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Abstract Much remains to understand the dynamic processes
during the flow of submarine landslides. A first relevant
problem is to explain the extraordinary mobility of submarine
landslides, which has no comparison in subaerial mass
movement. Another challenging question is the apparent
disparity between submarine landslides that remain compact
for hundreds of kilometres and those that disintegrate during
the flow, finally evolving into turbidity currents. This problem
is linked to a central ongoing debate on the relative importance
of turbidity currents versus submarine landslides in reshaping
the continental margin. Based on three epitomic case studies
and on laboratory experiments with artificial debris flows of
various composition, we suggest a possible explanation for the
disparity between compact and disintegrating landslides,
identifying the clay-to-sand ratio as the key control parameter.
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1 Introduction

The present understanding of submarine landsliding is some-
how unsatisfactory. On one hand, the analysis of the deposits
reveals that submarine landslides may acquire extraordinary
mobility. On the other hand, although the products of mass
movement are easily recognised, the dynamic processes of
submarine landsliding have never been observed in full scale.
Moreover, in contrast to many subaerial landslides, submarine
landslides are not accessible without costly oceanographic
surveys. As a consequence, we know surprisingly little about
the physical processes capable of transporting thousands of
cubic kilometres of sediments for hundreds of kilometres along
slopes that are only a fraction of a degree (e.g. Elverhoi et al.
2002; De Blasio et al. 2005; Breien et al. in press). A better
understanding of submarine landsliding is also highly relevant
for prediction of tsunamis (e.g. Harbitz et al. 1993).

A prime question related to submarine landsliding regards
the extraordinary mobility. Run-out ratios (i.e. fall height-to-
travel distance) may reach values as low as 0.05-0.01 (De
Blasio et al. 2006). This occurs on gentle slopes with
inclination less than 1° in spite of an increased viscous drag
and a reduced gravity due to buoyancy compared to subaerial
conditions. A second key question is why some landslides
remain compact during their flow while others disintegrate
substantially, also developing into a bipartite flow with a high-
and a low-density layer, commonly referred to as a high and a
low-density turbidity current (e.g. Mulder and Cochonat
1996). Because of the inaccessibility of submarine mass
wasting, the knowledge gained by oceanographic surveys
must be supplemented by experiments and numerical
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modelling (e.g. Mohrig et al. 1998; Marr et al. 2001; Ilstad et
al. 2004a, b, c; De Blasio et al. 2005; Gauer et al. 2006).
Experiments are usually conducted with an artificial mudflow
travelling along a flume or a pool, in order to mimic the
submarine environment (e.g. Hampton 1972). However, a
major problem is that the flow volumes used in the experi-
ments are some 10'* times smaller than the ones involved in
the largest submarine landslides. Numerical models may in
principle be calibrated to simulate the small-scale events
observed in the laboratory and so extended to large-scale
events (Gauer et al. 2006). In spite of their limitations, the
laboratory experiments and numerical modelling have shown
some intriguing possibilities for explaining mass wasting and
indicating directions for further progress.

The purpose of this paper is to use our most recent
experimental flume results as background information in
order to explain the apparent differences in the behaviour
of three full-scale submarine landslides. Emphasis will be
given on elucidating how the composition of the initially
released masses may have influenced the flow behaviour
and final deposition. Two of the landslides are well known
and volumetrically huge, i.e. the Holocene Storegga
landslide off western Norway (Solheim et al. 2005; Bryn
et al. 2005) and the 1929 Grand Banks landslide off Nova
Scotia/Newfoundland (e.g. Piper et al. 1999; Fig. 1a, b). In
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addition we focus on the Bear Island Fan complex, known
for its late Pleistocene well-defined and long run-out
debris flows (Laberg and Vorren 2000; Marr et al. 2002;
Fig. 1a).

It should be noted that in this paper, a debris flow has
visco-plastic properties, while we apply the term ‘bipartite
flow’ when the flow becomes completely fluidised and
separates into a high- and a low-density layer, both with the
properties of a Newtonian fluid (i.e. with zero yield
strength). We thus restrict the term ‘fluidisation’ to a
situation where the pore fluids obliterate the effect of
particle friction. We also remark that in addition to
cohesion, a debris flow may also include a frictional
component in the rheology if not fully fluidised. The low-
density layer corresponds to what is commonly referred to
as the turbidity current, where ‘turbidity’ should refer to a
certain low concentration of fine-grained particles in
suspension as also proposed by Mulder and Alexander
(2001), rather than the common interpretation of a turbulent
regime. The high-density layer refers to what is often
classified as the ‘high-density turbidity current’. However,
as discussed below and previously shown by Breien et al.
(in press), this high-density layer does not have the
commonly described erosive capability as often suggested
(e.g. Mulder and Cochonat 1996; Baas et al. 2009).
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Fig. 1 a Overview map showing Storegga landslide and the Bear Island Fan complex. b Overview map showing the Grand Banks landslide

(modified from Piper and Aksu (1987))
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2 Case studies
2.1 The Bear Island Fan complex

Extensive landslide activity characterises the huge depo-
centres beyond the outlet of large ice streams terminating at
the Bear Island Fan (Fig. la). A significant part of the
sediments consists of well-defined debris lobes. The lobes in
the uppermost part of these sediments were most likely
deposited during the last glacial maximum. They are
typically about 30 m thick and 10 km wide, and comprised
of clay-rich material (Laberg and Vorren 2000; Marr et al.
2002). The astonishing aspect of these debris flows is the
enormous travel distance of more than 150 km despite an
average seafloor inclination of only 0.7°, corresponding to a
run-out ratio of only 0.012 (e.g. De Blasio et al. 20006).
Seafloor mapping and sediment coring reveal rather homo-
geneous composition along the whole flow path. Moreover,
these debris flows do not seem to be associated with distal
fine-grained deposits. Thus, they have most likely been
formed and travelled down the slope as massive non-
fluidized debris flows with a limited (if any) generation of
an overriding low-density layer (i.e. a low-density turbidity
current, e.g. Hampton 1972). It should also be noticed that a
limited amount of erosion or erosional features have been
related to the debris flows at the Bear Island Fan complex
(e.g. Laberg and Vorren 2000). It is believed that rapid
sedimentation in front of an active ice margin, implying
sediment instability due to excess pore pressure, may have
caused cyclic release of sediments (e.g. Dimakis et al. 2000).

2.2 The Storegga landslide

The Norwegian continental margin has demonstrated a
broad variety of submarine mass movements, with the 8150
BP Storegga landslide as the most well known and
spectacular single landslide identified so far (Vorren et al.
1998; Haflidason et al. 2005; Bryn et al. 2005; Solheim et
al. 2005; Sejrup et al. 2005).

The Storegga landslide (Bondevik et al. 2005) is rather
complex, comprising numerous individual landslides at
different scales with a total volume of about 3,100 km®
(Haflidason et al. 2005). However, the Storegga landslide
represents one major event (as opposed to the multi-flow
system at the Bear Island Fan) with a first phase travelling
more than 400 km and a termination phase dominated by a
series of smaller landslides with significantly shorter travel
distances of 10—15 km (Fig. 2). The long travel distance as
well as a distal fine-grained deposit of the first phase most
likely reflects the material properties of the uppermost
sediment layers, while the final short-travelling landslides
reflect the well-compacted material at the bottom of the
landslide scar (300400 m head wall; Fig. 2). It is believed
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Fig. 2 Main Storegga landslide events (see Fig. 1a) (phases) labelled
1-5. Different colours represent constitutive phases. Phase / is shown
in red. Phase 1 was followed by retrogressive smaller events (phases
2-5). Light green areas show a compression zone created by the
impact (modified from De Blasio et al. (2005))

that the Storegga landslide was triggered by the combination
of seismic activity and weak layers (Bryn et al. 2005).

2.3 The 1929 Grand Banks landslide

The Grand Banks landslide (Fig. 1b), associated with an
earthquake and the breakage of numerous telecables, has
provided important information on the flow velocity. The
highest recorded velocity of about 28 m/s (~100 km/h) was
reached in the upper part of the continental rise at a water
depth of about 4,000 m (Heezen et al. 1954). Based on
extensive seafloor mapping and coring, Piper et al. (1984,
1999) suggest that muddy sediment was released close to the
shelf edge as debris flows cascading down the Laurentian
Channel. A rough topography leading to a varying flow
velocity may have been important for the disintegration and
transformation of the debris flows into a turbidity current
(according to the terminology of Piper et al. (1999) and Piper
and Normark (2009)). Mass balance calculations indicate
two sediment sources: fine-grained muddy sediments from
the upper continental slope and coarser-grained sand and
gravel most likely originating from the valleys of the
Laurentian Channel (Piper and Aksu 1987). Limited, or an

@ Springer



1030

Ocean Dynamics (2010) 60:1027-1046

absence of, vigorous erosion related to the mass flow has
been reported in some parts of the Grand Bank landslide area
(Piper et al. 1999). As with the Bear Island Fan complex and
the Storegga landslides, the 1929 Grand Banks landslide
largely consists of sediments originally laid down during
glaciations. A tentative minimum volume of the Grand
Banks landslide is about 185 km® (Piper and Aksu 1987).

3 Comparison of the three landslide complexes

From the above examples, which are all related to glacially
influenced continental margins, we notice that mass failure
may either lead to a situation with massive debris flows or
bipartite flows. The actual situation has a strong influence
on the final deposits. In the first situation, muddy massive
debris flows are deposited (the Bear Island Fan complex
and the Storegga landslides). In contrast, the deposits of the
Grand Banks landslide reveal well-defined sand lobes and
more distal units of mud and silt. This might indicate
disintegration of the debris flow and, as argued below, a
possible transformation into a bipartite flow.

4 Laboratory experiments and sediment composition
4.1 Laboratory flume facility

Flow experiments were performed at the St. Anthony Falls
Laboratory, University of Minnesota, in a flume inside a
10-m long, 3-m high and 0.6-m wide tank (Fig. 3). The
tank can be filled completely with water and has
transparent Plexiglass walls. Inside the tank, the slope of
a 0.2-m wide Plexiglass flume is adjusted to the desired
inclination by means of wires. The flume bed has a layer
of black roof shingle that provides an even degree of
roughness of around 1 mm. At the top end of the flume,

Fig. 3 Set-up of the experimental
flume at St. Anthony Falls
Laboratory. /-/V represent - AV

the debris flow slurry is filled into the head tank, which is
opened by a gate mechanism. The gate is operated
manually and automatically triggers the data acquisition
system. The sediment runs down the inner flume and exits
into the large tank at the end. The data acquisition system
(Breien 2009) was synchronised, ensuring that all mea-
surement sequences were triggered at the same instant
when the gate was opened. The flow was monitored with
regular and high-speed video cameras and with pressure
transducers.

4.2 Cameras

We used high-speed cameras of the type Silicon Video
9M001C mounted outside the tank, placed respectively 3.6,
4.1, 7.3 and 7.8 m from the gate (I-IV in Fig. 3). The
experiments were recorded at a frame rate of 240 fps. Vertical
resolution was set to 600 pixels (1 pixel=1/9,000 m), giving
a horizontal resolution of 200 pixels. Each camera recorded
4,000 frames per experiment, corresponding to 16.5 s. At a
velocity of around 1 m/s, a frame rate of 240 fps would give
a displacement of 25 pixels between two consecutive frames.
In addition to the high-speed cameras, two standard digital-
video cameras (PLXCI board cameras) were used to capture
the overview (Fig. 3).

A particle image velocimetry (PIV) algorithm (Sveen
and Cowen 2004; Pagliardi 2007) applied to the high-speed
camera images permitted us to calculate the velocity of the
debris flow slurry particles close to the wall. We calculated
the velocity field (¢ and v components) for each image, i.e.
every 0.004 s and with a spatial resolution of about 1 mm,
using cross-correlation methods between two sub-windows.
Similar use of PIV can be found for example in Spinewine
et al. (2003), Pouliquen (2004) and Barbolini et al. (2005).
For subaqueous debris flows, high-speed cameras have also
been applied before, but particle tracking was then done
manually (Ilstad et al. 2004b).

high-speed camera positions. ==
Pressure sensors and video
cameras were placed between /
and // and between I/ and V.
Not to scale, and slope inclination
exaggerated

tank [
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4.3 Pressure transducers

Two pairs of porewater pressure and total normal stress
sensors were mounted in the bed of the chute, at 3.8 and
7.6 m from the gate of the head tank. The pressure
transducers were mounted flush with the bed. Druck
sensors were used to measure the porewater pressure, and
Honeywell pressure sensors were used for the total pressure.
The pressure measurements were done with reference to the
ambient air and therefore affected by barometric changes.
For this reason, calibration was performed prior to each set
of runs. The pore pressure transducers were flushed out
prior to each experiment to expel any air in the tubes and to
make sure the filter pores were not clogged.

Pressure and stress distributions provide important
information regarding flow behaviour and flow regimes at
work. Measurements were attempted at upstream and
downstream locations (Fig. 3), but the interpretation was
not straightforward. We want to stress these complications
to assist others in similar situations. In some cases,
measured pore pressures were higher than the total pressure
during the experiments. This situation is not physically
consistent but was nevertheless observed also in earlier
experimental studies (Ilstad et al. 2004a; Major and Iverson
1999). Most likely, the phenomenon is an artefact of the
mounting of the measuring system and of clogging of the
filters. It may also be due to sediment arching and stress
relief over the total stress sensor. Due to these complica-
tions, we do not rely on the pressure measurements alone
but use the data to support our observations of velocity and
possible hydroplaning. Examples of the pressure measure-
ments are shown in Fig. 4. The measurements are complex
and most likely affected by the flume set-up and thus
require special attention.

The initial wiggles (up to r=1-2 s) in the total stress
measurements are flume vibrations triggered by the opening
of the gate. A pressure rise of about 200 Pa (at #~3 s) is due
to the release of the 100 1 of debris flow slurry from the
head tank into the main tank and the resulting increase in
water level, before the frontal dynamic pressure arrives.
The stress peak (at /=6—7 s) corresponds to the arrival of
the debris flow front. As the flow comes to rest, the pore

pressure dissipates with time, and the difference between
pore and total pressures increases.

4.4 Sediment composition

The material used was red flint medium sand (grain-size
distribution is given in Fig. 5), white industrial kaolin
(Snowbrite) and coal slag (Black Diamond). Kaolin is a
low reaction clay of density 2.75 g/cm®. The sand and coal
slag have a density of 2.65 and 2.6 g/cm’, respectively. Note
that in these sets of experiments, no silt-sized materials were
included. The reason is that we primarily have focused on
how the clay concentration will influence the overall flow
behaviour, visco-plastic versus a granular—frictional flow or
Newtonian fluid. We also refer to the section on scaling in
‘Section 6°, ‘Section 6.1 and Appendix). Every run
contained 5% coal slag by weight for easier particle tracking.
The coal slag is black and easily distinguishable from the
reddish sand. The density of the mixed slurries was around
1.8 g/em® at release.

Sand-clay—water mixtures of varying concentrations
were used. A range of clay concentrations from ‘low’ (5%
and 10% by weight) via ‘medium’ (15% by weight) to
‘high’ (20% and 25% by weight) was tested, the sand
content varying correspondingly whilst the water content
was kept constant at 28% by weight. Clay concentrations
less than 5% did not fulfil the requirement of a homoge-
neous material as the sand grains settled out immediately
and resulted in a bipartite flow from the start. In the
following, the slurries are differentiated and referred to by
their clay concentration in weight percent (5-25%). In this
paper, we concentrate on the results obtained with the
lowest (5%), middle (15%) and highest (25%) clay
contents.

Clay and water were mixed in a concrete blender before
sand and coal slag were added incrementally, with half a
minute of mixing in between each addition. After all the
sediments had been added, the blender was left to run for
30 min to produce a homogeneous, remoulded sediment
mixture. Immediately before each flume experiment, 100 1 of
sediment mixture were loaded into the head tank (Fig. 3).
Since the rheology of the mixture is found to be time- and

Fig. 4 a Pore and total pressures g 25 % subaqueous — downstream b 5 % subaqueous — downstream
in a subaqueous debris flow of i ; i =
25% clay. Only the first 15 s are 1000 1000 L: total pressure l
displayed. b Pore and total = ) ‘: ~—pore pressure |
pressure measured in a = i ﬂh J-__
subaqueous debris flow of 5% £ II f!liﬁ yia'"
clay. Only the first 15 s are ﬁ 500 ) MI.' 'kil 500 /'\’ 'il"'r. &lr . !\-—_a".u\'\_.’\f\_\;_-“_\.\
displayed = [ M
- i /'—/\j‘ A’ .\@*Wﬂ /MN g lil‘l‘wn .‘J;\J/MW
bl H ‘*“) WLl I L
0 3 10 15 0 5 10 15

time [s]

time [s]
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Fig. 5 Grain-size distribution (um) of the red flint sand (medium).
Note that there is no silt present

shear rate-dependent, we were careful to spend the same time
mixing the debris flow slurry prior to each experiment.
However, as seen from the rheometer tests below (Fig. 6),
the sediments revealed a certain strength, even at low clay
content sufficient to avoid segregation during experiments.
To support our study of debris flow behaviour in the
flume and the effect of a variable sand—clay content in the
suspension, we used the ball measuring system (BMS) in
the Paar Physica modular compact rheometer. This
rheometer was also used among others by Sosio et al.
(2006) for rheological measurements of natural debris flow
material. To assess the applicability of the BMS system,
Schatzmann et al. (2003) as well as Si (2007) compared the
results of the BMS system with conventional systems,
finding the agreement between the flow curves obtained
by both systems good. The slurries were found to exhibit
a Herschel-Bulkley behaviour (Fig. 6). The slurries are
yield strength slurries as they exhibit a finite value at 0
shear rate. If we separately consider the intervals of shear
rate 0 < ¥ < 20 and y > 20, we find a reasonable fit with
a Herschel-Bulkley model of the form 7 =7, + uy“, a
commonly used rheology for fine-grained (muddy) debris
flows (Coussot and Piau 1994; Remaitre et al. 2005). The
exponent « changes from a<1 (shear-thinning) at lower
shear rates (up to at least 20 s ') to a>1 (shear-
thickening) at higher shear rates (>20-100 s ).

Flow curves
200
g 150 —— a8l
& '_A...--'""" —|
% 100 Jat=
E 50 — ]
73} _,T/
0
0 20 40 60 80 100

Shear rate (1/s)

-o— 5% 15% =i 25%

Fig. 6 Flow curves of the different slurries showing shear stress
versus shear rate
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5 Experimental results

Our experiments build on findings from previous flume
experiments, such as those by Mohrig et al. (1998); Marr et
al. (2001) and Ilstad et al. (2004a, b, c), as well as the
pioneering work of Kuenen and Migliorini (1950) and
Hampton (1972). We also refer to previous papers by Breien
et al. (2007, in press) and Pagliardi (2007) based on the same
set of experiments.

5.1 High clay content (25%)

The flows with high clay content (25% by weight) are
coherent and keep their composition for the duration of the
flume flow (Fig. 7). The 25% debris flow slurry flows
easily with a velocity of about 1 m/s and shows no sign of
deceleration. It leaves almost no sediment behind (Fig. 7).
The velocity profiles show a clear plug flow on top of a thin
shear zone (Fig. 7c). The frontal snapshot and velocity
profile demonstrate marked hydroplaning. The flow moves
more or less as a rigid block, and there is a clear
demarcation between the body and the head of the flow
(in some cases, the two parts are almost separated). The
coherency suppresses turbulence and results in only a very
small low-density layer; however, Fig. 7c clearly shows that
there are two more or less separate layers. As seen from
velocity profiles and the colour plot of velocity, throughout
the duration of the experiment, the lower high-density layer
travels faster than the upper low-density layer.

The velocity vectors and velocity profiles reveal that the
dense layer is laminar (also supported by the Reynolds number
analysis below). The fulfilment of the conditions for hydro-
planing to occur (including the ability to keep the material
together) causes a lift of the frontal part of the flow (first 20 cm)
so that it rides on a cushion of water (hydroplaning, e.g. Mohrig
et al. 1998; De Blasio et al. 2004), substantially reducing the
basal drag. Equal pore pressure and total stress values
throughout the whole flow support that hydroplaning takes
place (Fig. 4), as was also observed by llstad et al. (2004a).

5.2 Medium clay content (15%)

Decreasing the clay content of the debris flow slurry to 15%
by weight (Fig. 8) implies lower coherency and lower yield
strength. Hence, break-up of the flow and formation of a
larger low-density layer is easily visible. Break-up and
segregation of the flow into a bipartite one with an additional
layer of deposition starts at frame 400 (i.e. 1.5 s behind the
front). The front is turbulent, as seen from the upward-
pointing velocity vectors and the oscillating velocity (Fig. 8a,
b), whilst the body flows in a laminar regime. These visual
observations hint at a more transitional flow regime
throughout the event. The velocity profiles (Fig. 8c) show
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Fig. 7 Data representation of a subaqueous debris flow with 25%
clay. a Vectors showing velocity distribution through time at the
upstream station 4.1 m from the gate. The shear zone is thin, and a
clear and large plug flow with a constant velocity (especially in the
head) is found on top. Hydroplaning is illustrated by the height of the
zero velocity layer at the bottom of the profiles. Negligible deposition
on the bed. b Velocity distribution with time, close to the wall
(averaged in x-direction). The /ight blue line represents the deposition
boundary. Deposition on the bed is negligible. We recognise a
pronounced high velocity head and block-like behaviour. ¢ Velocity
profiles (blue, solid line) and corresponding photos for head, body and

plug flow towards the tail of the flow, but this is not as clear
in the beginning of the flow. Shear and friction along the bed
and between grains are far more visible than in more
coherent flows, and the shear layer is thicker. This is
attributed to the less pronounced hydroplaning (first 10 cm
of the flow) compared to the clay-rich flows. However,

tail of the flow as they pass the upstream station. As is clearly seen
from the lefi photo, the head exhibits pronounced hydroplaning, with a
relatively thick water cushion between the debris and the bed. The
clay forms a thick and coherent muddy matrix that seems to totally
support the well-dispersed sand grains. The velocity profile exhibits a
distinct plug flow riding on top of a deformable layer in which the
shearing occurs. d Photos: front and body. We see a clear distinction
between the laminar flow regime in the lower, dense part of the flow
and the upper turbulent turbidity current. Eddies are visible inside the
turbidity current

hydroplaning can still be recognised in the pressure measure-
ments. We see that due to the gradual disintegration of the
debris flow slurry and its depletion in fines, flow regimes
and support mechanisms can radically change during flow
and range from matrix support to grain—grain support in
originally medium coherent slurries.
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Fig. 8 Data representation of a subaqueous debris flow with 15% clay
content. a Vectors showing velocity distribution through time at the
upstream station 4.1 m from the gate. A clear upward gradient is
evident in the head/first 100 frames. b Velocity distribution with time,
close to the wall (averaged in x-direction). A bipartite flow develops.
At the same time, a little deposition starts to occur. ¢ Velocity profiles

5.3 Low clay content (5%)

The low coherency of the 5% clay flows results in break-up,
turbulence (Fig. 9) and extensive low-density layer production
throughout the flow. The transition between lower dense and
dilute flow is diffuse and gradual due to the large degree of
water incorporation.

A large upward velocity gradient is seen in the frontal
parts, and the velocity profile is strongly fluctuating, i.e.

@ Springer

(blue, solid line) and corresponding photos for head, body and tail of
flow as the flow passes the upstream station. Hydroplaning is still
evident. The whole event evolves more slowly than the 25% clay flow
(Fig. 6). d Photos: front, body and tail. We see a clear separation into a
lower, sandy layer and an upper, turbidity current

clear indications of turbulence. Incorporation of water,
turbulence and segregation lead to effective separation of
the grain sizes. The low-density layer consists mostly of
clay particles and does not carry much sand.

As a result of the water incorporation and break-up, the
flow sprinkles sand on the flume bed as it moves along,
continuously losing mass on its way and leaving behind a
carpet of sand (Fig. 10). In Fig. 9c, the colour of the deposit
near the bed is darker (sandier) than the sand-depleted layer



Ocean Dynamics (2010) 60:1027-1046

1035

Q
3

height [mm]

v 3
(=]

8
ST,

AR A AR AR A AL A s n0n s i

07
0.6
05
0.4
03
0.2
0.1

0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
frames [1 frame=240s"" | frames [1 frame=240s™" )
c frame 25 - front frame 375 - body frame 775 - tail
| Y ' {
60" ¥ \‘I:, 1 d ‘ ] 60+ Is
) \ |
%
| A\ |I
|H |
/ 1
T 40+ ( W] 40"
E )}
= ':: ,.Ir':
=3 .- /
o ih
= { |::
{ || /
20 | . - 201 f -
., \
\ o \Y \I
1 0. ' :
i 1 05 0 1 0.5 0
X velooity [m/s] X velocity [m/s] X velocity [m/s]
d

Fig. 9 Data representation of a subaqueous debris flow with 5% clay
content. a Vectors showing velocity distribution through time at the
upstream station 4.1 m from the gate. There is a pronounced upward
gradient in the head. Separation between dense flow and turbidity
current is very diffuse. After around 6-700 frames, the high-density
layer has settled, and it is only the upper low-density layer that moves. b
Vectors close to the wall, showing velocity distribution at a distance
from the gate through time. A lower general velocity is exhibited, and
there is less differentiation in velocity in the horizontal direction than in
the more clay-rich slurries. High, constant sedimentation rate. ¢ Velocity

close to the interface with the low-density layer. The velocity
profiles are more linear (due to friction) and show a lower
high-density layer of more constant velocity which develops
into a more dilute low-density layer of similar velocity. A

profiles (blue, solid line) and corresponding photos for head, body and
tail of flow as it passes the upstream station. Pulsing/wave motion in the
lower dense layer might entrain earlier deposited material, as seen by
the thinner deposit in the tail frame than the body frame. d Photos: front
and body. The flow seems homogeneous in the first photos, until
settling of sand becomes evident. The moving high-density sandy layer
is seen in the right photo, with a thick upper low-density layer. Wave
motion in the sandy layer and eddies on top of the low-density layer are
recognised

larger part of the flow is turbulent, and low-density layer
generation is more effective than in the 25% flow.

In the upper part of the high-density layer, the grains are
generally well separated. We suggest that the support
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Fig. 10 Principal sketch of (a) subaqueous clay-rich debris flow and (b)
subaqueous sandy debris as observed during the laboratory experiments

mechanism in this layer might be fluidisation in which the
grains are carried by suspension but occasionally collide. The
process of segregation is here slowed down by fluidisation.
Hence, this support mechanism may have special implications
for the run-out and transport of sand, as discussed by Breien et
al. (in press). From Fig. 4a, we see that the total pressure is
about twice the pore pressure, indicating that parts of the
sand are being deposited and that hydroplaning does not take
place after the passage of the front.

6 Analysis
6.1 Flow regime and dynamics

The visual observations as well as the velocity and pressure
measurements in the laboratory provided information on flow
regimes including the onset of hydroplaning. It became clear
that subaqueous flows were highly transitional, with flow
regime and support mechanisms changing as the debris flow
slurry disintegrated and the composition changed. Although
experimental studies provide valuable insight into the land-
slide dynamics, upscaling these results from laboratory to field
scale represents a major challenge because of complex and
conflicting similarity requirements. However, most clayey
flows and many sandy flows that are still within the range of
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cohesive or transitional sediment mixtures can be scaled in
terms of viscosity and yield strength for better predictions of
huge landslides moving at high speed (see Appendix). Further
information about the flow regimes can also be gained by
estimating the Reynolds and Froude numbers even though
significant uncertainties remain due to the break-up of the
material and change of material properties during flow.

As an example, we consider the Reynolds number of the
low-density layer of a subaqueous 5% clay flow. As
previously discussed, we make the assumption that the debris
flow can be transformed into a bipartite flow with a lower
fluidised sandy layer and an upper sand-free low-density
layer. Based on the thickness of the low-density layer
observed close to the downstream cameras, we estimate a
solid fraction (ratio of solid volume to total volume) decrease
from the value C=0.508 in the original debris flow slurry to
C=0.018 due to break-up. Using the Krieger—Dougherty
formula for the viscosity, we find a viscosity (1) of the order

0.018) 2°¢

where C+~0.6 is the solid fraction corresponding to sand
particle interlock, and p is the viscosity of the pore fluid.
We find that the viscosity of the debris flow slurry increases
by a factor of 1.05 by adding sand. The Reynolds number

_ UHp
u

Re (2)
is consequently found to be of the order Re~10°, which
indicates turbulent conditions in the low-density layer as also
seen from the videos (Breien et al. in press).

It is complicated to estimate the Reynolds number for
the lower fluidised high-density sandy layer because sand
grains partly interlock and the granular friction is certainly
significant in the force balance. Due to segregation, break-
up and water incorporation, the rheology changes as the
mass flows through water. Densities were not measured
during flow, and these calculations will therefore be based
on estimates. The clay-rich subaqueous debris flows can be
recognised as laminar from the video measurements (Breien
et al. in press). As these flows are coherent non-Newtonian
flows, where particle segregation and water incorporation
are of minor importance, the Reynolds number can be
calculated as

U2701Hap
N 3
p ()

where o« is the exponent in the Herschel-Bulkley model,
and K is the consistency parameter. The very low Reynolds
numbers (<100) we find by rheological measurements in
the clay-rich flows (K=20.8 Pa s, a=0.2) confirm a
laminar regime.

Re
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The square root of the ratio between the hydrodynamic
stagnation pressure in front of the flow and the submerged
weight per unit area of the flow defines the densimetric
Froude number

_ 4
Fr= \| ApgH cosﬂU “)

where p is the water density, Ap is the difference between
the flow and the water densities, g is the acceleration of
gravity, H is the flow depth and (3 is the slope. When the
stagnation pressure exceeds the submerged weight (i.e.
Fr ~1), hydroplaning is present. Due to the hydrodynamic
lift above the head, hydroplaning may occur already when
Fr<1. According to Mohrig et al. (1998), hydroplaning
can start at Froude numbers as low as 0.4.

The densimetric Froude numbers for the more clayey
experimental slurries vary from 1.5 to 1.65. These values have
been calculated assuming a density for the debris flow equal to
the initial density of the debris flow slurry. For clay contents
sufficiently high for the debris flows to remain coherent, such
high Froude number values cause the debris flow to
hydroplane. As mentioned above, partial hydroplaning of the
debris flow slurry was observed with low clay contents as well.

6.2 Longitudinal deformation and velocity field
development

As seen from the high-speed camera measurements and
PIV analyses (Figs. 7, 8 and 9), the internal velocities are
very dependent on the composition of the flow and also
vary within the body. The differential velocities result in
internal deformation of the flowing materials. The velocity
is in general higher in the head than in the body. This
difference is especially large in the high clay flows
(Fig. 11). The higher velocity of the debris flow head
compared to the body (which experiences higher bed
friction) results in stretching and elongation of the flow.
Through comparison of the velocities in two adjacent
cameras (50 cm apart), we get a measure of the amount of
stretching throughout the body of the flow. At each camera
position, the velocity field (u(x, y, 1), v(x, y, t)) is resolved as
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Fig. 11 Velocity development with time at upstream and downstream
stations; 25% clay flow

the debris flow slurry passes. A quantitative measure of the
stretching rate of the mass is obtained by comparing the
velocities at two adjacent camera stations (see Fig. 3):

_Ov _u—uwp

where u; and u, are the velocities of the flow at two
different camera positions, and Ax is the distance between
the cameras (50 cm). This gives the change in velocity over
a given reference length. The stretching rate values are
presented in Fig. 12. We found that stretching is highest in
the clayey flows (up to 1.3 s '), and the increase with
increasing clay content seems exponential (Fig. 12), both at
the upstream and downstream stations. We also find that the
stretching of the body is largest in the frontal parts of the
flow and decreases towards the tail. This is most pro-
nounced in the clay-rich flows, showing the importance of
the hydroplaning with reduced basal friction as an
important mechanism for facilitating long run-out distances
for clay-rich debris flows.

From the flume experiments, we found that one of the
most important aspects in debris flow dynamics is the
ability of the flow to preserve its original composition, and
this ability is determined by the amount of fines in the
debris flow slurry. Hydroplaning, stretching and a low
degree of deposition are factors that enhance the run-out of
clay-rich and coherent flows, and all are linked to the
presence of clay. In some cases, the stretching can result in
autoacephalation (Parker 2000), producing outrunner
blocks and the development of multiple heads (Elverhoi et
al. 2005; Ilstad et al. 2004c; Nissen et al. 1999; Prior et al.
1984; Hampton 1972). The elongation of the flowing body
due to stretching decreases the thickness of the flow, and
the fast-moving head ‘pulls’ the rest of the body. The
phenomenon is most pronounced in clay-rich flows, which
initially produce a small low-density layer, mainly from
their heads, but after some distance, one could expect this
stretching to result in an increase in potential mixing length
due to development of cracks and incorporation of water.
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Fig. 12 Stretching rate of the debris flow mass, calculated from the
velocities in two neighbouring cameras
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The mixing results in lower coherency and a depletion of
fines and will hence ultimately lead to development of a
sandier debris flow if the mass is allowed to travel far. In
this way, extensive sandy deposits can form in deep marine
environments, far from their source areas (Breien et al. in
press). The low-density layer will continue, carrying mostly
fines. This segregation of grain sizes is particularly visible
in the subaqueous flows of lowest coherency (5% clay).
This is due to low yield strength and continuous disinte-
gration in such flows, and results in flow regimes, which a
transitional both in the vertical and horizontal directions.

6.3 Fragmentation and erosion

Quantitative studies of the yield strength of slurries composed
of clay, sand and water are scarce. However, in the laboratory,
the rheological properties of the slurries were measured in a
ball rheometer (Breien et al. in press; De Blasio et al. in
press). The yield strength increases dramatically with the
clay content, from about 5-10 Pa at 5% clay to 70-100 at
25% clay (Fig. 4, the intercept with the y-axis).

Talling et al. (2002) summarised results for the critical
shear stress for surface erosion from various studies. For
consolidated beds, this critical shear stress increases
significantly with depth below the sediment surface and
typically lies between 0.1 and 2 Pa. Further, such critical
shear stresses are one or two orders of magnitude lower
than the yield strength measured by vane shear, falling cone
or other rheometrical tests (Amos et al. 1997; Mitchener
and Torfs 1996; Houwing 1999; Zreik et al. 1998). For
sand—kaolinite suspensions with a clay fraction from 5% to
25%, the critical shear stress for surface erosion measured
by Mitchener and Torfs (1996) ranges between 0.5 and
5 Pa. When the frictional stress on the flow/water interface
exceeds the critical shear stress, surface erosion of the
debris flow occurs.

The frictional stress is expressed by

1 2

T~ —cppU

; (©)

where U is the velocity of the debris flow, p is the water
density and ¢, is the frictional drag coefficient on the flow/
water interface. Following Norem et al. (1990), the frictional
drag coefficient ¢, averaged over the flow length L is
defined through the equation proposed by Schlichting (1980)
for turbulent flow along a flat rough plate moving with
slowly varying velocity:

ep = [1.89 + 1.62 log(L/k)] >/ (7)

where k is a roughness length in the range 0.01-0.1 m.
Hence, based on this approach, c¢p will be around 0.016.
Young (1989) reported frictional drag coefficients up to
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about 0.02 for turbulent flows above rough flat plates. The
frictional stress may be higher around the blunt head than
above the flatter and longer main body of the flow. However,
for a low-density layer constituting a significant part of the
total flowing mass (as observed for the Grand Banks and the
Storegga first phase landslides) to be formed, it is assumed
that particles must be brought into suspension not only from
the flow head. Hence, the analysis of critical shear stresses
refers to the main body of the flow.

Applying the coefficient values discussed above, the
frictional stress associated with a velocity of U~=1 m/s
(observed in the laboratory experiments and slightly depen-
dent on the composition; Breien 2009) is between 5 to 10 Pa.
Figure 13 shows with asterisks the frictional stress as a
function of the clay content. The frictional stress increases
slightly as a function of the clay content because of the
increase in the velocity of the slurry. In the same plane, the
critical shear stresses for surface erosion, assumed equal to
10% of the yield strength, are shown with circles. Their
dependence on the clay content is much more dramatic
because, as we have discussed, the clay determines a
significant increase of the cohesion. The two lines cross at
a critical clay density, which from the experimental evidence
falls between 20% and 25% clay content. A main conclusion
from the laboratory experiments is thus that a bipartite flow
is expected to occur when the critical shear stress is smaller
than the frictional stress (clay-to-sand ratio <20-25%), while
a coherent debris flow occurs when the critical shear stress is
larger than the frictional stress (clay-to-sand ratio >20-25%).
This is confirmed by the flume experiments. Significant
uncertainties, highlighted by the shaded areas in Fig. 13,
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Fig. 13 Comparison between the frictional stress on the flow/water
interface and the critical shear stress for erosion as a function of clay
content. The figure illustrates that the range of flows containing 0—
20% clay evolves into bipartite flows whilst flows containing more
than 20% clay stay cohesive
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prevent a quantitative first-principle determination of the line
of crossing, which is found in retrospect based on the results
of the experiments.

7 Modelling the landslide velocities
7.1 Sediment sources

The Storegga landslide, the Bear Island Fan complex and the
Grand Banks landslide are all associated with glacially
influenced margins. All three landslides originated from
sediments provided from major ice sheets: (1) the Storegga
landslide from the Fennoscandian ice sheet, (2) the Bear Island
Fan landslides from the Barents Sea ice sheet and (3) the Grand
Banks landslide from the Laurentian ice sheet. In principle, the
sediment sources are similar, namely, glacially eroded prod-
ucts, a situation likely to provide rather equal conditions and
products. However, as documented from the three locations,
the final deposits in the three sites differ strongly. In particular,
extensive sand deposits on the abyssal plain similar to those
associated with the Grand Banks landslide have not been found
in connection with the other two landslides. As seen from the
experiments, the primary composition plays an important role
in the subsequent behaviour. Initial high clay content—or
cohesive sediments—provides landslides that may remain as
massive debris flows without disintegration. When comparing
the source area of the three landslides, they differ in significant
aspects. The source material of the Bear Island Fan complex
largely originates from the Barents Sea, an area entirely
dominated by sedimentary rocks including large amounts of
shale and fine-grained rocks. Sedimentological and mineralog-
ical analyses of the source sediments demonstrate high contents
of clay minerals such as illite, chlorite, kaolinite, smectite and
random mixed-layer smectite—illite (Elverhoi et al. 1989; Knies
et al. 2006). A similar assemblage although with a somewhat
greater smectite content has been identified in the surface as
well as in deeper sections along the margin (Knies et al. 2006;
Forsberg et al. 1999). With respect to the source material, the
Storegga landslide materials have a mixed source from the
Fennoscandian shield underlain by crystalline and metamor-
phic rocks with additional supply from the Norwegian shelf,
underlain by sedimentary rocks characterised by a high clay
content. It should also be noticed that mineralogical analyses
of Storegga landslide materials reveal significant amounts of
smectite (Forsberg and Locat 2005). Thus, similar to the Bear
Island Fan sediments, the Storegga landslide sediments have a
cohesive nature. The Grand Banks landslide sediments consist
of a mixture of mud as well as sand and gravel (Piper and
Slatt 1977; Stow 1981; Piper et al. 1984). Clay mineral
assemblages show a dominance of illite and chlorite with
additional kaolinite as well as some amounts of smectite.
Although the clay mineral assemblages may have some

common characteristics in all three areas, it seems likely that
the Storegga and the Bear Island Fan landslides may have a
somewhat higher content of active clay minerals such as
smectite. A more significant difference is most likely the sand
and gravel contents in the Grand Banks landslide. Such
sediments have not been found in association with the two
other landslides. Thus, a significant difference in gross
sediment properties may exist between the various regions,
cohesive sediments along the Norwegian margin while the
Grand Banks landslide may originate from a more mixed
sediment source characterised by less active clay minerals as
well as a higher content of granular components, resulting in a
potentially less cohesive landslide.

7.2 Landslide velocity calculations

In this paper, we deal with two models for back calculating
the landslides. The first model BING (Imran et al. 2001) is
a depth-integrated two-dimensional model of a debris flow
described by a Bingham or a Herschel-Bulkley rheology.
The model is detailed in Imran et al. (2001). The basic tenet
of the model is that a debris flow continues travelling until
the shear stress is lower than the yield strength of the
material. The debris flow geometry is divided into a series
of elements shaped as parallelepipeds. Neglecting here for
the sake of reasoning the interaction of each element with
its neighbours and the fact that the elements change shape,
the acceleration of one element is approximately given as

D pD* 2 p
Cp Cp o)
—+—=|U 8
X[L+D} ®)

where cp and c¢p are the pressure and frictional drag
coefficients, 7, is the yield strength, ;1 is the Bingham
viscosity, L is the length of one debris flow parallelepiped,
0 is the slope angle, p, is the water density, A is a
parameter accounting for the added mass and D is the flow
depth of the debris flow parallelepiped. The terms on the
right hand side are derived from the gravity component
along the slope, the basal yield stress, the basal viscous
stress and the pressure and upper surface frictional stress on
the flow. The velocity and run-out distance depend in a
critical manner on the rheological properties of the model.

A second model used in this work is W-BING (water
BING; De Blasio et al. 2004). Simulations with W-BING are
affected by more uncertainties compared to BING, not only
because the process of hydroplaning is not fully understood
but also because the presence of a water layer is a more
difficult condition to achieve computationally. The model
starts as the normal BING model, and hydroplaning is
incorporated when the densimetric Froude number Fr is >0.4
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as described above (De Blasio et al. 2004). The change in
water layer thickness is calculated from the Navier—Stokes
equations. The shear resistance between the debris flow and
the base is significantly reduced where the water layer is
present because most of the deformation is carried by the
low-viscous water layer. An approximate equation of motion
for the hydroplaning debris flow becomes

Pw\ AU : pwU 1 pp
1 — | —~= -
( —|—ap) 7 gsinf .

DwyDp 2 p
[ci C—D] v? (10)
LD

where p,, and D,, are the viscosity and the thickness of the
water layer, respectively. The new term — £ gp replaces the
basal yield and viscous stresses and is usually much lower in
magnitude. This is in essence the lubricating effect of
hydroplaning. Hence, a longer simulated run-out distance is

normally achieved in the presence of hydroplaning.

7.3 Results of model simulations

Figures 14 and 15 show the results for the Bear Island Fan
complex and the Grand Banks landslide, respectively. For
the Bear Island Fan simulation, we changed the rheological
properties of the debris flow until values compatible with
the observed run-out were achieved. Because our tenet is
that the Bear Island Fan debris flows were hydroplaning
and that high yield strength was preserved, we seek a
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Fig. 14 Simulation, debris flow: Bear Island Fan complex. Upper
figure: simulation with W-BING and 30 kPa. The calculation with
BING and the same yield stress results in only an extremely short run-
out. Lower figure: in order to gain a longer run-out with BING, a yield
stress as low as 3 kPa is necessary. (Notice: the slope along the Grand
Banks is much longer than that of the Bear Island Fan complex. This
causes a shorter run-out of the Bear Island simulation with the BING
model.)
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Fig. 15 Simulation debris flow part of Grand Banks landslide with a
yield stress of 2 kPa. Upper figure: with W-BING. Lower figure: with
BING. Notice that the slope along the Grand Banks is much longer
than that of the Bear Island fan. This causes a shorter run-out of the
Bear Island simulation with the BING model

solution of our modelling using W-BING. The figure shows
that the model reasonably reproduces the observed run-out
with a yield strength of 30 kPa. The maximum calculated
velocity is above 22 m/s. A similar calculation with a non-
hydroplaning 30-kPa debris flow (BING model) merely
results in a small readjustment of the material. To gain a
run-out compatible with the observations in the absence of
hydroplaning, much lower yield strengths should be
adopted: between 1.5 and 3 kPa (Fig. 14 shows the result
with 3 kPa). This range of low values entails a thorough
transformation of the rheology, which is not compatible
with the sharp edges and the thickness of the Bear Island
Fan lobes. We conclude that the Bear Island Fan debris
flow did not disintegrate (as also indicated by the clay-rich
cohesive nature of the Bear Island Fan clay), and that its
dynamics are well reproduced by our experiments with high
clay content (Fig. 16a). It should also be noticed that the
observed lack of basal erosion between the various debris
flows at the Bear Island Fan complex (Laberg and Vorren
2000) may be related to that hydroplaning significantly
reduces erosion of the antecedent sediments (e.g. Mohrig et
al. 1999; Harbitz et al. 2003; Elverhoi et al. 2005).

Figure 15 shows the results for the Grand Banks landslide.
Following our principle, the mechanics of this debris flow
were different from the Bear Island Fan debris flows. Based
on the analogy with experiments with intermediate and low
clay content, we suggest that the Grand Banks landslide did
disintegrate, transforming from a less cohesive debris flow
into a bipartite flow, and finally continuing as a pure
turbidity current (Fig. 16b). It is difficult at the present stage
to fix the distance from start at which the cohesive Grand
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Fig. 16 a Principal diagram a
illustrating the flow behaviour
of one tentative debris flow at
the Bear Island Fan complex
and the Storegga landslide phase
1. Bear Island Fan complex is
characterised by cohesive/
coherent debris flows leading to
hydroplaning and longitudinal
extension (‘stretching’).

b Principal diagram illustrating
the flow behaviour of the 1929
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Banks landslide transformed into a bipartite flow. Another =~ dynamics in the initial phase of the landslide development.
thorny task is to establish both the origin of the specific part ~ Under the assumption of a mass failure followed by an initial
of the entire landslide that broke the cables and the  debris flow regime—as indicated by the field data—
provenance of the sandy material that was deposited both ~ acceleration of the masses was crucial. As seen from the
in the middle and in the far basin. The cable break was simulation (W-BING), a situation with hydroplaning provides
recorded after slightly less than 1 h from the main shock,  high velocities, potentially corresponding to the observations
which sensibly limits the distance between the head of the  of cable break as well as velocities of almost 30 m/s as
initial debris flow at its site of initiation and the first cable to  required to generate the 1929 Grand Banks tsunami (Fine et
be no more than 100 km. We assume that the head of the  al. 2005). High velocities are required also to generate the
initial 1929 Grand Banks landslide may have been located in ~ low-density layer causing distal turbidites (Fig. 16a, b).

the area of the quake epicentre, at a distance of 100 km from High velocities of the 1929 Grand Banks landslide may
the first cable break (see Fig. 16b). In response to the  also be obtained through a more classical visco-plastic flow as
retrogressive failure, debris flows were subsequently mobi-  illustrated by the BING simulation. A lower shear strength of

lised at gradually shallower water depths, successively  the initial material is, however, required in order to reach long
forming new pulses of bipartite flows that continued out  run-out distances and high velocities. Although the results for
onto the abyssal plain and gradually established the observed ~ BING and W-BING for the first 200 km of simulations are not
sand layer with a thickness of up to 1 m. Such failures could  fundamentally different, the simulations show that if the
not be recorded by the cables that had already been broken  landslide consists of materials with a low shear strength, high
by the primary slide. velocities and long run-out distances may be obtained even

We suggest that the transformation cohesive-to-bipartite ~ without hydroplaning. However, in cases with sufficient
flow occurred after the front of the debris flow had passed a  cohesiveness and velocity of the sliding materials, a subaque-
distance of 50 to 100 km beyond the first cable. The modelling  ous landslide may evolve into a hydroplaning regime (e.g.
results in Fig. 15 illustrate some crucial aspects of the flow  Mohrig et al. 1998). Thus, based on the observations of
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debris flows in the Grand Bank landslide area originating
from at least partly muddy sediments (e.g. Piper et al. 1999),
a certain degree of cohesiveness seems likely. Accordingly, a
hydroplaning scenario may also be likely for the 1929 Grand
Banks landslide. It is also interesting to notice the observa-
tion of areas with little or no sign of erosion in the Grand
Banks landslide area (e.g. Piper et al. 1999). As discussed for
the Bear Island Fan complex, this may be related to
hydroplaning masses.

In analogy with the medium and low clay content experi-
ments, it is suggested that after the Grand Banks landslide
started to break up, it continuously lost mass in the form of a
sand carpet depositing along the abyssal plain as described by
Breien et al. (in press). Whereas the sand in the distal part
was the product of the first phase of high-density fluidised
layer of the Grand Banks landslide, the 1-m thick deposits
appearing only at distances less than 400 km from the
headwall might be at least partially the result of the
successive events in response to the development of a
retrogressive landslide.

Simulations of the Storegga first phase landslides reveal
a difficulty in delivering a huge mass of sediment to the
deep basin 400-500 km from the headwall applying a pure
Bingham fluid concept (De Blasio et al. 2005). In order to
obtain the observed long travel distance and velocities of
25-30 m/s required to generate the Storegga landslide
tsunami with a retrogressive landslide motion (Harbitz et al.
1993; Bondevik et al. 2005), the first phase landslide is
simulated with hydroplaning and/or a material progressively
remoulding from 20 kPa to 500 Pa during flow. The high
velocities are also required in order to form the low-density
layer causing the distal turbidites (Fig. 2). The shorter travel
distance of the highly consolidated material in the smaller
landslides of the Storegga termination phase (Fig. 2) is
successfully simulated as a (one-layer) shear softening debris
flow (Gauer et al. 2005).

Finally, note that a key requisite for hydroplaning is that
the initial velocity of the non-hydroplaning flows has to be
relatively high to ignite the process. An initial high velocity
is a consequence of the initially thick geometry of the
debris flow. In a Bingham rheological model (with a more
general model of Herschel-Bulkley fluid, the argument is
only slightly different), the initial acceleration increases
with the debris flow thickness D. This is clearly noticeable
from Eq. 8, where the second and third terms on the right
hand side decrease in magnitude as a function of D. As a
consequence, high acceleration may be attained in the
beginning of the failure only if the sediment is sufficiently
thick. However, as the debris flow stretches and becomes
thinner, the internal resistance becomes comparatively more
important than gravity. Thus, unless hydroplaning starts, the
debris flow will stop at an early stage, unless the yield
stress and the viscosity are very small.
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7.4 Relationship with the experimental cohesive—bipartite
transition

It has been shown (Fig. 13) that cohesive versus disintegrating
bipartite dynamics in experimental debris flows can be
explained based on a comparison between the frictional
stress on the flow/water interface that remains nearly constant
and the critical shear stress for erosion that strongly depends
on the composition. We suggest that a similar principle could
occur for natural submarine debris flows. Because the Grand
Banks landslide potentially had a more granular and less
cohesive composition, we expect a lower critical shear stress
for erosion compared to the Bear Island Fan complex
(Fig. 13). In our interpretation, the Bear Island Fan complex
corresponds to the clay-rich experiments, while the Grand
Banks landslide is featured by more sand-rich experiments. It
should be noted that according to our simulations, the
simulated velocities in the Bear Island Fan and the Grand
Banks differed relatively more than the velocities of the clay-
rich and sand-rich debris flows seen in the experiments.
However, the higher simulated velocities at the Grand Banks
can be ascribed to a greater slope angle. Considering the
uncertainties involved, the results seem to be compatible with
our conjecture. Based on velocity estimates, the frictional
stress in the field may be 500—-1,500 times greater than in the
experiments, which correspond to maximum values of
the order 5-15 kPa. Therefore, the 30 kPa adopted in the
simulation of the Bear Island Fan would explain the absence
of erosion and the maintenance of a cohesive state. In
contrast, the critical stress for erosion is lower for the Grand
Banks landslide.

8 Conclusions

The apparent differences in flow dynamics for the Bear Island
Fan complex, the Storegga landslide and the 1929 Grand
Banks landslide are elucidated by laboratory experiments with
subaqueous debris flows of varying sand-to-clay ratio. The
experiments reveal how the primary composition of the
mobilised sediment (clayey versus sandy) determines the flow
behaviour of submarine landslides.

‘We conclude that clay-rich cohesive material, as found e.g.
at the Bear Island Fan complex and in the Storegga landslide,
may remain compact and attain extremely long run-out
distances and high velocities on very gentle slopes in the
ocean as a result of hydroplaning and acceleration of the head
of the flow causing longitudinal extension of the entire body.

If the sand content is increased, as e.g. in the Grand
Banks landslide, the flow becomes less cohesive. This leads
to internal particle segregation and a bipartite flow with the
finer clay and silt forming an upper low-density layer, while
the coarser material forms a lower sandy granular high-
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density layer. The process of particle segregation is a
response to water intrusion and fluidisation and implies that
the flow sprinkles sand on the seabed as it moves along,
continuously loosing mass on its way and leaving behind a
carpet of sand. This process also significantly reduces the
erosive capability of the flow. Hydroplaning is still
considered important to accelerate the frontal part of the
debris flow to the velocities required for entrainment of
particles from the head and frontal part of the debris flow,
thus bringing particles into suspension and forming the
upper low-density layer.
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Appendix
Distorted scaling of subaqueous debris flows

Idealised laboratory-scale experiments may not relate
directly to the full-scale natural phenomenon. Hence,
scaling aspects must be considered when performing such
experiments. In many cases of interest, the flow dimensions
can be scaled down in the model, while the dimensions of
the microstructure (e.g. grain size) cannot. For instance, a
sandy debris flow cannot be scaled down using clay instead
of sand because the properties of cohesive material differ
greatly from that of non-cohesive sand. In such cases, the
link between field and laboratory is made through distorted
geometric modelling in which the vertical and horizontal
dimensions are scaled down by different amounts, as done
by Graf (1971), Marr et al. (2001) and Mohrig and Marr
(2003). Focussing on the rheological properties of the
sediment (i.e. viscosity and yield strength), rather than grain
size and interactions, circumvents the problem of scaling
the microstructure. The following procedure will apply to a
Herschel-Bulkley fluid with exponent « under laminar

flow conditions so that the vertical velocities are low except
in the ambient fluid around the head.

To see the scaling relationships that are generated by
distorted geometric modelling (following Marr et al. 2001),
let A\, and )\, represent the vertical and horizontal scaling
reductions, respectively. Thus where H, B, A and S denote
debris flow thickness, width, cross-sectional area and slope,
the dimensions of the laboratory model relative to the
prototype are

(H), = (H), (11)

(B); = A(B), (12)

(4), = 2nd(4), (13)
Ay

(8) = E(S)p (14)

Dynamic similarity is obtained by ensuring equality of the
appropriate dimensionless numbers. Let U, p,,, pa, g, T, and
v, represent flow velocity, water density, debris flow density,
acceleration of gravity, debris flow yield strength and
kinematic Herschel-Bulkley viscosity, respectively. For
subaqueous debris flows, we seek equality in the densimetric
Froude number Fr, the Reynolds number Re and a
dimensionless yield strength parameter Ys, defined by

S (15)
P,
(= 1)ett
2—apyo
Vd
Tdy
Ys=—" 17
= (17)

In performing similarity analysis, we assume that g, p,,
and p, are the same in the model and the prototype. Since
flow thickness H is a vertical scale, the application of
Froude similarity yields the result:

1
(U),; =22(U), (18)

The additional application of Reynolds similarity

requires that

(va); = 2,72 (v) (19)

»
Similarity in Ys gives
(tay); = }“V(Tdy)p (20)

Table 1 provides an example of how the proposed
experiments might be extrapolated to field scale assuming

@ Springer
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Table 1 Example values for extrapolation from laboratory experiments
to field scale for a Bingham fluid

Parameter Symbol Laboratory Prototype
model
Slope angle O=tan 'S (degrees) 5 1
Thickness H (m) 0.05 5
Runout L, (m) 20 10,000
Width B (m) 0.2 100
Discharge 0, (m’/s) 0.01 5,000
Velocity U (m/s) 1 10
Viscosity vy (m?/s) 0.001 1
Yield strength Tay (Pa) 20 2,000

A=1/100, A\,=1/500 and a Bingham fluid (z=1). In the
table, L, is runout length (a horizontal quantity), and Q, is
the volume discharge (cubic metres per second) of the
debris flow. The values for the model are taken from typical
results by Mohrig et al. (1998).

The values computed above are realistic for both model and
field scale (even though the runout length of the laboratory
experiments is unknown, most flows were still moving when
they reached the end of the flume). This example shows that
by scaling down the rheological parameters of the sediment
and scaling up the slope angle, it is possible to model field-
scale debris flows in the laboratory—at least with regard to the
bulk properties of the flow.

In practical terms, viscosity and yield strength may be
reduced in the synthetic sediment by adding water to the
slurry and reducing the clay content or using a different
type of clay. As Eqgs. 19 and 20 show, the slurry viscosity
needs to be reduced. Both water and clay content will
therefore usually need to be changed in going from field to
laboratory scale. Care has to be taken that this does not
significantly change the exponent a. We may conclude that,
in general, flow regime transitions will not occur at the
same clay content values at all scales. Moreover, different
types of clay may induce different flow behaviour even
with the same clay content, and this clay-type dependency
may also be scale-dependent.

Finally, some types of sediment are not well described
by visco-plastic models (i.e. through viscosity and yield
strength) and therefore need to be scaled following different
considerations (Iverson 1997). These include coarse slurries
or sandy debris flows in which frictional and inertial effects
dominate. The grain size, d, is significant for shear stresses
in these kinds of granular flows and for settling velocities in
suspension flows.

For example, in the turbidity current forming above the
debris flow, the settling velocity should scale in the same
way as the horizontal velocity and the square root of the

@ Springer

turbulent energy density, i.e. with \,'? to reproduce the
settling behaviour. This leads to the requirement

cp(Rey)

(d)p = l" CD(RG:]) 1

(1)

In the ambient fluid, the viscosity will normally be the same
in nature and in the laboratory, thus the Reynolds numbers in
the ambient fluid around the debris flow body will differ by
several orders of magnitude. This can be tolerated as long as
the Reynolds number at the laboratory scale is well above the
transition to fully turbulent flow. In Eq. 21, however, the
particle Reynolds numbers determined by the settling velocity
and the particle diameter have to be applied, and a suitable
particle diameter must be determined by solving the non-
linear Eq. 21 for (d),. In our case, the clay particles in the
laboratory roughly correspond to sand particles in a full-size
debris flow. This indicates that the turbidity current generated
by the field-scale debris flow would be competent enough to
suspend sand and transport it over considerable distances.

Despite all these complications, however, most clayey
flows and many ‘sandy’ flows that are still within the range
of cohesive (more fines) or transitional (less fines, more
sand) sediment mixtures, can be scaled in terms of viscosity
and yield strength.
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