ fp > 1. This is a radar frequency depen-
dent limitation as lower frequency radars resonate with
longer waves and as such are more susceptible to this
limit. In addition, the wave age as described by the
ratio U10/cp might affect the directional spreading of
the waves (cf. Hasselmann et al. 1980; Donelan et al.
1985), especially for higher frequencies.

3.3 HF radar first-order backscatter

In the following, we consider the radar echoes from a
given surface area (patch) Apatch of the ocean given in
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radial coordinates. The size of this area is defined by
its range r from the radar site, range cell width �r, and
beam width �φ. The radar look direction is given by
its azimuth φ0. In addition, the range r controls signal
attenuation (or path loss) defined earlier as Ar (see
Section 2).

The directional distribution G(θB) of the Bragg reso-
nant waves and the radio beam direction φ0 determine
the wave components receding and approaching the
radar site which correspond to the first-order peaks at
negative and positive Bragg frequencies, respectively.
The wind direction is assumed to be identical to the
direction of the short Bragg resonant waves (wind sea).
In order to explore this directional dependence of the
first-order Bragg peak, we first present the first-order
cross-section as it was originally formulated by Barrick
(1972a):

σ1(ω) = 26πk4
0

∑

m=±1

S(−2mk0)δ(ω − mωB) (4)

where k0 = 2π/λEM is the magnitude of the radar wave-
number vector k0, S(·) is the ocean wave spectrum,
ωB = 2π fB is the angular Bragg frequency, and δ(·) is
the Dirac function. The power of the first-order Bragg
peaks

P1(±ωB) = Ptr · Ar · Apatch · σ1(±ωB) (5)

is calculated from the transmitted power Ptr, the range
dependent signal attenuation Ar, the ocean’s patch size
Apatch and the cross-section σ1.

As Eq. 5 indicates, this power is proportional to
the energy of the Bragg resonant waves. The latter is
inserted into Eq. 5 through the spectral energy S(·) (see
Eq. 4). Combining Eqs. 4 and 5, the directional de-
pendence of the power of the first-order peaks can be
quantified using:

P1(+ fB) = κ · E( fB) · G(π + φ0 − θB)

P1(− fB) = κ · E( fB) · G(φ0 − θB) (6)

where κ is a radar dependent, proportionality factor
that can be derived from Eqs. 4 and 5. E( fB) is the
ocean wave power S(·) at Bragg frequency integrated
over all directions.

From Eq. 6, it is obvious that the power ratio of the
radar first-order peaks is defined by the ratio of the
directional spreading of the Bragg ocean waves so that:

R( fB) = P1(+ fB)

P1(− fB)
= G(π + φ0 − θB)

G(φ0 − θB)
(7)

In summary, wind speed and wave directional spread-
ing are closely related to each other (see Section 3.2).
In addition, wind speed affects the power of the first-

order peaks by controlling the wave energy spectrum
(see Eq. 6). Assembling all these dependencies, we can
show that wind speed depends on a number of variables
that can be measured using HF radar technology. This
can be expressed as:

U10 = F(P1(+ fB), P1(− fB), G(φ0 − θB), φ0) (8)

where F(·) is a non-linear transfer function knowledge
of which would allow its use for wind-speed inversion.
Required parameters in this function are the positive
and negative first-order peak power P1(± fB), the direc-
tional distribution of Bragg waves G(φ0 − θB) and the
radio beam direction φ0. In case of a single radar site,
only the two first-order peaks and the radio beam direc-
tion are available and no directional distribution can be
resolved. If a second radar is available, which looks at
the same area of the ocean but from a different angle,
this ambiguity can be solved and G(φ0 − θB) can be
estimated using a mathematical function. This function
could be a secant function with an assumed spreading
value β. However, in reality G(φ0 − θB) could be of a
different shape and not always described analytically.
We, therefore, propose the solution of this problem
using appropriately trained ANNs.

3.4 Wind-speed inversion using a neural network

ANNs are often used in applications where, although
a relationship is expected between two groups of pa-
rameters, the exact form of the relationship is either
unknown or too complicated to be described analyti-
cally. In such cases, the ANN can be trained through a
learning procedure that utilizes data from both groups
(i.e., input and output). If the training exercise is suc-
cessful then the “educated” ANN can be used with
input data to provide the wanted output (target data).
This concept is applied in here, where the transfer
function shown in Eq. 8, is the one that the ANN is
trying to simulate. In this application, the radar-derived
quantities with strong dependence on wind speed (i.e.,
power of first-order peaks, directional spreading, etc.)
are the input data to the ANN, while the in situ wind
data are the target data. A two-layer feed-forward
ANN utilizing error back-propagation (cf. Rumelhart
et al. 1986) trained with a Levenberg–Marquardt algo-
rithm (cf. Marquardt 1963) is applied using MatLab’s�

Neural Network Toolbox.

3.4.1 Wind-speed inversion using the power
of f irst-order peaks

For cases where both the training data set (i.e., in
situ wind speed and direction) and the input data sets
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(i.e., radar derived quantities) are from the same lo-
cation, radar range (r) and radio beam direction (φ0)
are constant. In such cases, any significant variations in
the power of the first-order signal are predominantly
due to variations in the wind-induced ocean wave sig-
nal. Although small variabilities due to environmental
conditions (e.g., atmospheric influences, variability of
intertidal zone width in front of the radars, etc.) are
possible, these are less significant and can be ignored.

In this case, the data being input to the ANN (Fig. 5,
left side) are provided by the positive and negative
first-order power peaks, P1i(+ fB) and P1i(− fB), ob-
tained by at least two radars at sites denoted by i =
1, 2. The dashed and black filled areas in Fig. 5 refer
to the specific wave directions that cause the Bragg
backscattering measured by the two radar sites. The
target data (see Fig. 5, right side) are in situ wind speed
and direction.

Although there are various methods available for the
selection of data to be used in training a neural network
(cf. Rojas 1996), in this work we elected to use the
method called random data division (cf. Demuth et al.
2009). This method selects data randomly from our
existing data set ensuring inclusion of all environmental
conditions encountered during the field experiments. In
the selection of the training, validation and testing data
sets the common practice (cf. Kaastra and Boyd 1996)
requires the training set to be the largest one while the
testing set should vary between 10% and 30% of the
total data set. For this work, we elected 60% as the
training data set and we split the remaining data into
validation (20%) and test (20%) data sets. The training
data set is used to adjust the ANNs internal weights

Fig. 5 Schematic diagram of the first-order peak power wind
inversion technique. Left, ANN input data consisting of two pairs
of first-order peak power. The radar look direction φ0 is in the
center of the beam given by its bounds φ1 and φ2. Right, ANN
output data consisting of wind speed and direction

while the validation data set is used during the recursive
training steps to find the point of best ANN prediction
while avoiding over-fitting. Thus, while both training
and validation data sets are used to formulate the ANN
model, the test data set is used to independently test the
final result. The ANN employed in this case uses four
input neurons, twelve neurons in the hidden layer and
three neurons in the output layer.

3.4.2 Wind-speed inversion using the directional
distribution of Bragg waves

At locations within an area covered by two or more
radars, that differ from that with in situ data avail-
ability, the radar ranges (r) and radio beam directions
(φ0) between the ANN training location and inversion
locations are different. This results in variations of the
power of the first-order signal due to path loss (Ar) and
differences in the relative angle between radio beam
and the Bragg ocean wave directional distribution, even
if the wind conditions are identical at the two locations.
As a result, an ANN trained with data at a particular
location could be used at other locations only if a cor-
rection for range and direction differences is applied to
the radar signal prior to inversion. Alternatively, other
parameters should be used for wind inversion (i.e., both
ANN training and prediction) that do not depend on
radar range and direction.

In this case, utilization of the dependency of wind
speed on directional spreading (β) as presented in Sec-
tion 3.2 is exploited. The mean wave direction of the
Bragg ocean wave can be estimated from the ratio of
the first-order Bragg peak power by combining Eqs. 6
and 1 and solving for the mean wave direction:

θB = φ0i ± 1

2β
ln |1 − √

Rie(−β·π)

√
Rie(β·π) − 1

| for i = 1, 2 (9)

where Ri is the ratio of the first-order radar signal
power from station i (Eq. 7). Thus, solving this system
of two equations, one for each radar site (i = 1, 2), a
unique solution for the mean wave direction (θB) and
the spreading parameter (β) can be obtained. These
values are then used in the ANN training, with the wave
direction (θB) converted into vector form consisting of
sine and cosine components. These three quantities are
taken for the specific radar beams and ranges pointing
to the particular area of the ocean where in situ wind
direction and speed data are available.

As shown schematically in Fig. 6, the ANN utilized
in this case uses three input neurons, ten neurons in the
hidden layer, and three neurons in the output layer. As
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Fig. 6 Schematic diagram of the “directional distribution” wind
inversion technique. Left, ANN input data consisting of spread-
ing parameter (β) and wave direction (θB) at Bragg frequency.
Right, ANN output data consisting of wind speed and direc-
tion (θW)

in the previous case, training, validation, and testing is
carried out using 60%, 20%, and 20% of the wind data
samples, respectively.

Once the ANN is trained, θB and β values can be
calculated for other locations within the radar coverage
area using Eq. 9. These values are then passed into

the ANN which estimates wind speed and direction
within the area covered by both radars. The advantage
of this method compared with the ANN described in
Section 3.4.1 is that it allows for “spatial extension” to
the whole radar coverage area.

4 Data collection

Data sets from two HF radar deployments have been
used to evaluate the inversion methods outlined in
the previous section. Different experimental setups and
radar frequencies were used in each experiment and the
details are described below.

The first deployment occurred at the Ligurian Sea,
Italy, and provided data for a period of 3 months
from 7 May to 17 July 2009. During this experiment,
the radars were installed on the island of Palmaria
and in San Rossore close to Pisa (see Fig. 7, left).
The second deployment was carried out as part of the
“European Radar Ocean SEnsing” (EuroROSE) (cf.
Günther et al. 1998) experiment conducted in Fedje,
Norway, during the period 8 February to 3 April 2000.
Two radars were installed on the islands of Fedje and
Lyngøy, respectively (see Fig. 7, right).

Fig. 7 Left, the area of the Ligurian Sea experiment showing the
locations of the radars at Palmaria and San Rossore, as well as
the location of the meteorological buoy. Right, the area of the
EuroROSE Fedje experiment showing the locations of the radars

at Fedje and Lyngøy islands. Wind data were collected at the
light house 3 km south of the Fedje site. Mark “A” indicates the
location used to verify the methods presented in this paper
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In both experiments, WERA systems (cf. Gurgel
et al. 1999a) were used in beam forming mode that en-
able accurate derivation of the second-order sidebands
at a wide range of angles (±60◦) allowing wave and
wind inversion from second-order sidebands. Each site
consisted of linear arrays of 16 receive antennas. The
operating frequencies used were 12.5 and 27.68 MHz
for the Ligurian Sea and Fedje experiments, respec-
tively, corresponding to Bragg resonant ocean wave-
lengths of 12.0 and 5.4 m.

During the Ligurian Sea experiment the two radars
were operated simultaneously collecting 9 min of data
every 20 min. Wind data at a 10 min interval were ob-
tained from a meteorological buoy deployed between
the two radar sites and approximately 30 km offshore
(see Fig. 7, left).

During the Fedje experiment, radar data collection
rates were similar to that of the Ligurian Sea exper-
iment. To avoid interference with each other, no si-
multaneous transmission was allowed and site 2 was
transmitting after site 1 finished its 9 min transmission
period. No in situ wind measurements were available
within the radar coverage area. The nearest wind data
(hourly wind speed and direction) were collected with
an anemometer installed on a lighthouse, 3 km south
of the Fedje radar site. In this work we assume that
these wind data also apply in the vicinity of the loca-
tion marked “A” in Fig. 7 (right), where our inversion
methods are tested.

A histogram of the wind speeds for each experiment
is shown in Fig. 8. The range of wind speeds encoun-
tered during the Norwegian Sea experiment extended
up to 20 m/s; significantly higher than those measured
during the Ligurian Sea where the maximum wind
speeds recorded were 10 m/s. Overall 67.4% of the wind
records in the Norwegian Sea exceed the 5 m/s value

while only 18.9% of the total data winds exceeded that
value in Italy.

5 Results

5.1 Wind-speed inversion using the first-order
peak method

In this section application of the wind inversion tech-
nique described in Section 3.4.1 that uses the first-order
peak method is evaluated for the two experiments.

5.1.1 Ligurian Sea experiment

During the Ligurian Sea experiment, the availability of
in situ wind data enables us to test the wind inversion
technique described in Section 3.4.1 that uses the power
ratio of the first-order peaks from the two radar sites.
The results from the ANN training, verification and
testing stages are shown in Fig. 9 as scatter plots. The
correlation coefficient during all ANN stages is approx-
imately 0.7 while the root-mean-square error values
range from 1.20 to 1.36 m/s. It is noticeable that most of
the data points are clustered at the low wind speed re-
gion due to prevailing conditions during the experiment
(see Fig. 8b). Therefore no saturation of Bragg waves
appears to occur at high wind speeds, although the data
in this region scatter below the 1:1 line. At low wind
speeds (< 5 m/s) the ANN values fail to agree with the
in situ data. However, this is not surprising as according
to the theory (cf. Hasselmann et al. 1980), for this radar
frequency (12.5 MHz), a minimum wind speed of 4 m/s
is required for the development of ocean waves at the
corresponding Bragg frequency. Under such low wind
conditions, the signal registered by the radar is due to

Fig. 8 Histograms of wind
speed recorded during the
experiments a at the Ligurian
Sea and b at Fedje
(Norwegian Sea)
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Fig. 9 Neural network performance for the first-order peak
method. Scatter plot of a training, b validation, and c test wind
speed data sets from the ANN against the in situ wind data
during the Ligurian Sea experiment. The 1:1 line is shown in black
while the red line is a second-order polynomial least-square-fit

used to visually identify the trend of the data. Note: Correlation
coefficients (CC) and root mean square errors (RMSE) are also
shown. Vertical dashed lines define the wind speed range where
Bragg waves for this radar frequency are directly related to wind
speed (see text for details)

waves not associated with the prevailing atmospheric
forcing and measured and inverted wind directions are
not expected to match. This is in agreement with our
wind speed/Bragg wave frequency analysis using the
WAM-derived data set (see Section 3.1).

5.1.2 Fedje experiment

Similar analysis to the one described above was carried
out for the Fedje experiment. Contrary to the Lig-
urian Sea experiment, this data set encompasses a wide
range of wind speeds up to approximately 20 m/s (see
Fig. 8a). Also, the frequency of the systems used was
27.68 MHz that corresponds to a Bragg ocean wave
with wavelength and frequency of approximately 5.4 m
and 0.54 Hz, respectively. At this ocean wave frequency
a minimum wind speed of 2.5 m/s (lower limit) is re-
quired for the generation of wind driven waves, while
the model derived wave analysis (see Section 3.1) sug-
gested that at wind speeds greater than approximately
9 m/s (upper limit), the wave energy at this Bragg fre-
quency saturates. The results from the different ANN
development stages are shown in Figs. 10 a, b and c as
scatter plots, with the lower and upper limits drawn as
vertical dashed lines. The correlation coefficient during
all ANN stages is on average 0.82 while the root-mean-
square error values are approximately 2.1 m/s. The data
scatter around the 1:1 line. However, the least-squares-
fit analysis suggests a better agreement in the range
of 2.5 to 9 m/s wind speed, while at higher speeds
a deviation occurs in accordance with the expected
saturation of wave energy. Beyond this saturation limit,
methods based on second-order sidebands (e.g., Dexter

and Theodorides 1982; Green et al. 2009) can be used if
the signal-to-noise ratio allows.

Figure 10d–f shows the ANN wind direction results
for the same data set discussed above. The direction
plotted on the y-axis is calculated from the cosθW and
sinθW output data of the ANN. The root-mean-square
error values for the training, test and validation data
are around 20◦. However, some individual inversion
results show large errors, possibly associated with high
wind speeds. This method requires that the ANN is
trained with the four peak Bragg power values only
and there is not any explicit wave distribution model
involved. Under low and moderate wind conditions the
ANN training is sufficient to take care of any angular
distribution by itself. However during storm events the
Bragg peak power reaches saturation and the ANN
can no longer distinguish the different situations, which
may be the reason for the outliers.

5.2 Wind-speed inversion using the directional
distribution of Bragg waves

In this section application of the wind inversion tech-
nique described in Section 3.4.2 that uses the directional
distribution of Bragg waves method is evaluated for the
two experiments.

5.2.1 Ligurian Sea experiment

The results from the ANN training, verification, and
testing stages for the Ligurian Sea experiment are
shown in Fig. 11 as scatter plots. The overall pattern is
similar to that found for the same experiment using the
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Fig. 10 Results from the
Fedje experiment: a–c same
as in Fig. 9. Also, scatter plots
of wind direction data sets for
d training, e validation, and
f test from the ANN against
wind direction measured at
the lighthouse. The 1:1 line is
shown in black and the root
mean square errors (RMSE)
are also given
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first-order peak method but with significantly greater
scatter around the 1:1 line indicating reduced perfor-
mance. The influence of the lower limit is also visible
in this example. As discussed in Section 5.1.1, measured
and inverted wind directions are not expected to match.

Despite the limitations of this inversion technique,
since it does not depend on radar range and beam
direction, it has the advantage that it can be extended

to locations different from that used for ANN train-
ing. This is shown in Fig. 12 for May 14th, 2009 at
03:00 hours. At that time, the recorded wind speed
was 4.9 m/s with a direction of 128◦ N. The inversion
technique predicted a wind speed of 5.1 m/s with a
direction of 127◦ N. Note that in this example, the wind
speed is above the lower limit required for application
of the inversion technique.
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Fig. 11 Neural network performance for the directional distrib-
ution of Bragg waves method. Scatter plot of a training, b valida-
tion, and c test wind speed data sets from the ANN against the in
situ wind data during the Ligurian Sea experiment. The 1:1 line is
shown in black while the red line is a second-order polynomial

least square fit used to visually identify the trend of the data.
Note: Correlation coefficients (CC) and root mean square errors
(RMSE) are also shown. Vertical dashed lines define the wind
speed range where Bragg waves for this radar frequency are
directly related to wind speed (see text for details)
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Fig. 12 Ligurian Sea experiment: wind vectors at 05/14/2009,
03:00 UTC over the whole radar coverage area derived using
the directional distribution of Bragg waves method. The arrows
indicate the direction; the color in the background gives the
absolute value. The wind speed measured at the meteorological
buoy at this time is 4.9 m/s from 128◦

5.2.2 Fedje experiment

The wind speed results of ANN training, verification
and testing stages for this experiment are shown in
Fig. 13a, b and c, respectively. The upper limit satura-
tion in this example is much clearer than it was for the
first-order peak method. This difference between the

two methods suggests that spreading is a much more
sensitive parameter to saturation of Bragg waves while
the first-order peak method partially compensates for
that during the network training process.

The ANN wind direction results are shown in
Fig. 13d, e and f with the direction obtained from the
ANN plotted along the y-axis. The root-mean-square
error values for the training, test and validation data
are around 23◦, which is slightly higher than that found
using the first-order peak method. Again, some indi-
vidual inversion results show large errors, which may
be related to high wind speed causing saturation of
Bragg waves and in this way introducing errors to the
calculation of directional spreading.

For the relatively short Bragg waves and high wind
speeds encountered during this experiment both Bragg
wave and wind directions are expected to be almost
identical so that the ANN predicted direction should
not be significantly different. A comparison of the mea-
sured Bragg wave and ANN predicted directions (not
shown here) revealed a root-mean-square difference of
approximately 15◦.

Similar to the Ligurian Sea experiment, the method
allows us to extend wind vector estimates over the
whole radar coverage area, as shown in Fig. 14 for
March 31st, 2000 at 15:00 hours.

The recorded wind speed at location “A”–see star
symbol in Fig. 7, right—was 7.2 m/s with a direction

Fig. 13 Results from the
Fedje experiment: a–c same
as in Fig. 11. Also, scatter
plots of wind direction data
sets for d training, e
validation, and f test from the
ANN against wind direction
measured at the lighthouse.
The 1:1 line is shown in black
and the root mean square
errors (RMSE) are also given
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Fig. 14 Fedje experiment: wind vectors at 03/31/2000, 15:00 UTC
over the whole radar coverage area derived using the directional
distribution of Bragg waves method. The arrows indicate the
direction; the color in the background gives the absolute value.
The wind speed measured at the meteorological buoy at this time
is 7.2 m/s from 340◦

of 340◦ N, while the inverted speed is 7.1 m/s with a
direction of 347◦ N. Spatial variability both in speed and
direction can be seen in the figure, although we can not
verify its accuracy. Figure 14 shows a typical result for
a situation when the first-order Bragg peak power was
not saturated.

5.3 Method limitations

The comparison between wind inversion techniques
and actual data showed a significant scatter with in-
creased scatter for the method that includes the az-
imuthal distribution of the waves. The latter might
indicate problems with the selection of the directional
distribution model used. In addition, this scatter can be
attributed to measurement errors and/or natural spatial
and temporal variability of the area of the ocean the
radar signal is scattered from.

The in situ wind data for the experiments presented
in here and the radar signal represent temporal av-
erages over similar time periods (10 and 9 min for
the wind and radar data, respectively). This suggests
that no differences due to the integration time are ex-
pected. However, given that the radar sees wind waves,
this suggestion assumes a linear relationship between
wind and waves, which is not the case. Within the
averaging time period (10 min in this study) a mean
wind speed value is estimated, there are a number of
short term wind variations (gusts and squalls) that have
significantly lower temporal (1 to 2 min) variations.

This is well known in meteorology and a gust factor
has been developed which is defined as the peak over
mean wind speed. This factor is used to relate mean
wind speed to the maximum wind occurring during
the time interval utilized to estimate the mean value
(cf. Tattelman 1975). It was found that the gust factor
decreases with increasing wind speed, suggesting more
gusts being present at lower wind speeds. Lavrenov
(2003) characterizes these wind oscillations and he used
a numerical simulation to evaluate their effect in the
development of wind wave spectrum. The wind gust
effects were parameterized as quasi-oscillations and
were numerically approximated as fluctuations of the
JONSWAP spectrum (cf. Hasselman et al. 1973). The
results showed that such oscillations in wind produce
a significant effect on the non-linear wave spectrum
evolution. This effect was more significant at the initial
stages of development of a wind spectrum and becomes
smaller for a developed sea suggesting more effects
under low wind conditions.

Introduction of this variability in the first-order
cross-section equation (Eq. 4) could lead to variability
of the first-order Bragg ratio. At present, the non-linear
nature of such variability makes it difficult to account
for and more theoretical work is required. In order to
obtain some additional information on the impact of
this variability on the power of the first-order Bragg
peaks, 55 min of coherent backscatter signals measured
at the Palmaria site (12.5 MHz) have been investigated.
99 spectra with 512 samples each, 2.22 min integration
time and 75% overlap in time have been calculated.
A time stack of these spectra is shown in Fig. 15a.
Figure 15b gives the power of the Bragg peaks for
each individual spectrum (2.22 min) and averaging five
and ten spectra (4.44 min and 7.21 min, respectively).
Figure 15c shows the power ratio of the Bragg peaks,
which is used to find the direction of the Bragg waves
with respect to the radar look direction. Note that a
strong variability is observed for the single spectra.
This variability is reduced when averaging five spectra
and it almost disappears when averaging ten spectra.
The angle between the radar look direction and the
wind direction measured by the meteorological buoy
is shown in Fig. 15d. Note that the changes in wind
direction measured at the buoy and the Bragg peak
ratio for 7.21 min averages are closely related to each
other. As the integration time of the HF radar data
was set to 9 min, the impact of the first-order Bragg
peak variability on the results of the ANN methods is
considered to be insignificant.

As discussed earlier, the clutter observed in the re-
sults from the ANN methods can be caused by the
directional model selected for fitting the Bragg peak
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Fig. 15 Doppler spectra and first-order peak power variability
over a period of 55 min from the 12.5 MHz radar at Palmaria
during the Ligurian Sea experiment for a range cell and beam
direction coinciding with the location of the meteorological buoy
(see Fig. 7). a Time stack of individual Doppler spectra estimated
using 512 points with a 75% overlap. b First-order peak power
levels for positive (blue) and negative (red) Bragg frequencies.
Estimates from individual spectra (2.22 min) and averaged spec-
tra of five and ten segments (4.44 min and 7.21 min, respectively)
are shown. c Ratio of positive over negative frequency first-order
peak power of the estimates shown in b. d Ten min averaged wind
vectors from the meteorological buoy (red line indicates radar
beam direction at the buoy location)

ratio. The model used here is the sech2(β · θ) distrib-
ution (see Eq. 1), which was identified to give the most
realistic up/down wind ratio compared with measure-
ments (cf. Gurgel et al. 2006). In case of a different
directional model such as a cardioid model with a wind
speed dependent exponent (e.g. Tyler et al. 1974) or
other directional models such as those described in
Elfouhaily et al. (1997) or Kudryavtsev et al. (2005) the
expectation is that the ANN will train itself to identify
the differences through the training process. A more
significant problem might arise in cases of bimodal
wave directionality. Gagnaire et al. (2010) (see their
Fig. 12) showed that for frequencies twice the peak
frequency the directionality of the spectrum becomes
bimodal with the majority of the energy being focused
at ±60 degrees from the wind mean direction. Such
bimodality is not represented in the model used in this
study. Unfortunately the buoy measured directional in-
formation available for the Fedje experiment are based
on a cosine-2s directional model and as such are con-
strained by the model used. We do not have directional

model independent information on the wave spectrum
to prove if our selection of the directional model intro-
duces problems in the inversion, although the ability of
the ANN to train itself under such conditions is unclear.

6 Conclusions

Two new methods for the extraction of wind speed
estimates using the first-order peak energy of HF radar
backscatter Doppler spectra have been presented. Both
methods utilize ANNs to fit the non-linear relationship
between wind and Bragg ocean waves and require data
from at least two radar sites. One of the methods is
based on the first-order peaks while the other one
uses the spreading of the directional distribution of
Bragg waves. The latter method, although less accu-
rate than the former, can be extended throughout the
radar coverage area. Both methods require wind speeds
greater than the phase velocity of the ocean wave at the
Bragg frequency (low limit condition). At high wind
speeds, wave energy saturation limits applicability of
the methods with the first-order peak method being less
sensitive to this effect.

For wind-speed inversion from HF radar first-order
peaks, the new methods can be applied at low and mod-
erate wind speeds (greater than the lower limit for the
particular frequency used) while application of existing
second-order methods will be limited to shorter ranges
due to the reduced signal-to-noise ratios. Above the
saturation limit the methods based on analysis of the
second-order signal are more suitable as its signal-to-
noise ratio increases with higher wind speeds. A hybrid
of first- and second-order methods is recommended for
operational use.

Regarding the portability of the trained ANNs to
other locations or radar frequencies, there are some
limitations to be taken into account. The application
of ANN as presented in this work is valid only for the
environmental conditions (winds and wind-generated
waves) and radar frequencies used during the training
and validation of the network. The ANN will not be
transferable to different HF radar frequency systems
even if they operate on the same site, as these new
systems will be extracting information from a different
part of the spectrum not used in the training of the
network. Application of the ANN with a system of the
same frequency but on a different location could be
used with caution as there are variables (e.g., fetch) that
could change the fB/ fp ratio and, thus, the part of the
spectrum seen by the radar. Depending on how much
this ratio changes it could potentially invalidate the
ANN training. Despite these limitations, the strength
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of the method lies in the fact that training of the ANN
can be achieved through the deployment of an in situ
station for a limited period of time and once the training
has been completed then the ANN supported inversion
can be used for long-term HF radar operation.

This effort has presented the fundamentals for using
the first-order Bragg resonant scatter signal for esti-
mating wind data using HF radars, and it presented
some methods and preliminary results. However, more
work is required for its validation under different wind
conditions and for different directional distributions.
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