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Abstract Inspired by the pioneering work of Christian Le
Provost on finite element ocean modeling, a new ocean
circulation model was developed over the last few years. It
applies a surface triangulation and finite elements for an
accurate description of coasts and bathymetry and their
steering effect on the ocean circulation. A novel feature is
the mesh design, which allows a vertical structure in
geopotential (z) coordinates without loss of flexibility and
avoids pressure gradient errors everywhere except for the
lowest layer of abyssal ocean. The model is combined with
sea-level measurements and data assimilation, another
major research topic of Christian Le Provost. We apply the
SEIK filter that was developed in Grenoble while Christian
was teaching there. The addition of a local analysis scheme
improves the filter performance, first of all, in its variance
estimates and also in its mean solution.

Keywords Data assimilation . Finite elements .
SEIK filter . Local filter

1 Introduction

Using unstructured meshes and the finite-element method
(FEM) in ocean modeling is still uncommon despite the
fact that both techniques are well-accepted and frequently
used in computational fluid dynamics. Their advantage is
the freedom in representing boundaries and, more
generally, the ease of refining or coarsening the resolution
where appropriate. These features are needed in ocean
modeling as many physical processes in the ocean are

sensitive to boundary conditions and bottom topography
and, thus, require well-resolved representation of coastlines
and topography. C. Le Provost was among those who
recognized the utility of unstructured meshes for ocean
modeling and prompted our interest to the topic. Another
side of his activity was using data assimilation as a tool to
improve the model prediction skills. This paper combines
these two topics by briefly describing the finite-element
ocean model (FEOM) and presenting results of sequential
data assimilation carried out with FEOM configured for the
North Atlantic.

A survey of the use of FEM in oceanography was
recently presented in a review article by Pain et al. (2005).
Similarly, FEOM has been described in much detail by
Danilov et al. (2004, 2005). For the sake of completeness
and also to illustrate main differences and similarities
between the finite-element and standard finite-difference
approaches, we present a brief description of FEOM below.

Sequential data assimilation algorithms based on the
Kalman filter are of increasing interest because they
promise a good utilization of the available observational
information due to the dynamic approach to estimate the
error covariance matrix of the estimated state. Further, the
sequential character of the algorithms allows for an on-line
assimilation procedure that avoids the explicit restart of a
numerical model program when new observations are
available. To handle the huge computational cost of the
Kalman filter when applied to a large-scale model of the
ocean or atmosphere, several approximating algorithms
have been developed. Most common is the Ensemble
Kalman Filter (EnKF, Evensen 1994), which was recently
reformulated by its inventor (Evensen 2004). In addition,
several variants have been developed which can be
classified as square-root filters (Tippett et al. 2003).
Besides the EnKF, the SEEK filter (Pham et al. 1998b)
has been used in several applications, for example, in the
North Atlantic (Brusdal et al. 2003). The SEIK filter (Pham
et al. 1998a) is less common. It shares properties of the
EnKF and SEEK algorithms. Recently, Nerger et al.
(2005a, 2006) showed that assimilation with the SEIK filter
bears advantages over both the EnKF and SEEK filters.
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With regard to the EnKF, several studies have shown the
utility of a localization of the analysis (see e.g.,
Houtekamer and Mitchell 1998; Hamill et al. 2001) to
obtain better state estimates with small ensembles.
Similarly, a local analysis in a SEEK filter with stationary
error estimates has been used (see, e.g., Penduff et al.
2002). For the local analysis, the state update is only
computed on the bases of observations that lie within a
specified distance from a grid point of the model domain.
This increases the number of degrees of freedom for the
analysis and can provide superior estimates of the model
state.

We will follow this approach in this paper and introduce
a localization method for the SEIK filter, which shows
advantages over the global analysis. The resulting local
SEIK (LSEIK) filter is then tested in twin experiments with
FEOM configured for the North Atlantic. To assess the
influence of the localization for the LSEIK algorithm,
synthetic observations of the sea surface height are
assimilated for different localization radii.

The paper is organized as follows. The basic principles
of FEOM are described in Section 2. In Section 3, the SEIK
filter is reviewed and the SEIK algorithm with local
analysis update (LSEIK) is introduced. The experimental
setup for studying the LSEIK filter is described in Section 4.
Subsequently, results of the twin experiments are discussed
in Section 5, followed by conclusions in Section 6.

2 “FEOM”

2.1 Basic equations

The FEOM uses the primitive equations for the ocean, i.e.,
it applies under hydrostatic, Boussinesq, and standard
approximations

@tuþ f k� uþ grhη�rhAhrhu� @zAv@zu ¼ F;

(1)

@zwþrhu ¼ 0; (2)

@tC þ ðvrÞC �rhKhrhC � @zKv@zC ¼ 0: (3)

Here F ¼ �rhpH=ρ0 � ðvrÞu; v ¼ ðu;wÞ is the full
velocity, with u the horizontal and w vertical velocities,
and C is the potential temperature or salinity. The
hydrostatic pressure is defined as pH ¼ g

R 0
z ρdz; the

subscript ‘h’ stands for ‘horizontal’, and the standard
notation is used otherwise.

Integrating the continuity Eq. 2 in the vertical direction,
one obtains the equation on the sea surface height η

@tηþr
Z 0

�H
udz ¼ 0: (4)

The upper limit of integration is set to zero, implying linear
free surface. The set of primitive equations is completed by
the fully nonlinear equation of state ρ ¼ ρðT ; S; pÞ
according to the UNESCO standard (for a review, see
Gill 1982) and appropriate boundary conditions.

2.2 Finite-element discretization

To shorten our explanation of finite-element discretization,
we begin in an unusual way from the tracer equation. The
essence of the finite-element approach is that one first
projects the governing equation on a set of appropriately
chosen test functions ~Ψi to obtain

Z
~Ψið@tC þ ðvrÞCÞdΩ þ

Z
ðKhrh

~Ψi � rhC

þ Kvð@z ~ΨiÞ@zCÞdΩ ¼ �
Z

~ΨiqCdSs:
(5)

In this equation, the integration by parts is carried out to
reduce requirements on differentiability of the field C; q is
the surface tracer flux projected on the outer normal
(pointing upward), and dΩ and dSs denote integration
over the entire domain and its surface, respectively. The
fluxes through the rigid walls and bottom are assumed to be
equal to zero and corresponding integrals drop out. The
index i marks the test functions and corresponds to the
nodes of the computational mesh in our case.

One of the convenient features of FEM seen at this stage
is the implementation of flux boundary conditions. They
are taken into account in a natural way as appropriate
surface integrals on the right hand side of Eq. 5.

Three further steps are required to obtain the discretized
equation. First, one specifies the mesh, then the representa-
tion for C; and, finally, the set of the test functions ~Ψi . The
mesh of FEOM uses partitioning of the computational
domain into tetrahedrons explained in Section 2.3. After
the mesh is selected, all fields are expanded in series in a
system of functions defined at the elements of mesh.
FEOM uses linear functions for tracers, implying that

C ¼
X
j

CjΨ j; (6)

where Ψ j is equal to unity at the node j, decreases linearly
to zero at neighboring nodes and is zero outside the
elements containing the node j . If such an expansion is
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used, Cj are the nodal values of the field C, while the
expansion itself is simply a linear interpolation defining C
in a continuous way at any point within the model domain.

Many other expansions are possible, including those that
use higher order polynomials on elements, yet they all
require the use of additional nodes within elements. The
choice in favor of low-order (linear) polynomials in our
case is motivated by the complexity of the ocean geometry.
One wishes as many elements as possible to resolve the
coastlines or continental break in a real-world application.
The other extreme is exemplified by the approach based on
spectral elements (for a review, see Iskandarani et al. 2003),
but then the geometry of the domain is discretized into
relatively large elements with less flexibility.

Substituting Eq. 6 into Eq. 5 and choosing ~Ψi to be any
of Ψ j , one obtains the so-called Galerkin approximation of
the original Eq. 3. It is written as the matrix problem on
coefficients Cj

Mij@tCj þ AijCj þ DijCj ¼ Ri;

where the matrices involved are

Mij ¼
Z

Ψ iΨ jdΩ; Aij ¼
Z

Ψ iv � rΨ jdΩ;

Dij ¼
Z

ðKhrhΨ i � rhΨ j þ Kvð@zΨ iÞ@zΨ jÞdΩ;

and Ri is the contribution from surface forcing. The
presence of the mass matrixMij in the time derivative term
makes the finite-element approach essentially different
from the finite differences as time-stepping now involves
inverting Mij even if explicit methods are used. Although
the mass matrix is sparse (the number of non-zero entries in
row i is equal to the number of neighboring nodes of node i ),
its inverse is a full matrix, which cannot be stored for real-
world applications. Thus, the system of equations above
should be solved at every time step for @tCj . This implies
calling iterative solvers, as matrices are commonly too big to
use direct solvers. However, as the solver is to be called
anyway, one can also use implicit or semi-implicit methods
without essentially changing the CPU load. This is the
commonly preferred approach as stability limitations can be
an issue on unstructured meshes if explicit methods are
employed. Using, for example, the Crank–Nicholson method
(which is second-order accurate in time) one obtains

ðMij=Δt þ Aij=2þ Dij=2ÞCnþ1
j

¼ ðMij=Δt � Aij=2� Dij=2ÞCn
j þ Rj:

(7)

The full matrix on the left hand side is the stiffness matrix.
Several remarks are noteworthy. First, although the

presence of mass matrices dictates using solvers, it
simultaneously reduces dispersive properties of the
numeric scheme. If the mass matrix were replaced by its

lumped form (diagonal approximation with diagonal
entries equal to row sums of the original matrix), Eq. 7
would reduce to standard-centered differences on uniform
meshes. Weighting the time derivative over the same
stencil as the advection term removes the dispersion to a
large extent. Second, although the diffusion term is written
in Eq. 3 in terms of horizontal and vertical contributions,
implementation of other variants in FEOM is similarly
straightforward and benefits from the integration by parts
employed in Eq. 5. Indeed, the Reddi rotated diffusivity
tensor and the Gent–McWilliams parameterization lead
then to exactly symmetric and exactly antisymmetric
contributions into the diffusion matrix, respectively.

Discretizing the momentum and vertically integrated
continuity equations follows the same procedure as
described above and uses similar expansions in linear
functions for horizontal velocities and η (the latter is
defined on surface triangles). The early version of FEOM
used backward Euler time-stepping for both momentum
and vertically integrated continuity equation and solved for
two components of horizontal velocity and η simulta-
neously by inverting a matrix at every time step that
corresponds to combining Eqs. 1 and 4 into a single matrix
problem; for a review, see Danilov et al. (2004). Although
this approach does not introduce any additional approx-
imations and should be preferred from a mathematical
viewpoint, it becomes impractical (numerically inefficient)
as the size of the problem increases. The reason is bad-
conditioning of the resulting stiffness matrix coming
mostly from the inclusion of the vertically integrated
continuity equation, which makes it difficult to invert it
with available iterative solvers.

A numerically efficient solution requires separation of
the barotropic subproblem from the full problem and
involves additional approximations. They are caused by the
fact that vertically integrated or barotropic velocity cannot
belong to the same space of functions as the full horizontal
velocity. Currently, two versions of FEOM exist, which
differ in the way they solve for η: The first one introduces
barotropic velocities and solves first a combined problem
for barotropic velocities and η: This involves inversion of a
matrix of dimension 3N2D; where N2D is the number of
surface nodes, which is much easier to achieve. The sea
surface height found is then substituted into the horizontal
momentum equations, which are solved for full horizontal
velocities. Although the size of the stiffness matrix in this
case is close to that of the early approach, the matrix is
much easier to invert. A correction step is done afterward to
compensate for the bias in the vertically integrated
divergence of the full horizontal velocity.

The other version uses the pressure method similar to
that implemented in the MITgcm. It makes a prediction
step for the horizontal velocities and then seeks for a
velocity correction and new η that make the vertically
integrated continuity equation fulfilled. The details perti-
nent to the realization of both approaches will be reported
elsewhere.

Unexpectedly, solving for w and hydrostatic pressure,
which is very simple in finite difference approach, is less
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straightforward with the FEM. Both are first-order
problems whose matrices are very inappropriate for
inverting with iterative solvers. For this reason, instead of
w; FEOM solves for a potential Φ; such that w ¼ @zΦ:
This formally transforms the problem to the second-order
one. The potential Φ is expanded in linear functions leading
to element-wise constant velocities. The integration for
hydrostatic pressure is done in the finite difference way.
The pressure found is interpreted then as element-wise
linear field.

To conclude this brief description, we reiterate that the
main difference between the finite-element discretization
used by FEOM and the finite difference models is the non-
locality of time derivatives and, hence, the need to use
solvers at every time step to update prognostic fields. The
other significant difference comes from the unstructured
character of the mesh, implying that indices of the
neighboring nodes follow no simple rule but are retrieved
from look-up tables. Both, using solvers and indirect
indexing, makes the time step of FEOM normalized by the
number of nodes significantly longer than in FD models.
Yet it remains affordable for practical applications because
it provides resolution only where it is necessary, i.e., for the
same quality of solution one needs less computational
nodes.

2.3 Mesh

Although there is, in principle, much freedom in choosing
the finite-element mesh, the strong vertical stratification of
the ocean requires employing vertically aligned discretiza-
tion. The FEOM choice is simple yet sufficiently flexible.
Its 3D mesh is determined by the surface triangular mesh.

Figure 1 gives a fragment of the surface mesh for the North
Atlantic designed to include the projections of topography
lines. The surface mesh defines vertical prisms that are cut
by a system of z -levels into smaller prisms, and every
small prism is then cut into tetrahedrons (a full prism is
divided in three tetrahedrons; the prisms cut by bottom
topography can sometimes consist of two or even one
element). The bottom surface is allowed to deviate from z -
levels. One avoids vertical walls across the continental
break by choosing the horizontal mesh in such a way that it
coincides with isobaths. The structure of the three-dimen-
sional mesh constructed in this way is illustrated in Fig. 2
by a view at the southwest corner of the North Atlantic
mesh employed by us. The mesh follows the topography
and is free of pressure gradient errors everywhere except
for the bottommost layer over the abyssal part of the
bottom. Thus, such an approach combines the advantages
of both z - and σ - vertical coordinates. Vertical walls are
not prohibited and can be used on coarse meshes. In reality,
one decides on where to admit vertical walls and where to
leave the bottom topography continuous on the stage of
designing the surface mesh.

It should be emphasized that it is only the desire to avoid
pressure gradient errors that motivates the choice of z -
levels. If some pressure gradient errors are allowed over
limited areas, the levels (not necessarily all) can deviate
from isopotential surfaces there and follow, for example,
the topography. Yet, we admit that the unstructured
character of surface mesh makes using high-order inter-
polations for pressure gradient difficult and is not
implemented in the current version of FEOM. The
FEOM code is independent of the vertical discretization,
and all what is needed is the 3D mesh designed in
accordance with one’s wishes.

Fig. 1 Fragment of the topog-
raphy following surface mesh
for the North Atlantic. The
topography lines included
correspond to intersection of
z-levels used in the model with
the bottom topography
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3 SEIK with local analysis

We will now turn to our concept of data assimilation in
FEOM. We focus on the SEIK filter (Pham et al. 1998a),
which demonstrated advantages over the widely used
EnKF and SEEK filter algorithms in recent studies (Nerger
et al. 2005a, 2006).

3.1 The SEIK filter

The SEIK filter (Pham et al. 1998a) can be interpreted as an
ensemble-based Kalman filter using a preconditioned
ensemble and a very efficient scheme to incorporate the
observational information during the analysis phase of the
filter. The algorithm computes the update of the state
estimate in the estimated error sub-space, which is
represented by the ensemble of model states. We review
the algorithm as an error-subspace algorithm. For a detailed
review of the SEIK filter and a comparison with the EnKF
and SEEK filters, see Nerger et al. (2005a).

In general, Kalman filter algorithms express the problem
of estimating the state of a physical system, such as the
ocean in terms of the estimated analysis state vector xa

k of
dimension n at time tk , and the corresponding covariance
matrix ~Pa

k , which represents the error estimate of the state
vector. The SEIK filter, as well as the EnKF, represents
these quantities by an ensemble of state vectors

Xa
k ¼ fxað1Þ

k ; . . . ;x
aðNÞ
k g (8)

of N model state realizations. That is, the state estimate is
given by the ensemble mean xa

k; while the ensemble
covariance matrix

Pa
k :¼ N�1ðXa

k �Xa
kÞðXa

k �Xa
kÞT � ~Pa

k ; (9)

withXa
k ¼ fxa

k; . . . ;x
a
kg, is an approximate estimate of the

covariance matrix ~Pa
k : Note that a factor ðN � 1Þ�1 is

usually required to obtain an unbiased estimate for ~Pa
k :

However, in the initialization and re-initialization steps of
the SEIK filter (see below), the ensemble Xa

k is generated
in a way that leads to an unbiased estimate of ~Pa

k with a
factor N�1:

The SEIK filter algorithm can be subdivided into several
phases. In the “forecast phase,” the state ensemble is
integrated by the numerical model to propagate the state
and error estimates toward the next time when observations
are available. At this time, the “analysis phase” is
performed. Here the state and error estimates are updated
on the basis of the observations, the ensemble covariance
matrix, and the error covariance matrix of the observations.
Subsequently, the forecast ensemble is transformed in the
“re-initialization phase,” such that it represents the error
estimate after the state update. Both the analysis and re-
initialization phases represent the “update phase” of the
filter algorithm. Having completed the update phase, the
next forecast phase can start and propagate the estimates to
the next observation time. The SEIK filter has to be
initialized with an initial state ensemble. It can be generated
from estimates of the model state and the state covariance
matrix.

The SEIK algorithm is prescribed by the following
equations:

Initialization We assume an initial state estimate xa
0:

Furthermore, we suppose that the initial covariance matrix
Pa

0 is estimated by a rank-r matrix, which is given in
decomposed form as

Pa
0 :¼ V0U0V

T
0 ; (10)

where U0 is a r � r matrix, while V0 has size n� r:
This initialization can be obtained, for example, from a
state trajectory from a long model run. The covariance
matrix of this trajectory then represents the covariance
matrix, while the mean state represents the initial state
estimate. The decomposed form can be obtained by
computing the singular-value decomposition of the matrix
of variations around the trajectory mean state.

Based on these initial estimates, a random ensemble of
minimum size N ¼ r þ 1 can be generated, whose mean
and covariance matrix represent xa

0 and Pa
0 exactly. An

example for a procedure to generate such an ensemble is

Fig. 2 View at the southwest corner of the North Atlantic mesh.
The depth shown is down to −3,000 m, and the fragment is 10 and
5° in longitude and latitude, respectively (from 60� W and 5� N).
The horizontal discretization over the continental slope is consistent
with the set of z-levels used for vertical discretization. Nodes lying
at the abyssal part of the bottom (not shown) are allowed to deviate
from the regular set of z-levels
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the so-called minimum second-order exact sampling (for a
review, see Pham 2001). This procedure corresponds to a
transformation of the columns in matrix V0 by a random
matrix with special properties. Let C0 be a square root of
the matrix U0, i.e., U0 ¼ CT

0C0: Then Pa
0 can be written

as

Pa
0 ¼ V0C

T
0Ω

T
0Ω0C0V

T
0 ; (11)

where Ω0 is a N � r random matrix whose columns are
orthonormal and orthogonal to the vector ð1; . . . ; 1ÞT :
The ensemble of state realizations is then given by

Xa
0 ¼ Xa

0 þ
ffiffiffiffi
N

p
V0C

T
0Ω

T
0 ; (12)

where each column of Xa
0 contains the vector xa

0 .

Forecast Let Mi;i�1 be the nonlinear dynamic model
operator that integrates a model state from time ti�1 to
time ti: Then each ensemblemember fxaðαÞ;α ¼ 1; . . . ;Ng
is evolved up to time tk by iterating the model equation

x
f ðαÞ
i ¼ Mi;i�1½xaðαÞ

i�1 � þ ηðαÞ
i : (13)

In this equation, the superscript ‘f’ denotes the forecast, while
‘a’ denotes the analysis. Each integration is subject to

individual Gaussian noise ηðαÞ
i , which allows to simulate

model errors.

Analysis For the update phase, the SEIK filter uses an
alternative description of the covariance matrix Pf

k; which
allows for a very efficient algorithm. Pf

k can be computed
from the state ensemble according to

Pf
k ¼ N�1Xf

kTðTTTÞ�1TT ðXf
kÞT : (14)

T is a N � r matrix with zero column sums, such as

T ¼ Ir�r

01�r

� �
� 1

N
1N�rð Þ: (15)

Here, 0 represents the matrix whose elements are equal to
zero. The elements of the matrix 1 are equal to one.
Matrix T implicitly subtracts the ensemble mean when
computing Pf

k : Now, we can write, in analogy to the
covariance matrix in Eq. 10.

Pf
k ¼ LkGLT

k (16)

with

Lk :¼ Xf
k T; G :¼ N�1 TTT

� ��1
: (17)

The analysis step of the SEIK filter computes a new
state estimate by updating the forecast estimate that is
given by the mean of the forecast ensemble. Using Eqs.
14, 15, 16, 17, the analysis update of the state estimate can
be expressed as the weighted average of the columns of
Lk :

xa
k ¼ xf

k þ Lkak (18)

The columns of Lk span the error subspace represented by
the ensemble. The vector ak of weights can be computed
in the error subspace as

ak ¼ UkðHkLkÞTRk
�1 yo

k �Hkx
f
k

� �
; (19)

U�1
k ¼ ρG�1 þ ðHkLkÞTR�1

k HkLk : (20)

Here,Hk is the measurement operator that computes what
observations would be measured given the state xk :
Further, Rk is the observation error covariance matrix and
yo
k denotes the vector of observations. The forgetting

factor ρ; ð0 < ρ � 1Þ leads to an inflation of the
estimated variances of the model state. It can stabilize the
filter algorithm and, to some degree, account for model
errors and should not be confused with the density of sea
water. In the analysis, the covariance matrix is never
computed explicitly. However, the analysis covariance
matrix is implicitly given by Pa

k :¼ LkUkL
T
k :

Re-initialization To proceed with the filter sequence, the
ensemble represented by Lk (Eq. 17) has to be
transformed, such that it represents the analysis state xa

k
and the corresponding covariance matrix Pa

k : Analog-
ously to the generation of the initial ensemble, we can
write

Pa
k ¼ LkC

T
kΩ

T
k ΩkCkL

T
k ; (21)

where a Cholesky decomposition can be applied directly
on the matrix U�1

k to obtain C�1
k ðC�1ÞTk ¼ U�1

k : The
matrix Ωk has the same properties as in the initialization.
Usually, it is chosen to be a random matrix, but
mathematically it is not required to be so. Accordingly,
the re-initialized ensemble members are given by

Xa
k ¼ Xa

k þ
ffiffiffiffi
N

p
LkC

T
kΩ

T
k : (22)

3.2 The SEIK filter with local update phase

The analysis update of the state estimate is computed from
a global weighted average over the full model domain (Eq.
18). All available observations are considered for each
spatial location according to their weights computed from
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the ensemble perturbations in Lk; the observation error
covariance matrix Rk , and the residual between the state
estimate and the observations, also called innovation,

yo
k �Hkx

f
k : This global character can be useful, as long-

range correlations exist in the ocean. However, it is very
unlikely that these correlations can be estimated well by a
state ensemble of small size. Typically, the noise in the
estimated long-range covariances will be rather large,
compared to existing long-range covariances, which are
mostly small. Thus, the information contents in the estimated
long-range covariances are likely negligible, as has been
discussed, for example, by Houtekamer andMitchell (1998).
The noise can even result in spurious correlations that can
deteriorate the estimation of the state. Apart from this, the
global weighting can lead to a situation in which large local
improvements are accompanied by locally less credible
estimates in other places that still minimize the global
estimation error (Nerger et al. 2005a).

To filter out noisy, and possibly spurious, long-range
correlations in the analysis phase of an Kalman-based filter,
it is possible to formulate a localized analysis algorithm. It
is based on the assumption that observations have
negligible influence for the analysis update of a certain
grid point if they correspond to a location that has a large
distance to that grid point. In this case, only observations
within a certain distance from the grid point need to be
taken into account for the analysis of the state of this
location. The local analysis can also be advantageous due
to the fact that the localization increases the degrees of
freedom in the update of the state estimate; for a review, see
Evensen (2003). In contrast to the global weighted average,
each local domain will be updated using a different weight
vector ak. This will eventually lead to a state estimate with
smaller estimation errors than a global analysis update.

To perform the localization, Houtekamer and Mitchell
(2001) filtered the covariance matrix P by an element-
wise product with a matrix representing correlations of
compact support. This technique has also been used by
Keppenne and Rienecker (2002), who apply the localiza-
tion for data assimilation in a parallelized ocean general
circulation model. Examining the effect of the introduced
smoothing and down-weighting of observations at inter-
mediate distances and the neglect of remote observations
showed that for small ensembles the cut-off radius for the
observations should be small to obtain a minimal
estimation error (Hamill et al. 2001). Typically, an optimal
radius that minimizes the estimation error depending on the
ensemble size can be determined. On the other hand,
Mitchell et al. (2002) showed that the localization causes
an imbalance in the analysis state of a primitive equation
model, which is due to spurious and non-dynamical modes
introduced by the analysis. A rather abstract localization
scheme for the EnKF has been developed by Ott et al.
(2004).

Below, equations for the local analysis are derived,
which do not use an element-wise product to filter and
localize the covariances. The formulation neglects ob-
servations beyond the cut-off radius, which is equivalent to

an element-wise product with a step function. The
derivation results in a particularly simple formulation of
the local analysis and re-initialization equations. The
analysis is performed by a sequence of local updates in
disjoint sub-domains. Figure 3 exemplifies the domains for
a localized analysis in a structured rectangular grid. The
state is updated in the sub-domain S; which is centered at
lc: When we assume anisotropic cut-off radii (l1; l2 ), the
influence region of observations for the upper right edge of
S is given by the ellipse C: The full region D, shaded in
light gray, is the observation influence region for the whole
sub-domain S: This localization differs from that suggested
by Ott et al. (2004) who use local domains S that are not
disjoint and coincide with the observation domains D:

In contrast, we assume that the local observation domain
D contains all observations within a certain distance from
the grid points in the corresponding domain S; which is
disjoint from the other local analysis domains.

The localization of the analysis step can be obtained as a
two-step formulation. As all quantities refer to the time
index k , we will drop this index here for clarity of notation.
In the first step of the localization, we restrict the update to
the local analysis domain S; taking into account all
available observations. Let Sσ be a linear operator that
restricts a global state vector x of dimension n to its local
part xσ of dimension nσ < n in the sub-domain Sσ : The
subscript σ denotes the set of parameters, which specifies
the sub-domain, for example, the position of its center as
well as its extent. Then, the localization of the update
equation for the state (Eq. 18) is replaced by

Sσx
a ¼ Sσxf þ SσLa: (23)

cl

Fig. 3 Domain decomposition for a localized analysis in a
structured rectangular grid (following the representation by
Keppenne and Rienecker 2002). Region S, centered at the location
lc in the mesh, is the sub-domain in which the state is updated. The
ellipse C marks the influence region of observations for the grid
point at the upper right edge of region S. C is defined by the cut-off
radii l1 and l2. The region D shaded in light gray marks the influence
region of the observations for the whole region S
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Practically, this equation implies that only certain elements
of the state vector xa

k; corresponding to grid points within
the local domain Sσ; are updated by the ensemble states
from the same domain with weights computed from all
available observations. Thus, if we use disjoint domains
and loop through all of them with Eq. 23, we reestablish the
global analysis update by an alternative formulation.

The second step is to localize the observation domain.
Let Dδ be a linear operator that restricts a global
observation vector yo of dimension m to its local part
yo
δ of dimension mδ in the sub-domain Dδ: This amounts

to the neglect of observations beyond the sub-domain Dδ:
The subscript δ denotes the current domain, as defined by a
set of parameters that specify the sub-domain in the global
observation domain analogously to the local state domain.
Inserting the restriction operator Dδ into Eqs. 19 and 20,
we can write the analysis for the local state considering
only observations within domain Dδ as

aδ ¼ UδðHLÞTDδ
T ðDδRDT

δ Þ�1Dδ yo �Hxf
� �

; (24)

U�1
δ ¼ ρδG

�1 þ ðHLÞTDδ
T ðDδRDT

δ Þ�1DδHL : (25)

The forgetting factor ρ is not required to be the same for
each sub-domain Dδ . Thus, ρδ denotes the local forgetting
factor.

Now, we define the measurement operator Hδ :¼ DδH:
which projects a (global) state vector onto the local
observation domain Dδ: In addition, we define the local
observation error covariancematrix inDδ asRδ :¼ DδRDT

δ :
Further, we denote the local state Sσx

a as xa
σ and

analogously SσL as Lσ: With these definitions we can
write the local analysis equations of the SEIK filter
analogously to the global Eqs. 18, 19, 20 as

xa
σ ¼ xf

σ þ Lσaδ; (26)

aδ ¼ UδðHδLÞTRδ
�1 yo

δ �Hδxf
� �

; (27)

U�1
δ ¼ ρδG

�1 þ ðHδLÞTR�1
δ HδL : (28)

The localization of the re-initialization phase can be
performed analogously to the analysis step. The transfor-
mation of the local state ensemble is performed as

Xa
σ ¼ Xa

σ þ
ffiffiffiffi
N

p
LσðCδÞTΩT ; (29)

where C�1
δ ðC�1

δ ÞT ¼ U�1
δ . Here, it is important that the

same transformation matrix Ω is used for each local
analysis domain. The rows of the ensemble matrix, which

correspond to a single analysis domain, are transformed at
once using the information from the matrix U�1

δ for the
particular domain. This matrix corresponds to local error
subspace for the local domain. According to Eq. 28, it is
determined by both the local state ensemble and the local
observations. To update the full domain, the local analysis
and re-initialization can be performed as a sequence of
independent local updates on each of the local analysis
domains.

Mathematically, the localization amounts to the neglect
of long-range correlations in the state covariance matrix
during the analysis step; see Appendix. The neglect of
long-range correlations increases the rank of the covariance
matrix and, hence, leads to a larger dimension of the error-
subspace in which the update of the state estimate is
computed. As the state covariance matrix is never
computed explicitly, this larger dimension is only con-
sidered implicitly during the independent analysis updates
in the local domains. The rank of covariance matrix
represented by the global state ensemble does not increase,
as the rank of this matrix depends on the ensemble size N
and can be at most N � 1: In the re-initialization, each
local state ensemble is transformed using the same matrix
Ω . This consistent re-initialization results in an ensemble,
which represents a covariance matrix with the same rank as
the covariance matrix of the forecast ensemble.

The neglect of remote observations together with the
independent local analysis updates can lead to imbalance in
the ensemble states (for a review, see Mitchell et al. 2002).
Further, discontinuities in the ensemble states could be
induced. However, discontinuities in the model state
between neighboring local analysis domains will be
negligible, if the assumption holds that remote observa-
tions have a negligible influence to the analysis update. If
the local observation domainsDδ are sufficiently large, the
observation domains of neighboring local analysis domains
Sσ are widely overlapping. In this case, almost the same
observational information is used for nearby analysis
domains Sσ: In addition, almost the same local state error
covariance matrix is used implicitly. This will result in
similar analysis updates for neighboring domains. Due to
the imbalance induced by a local analysis, there will be a
trade-off between the expected larger error reduction in the
analysis step and an accelerated error growth during the
forecast phase, compared to the filter algorithm with global
analysis, as will be discussed below.

3.3 Implementation of the LSEIK algorithm

Equations 26, 27, 28, 29 can be implemented analogously
to the global SEIK filter. The localization operators Sσ and
Dδ can optimally be implemented as explicit restriction
operators. The global measurement operator of the SEIK
filter can be applied here, too. The update of the state in the
disjoint local domains fSσg can be performed in a loop
over all domains. As the individual updates are indepen-
dent from each other, the local updates can also be executed
in parallel on a parallel computer.
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In Eq. 27, the global forward mean ensemble state is
required. If the local observation domains are overlapping,
it is efficient to pre-compute the global array HL and the
global vector Hxf before looping through all local
analysis domains. Subsequently, the computation of the
analysis update only requires the application of the
restriction operator Dδ to obtain the corresponding arrays
for the local observation domain. The re-initialization step
only requires the local arrays Lσ and U�1

δ ; which are
computed by the analysis algorithm. This procedure can
also be applied for a domain-decomposed model in a
multiprocessor parallel environment. In this case, the
global quantities Hxf and HL should only be computed
for the part of the model domain that resides on the current
processor. Subsequently, the analysis and the re-initializa-
tion steps are performed by each processor for its
parallelization sub-domain. Due to the overlapping ob-
servation domains, no processor boundaries will be visible
with this scheme.

The computing time required for the local filter update
will be larger than for the global update. This is, for
example, caused by the additional application of the
restriction operators, compared to the global algorithms.
Furthermore, several operations, such as the computation
of the ðN � 1Þ � ðN � 1Þ matrix U�1

δ or the Cholesky
decomposition of this matrix in the re-initialization, need to
be repeated for each local analysis domain. However, as the
ensemble size N is typically very small (< 100 ), compared
to state dimension, which is of order 107 � 109 for today’s
ocean models, the computing time for the filter update
phase will still be negligible in comparison to the time to
integrate the state ensemble in the forecast phase.

4 Experimental setup

The model used for data assimilation is configured for the
North Atlantic. Its surface triangular mesh covers the area
from 7� to 80� N. The horizontal resolution varies between
0.2� to 1.5� degree with mean resolution around 0.5�: The
nodes are arranged on 23 vertical levels. In total, the mesh
contains approximately 16,000 surface nodes and 220,000
3D nodes and the state dimension amounts to 925,000.
Open boundaries of the model domain are replaced by rigid
walls with relaxation to WOA94 climatology (Levitus and
Boyer 1994 and Levitus et al. 1994) in 5� sponge layer at
the southern boundary, north of 60� N and in 3� zone
around the Strait of Gibraltar. The broad northern relax-
ation zone serves to compensate for model deficiencies in
representing overflow processes. The model is driven by
monthly mean winds from NCEP reanalyses (beginning
from 1990). Heat and freshwater fluxes are modeled by
relaxation of surface temperature and salinity to seasonal
mean values of WOA94. The computations reported below
are done with a stabilized version of FEOM using a time
step of 2 h. The performance of FEOM in the same

configuration is described in Danilov et al. (2005). Here,
the model trajectory from Danilov et al. (2005) is used as
the ocean “true” state for the twin experiments.

The configuration of the experiments carried out in this
paper is analogous to that of Nerger et al. (2006). Using
twin experiments starting in December 1992, the filter
performance of the LSEIK filter is assessed and compared
to that of the global SEIK filter. At the initial time and in
monthly intervals, synthetic observations of the full sea
surface height are assimilated for 3 months. The monthly
interval is larger than the 10-day interval, which is typically
used when satellite data is assimilated. However, monthly
assimilation will be a good test for the performance of the
filter algorithm regarding nonlinearities in the model,
because nonlinearities will have a stronger influence over
the longer assimilation interval. The observations are
generated by adding uncorrelated Gaussian noise to the
true model trajectory. For this, a standard deviation of 5 cm
is assumed for the observations as well as that the errors are
uncorrelated. To initialize the filter algorithms, the initial
state estimate has been chosen from a perpetual 1990
seasonal wind model spin-up run. The error covariance
matrix is chosen to be represented implicitly by the
variability of the 9-year “true” trajectory. This covariance
matrix is dominated by a small number of large-scale
modes. Accordingly, it can be very well approximated by a
matrix of significantly lower rank (for a review, see Nerger
et al. 2006).

In the experiments discussed below, ensembles with 8
and 32 members have been used. To stabilize the
assimilation process, a forgetting factor of ρ ¼ 0:8 was
applied in both the SEIK and LSEIK filters. Apart from
this, no model error was simulated. Both filters are
implemented in the parallel data assimilation framework
PDAF (Nerger et al. 2005b). The data assimilation system
is configured to integrate eight ensemble members in
parallel. Each of the eight model tasks was executed by
four processors; thus, 32 processors were used in total on
an IBM pSeries 690 computer system.

To study the influence of the localization we choose a
configuration in which each local analysis domain Sσ
consists of a single water column. For simplicity, the
corresponding observation domain Dδ is given by a circle
defined by the isotropic cut-off radius lδ; which is centered
at the water column. For the unstructured grid of FEOM, a
simple search algorithm has been implemented to initialize
the observation domain by all grid points lying within the
localization-radius lδ for each single water column.

5 Data assimilation experiments

To assess the influence of the localization of the update
phase, we examine the filter performance with regard to the
estimation of the sea surface height (SSH) field. The focus
lies on general properties rather than physical details.

642



5.1 Estimation errors of the SSH

Figure 4 shows the area-weighted root mean square (rms)
estimation errors from assimilations with the LSEIK and
SEIK filters relative to the errors from a model integration
of the initial state estimate without assimilation. Shown are
results for the global SEIK analysis and the application of
the LSEIK filter with different localization radii for the
observations. Here, a radius of lδ ¼ 0 km denotes an
assimilation using only the observations available on each
single water column. The figure also compares the results
for an ensemble size of N ¼ 8 (left panel) with those
computed with N ¼ 32 (right panel). For N ¼ 32; the
experiment with lδ ¼ 0 km failed; thus, results for a small
radius of 20 km are shown.

Comparing the global SEIK analyses for the two
ensemble sizes, the improvement due to increasing the
ensemble size to N ¼ 32 is clearly visible. First, the
relative rms error (RRMSE) is smaller for the larger
ensemble. In addition, the error reduction at each analysis
update is larger for N ¼ 32; compared to N ¼ 8:
However, the RRMSE never decreases below 0.8. This is
partly due to the small ensemble size. However, even with
an ensemble of 100 members, the RRMSE after the first
analysis update is only decreased to 0.74. The major cause
for the small error decrease is due to the fact that the
globally estimated covariance matrix differs from the true
covariance matrix. This inconsistency finally also results in
underestimation of the errors by the filter algorithm (for a
review, see Nerger et al. 2006). As the true covariance

Fig. 5 Comparison of the improvement or error reduction due to
assimilation at the fourth analysis time with the global SEIK
analysis (right) and with LSEIK with a localization-radius of 200 km

for ensemble sizes of 32 members. The localization results in a
significantly larger error reduction of the state estimate

Fig. 4 RMS estimation errors
of the SSH from the assimilation
with SEIK and LSEIK relative
to the errors from a simulation
without assimilation. The
different lines show results from
the global SEIK and the LSEIK
algorithm with different
localization radii. Shown are
results for ensemble sizes of
eight members (left) and 32
members (right), respectively.
The errors are strongly reduced
by the localization
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matrix is unknown, this inconsistency can be expected for
all practical filter applications.

The localization of the analysis update strongly
improves the estimate of the SSH. The smallest values of
the RRMSE are obtained for localization-radii of 100 and
200 km with values of about 0.4 and 0.3 for the ensembles
of size 8 and 32, respectively. Note that a totally local
analysis lδ ¼ 0 km or small localization radii below 100 km
performs worse. Seemingly, the uncorrelated error in the
data is not sufficiently damped for small radii. Next to the
small relative errors, the error reduction at each analysis
update is much larger with a localization radius of 500 km
or below, compared to the global SEIK analysis. This
shows that the observational information is used more
efficiently to reduce the error of the state estimation. Apart
from the improved state estimation, the time dependence
shows that the error increase during the forecast phase is
larger when a local analysis is applied. This is probably
caused by an imbalance in the ensemble states, which
results from the independent analysis update of the state
estimate for distinct grid points (for a review, see Mitchell
et al. 2002).

5.2 Effect of localization at fourth analysis phase

To discuss the effects of the localization in detail, we
consider the third forecast phase, as well as the fourth
analysis update, which takes place at the end of the third
cycle of alternating 1-month forecasts and update phases.
This update phase was also examined by Nerger et al.
(2006) to compare the global SEIK filter with the EnKF.

Figure 5 compares the improvement of the state estimate
due to the assimilation with the global SEIK filter (right)
and LSEIK with lδ ¼ 200 km (left) for an ensemble size of
32. The improvement, or error reduction, is given by the
difference of the absolute values of the true estimation error
for the SSH from the estimated state before and after the
analysis. The figures show that the areas in which the
global analysis performed best are improved in a similar
manner when the local analysis is applied. However, with
the local analysis, there are many more improvements on
the local scale of several Rossby radii like in the Caribbean
or in the Gulf stream region. In addition, the estimate in the
Nordic seas is improved, while with the global analysis
only a marginal error reduction is obtained here. For an
ensemble of only eight members, the improvement is
similar to the case of N ¼ 32 . Hence, increasing the
ensemble size to 32 members only enhances marginally the
estimates.

As the full SSH field is observed, the error reduction can
be directly related to the estimated and true variances of the
SSH. Figures 6 and 7 show the field of true and estimated
standard deviations of the SSH for the case of N ¼ 32 for
the global SEIK and the LSEIK filter with lδ ¼ 200 km,
respectively. In general, the figures show that the filter
algorithms underestimate the true errors. The underestima-
tion is more severe for the global SEIK filter than for
LSEIK. We attribute this fact to the inconsistency between

the estimated and true errors at the initialization (for a
review, see Nerger et al. 2006). The inconsistency is not a
peculiarity of our experiments but a general issue, because
the true errors and error correlations are unknown in
applications with real observations. The inconsistency is
larger for the global error fields than for a local patch of
200-km radius. Accordingly, better error estimates are
obtained with the local analysis, which result in a larger
improvement of the estimate of the SSH field as visible in
Fig. 5.

Comparing the errors after the third analysis (top) with
the errors before the fourth analysis (middle), the change of
the true and estimated errors due to the nonlinear ensemble
forecast is visible. For both filter variants, the true errors,
given by the absolute value of the difference between
ensemble mean and the true state, grow in the Gulf of
Mexico, as well as in the Caribbean and the Gulf stream
region, which are the regions with the strongest nonlinear-
ities. Further, the true error in the Nordic seas increases,
which is caused by the relaxation performed in this region.
The error in the North Sea and near Gibraltar has grown,
too. This is particularly visible for LSEIK. The differences
in the error increase for both filter variants are due to the
different ensembles of both filters.

The estimated errors are represented by the spread of the
state ensembles. In the experiments, the integrations of the
ensemble states results in a strong increase of the estimated
errors in the Caribbean, the Gulf of Mexico, and the Gulf
stream region. The estimated error in the North Sea
increases. The increases of the estimated errors are similar
for both filter methods. A successful filter will not only
produce a solution that is reasonably close to the true ocean
state; it will also provide realistic error estimates, as is
common in data assimilation. There are slight differences,
like a small increase of the error in the Nordic seas is
estimated from the ensemble of LSEIK, while this is absent
in the global SEIK filter. However, the ensemble integra-
tion in both filter methods is able to reproduce the error
increase in the regions with strong nonlinearity. The
increase of the true errors in the Nordic seas, as well as near
Gibraltar, is less well-estimated. Due to the relaxation
performed here, it should be considered as a model bias,
which cannot be represented by the ensemble spread.

The influence of the localization of the analysis update is
visible when the errors before the fourth analysis (middle)
are compared with those after the fourth analysis (bottom).
For the global analysis update by SEIK, shown in Fig. 6,
the true errors are only reduced in local areas in the Gulf
Stream region, the Gulf of Mexico, and in the Caribbean as
is also visible from the improvement shown in the left
panel of Fig. 5. Overall, the errors are only reduced by a
very small amount and the error pattern remains un-
changed. The improvements correspond to areas with the
largest estimated errors. The reduction of the error estimate
generally corresponds well with the true error reduction.
However, the error estimates and their reductions are much
smaller than the true errors and their reductions. There are
regions with large error estimates that generally correspond
to regions with significant true estimation errors. At these
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Fig. 6 Standard deviation � of the SSH estimate after the third
analysis (top), before the fourth analysis (middle), and after the
fourth analysis (bottom) for the SEIK filter with global analysis. The

left column shows the filter-estimated errors, while the right column
shows true errors. Errors are significantly underestimated by the
SEIK filter
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Fig. 7 Standard deviation � of the SSH estimate after the third
analysis (top), before the fourth analysis (middle), and after the
fourth analysis (bottom) for the LSEIK filter with a localization
radius of l� ¼ 200 km. The left column shows the filter-estimated

errors, while the right column shows true errors. Errors are
underestimated, but to a lesser degree than with the global SEIK
filter
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locations, no improvement of the state was possible with
the global analysis update due to its global averaging
character.

Figure 7 shows that the reduction of both the true and
estimated errors is much larger when the local analysis is
applied. In the true error field, almost all of the strong
errors in the Gulf stream region, the Gulf of Mexico, and in
the Caribbean have vanished due to the assimilation. In
addition, the errors west of Gibraltar and in the Nordic seas
are reduced, despite the fact that the estimated error is
unrealistically small here. The improvement in these
regions is governed by the large residual between the
state estimate and the observations, which yields a large
weight toward the observations. The comparison with the
global analysis shows that these corrections are only
possible with the local analysis. For the global analysis, the
weight for the analysis update is dominated by other
locations where large residuals and large error estimates of
the state occur.

Comparing the true error fields after the third analysis
(top) with those after the fourth analysis (bottom), it is
obvious that the local analysis corrects practically all errors
that have been generated during the forecast phase. An
exception is the Nordic seas, where the bias effect of the
relaxation to climatology cannot be corrected by the filter
algorithm without a special estimate of the bias (see, e.g.,
Keppenne et al. 2005). Considering the estimated errors, is
it also visible that all errors are corrected, which correspond
to realistically estimated errors. This observation under-
lines the necessity of obtaining good variance estimates, in
addition to a good mean solution in data assimilation. The
estimated error at about 25� N, 58-70� W is only slightly
reduced. However, in this region, the residual between state
estimate and observations is very small; thus, no large
improvement can be obtained. The larger error estimate in
this region is due to the inconsistency between the true and
estimated covariance matrices in the initialization (for a
review, see Nerger et al. 2006).

5.3 Influence of the localization on non-observed
fields

To examine the effect of the data assimilation on non-
observed fields, we discuss the velocity field at 100 m
depth. As only the SSH is observed, the velocities are
updated only via the estimated cross-correlations between
this field and the observed SSH. Figure 8 shows the area-
weighted rms estimation errors relative to the errors from a
model integration of the initial state estimate without
assimilation. Analogous to Fig. 4, results for the global
SEIK analysis and the LSEIK filter with different local-
ization radii for the observations are shown.

For the global SEIK filter, it is clearly visible that
the increase of the ensemble size improves the estimate of
the velocity field. Due to the larger ensemble size, the
covariances between the SSH and the velocity field can be
better represented by the state ensemble. The RRMSE for
the global SEIK filter with ensemble size 32 is even
slightly smaller for the velocities than for the SSH. This is
caused by the combined effect of state improvement by
assimilation and the error decrease during the second
forecast phase.

For the local SEIK filter, the RRMSE is significantly
reduced, compared to the global SEIK filter. While the
error reduction is less obvious for large localization radii of
2,000 and 1,000 km, the lowest RRMSE is obtained for
smaller localization radii of 100 and 200 km. For N ¼ 8
and N ¼ 32 minimum RRMSE values of about 0.5 and
0.35 are obtained, respectively. These errors are larger than
those obtained for the SSH (0.37 for N ¼ 8 and 0.27 for
N ¼ 32Þ: This is expected, because the velocity field is
updated via the estimated covariances between this field
and the SSH. As the estimates of the covariances are
inferior, compared to the variance estimates of the SSH
field, smaller improvements in the estimation of the
velocity field are obtained.

Fig. 8 RMS estimation errors
of the horizontal velocity at 100
m depth from the assimilation
with SEIK and LSEIK relative
to the errors from a simulation
without assimilation. The dif-
ferent lines show results from
the global SEIK and the LSEIK
algorithm with different local-
ization radii. Shown are results
for ensemble sizes of eight
members (left) and 32 members
(right), respectively. Also for
this non-observed field, the er-
rors are strongly reduced by the
localization
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The assimilation experiment for N ¼ 8 with a total
localization (localization radius lδ ¼ 0 km) exhibits a
special behavior that is, to some extent, also visible for the
experiment with N ¼ 32 and lδ ¼ 20 km. The analysis
updates are rather small and increase the RRMSE at all
times. In contrast, the forecast phase results in decreasing
RRMSE values. Here, we observe the phenomenon of
overfitting, i.e., the model is adjusted not only to the data
but also to the noise.

6 Conclusions and outlook

Inspired by the vision of Christian Le Provost, we have
developed a finite-element ocean general circulation model
and advanced filtering techniques. The ocean model is very
flexible in its representation of coastlines and bottom
topography, which have a dominating effect in steering the
circulation. The choice of triangulation also allows for a
bottom following description in the context of a geopo-
tential (z -coordinate) model and avoids the problem of
erroneous pressure gradient calculations.

Our North Atlantic version of FEOM was used as test
bed for a localized SEIK filter, an ensemble-based variant
of Kalman filtering. The artificial measurement error was
chosen to be high. Model biases and nonlinearities show
up. The best data assimilation results are obtained with a
local analysis scheme (LSEIK) of moderate influence
radius of 100 to 200 km. This scheme is far more efficient
with a small number of ensemble members than a global
analysis scheme with four times as many members. The
good performance can be attributed to a much better
estimate of the variance of the solution, which allows
appropriate error reduction by the observations.

In future, the artificial boundaries of the North Atlantic
model will be removed by embedding the area in a global
model setup, with focus on the North Atlantic in a seamless
way. Real radar altimetry will be assimilated in this model
to make circulation estimates more realistic.
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1 Appendix

1.1 Relation of the local SEIK analysis to an explicitly
localized state covariance matrix

The local SEIK analysis derived in Section 3.2 amounts to
implicitly neglecting long-range correlations in the state
covariance matrix. Here, we will show this explicitly by
rewriting the analysis Eqs. 26, 27, 28.

Combining Eqs. 26 and 27 and writing explicitly the
localization operator xσ; it holds:

Sσx
a ¼ Sσxf þ SσLUδðHδLÞTRδ

�1 yo
δ �Hδxf

� �
(30)

Now, define the operator ~Sσδ as the linear operator that
restricts a vector on the observation domainDδ to the local
analysis domain Sσ. Thus, Sσ ¼ ~SσδDδ and

~Sσδx
a
δ ¼ ~Sσδ xf

δ þ LδUδðHδLÞTRδ
�1 yo

δ �Hδxf
� �h i

(31)

Now, we consider the case that the observation operator
H involves only local operations. If single water columns
are used as local analysis domains, this is fulfilled if H
operates only on each single water column. Thus, possible
observations are, e.g., the sea surface height or surface
temperature. However, also vertical integration would be
allowed. In this case, the action of the observation operator
on some state vector x followed by the localization
operator to the observation domain Dδ can be written as

DδHx ¼ ~HδDδx ¼ ~Hδxδ; (32)

where ~Hδ denotes the observation operator, which is local
to the domain Dδ: Using Eq. 32 with Eq. 31, we finally
obtain

~Sσδx
a
δ ¼ ~Sσδ xf

δ þ LδUδL
T
δ
~HT
δRδ

�1 yo
δ � ~Hδx

f
δ

� �h i
(33)

with

U�1
δ ¼ ρδG

�1 þ ð ~HδLδÞTR�1
δ

~HδLδ : (34)

Equations 33 and 34 show that, for local observation
operators, the local analysis can be formulated as a full
SEIK analysis performed solely using the ensemble, the
state estimate, and observations on the local observation
domainDδ: The application of the localization operator ~Sσδ
amounts to the choice of a sub-domain of Dδ , like the
central water column of the local observation domain. If the
observation operator is non-local, e.g., computing finite-
difference derivatives, state information from the outside of
the observation domain is required. However, this usually
only involves nearest-neighbor-grid points, which do not
change the general situation of the local analysis.

Appendix
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The local analysis covariance matrix is given as Pa
δ ¼

LδUδL
T
δ and is computed only by fields on the local

domain Dδ: Thus, any covariances of a length scale larger
than the local observation domain are neglected, while the
covariances in Pa

δ are the same as the corresponding
covariances in the global matrix Pa represented by the
ensemble of size N . In general, it is possible to obtain an
analysis with the global SEIK filter that provides the same
analysis state and covariance matrix. For this, however, an
ensemble of a much larger size would be required to
represent the larger rank of the covariance matrix and to
provide the same estimates for the covariances, which are
considered in the local analysis.
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