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Abstract Using a zonally averaged, one-hemispheric
numerical model of the thermohaline circulation, the
dependence of the overturning strength on the surface
equator-to-pole density difference is investigated. It is
found that the qualitative behavior of the thermohaline
circulation depends crucially on the nature of the small-
scale vertical mixing in the interior of the ocean. Two
different representations of this process are considered:
constant vertical diffusivity and the case where the rate
of mixing energy supply is taken to be a fixed quantity,
implying that the vertical diffusivity decreases with
increasing stability of the water column. When the
stability-dependent diffusivity parameterization is ap-
plied, a weaker density difference is associated with a
stronger circulation, contrary to the results for a fixed
diffusivity. A counterintuitive consequence of the
stability-dependent mixing is that the poleward
atmospheric freshwater flux, which acts to reduce the
thermally imposed density contrast, strengthens the
thermally dominated circulation and its attendant
poleward heat transport. However, for a critical value
of the freshwater forcing, the thermally dominated
branch of steady states becomes unstable, and is suc-
ceeded by strongly time-dependent states that oscillate
between phases of forward and partly reversed circula-
tion. When a constant vertical diffusivity is employed,
on the other hand, the thermally dominated circulation
is replaced by a steady salinity-dominated state with
reversed flow. Thus in this model, the features of the
vertical mixing are essential for the steady-state
response to freshwater forcing as well as for the
character of flow that is attained when the thermally
dominated circulation becomes unstable.

Keywords Thermohaline circulation � Stability �
Vertical mixing � Numerical modeling � Scale theory

1 Introduction

The view that freshwater forcing, associated with the
meridional atmospheric transport of water vapor, curtails
and destabilizes the thermohaline circulation is deeply
rooted inside as well as outside the scientific community.
The argument behind this notion is straightforward and
based on two considerations; pro primo, the fact that the
freshwater forcing creates a salinity field that reduces the
thermally imposed equator to pole-density difference and
pro secundo, the assumption that the thermohaline cir-
culation is favored by a strong equator-to-pole density
difference. Furthermore, this view seems to be supported
by the results from a large body of numerical ocean-
circulation studies (e.g., Marotzke et al. 1988; Weaver
et al. 1993; Park and Bryan, 2000).

Contrary to establishedwisdom, however, a number of
recent investigations (Lyle 1997;Huang 1999;Nilsson and
Walin, 2001) have concluded that it is fully possible that
the thermohaline circulation may intensify, rather than
slow down, in response to a weaker equator-to-pole
density difference. The relation between vertical mixing
and the stratification is at the heart of this remarkable
result, and the underlying physics are straightforward.
Consider thermohaline circulation in a one-hemisphere
basin, where a thermocline separates the warm poleward-
flowing water in the upper ocean from the cold water
beneath. Suppose now that the equator-to-pole density
difference suddenly is reduced and that the ocean adjusts
to the new forcing. Regardless of the details of vertical
mixing, we will observe two changes after the adjustment;
the speed of the poleward-flowing warm water has
decreased, and the depth of the thermocline has increased.
The latter change serves to augment the net poleward
flow, whereas the former acts to hamper it. It is here
that the properties of vertical mixing, which controls
the response of thermocline depth, become crucial: if the
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turbulent vertical diffusivity is assumed to be fixed – the
standard assumption in ocean modeling – the net pole-
ward flowwill decline. On the other hand, if the diffusivity
increases as the stratification becomes weaker – a physi-
cally reasonable behavior – the net poleward transport
may amplify. Based on these considerations, Nilsson and
Walin (2001) advanced the idea that the reduction in the
equator-to-pole density difference caused by the salinity
fieldmay serve to strengthen the thermohaline circulation,
rather than to weaken it.

In fact, the numerical one-hemisphere simulations due
to Huang (1999) and Nilsson et al. (2003b) have demon-
strated that if the vertical mixing is suppressed by strong
stratification, the strength of thermohaline circulation
decreases with increasing equator-to-pole density differ-
ence. Both these studies dealt with purely thermal flows,
forced by a prescribed distribution of sea-surface tem-
perature. However, when the circulation is forced by a
prescribed sea-surface temperature as well as by a fresh-
water flux (i.e., mixed boundary conditions), the surface
density distribution becomes a function of the flow. As
pointed out by Stommel (1961), this implies that there
may exist multiple equilibria. In addition to the thermally
dominated circulation of the forward type – the mode
studied byHuang (1999) andNilsson et al. (2003b) – there
generally exist equilibria with reversed flow where the
salinity field dominates the density distribution (e.g.,
Welander 1986; Thual and McWilliams 1992; Weaver
et al. 1993). Further, there may exist an upper bound on
the freshwater forcing, beyond which an equilibrium with
forward circulation cannot be attained.

A main purpose of the present study is to explore how
the representation of vertical mixing affects the over-
turning dynamics when the circulation is forced by mixed
boundary conditions. To address this issue, a two-
dimensional numerical model has been employed and
simulations have been carried out for a broad range of
surface forcing. The model is a zonally averaged repre-
sentation of thermohaline circulation in a single-hemi-
sphere basin. As a preliminary to the numerical
investigation, a scale analysis of thermohaline flows is
presented. Basically, this analysis follows that of Nilsson
andWalin (2001). However, a theoretical investigation of
the dynamics in the limit where the thermocline depth
approaches the ocean bottom represents a novel contri-
bution, an issue followed up in the analyses of the
numerical simulations. It is emphasized that this is an
idealized study addressing a problem of basic importance
for the dynamics of the thermohaline circulation. As with
all idealized models, there are caveats associated with this
study. Thus in the concluding section, the relevance of our
findings for the real ocean are subjected to a critical
discussion.

2 Scaling analysis

Our first step is to apply a simple scale analysis to the
thermohaline circulation in order to judge how its

strength is related to the equator-to-pole density
difference and the specifics of the vertical mixing. As
background it is instructive to consider a meridional
cross-section of potential density distribution in the
Atlantic basin (cf. Fig. 1). These observations suggest
that, as a first approximation, the ocean may be
regarded as stratified where a thin upper layer of light
water is separated from a deep, nearly homogeneous
layer of dense water by a pycnocline. Furthermore, the
observations indicate that the equator-to-pole density
difference at the surface to lowest order equals the
vertical density difference at low latitudes.

In what follows a one-hemispheric basin is consid-
ered1 (cf. Fig. 2). The equator-to-pole density difference
at the surface (Dq) is prescribed, whereas the depth of
the pycnocline (H ) and the circulation (w) are to be
predicted. The depth of the basin is denoted D, the
poleward volume transport is wI, and the diapycnal
volume transport upwards is wII. Here, the depth of the
pycnocline is assumed to be small, H=D� 1. (The case
when the pycnocline depth is large, H � D, is dealt with
separately.)

In the scale analysis the circulation is assumed to be
in hydrostatic and geostrophic balance, which implies
(Welander 1986) that the thermal wind relation is valid:

@v
@z
¼ � g

f q0

� @q
@x

:

Here, x and z are the independent coordinates in the
zonal and vertical directions, respectively, v is the
meridional velocity, g the gravity, f the Coriolis
parameter, q the density, and q0 a reference density.
Furthermore, vertical advection is assumed to balance
vertical diffusion (Munk 1966):

w
@q
@z
¼ @

@z
j
@q
@z

� �
;

Fig. 1 Meridional potential density cross-section in the Atlantic basin
along 30� west latitude. Density in units of kg m�3 � 1000. Contour
interval is 0.5 kg m�3. (Data from Levitus 1982)

1 Here, the one-hemisphere geometry may be viewed as a concep-
tual representation of a general thermohaline flow where the
low-latitude upwelling is routed towards the sinking regions in
near-surface currents; see also the discussion in the concluding
section.
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where w is the vertical velocity and j is the diffusivity
coefficient representing the vertical small-scale mixing.

To estimate the overturning circulation, the poleward
and diapycnal flows have to be determined. The former
quantity is scaled using the thermal wind relation, where
the zonal density gradient is assumed to be proportional
to that in the meridional direction, a conjecture which is
supported by results from three-dimensional modeling
(e.g., Wright and Stocker 1991: Wright et al. 1989; Park
and Bryan, 2000). This proportionality implies that the
poleward volume transport scales as

wI �
g

f q0

� Dq � H2 : ð1Þ

Assuming that the advective-diffusive balance controls
the stratification, the diapycnal flow scales as

wII � A � j
H

; ð2Þ

where A is the area of the low-latitude stratified part of
the basin where the upwelling occurs. Note that in a
more general case, where the globally integrated ther-
mohaline circulation is considered, A should be inter-
preted as the effective area of the low-latitude upwelling
in all ocean basins.

In a steady state the poleward and diapycnal flows
must be equal, yielding the following relation between
the pycnocline depth and the density difference:

H � f q0A
g

� �1=3

�j1=3 � Dq�1=3 : ð3Þ

Substituting this result in Eq. (1) or (2) the steady-state
overturning is obtained:

w � gA2

f q0

� �1=3

�j2=3 � Dq1=3 ; ð4Þ

which shows that the strength of the overturning is
controlled by density as well as by vertical diffusivity.

2.1 Vertical mixing

The postulated physical basis of the verticalmixing, which
controls the relation between diffusivity and density dif-
ference, plays an important role. A classical assumption
concerning the vertical mixing is to keep the diffusivity
fixed, viz. independent of the vertical stability. This
parameterization, which is frequently used in ocean-cir-
culation models, implies that the overturning scales as

w � Dq1=3 : ð5Þ

The strength of the overturning is enhanced as the
density difference increases, consonant with the estab-
lished view (Park and Bryan, 2000). Note, however, that
the response of the overturning to changes in Dq is
weaker than linear: according to Eq. (3), the pycnocline
depth decreases with Dq as H � Dq�1=3, which, in view
of Eq. (1), acts to curtail the overturning. An increase of
Dq yields not only stronger meridional velocities, but
also a more shallow pycnocline, which inhibits the
strengthening of the poleward transport.

Although j frequently is assumed to be fixed in ocean
modeling, straightforward energy considerations suggest
that j in fact depends on the vertical density difference
(which is roughly proportional to the equator-to-pole
density difference Dq). In a stratified fluid, small-scale
vertical mixing (quantified in terms of j) creates poten-
tial energy (Munk and Wunsch 1998) as

E ¼ q0

Z
jN 2 dz ; ð6Þ

where E is the rate of increase in potential energy per
unit area and N the buoyancy frequency, defined by

N 2 ¼ � g
q0

@q
@z

:

It is reasonable to assume that the rate of energy supply
to small-scale mixing from, e.g., winds and tides is
constant, which implies that also E, the production rate
of potential energy, should be constant. This argument,
originally advanced by Phillips (1969), when applied to
Eq. (6) yields the following dependence of the vertical
diffusivity coefficient on the density difference:

j � E
gDq

: ð7Þ

Thus, if the rate of energy supply available for small-scale
vertical mixing is taken to be fixed, a stronger vertical
density difference implies a smaller diffusivity. Using this
result in Eq. (4) yields the overturning scales as

w � Dq�1=3 : ð8Þ
As seen from Fig. 3, the two representations of mixing
give rise to strikingly different overturning character-
istics. If the diffusivity is constant, the overturning

Fig. 2 Sketch of a simple one-hemisphere two-layer system

Fig. 3 Qualitative response diagram showing overturning as a
function of the density difference between equator and pole for
constant solid and stratification-dependent dashed diffusivity, respec-
tively, according to the scale analysis (Eqs. 5 and 8)
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intensifies with an increasing equator-to-pole density
difference, whereas it weakens if the diffusivity is
dependent on the vertical stability.

The pycnocline depth decreases with density differ-
ence (H � Dq�2=3, cf. Eq. 3) more rapidly than in the
previous case when the diffusivity was taken to be con-
stant, having the somewhat counterintuitive conse-
quence that the circulation slows down.

2.2 Effects of finite basin depth

For fixed mixing energy, the overturning increases be-
yond bounds when Dq approaches zero (cf. Eq. 8). This
raises the question whether the scale analysis is valid in
the regime when the density difference is small.

According to Eq. (3), also the pycnocline depth be-
comes unbounded as Dq approaches zero. As a result
the pycnocline will eventually approach the bottom
of the basin, H � D. When this occurs, the depth scale of
the stratification is controlled by the geometry rather
than by the advective-diffusive balance (Eq. 2), which
becomes redundant, Hence the circulation is governed
only by the thermal wind relation:

w � gD2

f q0

� Dq : ð9Þ

According to this result, the strength of the circulation
responds in a linear fashion to changes in Dq. This result
is independent of the representation of the diffusivity
and is consequently valid for constant as well as stabil-
ity-dependent diffusivity.

For fixed diffusivity, the response to changes of the
density difference is weaker in the regime where Dq is
large (H=D� 1) than in the regime where it is small
(H � D). Nevertheless, the derivative of the response has
the same sign in both regimes. However, for fixed mixing
energy the derivative changes sign between the regimes.
The response is negative for large Dq, whereas it is po-
sitive for small Dq. Consequently, the strength of the
circulation should assume a maximum for the specific
density difference that yields H � D, which can be
determined using Eq. (3):

Dqm �
f q0AE

g2

� �1=2

�D�3=2 :

Applying this result to Eq. (9) the maximum strength of
the circulation is:

wm �
AE
f q0

� �1=2

�D1=2 :

Thus, the maximum possible overturning strength in-
creases with the basin depth as well as with the rate of
increase in potential energy due to mixing (i.e., AE).
However, it may be noted that wm is not very sensitive to
changes in these parameters; for instance, a doubling of
D yields an increase in wm of only about 40%.

3 The model

These results spurred us to investigate whether the two
representations of the diffusivity yield similar results in
an idealized numerical thermohaline circulation model.
We use a zonally averaged, two-dimensional, thermo-
haline circulation model similar to the ones previously
employed in various climate studies (Marotzke et al.
1988; Wright and Stocker, 1991), although the model
domain in the present study is taken to encompass solely
one hemisphere.

3.1 Governing equations

Essentially, the derivation of the zonally averaged model
equations follows Marotzke et al. (1998). The model
describes a Boussinesq fluid in hydrostatic equilibrium,
confined within a basin of constant depth (D) and zonal
width (B) that has the meridional length L. The hori-
zontal momentum equation is

cv ¼ � 1

q0

@p
@y

; ð10Þ

where v is the zonally averaged meridional velocity, c is a
closure parameter relating flow speed and pressure
gradient, q0 is the reference density, p is the zonally
averaged pressure, and y is the meridional coordi-
nate. The basic closure hypothesis underlying Eq. (10) is
that the east–west and the north–south pressure
gradients are proportional (see, e.g. Wright et al., 1998
for an extensive discussion of flow representations in
zonally averaged models). The hydrostatic balance is
given by

@p
@z
¼ �qg ; ð11Þ

where q is the zonally averaged density and z is the
vertical coordinate. Conservation of mass yields:

@v
@y
þ @w
@z
¼ 0 ; ð12Þ

where w is the zonally averaged vertical velocity. The
conservation of heat and salt is given by

@

@t
T
S

� �
þ v

@

@y
T
S

� �
þ w

@

@z
T
S

� �
¼ @

@z
j
@

@z
T
S

� �� �
;

ð13Þ
where T and S are the zonally averaged temperature and
salinity, respectively, and j is the vertical diffusivity. For
simplicity, a linear equation of state is used:

qðS; T Þ ¼ q0 1� aT þ bSð Þ ; ð14Þ
where a and b are expansion coefficients for heat and
salt, here taken to be constants. For this two-dimen-
sional system it proves convenient to introduce a
meridional streamfunction w:
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Bv ¼ � @w
@z
; Bw ¼ @w

@y
;

where w satisfies mass conservation (Eq. 12) and B is the
zonal width of the basin.

By eliminating the pressure in the horizontal
momentum balance (Eq. 10) and the hydrostatic balance
(Eq. 11), rewriting the velocity in terms of the stream-
function, and, using the equation of state (Eq. 14), the
following relation is obtained:

@2w
@z2
¼ �B � g

c
� b

@S
@y
� a

@T
@y

� �
: ð15Þ

This equation is used to calculate the streamfunction
from temperature and salinity.

It is relevant to note that this zonally averaged model
can be scaled using the same procedure as outlined in
Section 2. If this is carried through, one finds that the
pycnocline depth obeys

H � ðcq0L2=gÞ1=3 � j1=3 � Dq�1=3 ;

and the overturning obeys

w � ðgL4=cq0Þ1=3 � ðB=LÞ � j2=3 � Dq1=3 :

The scale dependence of H and w on j and Dq derived in
Section 2 thus also applies for the zonally averaged
model, which is a consequence of the horizontal
momentum closure (Eq. 10) employed here.

3.2 Boundary conditions

We are dealing with a basin of meridional extent L and
depth D. No transport takes place through the solid
boundaries, implying that w ¼ 0 here. Neither heat nor
salinity fluxes through the bottom are permitted, viz.

@T
@z
¼ @S
@z
¼ 0 :

At the surface the temperature is prescribed:

TtopðyÞ ¼
DT
2
� 1þ cos y � p

L

� �h i
;

where the temperature has a maximum DT at the
equator and equals zero at the pole. The salinity is
dynamically controlled through a prescribed salinity flux
F at the surface:

F ðyÞ ¼ �F0 � cos y � p
L

� �
¼ �j

@S
@z

;

where F0 is the magnitude of the maximum salinity flux.
The physical interpretation of this prescribed distribu-
tion is that maximal net evaporation and precipitation
take place at the equator and pole, respectively.

3.3 Parameterization of the diffusivity

The two different representations of mixing described
above have been implemented for the model. In the first

case j is prescribed as a constant, j0, and is thus inde-
pendent of the density stratification. In the second case j
is taken to be inversely proportional to Dq (cf. Eq. 7),
which is the horizontal average of the top-to-bottom
density difference. Specifically, j has been given the form:

j ¼ j0 �
Dqr

Dq
;

where Dqr is a density difference used for reference
purposes, and

Dq ¼ 1

L

ZL

0

ðqtop � qbottomÞ dy ;

where the integrand is the vertical density difference
between the surface and the bottom. In order to prevent
too high j values for weak density differences, an upper
limit is set at 10 � j0.

3.4 Numerical procedures

Equation (13) is discretized using a leap-frog scheme
and the calculations are initiated using Eulerian forward
stepping. At each time step the streamfunction is cal-
culated by integrating Eq. (15) twice. The spatial deriv-
atives are discretized using centered differences. A
staggered grid is employed, with the streamfunction in
the corners and temperature and salinity at the center.
The temperature and salinity resolutions are 51� 41 in
the horizontal and vertical direction, respectively.

In order to ensure numerical stability, horizontal
diffusion, Asselin filtering, and horizontal three-point
smoothing of the streamfunction are included in the
computational scheme. The horizontal diffusivity con-
stant is taken to be 160 m2 s�1 and the Asselin time-filter
constant is set to 0.1. Note that the horizontal diffusivity
was taken to be as small as possible but yet large enough
to suppress numerical noise and instability. The present
diffusivity value should be so low that it has no signifi-
cant effect on the large-scale flow. Convective adjust-
ment following Yin and Sarachik (1994) has furthermore
been incorporated to inhibit unstable stratification.

The fluid is initially at rest, at which time the tem-
perature and salinity are taken to be constant in the
basin. The time step used in the simulations is 12 h. The
model is run until a steady state has been reached.

3.5 Reference state

We introduce a reference state that broadly corresponds
to the present-day ocean, specified by the following
parameters: DTr ¼ 25 �C, j0 ¼ 10�4 m2 s�1, D ¼
3000 m, B ¼ 6000 km, L ¼ 6000 km, a ¼ 2� 10�4 �C�1,
b ¼ 8� 10�4, c ¼ 1:8 � 10�3 s�1. Note that c should be
regarded as a tuning parameter, here adjusted so that the
model yields ocean-like results for the parameter values
introduced above. Note further that the freshwater
forcing is zero in the reference state and that the
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thermally induced equator-to-pole density difference,
Dqr, is 5 kg m�3.

The reference state is the steady-state model solution
that in the absence of freshwater forcing results from
this parameter specification. In the reference state, the
two mixing representations yield, by construction, an
identical vertical diffusivity and consequently also iden-
tical model solutions. Figure 4 shows the temperature
distribution as well as the streamfunction for this ther-
mally forced reference state. The resulting circulation is
of the forward, thermally dominated type, characterized
by ‘‘narrow’’ sinking at high latitudes and ‘‘broad’’
upwelling at low latitudes. Note that the thermal strat-
ification, with its well-defined thermocline, displays
qualitative similarities with the real ocean.

It should be underlined that the reference state is
characterized by a single nondimensional parameter:

r ¼ ðcq0L2=gÞ1=3 � j1=3 � Dq�1=3 � D�1 ; ð16Þ
which controls the ratio between the thermocline depth
and the basin depth. Provided that this parameter is
chosen to yield a realistic thermocline depth, the actual
strength of the overturning is basically irrelevant for the
dynamics of the model.

To compare the present simulations with previous
numerical and analytical investigations, it is useful to
introduce a nondimensional measure of the freshwater
forcing, which is here termed R. This parameter is
defined as the ratio between the haline buoyancy flux,
due to the surface salinity flux, and the thermal buoy-
ancy flux associated with the simulated poleward heat
transport in the reference state (say Qr). The former
buoyancy flux is given by bF0BL=p, which implies that

R ¼ bF0BLcpq0

aQrp
; ð17Þ

where cp is the heat capacity of seawater. Note that it is
F0 that sets the strength of surface salinity flux and that
Qr ¼ 0:15 PW.

It can be noted that the present tuning produces an
overturning strength and a heat transport that are

similar to those obtained from three-dimensional models
in comparable geometry (see, e.g., Nilsson et al. 2003b).
The observed northward heat transport in the Atlantic,
on the other hand, is on the order of 1 PW. This dis-
crepancy in heat transports is related to wind-driven
circulation as well as to the fact that the real Atlantic
receives thermocline water that has upwelled in the
Indo-Pacific basin.

4 Results

Two types of numerical experiments are presented in
what follows, those with only thermal forcing, and those
where the circulation is forced by mixed boundary
conditions. The thermal forcing is provided by the
equator-to-pole surface temperature gradient, where
the magnitude DT is changed for each simulation
and the resulting steady state is subsequently examined.
For the experiments with mixed boundary conditions, a
fixed equator-to-pole temperature gradient, DT ¼ DTr, is
applied, whereas R the strength of the freshwater
forcing, is varied for each simulation.

4.1 Thermal forcing

When the system is subjected only to thermal forcing,
the salinity is set to zero and thus density is a function of
temperature only. The investigation has been carried
through on the basis of a series of experiments with the
forcing being increased for each simulation, whereafter
the overturning strength at steady state has been mea-
sured. The magnitude of the forcing is given by DT and
the strength of the steady-state overturning is measured
by the maximum value of the streamfunction in a cen-
trally located column, maxz2½0;D�½wðy � L=2; zÞ�.

Figure 5 shows the overturning strength as a function
of the equator-to-pole temperature difference. In this

Fig. 4 Reference state temperature solid lines and streamfunction
dotted lines in the basin at steady state, described in the text in
Section 3.5. The numbers are given in. C and Sv and respectively. The
x-axis is in the meridional direction and the y-axis in the vertical. E is
the equator; P the pole; T the top; B the bottom

Fig. 5 Response of the overturning as function of equator-to-pole
temperature difference, DT , for constant circles and stratification-
dependent squares diffusivity, respectively. The flow is thermally
forced and the overturning as well as the temperature difference is
normalized at DT ¼ DTr. Numbers are nondimensional. Dotted and
dash-dotted lines are results of the scale analysis for constant and
stratification-dependent diffusivity, respectively (cf. Eqs. 5, 8, and 9).
Axes are logarithmic
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diagram the results from the numerical experiments,
together with the relationships obtained from the scale
analysis (Eq. 5, 8, and 9), are shown for the fixed as well
as the stability-dependent diffusivity.

In the regime where the equator-to-pole temperature
difference is sizable (DT � 5 �C), there is a qualitative
difference between the overturning response for the two
different diffusivity parameterizations. In agreement
with the scale-analysis results (cf. Eq. 5 and 8), the
strength of the overturning intensifies with equator-to-
pole temperature difference using the constant-diffusiv-
ity parameterization, whereas it becomes weaker for the
stability-dependent diffusivity parameterization.

This may be contrasted with the behavior in the
regime where the equator-to-pole temperature difference
is small (DT 	 5 �C). Here, the overturning strength
increases with the temperature difference for both
diffusivity representations. Consonant with the scale-
analysis results (cf. Eq. 9), the overturning strength is
essentially proportional to the density contrast.

According to the theoretical considerations, the
response of the overturning is intimately related to the
response of the thermocline depth, given as H � DT�1=3

and H � DT�2=3, respectively, for the two different dif-
fusivity representations (cf. Eq. 3). In order to investi-
gate how the thermocline depth varies with temperature
difference in the model, a thermocline depth index HT is
defined as

HT ¼
Z0

�D

T ðzÞ � Tbottom

Ttop � Tbottom
dz ; ð18Þ

where Ttop and Tbottom are the temperature at the surface
and bottom, respectively.

The variation of thermocline depth with temperature
difference is shown in Fig. 6. The variation of HT in the
model follows the predictions of the scale analysis in the
regime where DT � 5 �C. In the region where DT 	 5 �C
the thermocline depth index saturates close to 0:5,

implying that the thermocline effectively has reached the
bottom (H � D).

The overturning response in Fig. 5 and the thermo-
cline depth response in Fig. 6 (shown for data from a
column near the center of the basin) proved to be uni-
formly valid in the greater part of the basin. The
exception is the region poleward of the global maximum
of the streamfunction where downwelling occurs.

4.2 Mixed boundary conditions

After noting the different responses depending on the
representation of the diffusivity, it is of interest to ana-
lyze how freshwater forcing affects the circulation. The
density is now a function of temperature as well as
salinity, and consequently the salinity-flux and temper-
ature-boundary conditions jointly force the circulation.
Note that, in contrast to the case when only thermal
forcing is applied, the equator-to-pole surface density
difference is not prescribed but dynamically determined
by the flux condition at the surface. The thermal forcing
is taken to be constant, but the intensity of the fresh-
water forcing is slightly varied between each simulation.
In what follows the thermally dominated forward cir-
culations are first analyzed, whereafter salinity-domi-
nated, reversed circulations are dealt with separately.
The steady state at R ¼ 0 is identical to that obtained for
the thermally forced simulation at DT ¼ DTr.

Figure 7 shows the resulting strength of the stream-
function (defined above) as a function of the freshwater
forcing. When the strength of the freshwater forcing is
increased, the circulation weakens for the constant-dif-
fusivity case. The opposite is true when the stability-
dependent diffusivity parameterization is used: a stronger
freshwater forcing is now associated with a strong over-
turning. This is in broad agreement with the results from
the thermally forced simulations (cf. Fig. 5). As the
freshwater forcing is increased, the salinity contrast is
magnified, implying that the equator-to-pole density
difference weakens. This corresponds to a weaker

Fig. 6 Thermocline depth index (cf. Eq. 18) for constant circles and
stratification-dependent squares diffusivity. The flow is thermally
forced. Thermocline depth index for a column in the center of the
basin as a function of equator-to-pole temperature difference. The
depth index is normalized with the basin depth D and the temperature
difference with DTr. Numbers are nondimensional. Dotted lines and
dash-dotted lines are results from the scale analysis for constant and
stratification dependent diffusivity, respectively. Axes are logarithmic

Fig. 7 Response diagram of the overturning as function of the
strength of the freshwater forcing, R, for constant circles and
stratification-dependent squares diffusivity, respectively. Heat and
freshwater force the circulation. The overturning is normalized at
R ¼ 0. Numbers are nondimensional
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equator-to-pole temperature difference in the simulations
using only thermal forcing.

It should be emphasized that no steady forward cir-
culations are found when R > 0:33. The underlying
reason has to do with feedbacks between the circulation
and the salinity fields, an issue which deserves discus-
sion. In the case with only thermal forcing there is a
negative feedback between the temperature difference
and the heat flux since a greater temperature difference
results in an enhanced heat flux, independent of the
diffusivity representation. The existence of solely a
negative feedback implies that there is one single stable
equilibrium state for each DT . However, the freshwater
forcing introduces an additional feedback mechanism
which makes the dynamics more complex.

To begin with, it should be recognized that the
freshwater forcing acts to increase the equator-to-pole
salinity contrast, regardless of the magnitude of the
salinity contrast. In a steady state the advective salinity
flux is the only mechanism capable of balancing the
freshwater forcing. The feedback between the salinity
difference and the advective salinity flux determines the
stability of the system when it departs from a steady
state. The essentials of this feedback are contained in the
linearized evolution of a small perturbation on the basic
equator-to-pole salinity contrast DS, as the following
schematic relation describes:

dDS0

dt
/ �DS0 � w� DS � w0 ;

where overbars denote basic-state quantities and primes
denote perturbations. The first r.h.s. term represents how
the basic-state flow affects a perturbation in the salinity
contrast. This part of the feedback is independent of the
relation between density and circulation and is hence also
independent of the diffusivity representation. It is negative
definite, since the advection counteracts the salinity per-
turbation.The second r.h.s. termdescribes the interaction
between a flow perturbation and the basic salinity con-
trast. This feedback depends on the relation between
density difference and circulation. For constant diffusiv-
ity, as well as in the classical box model due to Stommel
(1961), a positive perturbation in the salinity contrast
gives rise to a decrease of the advection (relative the basic
state). This will amplify the initial perturbation in the
salinity contrast, hereby making this part of the feedback
positive. Thus, the two feedback components counteract
each other and the net feedback can be negative as well as
positive. For the stability-dependent diffusivity, on the
other hand, a positive perturbation in the salinity contrast
implies an enhanced circulation. This will dampen out the
salinity perturbation (implying that the second r.h.s. term
constitutes a negative feedback). Hence, the total feed-
back is always negative.

Can these theoretical considerations serve to illumi-
nate the model results? For the case when w � Dq1=3

(corresponding to fixed diffusivity) and when the fresh-
water forcing is weak, the negative component of the
feedback predominates. However, it weakens as the

freshwater forcing becomes stronger and the salt con-
trast builds up, whereas the positive part of the feedback
becomes stronger. Freshwater forcing consequently
destabilizes the circulation. At some stage the positive
part of the feedback overwhelms the negative one and
the system becomes unstable. Thus, there is no stable
forward circulation when the freshwater forcing is
stronger, but a reversed circulation is possible (a topic to
be dealt with below). This behavior of the feedback
proves to be qualitatively the same as in Stommel’s
model (Stommel 1961). The present discussion suggests
that the numerical model with fixed diffusivity yields an
overturning that weakens with the density contrast up to
a point where a forward circulation cannot be found.
Instead, a steady-state reversed circulation is obtained.

For stability-dependent diffusivity (w � Dq�1=3) the
response should be fundamentally different, since the
feedback is always negative. In the absence of a positive
feedback the system should be stable, independent of the
strength of the freshwater forcing, i.e., no threshold levels
should exist. Furthermore, salinity perturbations should
be attenuated more rapidly when the freshwater forcing is
strong. However, this is not the case in the numerical
simulations. ForR > 0:33 themodel does not attain stable
steady states but oscillating transient states. When
attempting to explain why the model does not comply
with the theoretical considerations, the effects of a finite
basin depth could be relevant. According to the scale
analysis, a bottom influence could reverse the relation
between flow and density difference (cf. Sect. 2.2). The
pycnocline depth (not shown here) increases with fresh-
water forcing but has not reached the bottom when the
forward circulation breaks down. At this stage Hq < 0:3,
where Hq is defined similarly as HT with temperature
replaced by density. Thus bottom effects can be ruled out.
A more probable explanation is that the scale analysis
applies only in the region where upwelling occurs,
i.e., equatorwards of the global maximum of the stream-
function.

Figure 8 shows the meridional variation of the max-
imum of the streamfunction. Equatorwards of the global

Fig. 8 The meridional variation of the maximum of the streamfunc-
tion in each column with different freshwater forcings using
stratification-dependent diffusivity. The solid line shows the maximum
of the streamfunction for no freshwater forcing (R ¼ 0), the dashed
line for R ¼ 0:10, the dash-dotted for R ¼ 0:22 and the dotted for
R ¼ 0:32. Numbers are given in Sv. The x-axis is in the meridional
direction.; E is the equator and P the pole
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maximum the streamfunction increases with the fresh-
water forcing while it decreases poleward of the global
maximum. Thus, the discussion of feedbacks above does
not apply in the poleward region. Here the feedback
between salinity difference and advective salinity flux
may well become positive. In fact, in the simulation
where the forward circulation broke down (at R ¼ 0:33),
a salinity perturbation developed at high latitudes. As
time progressed this perturbation grew in magnitude and
extent. As a result, the cell of forward circulation
receded equatorwards and vanished temporarily to
be replaced by a reversed circulation. Eventually a
quasiperiodic state was attained (discussed below).

Finally, it is worth mentioning that the dependence of
maximum heat flux on the freshwater forcing is similar
to that of the overturning (cf. Fig. 7). Thus for constant
diffusivity, the heat flux decreases with freshwater forc-
ing, a dependence which is well established. A somewhat
peculiar effect is that for the fixed-energy parameteri-
zation, the heat flux increases with freshwater forcing.
Hence it is possible to maintain a strong heat flux for a
weak density contrast.

4.3 Time dependence

It was noted above that when the freshwater forcing
exceededR ¼ 0:33, no steady-state solutionswith forward
circulation were obtained when the model had stability-
dependent vertical mixing. For stronger freshwater forc-
ing, the flow exhibited pronounced time dependence.
Although this issue lies outside the main focus of the
present study, the dynamics of the time-dependent states
warrant a brief comment. Consider to begin with Fig. 9a,
which shows the time evolution of the streamfunction at
the center of the basin (for R ¼ 0:33). As illustrated, the
flow undergoes a quasiperiodic oscillation, alternating
between a strong forward circulation and a weak reversed
circulation. By inspecting the distribution of w in two of
the extreme phases of the oscillation (see Fig. 9b and c),
the following picture emerges. In the phase ofweakflowat
the center of the basin, there are two distinct circulation
cells: forward flow occurs in the southern domain,
whereas the northern domain is characterized by a weak
reversed circulation. Formation of ratherwarmand saline
deep water occurs between the two cells. In phases of
strong flow, the forward circulation occupies the bulk of
the basin. Here, broad down welling occurs in the north-
ern half of the basin. Thus, the oscillation brings the sys-
tem from an essentially thermally dominated forward
state to a hybrid state with partly reversed flow, and back
again. Throughout the cycle, the haline- and thermal-
density contributions are comparable in the northern part
of the basin, which causes the density contrast to be weak
in this region.

The oscillation described here kinematically resembles
the ‘‘thermohaline flushings’’ that have been reported
from several studies based on three-dimensional ocean
models (e.g., Weaver et al. 1993). As in a typical cycle

of thermohaline flushing, the present model produces
relatively long dormant periods, followed by short bursts
of intense forward circulation. It should be stressed,
however, that the stability-dependent vertical mixing is
crucial for the oscillations in our two-dimensional model;
only steady equilibria are found when a constant vertical
diffusivity is employed. Three-dimensional models, on
the other hand, produce flushing cycles when the vertical
diffusivity is taken to be fixed, as exemplified by the study
of Weaver et al. (1993).

Fig. 9 Transient streamfunction a Streamfunction at the center of the
basin as a function of time with freshwater forcing at R ¼ 0:33 using
stratification-dependent diffusivity. The bullets mark the weak and
strong phases shown in b and c, respectively. Numbers are given in Sv
and years, respectively. b Streamfunction at the weak phase at t ¼ 301
years with freshwater forcing at R ¼ 0:33 using stratification-
dependent diffusivity. Numbers in Sv. Solid contour lines correspond
to positive values and dotted to negative. The x-axis is in the
meridional direction and the y-axis in the vertical. E is the equator; P
the pole: T the top, B bottom c As b but at strong phase at t ¼ 503
years
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4.4 Reversed circulation

When the salinity field dominates the density distribu-
tion, the flow and the equator-to-pole density gradient
become reversed. In this regime, narrow sinking occurs
in low latitudes, which is compensated by broad
upwelling over the rest of the basin. As the stratification
is controlled by salinity, a stronger freshwater forcing
now implies a more pronounced density difference.
Essentially, this is the opposite of the state of affairs
in the thermally dominated regime with forward
circulation.

Figure 10 provides an overview of all steady states
that have been obtained in the numerical investigation.
The figure also indicates the predictions from the con-
ceptual model of Nilsson and Walin (2001) (illustrated
by the dotted lines). Consider first the reversed flow
obtained when the model has constant diffusivity. As for
the forward circulation, a stronger density difference
implies a stronger circulation. Accordingly, the increase
in circulation with increasing freshwater forcing, illus-
trated in Fig. 10, is expected. It is worth noting that the
predictions from Nilsson and Walin (2001) describe
reasonably accurately the forward as well as the reversed
circulation in this case. Note further that no effort has
been made to obtain reversed flow for weak freshwater
forcing.

It proved more challenging to obtain stationary
reversed flows when the stability-dependent mixing was
employed. However, after extended numerical integra-
tions a few equilibria were obtained. Figure 10 shows
that the reversed circulation slows down when the
freshwater forcing increases. This behavior is analogous
to the dynamics in the forward regime: a stronger
freshwater forcing yields an enhanced (salinity-domi-
nated) density contrast. This implies reduced vertical
mixing, which causes the thermocline depth to decrease
to such an extent that the overturning slows down,
despite an increased equator-to-pole density difference.
As evident from Fig. 10, in this case the numerically

simulated reversed circulation only qualitatively follows
the conceptual model of Nilsson and Walin (2001). It is
nevertheless of interest to note that the conceptual
model predicts a threshold freshwater forcing, below
which steady reversed circulation should be possible.
The reason is that there now is a positive feedback
between perturbations in salinity and circulation: a
weaker salinity contrast yields a stronger flow, which in
turn further reduces the salinity contrast. Thus, it is
essentially the same mechanism that destabilized the
forward circulation when the vertical diffusivity is fixed.

5 Discussion

In our two-dimensional numerical model, the nature of
the vertical mixing proved to be crucial for the response
of the circulation to changes in the surface fluxes of heat
and freshwater. When the vertical mixing was repre-
sented by a fixed vertical diffusivity, the forward circu-
lation increased with increasing equator-to-pole density
difference. This is the generally anticipated behavior,
which has been reproduced in many numerical investi-
gations (e.g., Park and Bryan 2000). In contrast, when
the vertical diffusivity decreased with stratification (at a
rate that implied a fixed mixing energy) the opposite
result was obtained: a weaker density difference yielded
a stronger forward circulation.

This qualitative difference in the response of the cir-
culation was encountered in the simulations with only
thermal forcing as well as in those with mixed boundary
conditions. For the stratification-dependent mixing, the
forward circulation intensified with increasing freshwa-
ter forcing. To our knowledge, this remarkable ther-
mohaline response has not been reported from previous
numerical investigations. A closer inspection of these
simulations revealed that while the flow intensified in the
bulk of the basin, it slowed down at high latitudes. The
local freshwater hampering of the high-latitude circula-
tion eventually destabilized the steady forward equilib-
rium, despite stronger freshwater forcing serving to
augment the circulation in the greater part of the basin.
However, the branch of thermally dominated steady
states was not succeeded by a salinity-dominated branch
with reversed circulation (as was the case when a fixed
diffusivity was employed). Rather, quasiperiodic flows
resulted, which oscillated between phases of forward
circulation of varying spatial extent and strength. It is
interesting to note that the conceptual model due to
Nilsson and Walin (2001) describes the simulated
response of the forward circulation to freshwater forcing
rather well for both mixing representations; see Fig. 10.
However, the predictions of this model concerning the
stability of the forward circulation proved to be less
applicable to our numerical simulations. According to
the conceptual two-layer model, the forward circulation
should remain stable until the freshwater forcing is so
strong that the pycnocline approaches the sea floor when
stability-dependent mixing is employed. The forward

Fig. 10 Response of the overturning as function of the strength of the
freshwater forcing, R, for constant circles and stratification-dependent
squares diffusivity, respectively. Heat and freshwater forces the
circulation. Dotted and dash-dotted lines lines are predictions from
the conceptual model of Nilsson and Walin (2001) for constant and
stratification-dependent diffusivity, respectively. The overturning is
normalized at R ¼ 0. Numbers are nondimensional
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circulation in the numerical model broke down well
before that stage was reached. The most likely expla-
nation is that the two-layer model, although relevant for
steady-state flows, does not resolve the spatial structure
of the perturbations destabilizing the numerical model.

Are the results from this idealized study of relevance
for the thermohaline circulation in the real ocean? To
approach this question, it must be recognized that our
knowledge of the vertical mixing in the ocean interior is
far from complete (e.g., Toole and McDougall 2001).
Currently it is not known with any degree of precision
how the turbulent vertical diffusivity would change in
response to an altered vertical stratification in the World
Ocean. Keeping this basic difficulty in mind, it is thus
most relevant to ask whether the thermohaline circula-
tion in more realistic models would be as sensitive to the
nature of vertical mixing as it proved to be in our one-
hemisphere zonally averaged model. To begin with, it
can be stated that our model produces relations between
the prescribed equator-to-pole temperature difference
and the overturning strength that are similar to those
obtained by Nilsson et al. (2003b), who studied one-
hemisphere flows using a three-dimensional model.
Accordingly, for the purely thermally forced flows, the
present zonally averaged model seems to give a reason-
able description of the meridional overturning dynamics.

5.1 Relevance for two-hemisphere flows

The use of a one-hemisphere basin is an obvious limi-
tation and motivates a comment on the relevance of our
results for thermohaline flows in a two-hemisphere ba-
sin. Focusing on thermally forced flows, it can be noted
that the studies by Klinger and Marotzke (1999) and
Marotzke and Klinger (2000) demonstrate that even a
weak pole-to-pole temperature (i.e., density) difference
yields a flow that is strongly asymmetric with respect to
the equator. Obviously, the present theoretical and
numerical considerations provide no information on the
dynamics controlling the asymmetry of these two-
hemisphere flows. However, Klinger and Marotzke
(1999) noted that the thermocline depth and the net
overturning (i.e., the combined sinking in the two
hemispheres) of the asymmetric flows scaled essentially
as in the one-hemisphere case: in their simulations
(where a fixed diffusivity was employed) the net over-
turning followed roughly DT 1=3, where DT represented
the largest equator-to-pole temperature difference
(i.e., characterizing the hemisphere where the bulk of the
sinking occurred). Based on the results of Klinger and
Marotzke, it seems plausible that the present results
apply qualitatively also for the net overturning of an
asymmetric two-hemisphere flow, which essentially
should be controlled by the basin-averaged vertical dif-
fusivity and the maximum density contrast.

In the simulations with mixed boundary conditions,
the one-hemisphere geometry introduces an additional
problem: it excludes the possibility of equatorially

asymmetric perturbations, which have a destabilizing
influence on the symmetric thermally dominated circu-
lation in a two-hemisphere basin (Weijer and Dijkstra
2001; Nilsson et al. 2003a). It is well established that in a
two-hemisphere basin the thermohaline circulation tends
to attain an equatorially asymmetric state, rather than a
state of reversed circulation, as the freshwater forcing is
increased (Marotzke et al. 1988; Thual and McWilliams
1992; Klinger and Marotzke 1999). Welander (1986)
suggested that the asymmetric thermohaline circulation
conceptually can be viewed as a hybrid state, with
thermal dominance in one hemisphere and haline dom-
inance in the other. This idealized picture may suggest
that our results concerning the effect of vertical mixing
on the circulation in the forward and reversed regimes,
respectively, can be translated to asymmetric circula-
tions in a two-hemisphere system. However, this is
probably misleading, as there tends to be an element of
pole-to-pole circulation in the asymmetric regime, rather
than two independent cells with different directions of
flow (e.g., Klinger and Marotzke 1999). Accordingly, the
effect of a coupling between mixing and stratification on
asymmetric two-hemisphere thermohaline circulation
warrants further study.

5.2 Concluding remarks

It must further be emphasized that in our one-hemi-
sphere model, the production and sinking of dense water
must be balanced by the upwelling sustained by vertical
mixing in the ocean interior. In the World Ocean,
however, the wind directly forces upwelling in the
Southern Ocean (Toggweiler and Samuels 1995;
Rahmstorf and England 1997), where the surface Ekman
drift carries cold water equatorwards. In fact, results
from the conceptual model of Saenko andWeaver (2003)
suggest that the overturning strength in the real ocean is
probably less sensitive to the equator-to-pole density
difference and the nature of vertical mixing than it is in
our idealized one-hemisphere model; if the wind-forced
Southern Ocean upwelling is fixed, it provides a baseline
for the strength of the global overturning.

Furthermore, it should be underlined that our results
concern the steady-state response of the thermohaline
circulation to variations in the freshwater forcing. In the
context of climate change – past as well as future – it
may rather be the response of the thermohaline circu-
lation to transient and abrupt changes of the surface
forcing that matters. This transient type of response is of
immediate relevance for how the thermohaline circula-
tion will respond to future global warming (see, e.g.,
Rahmstorf 2000; Marotzke 2000). In this context it is
interesting to mention a recent coupled ocean–atmo-
sphere study concerning the sensitivity of the Atlantic
thermohaline circulation reported by Otterå et al.
(2003). Starting from present-day climatic conditions,
they introduced a strong freshwater perturbation in the
northern North Atlantic 0.2 Sv kept constant). Initially,
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the Atlantic thermohaline circulation declined; however,
after some 50 years the circulation started to regain
strength and eventually stabilized. In the ocean model,
Otterå et al. employed a stability-dependent vertical
mixing. Based on analyses of the model result, they
concluded that enhanced vertical mixing played an
important role for the stabilization of the Atlantic cir-
culation. Thus, it seems highly motivated to further ex-
plore to what extent the nature of vertical mixing may
affect the dynamics of the thermohaline circulation.
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