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Abstract. We obtain a Weyl formula for a class of positive md-elliptic operators on mani-
folds with finitely many cylindrical exits. Weyl formula is deduced by a classical Tauberian
theorem through the asymptotic expansion at t = 0 of the trace of the heat parametrix. The
constant of the leading term is expressed invariantly by means of the usual principal symbol
and exit symbols.

1. Introduction

This paper is devoted to the asymptotic behaviour for large λ of the counting
function

N (λ, A) :=
∑
λ j≤λ

1 (1.1)

associated with certain L2-unbounded operators A on a class of non-compact
Riemannian manifolds M, nevertheless endowed with a spectrum made of real
eigenvalues {λ j} of finite multiplicity, clustering at infinity.

Spectral asymptotics has an old tradition. A wide literature regarding the case
of compact manifolds is available, starting from the pioneering Weyl’s, Carleman’s
and Gärding’s works ([23], [3], [7]) about the leading term of the expansion of
(1.1). Since then, most efforts have been directed towards both the improvement
of the remainder estimates and a deeper understanding of the interplay between
geometrical and analytical aspects; see for instance [10], [1], [4], [6].

On the other hand, a great number of results about eigenvalue asymptotics for
Schrödinger-type operators on Rn has been accurately obtained by using different
techniques (variational principles, approximate spectral projector method, . . .),
see [2], [11], [8], [13], [22] and the references therein.

A remarkable point in the study of operators on unbounded domains is the
necessity of specifying assumptions on the growth of the corresponding symbols
a(x, ξ) with respect to the x variable as well. This allows us to gain compact em-
beddings of weighted Sobolev spaces into L2(M) and, in the end, the discreteness
of the spectrum.
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The prominent local model on Rn that highlights the peculiar features of the
operators we are interested in is given by

A(x, Dx) =
∑

|α|≤m

aα(x)Dα
x , |x| > δ > 0, (1.2)

with smooth coefficients satisfying the following growth condition at infinity

aα(x) = |x|µcα

(
x

|x|
)

+ rα(x) ∀|α| ≥ 0,

for some µ ∈ ]0, +∞[, cα ∈ C∞(Sn−1) and ∂
β
x rα(x) = O(〈x〉µ−|β|−1) ∀β ∈ Nn .

We also assume that the following global (or md-) ellipticity conditions hold:

1) am(x, ξ) := ∑
|α|=m aα(x)ξα �= 0 ∀|x| > δ, ∀ξ ∈ Rn \ {0};

2) a∞(ω, ξ) := ∑
|α|≤m cα(ω)ξα �= 0 ∀ω ∈ Sn−1, ∀ξ ∈ Rn;

3) a�(ω, ξ) := ∑
|α|=m cα(ω)ξα �= 0 ∀ω ∈ Sn−1, ∀ξ ∈ Rn \ {0}.

The prototype we keep in mind is A(x, Dx) = |x|µ(−∆ + 1) (−∆ is the Lapla-
cian) and the kind of manifolds M we extend this model to are non-compact in
the following sense: they can be obtained by removing finitely many open disks,
Dk , with disjoint closures, from a compact n-manifold M0 and gluing along each
boundary component an infinitely extended cylindrical handle (the exit). The dif-
ferential structure on M is induced by M0 out of the disks and defined by means of
the gluing diffeomorphisms f on the infinite exits in such a way that M becomes
a SG-manifold [17]. We will be more precise at the beginning of Section 3. It is
to be pointed out that, in our framework, only homogeneous transition maps of
degree one are allowed; moreover, the Riemannian metric on M is the pullback via
f of the standard Euclidean one on the cylindrical exit.

We are therefore allowed to bring up the general SG-calculus for operators on
M that admit local representation, on each exit chart, having weighted symbols (see
Definition 2.3), according to the theory developed in [5] and [17]. In Sections 2 and 3
of this paper we deal with the class ECLm,µ(M) of md-elliptic pseudodifferential
operators A on M of order (m, µ) ∈ R2+ for which we claim and prove the existence
of both an “internal” principal symbol am and “exit” principal symbols a∞ and a�,
globally defined as

am ∈ C∞(T ∗M \ 0), a∞ ∈ C∞(T ∗
X M), a� ∈ C∞(T ∗

X M \ 0),

where X = ∂(M0 \ ∪Dk) and T ∗
X M is the restriction to X of the cotangent bundle

T ∗M, endowed with a natural contact structure. This operator class has been
conisedred by Melrose for example in [14].

Incidentally, md-ellipticity in this class is yielded by algebraic conditions in-
volving the triplet, {am, a∞, a�}, analogously to the previous Conditions 1), 2), 3).
A similar class of symbols has been considered by Schulze in [19].

In Section 4 the SG-machinery is used to carry out a detailed construction of
the heat parametrix, U(t), associated with A. As long as t > 0, U(t) is smoothing
and trace-class. Thereafter, by Karamata’s Tauberian Theorem, the expansion of its
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trace for small times leads, in Section 5, to the Weyl formula (i.e. to the expression
of the asymptotic behaviour of the counting function for large λ).

The main focus of this work is to detect the constant C of the leading term
in Weyl formula for positive self-adjoint A ∈ ECLm,µ(M) (Corollary 5.5). We
throw light on the different asymptotic behaviour of N (λ, A) according to the ratio
between m and µ. A precise expression of C is given, invariantly, in terms of am ,
a∞ and a�, respectively when µ > m, µ < m and µ = m.

The authors are grateful to C. Parenti, A. Parmeggiani and L. Rodino for their
kind attention and valuable discussions.

2. Weighted symbols

In this section we develop the local model for the calculus on a manifold with finitely
many cylindrical exits. Since each exit is not reducible to the whole Rn , we are
naturally led to consider unbounded open sets of the form Uδ = {x ∈ Rn : |x| > δ},
δ > 0 and define suitable function spaces which play the same role that do Schwartz
spaces of rapidly decreasing smooth functions in the standard global theory onRn .
We recall the bare essentials from the calculus of weighted symbols, leaving out
most of the proofs, for which we refer to [5], [15], [17]. Above all, the class
ECLm,µ(Uδ) is introduced in detail and its invariance with respect to suitable
diffeomorphisms is shown.

Definition 2.1. By S0(Uδ) we shall denote the space of all functions f ∈ S(Rn)

having support strictly contained in Uδ, i.e.

S0(Uδ) :=
⋃
δ′↘δ

{ f ∈ S(Rn) : supp f ⊆ Uδ′ }.

The topology of S0(Uδ) is the inductive limit one. It can be made clearer through
the notion of convergence, that is, fn → f in S0(Uδ) if and only if fn → f in
S(Rn) and (1−φ) fn → (1−φ) f in C∞

0 (Uδ) for every φ ∈ C∞(Rn), supp φ ⊂ Uδ′
and φ = 1 on Uδ′′ for some δ′′ > δ′ > δ.

Definition 2.2. By S(Uδ) we shall denote the space of all functions f ∈ C∞(Uδ)

such that for every α, β ∈ Nn and for every δ′ > δ the following estimate holds:

sup
x∈Uδ′

|xα Dβ f(x)| < ∞.

S(Uδ) is a Fréchet space with the seminorms implicit in the definition. Observe that
if f ∈ S(Uδ), then φ f ∈ S0(Uδ) for every φ ∈ C∞(Rn) with supp φ ⊂ Uδ, φ and
all its derivatives “polinomially growing at infinity” (with the obvious meaning),
and for short, “p.g.i.”.

The understanding of dual spaces S′
0(Uδ) and S′(Uδ) is carried out in the next

theorems. Notice that C∞
0 (Uδ) ⊂ S0(Uδ) ⊂ S(Uδ), thereby yielding S′(Uδ) ⊂

S′
0(Uδ) ⊂ D ′(Uδ).
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Theorem 2.1. The dual space S′
0(Uδ) can be identified with the space

Eδ := {
u ∈ D ′(Uδ) : ∀φ ∈ C∞(Rn), φ p.g.i., supp φ ⊂ Uδ ⇒ φu ∈ S′(Rn)

}
.

Proof. The inclusion S′
0(Uδ) ⊆ Eδ is easily verified; in fact, if u ∈ S′

0(Uδ) and φ is
as above, we can set the duality 〈φu, f 〉S′,S := 〈u, φ f 〉S′

0,S0
for every f ∈ S(Rn).

Conversely if u ∈ Eδ, we can choose φ such that φ = 1 for |x| large enough
and define

〈uφ, f 〉S′
0,S0

:= 〈φu, f 〉S′,S + 〈u, (1 − φ) f 〉D ′,D , for every f ∈ S0(Uδ).

The continuity of the functional uφ on S0(Uδ) is straightforward. Let us now
observe that if ψ is another C∞ function onRn which has the same properties of φ,
we have (notice that 1 − φ,1 − ψ ∈ C∞

0 (Rn))

〈φu, f 〉S′,S = 〈uψ, φ f 〉S′
0,S0

,

〈u, (1 − φ) f 〉D ′,D = 〈uψ, (1 − φ) f 〉S′
0,S0

.

This means that the distribution uφ does not depend on φ. ��
Theorem 2.2. S′(Uδ) = {u ∈ S′(Rn) : supp u ⊂ Uδ}.
Proof. Let u be in S′(Uδ). Then for every β ∈ C∞

0 (Rn) with β = 1 in Bδ′(0)

(we denote by Br(0) the Euclidean ball of radius r and centre 0), β = 0 in Uδ′′ ,
δ < δ′ < δ′′, we can write u = βu + (1 − β)u, where βu ∈ E ′(Bδ′′(0) \ Bδ(0)),
while (1 − β)u ∈ S′(Rn) with supp (1 − β)u ⊂ Uδ, so S′(Uδ) ⊆ {u ∈ S′(Rn) :
supp u ⊂ Uδ}.

On the other hand, let us take u ∈ S′(Rn), with supp u ⊂ Uδ and φ p.g.i.,
supp φ ⊂ Uδ, φ = 1 in a neighbourhood of supp u. Thus we can define 〈ũ, f 〉 :=
〈u, φ f 〉S′,S for every f ∈ S(Uδ). It is readily seen that ũ is a continous linear
map from S(Uδ) to C and it does not depend on φ having the properties stated
above. ��

Now we run over the basic facts from the so-called SG-calculus, going through
weighted symbols, operators and kernels, as far as a Sobolev continuity result. In
what follows 〈x〉 = (1 + |x|2) 1

2 .

Definition 2.3. (i) For real m, µ1, µ2, let Sm,µ1,µ2(Uδ × Uδ) denote the class
of all complex-valued amplitudes p ∈ C∞(Uδ × Uδ × Rn) such that for all
α, β, γ ∈ Nn and for every δ′ > δ there exists a positive constant Cα,β,γ (δ′)
such that∣∣∂α

ξ ∂β
x ∂γ

y p(x, y, ξ)
∣∣ ≤ Cα,β,γ 〈ξ〉m−|α|〈x〉µ1−β〈y〉µ2−|γ |,

(x, y, ξ) ∈ Uδ′ × Uδ′ × Rn.

(ii) For real m and µ, let Sm,µ(Uδ) be the linear subspace of Sm,µ,0(Uδ × Uδ)

consisting of all amplitudes which are independent of y. They will be referred
to as symbols.
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Sm,µ(Uδ) is a Fréchet space for every real m, µ and the increasing filtration given
by the embeddings Sm′,µ′

(Uδ) ↪→ Sm,µ(Uδ) ∀m ′ ≤ m, µ′ ≤ µ is continuous.
For any p ∈ Sm,µ1,µ2(Uδ × Uδ) we define a linear operator Op(p) as follows:

∀u ∈ S0(Uδ)

Op(p)u(x) :=
∫
Rn

∫
Rn

ei(x−y)·ξ p(x, y, ξ)u(y)dyd−ξ,

where the double integral is understood as an oscillatory integral and d−ξ =
(2π)−ndξ .

It can be shown that Op(p), as a continous linear operator from S0(Uδ) to
S′

0(Uδ), has a Schwartz distributional kernel K ∈ S′
0(Uδ × Uδ).

Theorem 2.3 (Continuity). Let p ∈ Sm,µ1,µ2(Uδ ×Uδ). Then we have the continu-
ous map

Op(p) : S0(Uδ) → S(Uδ).

Proof. We have to prove that for every δ′ > δ and α, β ∈ Nn there exist Cα,β(δ′)
and N such that

sup
x∈Ūδ′

∣∣xα∂β
x (Op(p)( f )(x))

∣∣ ≤ Cα,β(δ′)
∑

|α′|,|β′|≤N

sup
x

∣∣xα′
∂β′

x f(x)
∣∣.

We proceed in the standard way. Let L be the differential operator defined as

L = 1

1 + |ξ|2 (1 + 〈ξ, Dy〉).

Then, if k is large enough and x lies in Uδ, we can write, after an integration by
parts,

xα∂β
x Op(p)( f )(x) =

∫
xα∂β

x

(
ei(x−y)·ξ (t L)k [p(x, y, ξ) f(y)]

)
dyd−ξ.

If we split the integration domain, we are led to∣∣xα∂β
x Op(p)( f )(x)

∣∣ ≤ |I1| + |I2|,
where

I1 =
∫

|x−y|≤|x|/2
xα∂β

x

(
ei(x−y)·ξ (t L)k[p(x, y, ξ) f(y)]) dyd−ξ

and

I2 =
∫

|x−y|≥|x|/2
xα∂β

x

(
ei(x−y)·ξ (t L)k[p(x, y, ξ) f(y)])dyd−ξ.

Now, observe that |I1| is bounded by a linear combination of terms of the form∫
|x−y|≤|x|/2

|xα|〈ξ〉−k+m+|β|〈x〉µ1 〈y〉µ2
∑
|γ |≤k

∣∣∂γ
y f(y)

∣∣dyd−ξ.
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Choosing k large enough and taking into account that when |x − y| ≤ |x|/2 we
have |x|α = O(|y|α), we get

|I1| ≤ C
∑

|α′|,|β′|<N

〈y〉|α′|∣∣∂β′
y f(y)

∣∣.
The same kind of estimate can be found for |I2| by approximating it with a se-
quence Iε

2 , whose terms can be estimated (uniformly in ε) as we did with I1. ��
Corollary 2.4. Op(p) can be extended to a continuous linear map

Op(p) : S′(Uδ) −→ S′
0(Uδ).

We put

L−∞,−∞(Uδ) = Op(S−∞,−∞(Uδ)) , where S−∞,−∞(Uδ) =
⋂
m,µ

Sm,µ(Uδ) .

Next, we denote by Lm,µ(Uδ) the class of all continuous linear maps A : S0(Uδ) →
S′

0(Uδ) for which there exists a ∈ Sm,µ(Uδ) such that A − Op(a) ∈ L−∞,−∞(Uδ).
Such an A will be referred to as pseudodifferential operator of double order (m, µ)

on Uδ.
It can be shown that L−∞,−∞(Uδ) coincides with the class of integral operators

having smooth kernel in S(Uδ ×Uδ) and that every A ∈ Lm,µ(Uδ) has a distribution
kernel K in C∞(Uδ × Uδ \ ∆) ∩ S(Uδ × Uδ \ I∆), where ∆ = {(x, x) : x ∈ Uδ}
and I∆ is any conic neighbourhood of ∆.

Definition 2.4. Let a j ∈ Sm j ,µ j (Uδ), {m j} j≥0, {µ j} j≥0 decreasing to −∞. The

formal series
∑
j≥0

a j is said to be asymptotically summable if there exists a ∈
Sm0,µ0(Uδ) such that:

a −
∑

j≤N−1

a j ∈ SmN ,µN (Uδ), for every N > 0.

We shall write this relation as a ∼ ∑
j≥0 a j .

It is a remarkable fact that every formal series (which in general is not abso-
lutely convergent) is asymptotically summable and the asymptotic sum is uniquely
determined up to an additive term in S−∞,−∞(Uδ).

Theorem 2.5. For p ∈ Sm,µ1,µ2(Uδ × Uδ) there exists a symbol a ∈ Sm,µ1+µ2(Uδ)

such that: Op(p) − Op(a) ∈ L−∞,−∞(Uδ). Moreover,

a(x, ξ) ∼
∑
|α|≥0

1

α! Dα
ξ ∂α

y p(x, y, ξ)|y=x.

Theorem 2.6. Let a ∈ Sm,µ(Uδ) and b ∈ Sm′,µ′
(Uδ). Then Op(a)◦Op(b) = Op(c),

where c ∈ Sm+m′,µ+µ′
(Uδ). Moreover,

c(x, ξ) ∼
∑
|α|≥0

1

α! Dα
ξ a(x, ξ)∂α

x b(x, ξ).

Proofs of these results can be found in [5] and [17].
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Let us define Λs,ν = Op(〈ξ〉s〈x〉ν) and recall that u ∈ Hs,ν(Rn) ⇔ Λs,νu ∈
L2(Rn), where Hs,ν(Rn) is the weighted Sobolev space defined in [15]. We now
“localize” these spaces and consider

Hs,ν
(0) (Uδ) := {u ∈ Hs,ν(Rn) : supp u ⊂ Uδ} = {u ∈ S′(Uδ) : Λs,νu ∈ L2(Uδ)}

(2.1)

endowed with the inductive limit topology and

Hs,ν
loc (Uδ) := {u ∈ S′

0(Uδ) : ∀φ ∈ C∞(Uδ), |∂α
x φ(x)| ≤ Cα〈x〉−|α|,

supp φ ⊂ Uδ ⇒ φu ∈ Hs,ν(Rn)} (2.2)

with the natural Fréchet topology.

Theorem 2.7. Let a ∈ Sm,µ(Uδ). Then ∀s, ν ∈ R we have the continuous map

Op(a) : Hs,ν
(0) (Uδ) −→ Hs−m,ν−µ

loc (Uδ).

Proof. For every φ, |∂α
x φ(x)| ≤ Cα〈x〉−|α|, supported in Uδ, and every u ∈ S0(Uδ)

we have φ(x)Op(a)u(x) = Op(φa)u(x), where φ(x)a(x, ξ) ∈ Sm,µ(Rn) and
Op(φa) is continuous from Hs,ν(Rn) to Hs−m,ν−µ(Rn) (see [15]). ��
Corollary 2.8. If A ∈ L−∞,−∞(Uδ) then it continuously maps S′(Uδ) into S(Uδ)

(and it will therefore be said to be a “regularizing” or “infinitely smoothing”
operator).

Proof. It follows from the topological equality
⋂
s,ν

Hs,ν
loc (Uδ) = S(Uδ). ��

We state now the invariance of the class Sm,µ(Uδ) with respect to suitable diffeo-
morphisms. To do this, we refer to [17].

Let Diff(Uδ) denote the class of all diffeomorphisms on Uδ. Take F ∈ Diff(Uδ)

such that for every α ∈ Nn |∂α
x F(x)| = O(|x|1−|α|), |∂α

y F−1(y)| = O(|y|1−|α|).
Define an isomorphism φ → φ̃ from the function space S0(Uδ) into itself by
putting φ̃ = φ ◦ F. Thus, there exists a unique extention u → ũ to the distribution
space S

′
0(Uδ) such that

〈ũ, φ〉 = 〈u, (φ ◦ F−1) · |det dF−1| 〉.

For every linear operator A : S0(Uδ) → S′
0(Uδ) we denote by Ã the pull-back

operator of A through F implicitly defined by Ãũ(x) := (Au)(F(x)).

Theorem 2.9. Let A = Op(a), with a ∈ Sm,µ(Uδ) and Ã its pullback through F
as above. Then there exists ã ∈ Sm,µ(Uδ) such that Ã = Op(ã) + L−∞,−∞(Uδ).
Moreover, the following statement is true:

ã(x, ξ) − a(F(x), tdF−1
x (ξ)) ∈ Sm−1,µ−1(Uδ) .
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Remark 2.1. A straightforward computation when F is of the form F(ρω) =
ρ Θ(ω), ρ = |x| and ω = x/|x|, for some Θ ∈ Diff(Sn−1), once denoted
tdFρω(ζ) = ξ , yields ∀v ∈ TρωUδ, v = vrad ⊕ vtg , with vrad = 〈v, ω〉 ω and
vtg ∈ TωS

n−1:

〈ξ, v〉 = 〈ζ, Θ(ω)〉 |vrad | + 〈tdΘω(ζ ′), vtg〉,
where ζ ′ denotes the restriction of ζ onto TΘ(ω)S

n−1. This shows that in some sense
tdFρω preserves the radial component of covectors and acts on their tangential
component through tdΘω.

We close this section by focusing on the class ECLm,µ(Uδ) which contains, in
particular, differential operators of the form (1.2).

Definition 2.5. Let a(x, ξ) ∈ Sm,µ(Uδ). We shall write a ∈ CSm,µ(Uδ), a →
{am, a∞, a�}, and say that a is classical with exit symbols if:

i) ∃am ∈ C∞(Uδ × Rn \ {0}), homogeneous of degree m in ξ , such that

a(x, ξ) − am(x, ξ) = O(〈ξ〉m−1〈x〉µ) (x, ξ) ∈ Uδ × Rn \ {0};
ii) ∃a∞ ∈ C∞(Sn−1 × Rn) such that

a(x, ξ) − |x|µa∞
(

x

|x| , ξ

)
= O(〈ξ〉m〈x〉µ−1) (x, ξ) ∈ Uδ × Rn;

iii) ∃a� ∈ C∞(Sn−1 × Rn \ {0}), homogeneous of degree m in ξ , such that

|x|µ
[

a∞
(

x

|x| , ξ

)
− |ξ|ma�

(
x

|x| ,
ξ

|ξ|
)]

= O(〈ξ〉m−1〈x〉µ)

(x, ξ) ∈ Uδ ×Rn \ {0},
|ξ|m

[
am

(
x,

ξ

|ξ|
)

− |x|µa�

(
x

|x| ,
ξ

|ξ|
)]

= O(〈ξ〉m〈x〉µ−1)

(x, ξ) ∈ Uδ ×Rn \ {0}.
Note that “compatibility” conditions iii) do not follow from i) and ii). Besides,
a� does not allow us to determine a∞ and am uniquely. Vice versa, the triplet
{a∞, am, a�} determines a symbol in Sm,µ(Uδ) up to a lower order term which is in
Sm−1,µ(Uδ) ∩ Sm,µ−1(Uδ).

We point out that am is the (internal) principal symbol of Op(a) as long as we
look at a as a standard symbol of single order m (see [9]). Global information at
infinity is gathered by both a∞ and a�, thus we think of them as the exit principal
symbols of Op(a).

These quantities turn out to be stable under the composition of operators;
indeed, if a ∈ CSm,µ(Uδ) and b ∈ CSm′,µ′

(Uδ), with a )→ {am, a∞, a�}, b )→
{bm′, b∞, b�}, then Op(a) ◦ Op(b) = Op(c), with c ∈ CSm+m′,µ+µ′

(Uδ) and c )→
{ambm′, a∞b∞, a�b�}.

We mention now a subclass of the diffeomorphisms allowed in Theorem 2.9
(see Remark 2.1.1 above), “preserving” CSm,µ(Uδ).
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Theorem 2.10. Let F ∈ Diff(Uδ) be of the form F(x) = |x|Θ(x/|x|), Θ ∈
Diff(Sn−1)and A = Op(a), with a ∈ CSm,µ(Uδ), a )→ {am, a∞, a�}. Let Ã be the
pullback of A through F. Then Ã − Op(ã) ∈ L−∞,−∞(Uδ), where ã ∈ CSm,µ(Uδ),
ã )→ {ãm, ã∞, ã�}. As usual, we have ãm(x, ξ) = am(F(x), tdF−1

x (ξ)). Moreover,

ã∞(ω, ξ) = a∞
(
Θ(ω), tdF−1

ω (ξ)
)
, and ã�(ω, ξ) = a�

(
Θ(ω), tdF−1

ω (ξ)
)
. (2.3)

Proof. We are looking for a candidate for ã∞( x
|x| ,ξ) such that ã(x, ξ)−|x|µã∞( x

|x| ,ξ)
∈ Sm,µ−1(Uδ). By hypothesis, a(y, η) − |y|µa∞(

y
|y| , η) ∈ Sm,µ−1(Uδ). Replace

y = F(x) and η = tdF−1
x (ξ), observing that |F(x)| = |x| and F(x)

|F(x)| = Θ
(

x
|x|

)
, we

get

a
(
F(x), tdF−1

x (ξ)
) − |x|µa∞

(
Θ

(
x

|x|
)

, tdF−1
x|x|

(ξ)

)
∈ Sm,µ−1(Uδ),

where the class of symbols does not change because F and dFx are homogeneous
of degree 1 and 0, respectively. From Theorem 2.9 we deduce

ã(x, ξ) − |x|µa∞
(

Θ

(
x

|x|
)

, tdF−1
x|x|

(ξ)

)
∈ Sm,µ−1(Uδ).

This proves the first part. Analogously, we know by hypothesis that

a∞(ω′, η) − a�(ω
′, η) = O(〈η〉m−1)

am(y, η) − |y|µa�

(
y

|y| , η

)
= O(〈y〉µ−1〈η〉m).

Again replacing ω′ = Θ(ω), y = F(x) and η = tdF−1
x (ξ), we obtain

a∞
(
Θ(ω), tdF−1

x (ξ)
) − a�

(
Θ(ω), tdF−1

ω (ξ)
) = O(〈ξ〉m−1)

am
(
F(x), tdF−1

x (ξ)
) − |x|µa�

(
Θ

(
x

|x|
)

, tdF−1
x
|x|

(ξ)

)
= O(〈x〉µ−1〈ξ〉m).

Once more, Theorem 2.9 yields

ã∞(ω, ξ) − a�

(
Θ(ω), tdF−1

x|x|
(ξ)

) = O(〈ξ〉m−1)

ãm(x, ξ) − |x|µa�

(
Θ

(
x

|x|
)

, tdF−1
x|x|

(ξ)

)
= O(〈x〉µ−1〈ξ〉m).

This proves the theorem. ��
Definition 2.6. Let a ∈ Sm,µ(Uδ). We shall say that a is globally elliptic (or
md-elliptic) of order (m, µ) if there exist positive constants c, C such that

|a(x, ξ)| ≥ C〈x〉µ〈ξ〉m , when |x| + |ξ| ≥ c .

It is proved in [5] that global ellipticity of the symbol a(x, ξ) of order (m, µ) is
equivalent to the existence of a (two-sided) parametrix of Op(a) in L−m,−µ(Uδ).

The point about global ellipticity in the class CS is that it can be expressed
by means of algebraic conditions both on the usual principal symbol and the exit
principal symbols.
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Proposition 2.11. Let a ∈ CSm,µ(Uδ), a )→ {am, a∞, a�}. Then a is globally
elliptic if and only if the following three conditions hold:

1) am(x, ξ) �= 0 ∀(x, ξ) ∈ Uδ × Rn \ {0};
2) a∞(ω, ξ) �= 0 ∀(ω, ξ) ∈ Sn−1 × Rn;
3) a�(ω, ξ) �= 0 ∀(ω, ξ) ∈ Sn−1 × Rn \ {0}.
Proof. Definition 2.5 gives, for all x ∈ Uδ:∣∣a∞

(
x
|x| , ξ

)∣∣
〈ξ〉m

= |a(x, ξ)|
|x|µ〈ξ〉m

+ O(|x|−1) ,
|am(x, ξ)|
|x|µ〈ξ〉m

= |a(x, ξ)|
|x|µ〈ξ〉m

+ O(〈ξ〉−1).

Global ellipticity applies to the former right member for large |x| and to the latter
for large |ξ|; thereby 1) and 2) hold. Taking into account just one of the relationships
iii) of Definition 2.5 between a� and each of the symbols a∞ and am , Condition 3)
follows.

On the other hand, from Hypotheses 2), 3) and the first part of iii) of Defin-
ition 2.5 we get the important estimate:∣∣∣∣a∞

(
x

|x| , ξ

)∣∣∣∣ ≥ C′ 〈ξ〉m ∀(x, ξ) ∈ Uδ × Rn .

Global ellipticity of a is then an easy consequence of Hypothesis 1) and the same
relations used above which, once more, can be rewritten in this way:

|a(x, ξ|
|am(x, ξ)| = 1 + O(〈ξ〉−1),

|a(x, ξ)|
|x|µ ∣∣α∞

(
x
|x| , ξ

)∣∣ = 1 + O(〈x〉−1),

for large |ξ| and large |x|, respectively. This completes the proof. ��
Remark 2.2. Let B be the parametrix of Op(a), with a ∈ CSm,µ(Uδ) globally

elliptic. Then B = Op(b) with b ∈ CS−m,−µ(Uδ) and b → { 1

am
,

1

a∞
,

1

a�

}.

Definition 2.7. Let a ∈ CSm,µ(Uδ), a )→ {a∞, am, a�}. We shall write a ∈
ECSm,µ(Uδ), or equivalently Op(a) ∈ ECLm,µ(Uδ), if Conditions 1), 2), 3) of
the previous proposition hold with > instead of �=.

3. Manifolds with cylindrical exits

The aim of this section is to make precise the notion of manifold with exits, M,
and establish invariantly the formal calculus for the class ECLm,µ(M).

Definition 3.1. We call an n-manifold with an exit the triplet (M, X, [ f ]) such that

i) M = (M0\D)
⋃

C, where
– M0 is a compact n-manifold (without boundary) and D an open disk of

M0;
– C is an n-manifold with boundary ∂C = X;
–

⋃
means gluing by identification along the boundaries;
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ii) f : [δ f , ∞)×Sn−1 → C is a diffeomorphism, δ f > 0 and f({δ f }×Sn−1) = X;
iii) [ f ] denotes the equivalence class with respect to the following relation: f ∼ g

if and only if there exists Θ ∈ Diff(Sn−1) such that,

(g−1 f )(ρ, ω) = (ρ, Θ(ω)), (3.1)

for every ρ ≥ max(δ f , δg) and for every ω ∈ Sn−1.

We shall refer to C as the cylindrical exit of M and to X as its base. We put Ċ = C\X
and ḟ : (δ f , ∞) × Sn−1 → Ċ. Let π(x) = (|x|, x

|x| ), then ḟπ = ḟ ◦ π : Uδ f → Ċ

and fπ = f ◦ π : Uδ f → C is a natural parametrization of the exit. We shall refer
to ḟ −1

π as the exit chart. Then (3.1) is equivalent to

g−1
π ◦ fπ = F, with F(x) = |x| Θ

(
x

|x|
)

. (3.2)

We fix a system of local charts A = {Ω j, φ j} j=1,···N , given by any finite atlas for
(M0\D)∪ f([δ f , δ f +ε)×Sn−1) joined with the exit chart (ΩN , φN ) = (Ċ, ḟ −1

π ). It
is easily recognisable as an SG-differential structure on M (uniquely determined by
any representative of the class [ f ]) according to Schrohe’s framework described
in [17]. We assume that the Riemannian structure on M is also induced by the
pullback via f of the standard Euclidean metric on Rn .

Remark 3.1. Definition 3.1 can be immediately generalized to manifolds with
finitely many cylindrical exits (M; X1, . . . , X N ; [ f1], . . . , [ fN ]). For the sake of
simplicity, we continue considering the case of only one exit, which is no loss of
generality.

Remark 3.2 (Compatible partition of unity). Let A = {(Ω j, φ j)} j∈J be the SG-
atlas on M. According to [5] and [17], there exist a smooth partition of unity {ψ j}
subordinated to A and a smooth family {θ j}, supported in the local charts, with
θ j = 1 on supp ψ j for every j ∈ {1, . . . , N}, such that, ∀α ∈ Nn , the following
growth conditions hold on the exit:∣∣∂α

x ψN (x)
∣∣ ≤ Cα〈x〉−|α|,

∣∣∂α
x θN(x)

∣∣ ≤ C′
α〈x〉−|α|.

For short we will denote by M a manifold with one cylindrical exit. Let C∞(M) be
the space of all smooth complex-valued functions on M. A natural space of rapidly
decreasing functions well suited to our manifold is the following:

S(M) = {u ∈ C∞(M) : ∀ exit chart ḟ −1
π : Ċ → Uδ u ◦ ḟπ ∈ S(Uδ)}.

Let S′(M) denote its topological dual space of tempered distribution on M. We are
now ready to deal with operators on M.

Definition 3.2. Let A : S(M) → S′(M) be a continuous linear map. We shall
say that A is a pseudodifferential operator on M of order (m, µ) – and write
A ∈ Lm,µ(M) – if:
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1) for every chart ψ : W → V, with V ⊂ Rn compact, there exists a standard
symbol a(ψ) ∈ Sm(V ) such that for the pullback of A through ψ−1 (that is, the
transfer of the restriction of A to W) we have the representation

Ãu(x) =
∫

ei(x−y)·ξ a(ψ)(x, ξ)u(y)dyd−ξ, ∀u ∈ C∞
0 (V );

2) for every exit chart ḟ −1
π : Ċ → Uδ f there exists a weighted symbol a( f ) ∈

Sm,µ(Uδ f ) such that for the pullback of A through ḟ −1
π we have

Ãu(x) = Op(a( f ))u(x), ∀u ∈ S0(Uδ f );
3) the distribution kernel K A has the following property:

K A ∈ C∞(M × M\∆)
⋂

S(Ċ × Ċ \W ),

where ∆ is the diagonal of M × M and W = ( ḟπ × ḟπ)(V ), with f any exit
chart and V any conic neighbourhood of the diagonal of Uδ f × Uδ f .

Observe that Condition 3) on the kernel of A guarantees on one hand that A is
pseudolocal (i.e. sing supp Au ⊂ sing supp u, ∀u ∈ S′(M)); on the other that A
is regularizing at infinity off the diagonal. We now give “good” definitions of exit
symbols for an operator on the manifold in order to show their global meaning.

Definition 3.3. We shall denote by CLm,µ(M) the set of all operators A ∈ Lm,µ(M)

with principal symbol am ∈ C∞(T ∗M\0) such that for every diffeomorphism f of
the exit:

i) ∃a( f )
∞ ∈ C∞(Sn−1 × Rn) such that

a( f )(x, ξ) − |x|µa( f )
∞

(
x

|x| , ξ

)
∈ Sm,µ−1(Uδ f );

ii) ∃a( f )
� ∈ C∞(Sn−1 × Ṙn) positively homogeneous in ξ of degree m such that

χ(ξ)|x|µ
[

a( f )
∞

(
x

|x| , ξ

)
− a( f )

�

(
x

|x| , ξ

)]
∈ Sm−1,µ(Uδ f ),

and

χ(ξ)

[
a( f )

m (x, ξ) − |x|µ a( f )
�

(
x

|x| , ξ

)]
∈ Sm,µ−1(Uδ f ),

for every χ ∈ C∞(Rn) which is zero near the origin and identically 1 for large ξ .

We now introduce the geometrical object which allows us to interpret a∞ and a�

in a global sense, namely the restriction to X of the cotangent bundle of M:

T ∗
X M = {(x, ξ) : x ∈ X, ξ ∈ T ∗

x M},
X being the base of the exit of M. It is worthwhile to note that, here, covectors are
n-dimensional, while base points are (n − 1)-dimensional; therefore dim T ∗

X M =
2n − 1. Of course, there is a natural projection between the vector bundles (both
over X) T ∗

X M −→ T ∗ X: the restriction of covectors (x, ξ) )−→ (
x, ξ|Tx X

)
.
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Theorem 3.1. Let A ∈ CLm,µ(M). Then, besides am ∈ C∞(T ∗M\0), there exist
in addition two globally defined functions

a∞ ∈ C∞(T ∗
X M) and a� ∈ C∞(T ∗

X M\0),

such that, for any diffeomorphism f on the exit,

a∞(x, ξ) = a( f )
∞

(
f −1
π (x), td fπ(x)(ξ)

)
, x ∈ X, ξ ∈ T ∗

x M (3.3)

and

a�(x, ξ) = a( f )
�

(
f −1
π (x), td fπ(x)(ξ)

)
, x ∈ X, ξ ∈ T ∗

x M\{0}. (3.4)

Proof. The crucial point to be proved is the independence of (3.3) and (3.4) of the
diffeomorphism. To verify this, suppose that g ∼ f and that (3.2) holds. Assume
also that x = fπ(ω) = gπ(ω′), that is ω′ = F(ω) = Θ(ω). We have to prove that
a( f )

∞ (ω, td f̃ (x)ξ) and a(g)
∞ (ω′, tdg̃(x)ξ) are equal.

Notice that Op(a f ) is, up to regularizing operators, nothing but the pullback of
Op(ag) through F. So, from Theorem 2.10, it follows that

a( f )
∞ (ω, η) = a(g)

∞ (Θ(ω), tdF−1(ω)η).

Now take η = td fπ(x)ξ and observe that, since F = g−1
π ◦ fπ , we have

tdF−1(ω) ◦ td fπ(x)|x= fπ (ω) = tdgπ(x)|x=gπ (ω′).

Thereby

a( f )
∞ (ω, td fπ( fπ(ω))ξ) = a(g)

∞ (Θ(ω), tdF−1(ω) ◦ td fπ( fπ(ω))ξ)

= a(g)
∞ (ω′, tdgπ(gπ(ω′))ξ).

Do this analogously for a�. This completes the proof. ��
Ellipticity (see Definition 2.6 and Proposition 2.11) has an invariant meaning
with respect to diffeomorphisms that are transition maps of our manifold, so it is
consistent to give the following:

Definition 3.4. We denote by ECLm,µ(M) the class of all operators A∈CLm,µ(M)

whose principal symbol am is elliptic of order m in the standard way and, further-
more, for every diffeomorphism f of the exit, we have a( f ) ∈ ECSm,µ(Uδ f ).

Of course, we can construct the operator Λm,µ ∈ ECLm,µ(M) for any m, µ ∈ R
by gluing the corresponding operators on local charts having symbol 〈ξ〉m〈x〉µ and
a parametrix of it is given by Λ−m,−µ. We can now turn to weighted Sobolev spaces
on M by putting

Hs,ν(M) = {u ∈ S′(M) : Λs,νu ∈ L2(M)}.
If we consider

⋃
s,ν Hs,ν(M) with the inductive limit topology and

⋂
s,ν Hs,ν(M)

with the projective limit topology, we have the following algebraic and topological
equalities: ⋃

s,ν

Hs,ν(M) ∼= S′(M),
⋂
s,ν

Hs,ν(M) ∼= S(M). (3.5)

By using local continuity results it is not difficult to prove the following theorem:
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Theorem 3.2. If A ∈ Lm,µ(M), then ∀s, ν ∈ R we have the following continuous
map:

A : Hs,ν(M) → Hs−m,ν−µ(M).

Furthemore, Hs,ν(M) ↪→ Hs′,ν′
(M) is a compact embedding whenever s′ < s,

ν′ < ν.

Let us finally sort out spectral properties of the class ECLm,µ(M).
By �(A) we denote the set of all λ ∈ C such that λI − A maps the domain of

A bijectively onto L2(M). The spectrum of A is given by σ(A) = C \ �(A).

Theorem 3.3 (Spectral theorem). Let A ∈ ECLm,µ(M), m, µ > 0 and A∗ = A, be
regarded as a closed unbounded operator on L2(M) with dense domain Hm,µ(M).
Then:

i) (λI − A)−1 is a compact operator on L2(M) for every λ ∈ �(A). More
precisely, (λI − A)−1 is an extension by continuity from S(M) or a restriction
from S′(M) of an operator in ECL−m,−µ(M).

ii) σ(A) consists of a sequence of real isolated eigenvalues {λ j} with finite multi-
plicity clustering at infinity; the orthonormal system of eigenfunctions {e j} j≥1

is complete in L2(M), moreover, e j ∈ S(M).
iii) −A is the infinitesimal generator of an analytic semigroup of bounded opera-

tors on L2(M), H(t) = e−tA, t ≥ 0, called the heat semigroup, with kernel

H(t, x, y) =
∑

j

e−tλ j e j(x)e j(y).

iv) H(t) is trace class when t > 0 and

Trace H(t) =
∫

M
H(t, x, x)dx =

∑
j

e−tλ j . (3.6)

Proof. i) Pick λ ∈ �(A). Global ellipticity of A yields the existence of a parametrix
B ∈ ECL−m,−µ(M) of λI − A such that

(λI − A)B = I − R1 and B(λI − A) = I − R2,

with R1, R2 smoothing. It follows that (λI − A)−1 = B + (λI − A)−1 R1, so it
remains for us to verify that (λI−A)−1R1 is smoothing. From Theorem 3.2, B maps
Hs,ν(M) into Hs+m,ν+µ(M) continuously. If we assume (λI − A)u ∈ Hs,ν(M)

and write

u = B(λI − A)u + R2(u),

we have u ∈ Hs+m,ν+µ(M). This shows that (λI − A)−1 maps Hs,ν(M) into
Hs+m,ν+µ(M) for any s, ν as well. In particular (λI − A)−1 maps S(M) into itself,
thereby (λI − A)−1 R1 is smoothing. On the other hand, the map (λI − A)−1 :
L2(M) → Hm,µ(M) is continuous by the closed graph theorem.

Now, from Theorem 3.2 it follows the compactness of the composition

L2(M)
(λI−A)−1−→ Hm,µ(M)

ι
↪→ L2(M).
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Compactness of (λ′ I − A)−1 for every other λ′ ∈ �(A) follows by the resolvent
identity.

ii) From self-adjointness σ(A) is a non-empty subset of R. The remaining part is
a consequence of the Riesz–Schauder theory. Notice that if (λI − A)−1e j = r je j ,
then r j → 0 because of part i) and we can rewrite Ae j = (r−1

j + λ)e j . This
shows that e j ∈ S(M) and the same e j’s are eigenfunctions of A with eigenvalues
λ j = r−1

j + λ. Semiboundedness of A yields a lower bound for the σ(A), hence
necessarily λ j → +∞.

iii) Every semibounded self-adjoint operator is sectorial, therefore it generates an
analytic semigroup (see [16]).

iv) This comes immediately from ii) and iii). ��
Remark 3.3. If we drop the self-adjointness assumption from the hypotheses of
Theorem 3.3, it is still possible to prove that �(A) �= ∅ and σ(A) is contained in
a sector of the complex plane of the form {λ ∈ C : |λ| > R, |Arg λ| ≤ θ} for some
R > 0 and θ ∈]0, π

2 [. Thus Theorem 3.3 remains true.

4. Heat parametrix

We shall assume that the following hypotheses are fulfilled:

(H1) (M, X, [ f ]) is a manifold with one cylindrical exit, dim M = n;
(H2) A ∈ ECLm,µ(M), with m, µ > 0;
(H3) A is positive self-adjoint, i.e. A∗ = A > 0.

We shall deal with t-regular one-parameter families of bounded linear operators,
{T(t)}t≥0, on L2(M) in the sense that

T ∈ C∞(]0, T [; L(L2(M))), ∀u ∈ L2(M) t → T(t)u is C([0, T [; L2(M)).

We shall also need t-regular families of (x-)smoothing operators in the sense that

T ∈ C∞(]0, T [; L(S′(M); S(M))).

This section is mostly concerned with the solution of the following Cauchy problem
for the generalized heat equation associated with our operator A:


d

dt
U(t) + A U(t) ≡ 0 for 0 < t < T

U(0) ≡ I,

(4.1)

where by solution U(t) we mean an equivalence class of t-regular families of
bounded linear operators from L2(M) into itself such that U(t)u ∈ D(A), ∀t > 0,

∀u ∈ L2(M). Moreover, U(t) ∼ U ′(t) if and only if U(t)−Ũ(t) is a t-regular family
of x-smoothing operators. U(t) will always be referred to as the heat parametrix
of A.

We first establish a result of uniqueness via the semigroup approach, drawing
a comparison with the heat semigroup e−tA. Then we develop a detailed construc-
tion of U(t) through a convenient pseudodifferential representation, highlighting
its singularity in t = 0 and its smoothing effect for positive t.
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Theorem 4.1 (Uniqueness). If U(t) is a solution of (4.1), then U(t) is unique (in
the sense of the equivalence class precised above).

Proof. Let e−tA be the heat semigroup generated by −A (Theorem 3.3). Now pick
any u0 ∈ L2(M) and suppose U(t) is a solution of (4.1). Then u(t) := U(t)u0 must
satisfy the following problem:{

u′(t) + Au(t) = R(t)u0

u(0) = u0 + R̃(0)u0,

for some t-regular maps R, R̃ of smoothing operators. From Duhamel’s Theorem
there exists a unique solution given by

u(t) = e−tA(u0 + R̃(0)u0) +
∫ t

0
e−(t−τ)A R(τ)u0 dτ.

Taking into account that the semigroup e−tA is analytic, it follows that

e−tAv ∈
⋂
k≥0

D(Ak) =
⋂
k≥0

Hkm,kµ(M) = S(M) ∀v ∈ L2(M).

Thus we can write

U(t)u0 = e−tAu0 + Q(t)u0,

for some t-regular family of x-smoothing Q(t). This amounts to saying that U(t)
is in the same equivalence class of e−tA. The theorem is proved. ��
Theorem 4.2 (Existence). If Conditions (H1), (H2) and (H3) are fulfilled, then
there exists a t-regular map U(t) of bounded linear operators on L2(M) solution
of (4.1) such that in each local chart (Ω; x1, . . . , xn) of M (a representative of the
class) U(t) is “pseudodifferential” of the form

U(t)φ(x) =
∫

ei(x−y)·ξ u(t, x, ξ) φ(y) dyd−ξ,

whose symbol has the following properties:

i) u ∈ C∞(]0, T [×Ω × Rn);
ii) for any given integers N, l ≥ 0 and any α, β ∈ Nn there exists C > 0 such that∣∣∂l

t∂
α
ξ ∂β

x u(t, x, ξ)
∣∣ ≤ C t−N〈ξ〉(l−N)m−|α|〈x〉(l−N)µ−|β|,

for all (t, x, ξ) ∈]0, T ] × Ω′ ×Rn, where Ω′ = Ω whenever Ω is an exit chart;
otherwise Ω′ is any compact subset of Ω and C may depend on Ω′. In all cases
C = CNlαβ(Ω′) does not depend upon t, once some T > 0 has been fixed.

In particular, U(t) is smoothing for positive t.

Proof. The parametrix is constructed locally in each chart map (Ω, φ) by identi-
fying Ω with an open set U ⊂ Rn through a coordinate system (x1, . . . , xn) on Ω.
We refer to [21, pp. 134–138] for the case of relatively compact charts.
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It suffices then to carry out the construction in an exit chart and we no longer
label the operator U(t), nor the symbol u(t, x, ξ), by the name of the chart. It is
natural to look for the symbol of U(t) in the form of an asymptotic sum:∑

j≥0

u j(t, x, ξ) ∼ u(t, x, ξ),

with u j ∈ S− j,− j(U). Without loss of generality we can assume that for the symbol
a(x, ξ) the estimates of Definition 2.3 do hold uniformly in U×Rn (by shrinking the
chart, if necessary). The composition formula allows us to convert Problem (4.1)

in terms of the symbols of A and U(t) as follows:


∂tu(t, x, ξ) +
∑
|α|≥0

1

α! Dα
ξ a(x, ξ)∂α

x u(t, x, ξ) = 0

u(0, x, ξ) = 1,

and replace the asymptotic expansion of u to obtain also


∑
j≥0

∂tu j(t, x, ξ) +
∑

l,|α|≥0

1

α! Dα
ξ a(x, ξ) ∂α

x ul(t, x, ξ) = 0

u0(0, x, ξ) = 1, u j(0, x, ξ) = 0, ∀ j ≥ 1.

Taking into account the uniqueness of the parametrix and regrouping the terms of
the same order, we can deduce the following transport equations, coupled with the
respective initial conditions:{

∂tu0(t, x, ξ) + a(x, ξ)u0(t, x, ξ) = 0

u0(0, x, ξ) = 1,
(4.2)

and


∂tu j(t, x, ξ) + au j +
∑

l+|α|= j
0≤l≤ j−1

1

α! Dα
ξ a(x, ξ)∂α

x ul(t, x, ξ) = 0

u j(0, x, ξ) = 0,

for all j ≥ 1.

(4.3)

Freezing x and ξ , (4.2) and (4.3) turn out to be Cauchy problems for first-order
ordinary linear equations in the variable t. From (4.2) we immediately get

u0(t, x, ξ) = e−ta(x,ξ). (4.4)

For j = 1, Problem (4.3) is simply{
∂tu1 = −au1 + e−ta ∑

|α|=1 Dα
ξ a∂α

x u0

u1(0) = 0.
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We now exploit the following useful extension of the Leibniz formula:

∂α
x (e−ta) = e−ta

|α|∑
s=1

ts Ssm,sµ−|α| ∀|α| ≥ 1, (4.5)

where tl Sh,k stands for a function tlg(x, ξ) for some g ∈ Sh,k(U). In particular, for
|α| = 1, we have Dα

ξ a ·∂α
x u0 ∈ Sm−1,µ(U)·e−tatSm,µ−1(U) = e−tatS2m−1,2µ−1(U).

Hence, an immediate integration gives

u1(t, x, ξ) = e−ta(x,ξ)t2S2m−1,2µ−1.

Proceeding by induction it is easily proved that

u j(t, x, ξ) = e−ta(x,ξ)

2 j∑
k=2

tk Skm− j,kµ− j , for j ≥ 1. (4.6)

In order to make this formal construction meaningful and prove the regularity
properties with respect to the variable t, we observe that from (4.4) and (4.6) we
have ∀ j ≥ 0, ∀α, β ∈ Nn , ∀l ∈ N

∂α
ξ ∂β

x ∂l
t u j(t, x, ξ) = e−t a(x,ξ)

2 j+|α+β|∑
s=s∗

(t a(x, ξ))s Slm− j−|α|,lµ− j−|β|,

where s∗ = s∗(α, β, l, j) ≥ 0. It readily follows from the ellipticity that, ∀N ∈ N,∣∣tN∂l
t∂

β
x ∂α

ξ u j(t, x, ξ)
∣∣ ≤ C 〈ξ〉(l−N)m− j−|α| 〈x〉(l−N)µ− j−|β|,

from which

∣∣tN∂l
t∂

β
x ∂α

ξ


u −

∑
j≤J−1

u j


∣∣ ≤ C 〈ξ〉(l−N)m−J−|α|〈x〉(l−N)µ−J−|β| .

This suffices to conclude the proof of the theorem. ��
Remark 4.1. To convince ourselves that the construction of a local parametrix
actually yields a global one, let us suppose that (Ω, φ) and (Ω1, φ1) are local charts
of M such that Ω ∩ Ω1 �= ∅ and Uφ(t) has been constructed as above satisfying


d

dt
Uφ(t)v + Aφ · Uφv = R(t)v

Uφ(0)v = v + R′(0)v,

∀v ∈ L2(Ω ∩ Ω1). (4.7)

Let Uφ1(t) be constructed analogously. For the pullback, Ũφ(t), of Uφ(t) via the
transition map between Ω and Ω1 we can say that it satisfies the following:


d

dt
Ũφ(t)v + Ãφ · Ũφv = R̃(t)v

Ũφ(0)v = v + R̃′(0)v,

(4.8)
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in as much as ( d
dt Uφ(t))∼ = d

dt Ũ
φ(t) and (Aφ · Uφ)∼ = Ãφ · Ũφ. Now, from

Theorem 2.9 there exists Q ∈ L−∞,−∞(Ω ∩ Ω1) such that Ãφ = Aφ1 + Q,
whereby, 


d

dt
Ũφ(t)v + Aφ1 · Ũφv = (R̃(t) − Q · Ũφ(t))v

Ũφ(0)v = v + R̃′(0)v.

(4.9)

Consequently, from Theorem 4.1 we can deduce that Ũφ(t) ≡ Uφ1(t).
It is a standard procedure now to glue together the local parametrices, once we

have a compatible partition of unity (Remark 3.2).

5. Trace asymptotics

We assume that Hypotheses (H1), (H2), (H3) of the previous section are fulfilled.
The heat parametrix of A, U(t), constructed there is regularizing, hence trace
class [18], when t > 0. In particular, it has the same singularity in t = 0 as the heat
semigroup, for the difference is a t-regular family of x-smoothing operators. From
Theorem 3.3 we then have

Trace U(t) =
∫ +∞

0
e−tλdN (λ, A) + O(1), t → 0+. (5.1)

The study of the asymptotic behaviour of Trace U(t), which we are going to carry
out, will therefore provide, by means of Karamata’s Tauberian Theorem [20], the
Weyl’s estimate for N (λ, A) we are seeking. Let us state the most important result
of the section:

Theorem 5.1. Assume A ∈ ECLm,µ(M), A∗ = A > 0 and m, µ > 0. Then the
trace of the corresponding heat parametrix U(t) can be estimated for small t by:

Trace U(t) = Γ
(

1 + n

m

)
Cm t−

n
m + o(t−

n
m ) if µ > m;

Trace U(t) = Γ

(
1 + n

µ

)
C∞ t−

n
µ + o(t−

n
µ ) if µ < m;

and, finally,

Trace U(t) = Γ
(

1 + n

m

)
C� t−

n
m log(t−1) + o(t−

n
m log(t−1)), if µ = m;

where Γ(·) is the gamma function and

Cm :=
∫

{am≤1}
dxd−ξ (5.2)

C∞ := 1

n

∫
T∗

X M
a−n/µ

∞ dωd−ξ (5.3)

C� := 1

m

∫
{a�≤1}

dωd−ξ, (5.4)

with dxd−ξ the volume element on T ∗M and dωd−ξ the one on T ∗
X M given by

restriction on X of the volume on T ∗M.



302 L. Maniccia, P. Panarese

The proof of this result will follow from a sequence of propositions. To reach
the goal it is enough to consider the exit chart ḟ −1

π : Ċ → Uδ f where we study the
asymptotic behaviour of ∫

Rn

∫
Uδ f

u( f )(t, x, ξ)dxd−ξ,

giving the local expression of (5.1), seen in Part iv) of Theorem 3.3. The contribu-
tions from relatively compact local charts are taken for granted and can be found
in [18]. In order to simplify the notation, we “drop the f ” from the names of the
symbols and write Uδ instead of Uδ f .

In what follows we set, when b > 0 and x ∈ R, Γ(b, x) :=
∫ ∞

x
e−τ τb−1dτ for

the incomplete gamma function. Each asymptotic formula, unless othewise stated,
is meant for t → 0+. We start by proving a general lemma.

Lemma 5.2. Let Y, Z ⊂ Rn be open sets, with Z = {z : |z| > R} for some R > 0.
Assume also that φ ∈ C∞(Y × Z) and ∃l > 0 such that φ(y, tz) = tlφ(y, z) for
every (y, z) ∈ Y × Z and t > 1. For any fixed k ≥ 0 define k∗ := (k + n)/l.

I) If φ > 0, then we have the following identity:∫
Z

e−tφ(y,z) |z|kdz = t−k∗

l

∫
Sn−1

Γ(k∗, tRlφ(y, ω))φ(y, ω)−k∗
dω.

II) If φ(y, ω) ≥ c〈y〉p on Y for some p > n
k∗ , then we can estimate∫

Y

∫
Z

e−tφ(y,z) |z|kdzdy = Γ(k∗)
l

t−k∗
∫

Y

∫
Sn−1

φ(y, ω)−k∗
dωdy + o(t−k∗

).

Proof. Switching to polar coordinates, z = σω and putting σ = (
ρ

tφ(y,ω)
)1/l , we

obtain ∫
Z

e−tφ(y,z)|z|kdz =
∫
Sn−1

∫ ∞

R
e−tσ lφ(y,ω)σk+n−1dσdω

= 1

l

∫
Sn−1

(∫ ∞

tRlφ(y,ω)

e−ρρk∗−1(tφ(y, ω))−k∗
dρ

)
dω,

so Part I) is proved. Part II) is a consequence of I) by means of the convergent
expansion of Γ(b, x) in ascending powers of x: Γ(b, x) = Γ(b)−∑+∞

k=0 ck(b)xb+k,
with ck(b) = (−1)k/[(b + k)k!]) for all x, and an application of Lebesgue’s
dominated convergence theorem. ��
Corollary 5.3. For each a ∈ ECSm,µ(Uδ), a )→ {a∞, am, a�}, we have, for small t,∫

|ξ|≥1

∫
Uδ

e−tam (x,ξ)dxd−ξ = Γ
(

1 + n

m

)
C̃m t−

n
m + o(t−

n
m ) if µ > m

∫
Rn

∫
Uδ

e−t|x|µa∞( x|x| ,ξ)dxd−ξ = Γ

(
1 + n

µ

)
C̃∞ t−

n
µ + o(t−

n
µ ) if µ < m,
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and finally, when m = µ,∫
|ξ|≥1

∫
Uδ

e−t|x|µa�( x|x| ,ξ)dxd−ξ = Γ
(

1 + n

m

)
C̃� t−

n
m log

1

t
+ o

(
t−

n
m log

1

t

)
,

where

C̃m = (2π)−n

n

∫
Sn−1

∫
Uδ

a
− n

m
m (x, θ)dxdθ (5.5)

C̃∞ = 1

n

∫
Rn

∫
Sn−1

a
− n

µ∞ (ω, ξ)dωd−ξ (5.6)

C̃� = (2π)−n

nm

∫
Sn−1

∫
Sn−1

a
− n

m
� (ω, θ)dωdθ. (5.7)

Proof. The first two estimates are obtained by applying Part II) of Lemma 5.2,
twice, respectively, with l = m, k = 0, Y = Uδ, Z = {|ξ| > 1} and with l = µ,
k = 0, Y = Rn , Z = Uδ.

To prove the last estimate, we apply Part I) of Lemma 5.2 with l = m = µ,
k = 0, Y = {|ξ| > 1}, Z = Uδ) and move to polar coordinates x = ρ′ω and
ξ = σ ′η/ρ′, obtaining∫

|ξ|≥1

∫
Uδ

e−t|x|m a�( x|x| ,ξ)dxd−ξ

=
∫
Sn−1×Sn−1

dωd−η
∫ +∞

δ

dρ′
∫ +∞

ρ′

dσ ′

ρ′ (σ ′)n−1e−t(σ ′)m a�(ω,η). (5.8)

We put t(σ ′)ma�(ω, η) = σ and t(ρ′)ma�(ω, η) = ρ, from which it follows that

(σ ′)n−1dσ = 1

m
(ta�)

−n/mσn/m−1dσ, dρ′/ρ′ = 1

m
dρ/ρ;

hence (5.8) becomes

t−
n
m

m2

∫
Sn−1×Sn−1

a�(ω, η)−n/m dωd−η
∫ +∞

tδm a�(ω,η)

1

ρ
Γ

( n

m
, ρ

)
dρ.

Let us note that∫ +∞

tδm a�(ω,θ)

1

ρ
Γ

( n

m
; ρ

)
dρ =

∫ 1

tδm a�(ω,θ)

1

ρ
Γ

( n

m
; ρ

)
dρ + O(1)

= − log(tδma�(ω, θ))Γ
( n

m
; ta�(ω, θ)

)
+

∫ 1

tδm a�(ω,θ)

log(ρ)ρ
n
m −1e−ρdρ + O(1).

It is easily seen that
∫ 1

tδm a�(ω,θ)

log(ρ)ρ
n
m −1e−ρdρ = O(1).

This makes the proof complete, taking into account the expansion of the in-
complete gamma function. ��
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Proposition 5.4. For each a ∈ ECSm,µ(Uδ), a )→ {a∞, am, a�}, we have, for
small t:

(i) if µ > m, then∫
Rn

∫
Uδ

e−ta(x,ξ)dxd−ξ =
∫

|ξ|≥1

∫
Uδ

e−tam (x,ξ)dxd−ξ + o(t−
n
m );

(ii) if µ < m, then∫
Rn

∫
Uδ

e−ta(x,ξ)dxd−ξ =
∫
Rn

∫
Uδ

e−t|x|µa∞( x|x| ,ξ)dxd−ξ + o(t−
n
µ );

(iii) if µ = m, then∫
Rn

∫
Uδ

e−ta(x,ξ)dxd−ξ =
∫

|ξ|≥1

∫
Uδ

e−t|x|µa�( x|x| ,ξ)dxd−ξ + O(t−
n
m ).

Proof. (ii) We prefer to begin with the case µ < m. For any R > δ we can write∫
Rn

∫
Uδ

e−ta(x,ξ)dxd−ξ −
∫
Rn

∫
Uδ

e−t|x|µa∞( x
|x| ,ξ)dxd−ξ

= o(t−
n
µ ) +

∫
Rn

∫
|x|≥R

(
e−ta(x,ξ) − e−t|x|µa∞( x

|x| ,ξ)
)

dxd−ξ.

In fact the contribution of the integration over any bounded subset of Uδ turns out
to be O(t−

n
m ) = o(t−

n
µ ) in view of the ellipticity property and Lemma 5.2 (with

k = 0, l = m, Y bounded; k∗ = n/m). Thus, what is to be proved is that for
a sufficiently large R we have

t
n
µ

∫
Rn

∫
|x|≥R

(
e−ta(x,ξ) − e−t|x|µa∞( x|x| ,ξ)

)
dxd−ξ t→0+−→ 0. (5.9)

To justify the passage to the limit as t → 0+ under the sign, we put x = ρω and
then tρµa∞(ω, ξ) = σ , so that ρn−1dρ = 1

µ
(ta∞(ω, ξ))

− n
µ σ

n
µ −1dσ and the left

member of (5.9) turns into

1

µ

∫
Rn

∫
Sn−1

a∞(ω, ξ)
− n

µ

∫ ∞

tRµa∞(ω,ξ)

σ
n
µ −1 [

e−tã(t,σ,ω,ξ) − e−σ
]

dσdωd−ξ, (5.10)

where

ã(t, σ, ω, ξ) := a((σ/t)
1
µ a∞(ω, ξ)

− 1
µ ω, ξ).

We now define

χ(t, σ, ω, ξ) := ã(t, σ, ω, ξ) − (σ/t)

σ/t
,
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so as to write e−tã(t,σ,ω,ξ) = e−σ(1+χ(t,σ,ω,ξ) ). Notice that from i) of Definition 2.5
and the ellipticity we obtain

|χ(t, σ, ω, ξ)| ≤ C(σ/t)
µ−1

µ a∞(ω, ξ)
− µ−1

µ 〈ξ〉m

σ/t
≤ C′′(Rµ〈ξ〉m)

− 1
µ 〈ξ〉m

µ = CR−1.

Here we have also used the fact that, on the integration domain, σ
t ≥ Rµa∞(ω, ξ) ≥

cRµ〈ξ〉m . So, for a fixed ε ∈]0, 1[ we can find an R so large to have χ(t, σ, ω, ξ) ≥
−ε. Then the integrand function of (5.10) can be estimated from above, indepen-
dently of t, by

a∞(ω, ξ)
− n

µ σ
n
µ −1 [

e−σ(1+ε) − e−σ
]
,

which is clearly summable with respect to σ, ω and ξ . An application of Lebesgue’s
dominated convergence theorem yields the desired result.

(i) The case µ > m is similar to the previous one. For any r > 0 we have∫
Rn

∫
Uδ

e−ta(x,ξ)dxd−ξ −
∫

|ξ|>1

∫
Uδ

e−tam (x,ξ)dxd−ξ

= o(t−
n
m ) +

∫
|ξ|>r

∫
Uδ

(
e−ta(x,ξ) − e−tam (x,ξ)

)
dxd−ξ.

In fact integration over ξ-bounded subsets can now be estimated by O(t−
n
µ ) =

o(t−
n
m ) (again using ellipticity and Lemma 5.2 with l = µ).

The proof that, for a suitable positive r, we have

t
n
m

∫
|ξ|>r

∫
Uδ

(
e−ta(x,ξ) − e−tam (x,ξ)

)
dxd−ξ t→0+−→ 0 (5.11)

uses the same arguments of (i).
(iii) Let µ = m. Arguing as we did in the previous cases, we have only to prove

that, for r and R large enough,

t−
n
m

∫
|ξ|≥r

∫
|x|≥R

(
e−ta(x,ξ) − e−t|x|m a�( x|x| ,ξ)

)
dxd−ξ = O(1).

The term to be estimated can be split into the sum of

t
n
m

∫
|ξ|≥r

∫
|x|≥R

(
e−ta(x,ξ) − e−t|x|m a∞( x

|x| ,ξ)
)

dxd−ξ (5.12)

and

t
n
m

∫
|ξ|≥r

∫
|x|≥R

(
e−t|x|m a∞( x|x| ,ξ) − e−t|x|m a�( x|x| ,ξ)

)
dxd−ξ. (5.13)

The conclusion about (5.12) follows from Part (i), while (5.13) can be estimated
by using the same techniques we used in (i) and (ii). This completes the proof. ��
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We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. From what we have seen in the previous section, the
symbol of the heat parametrix U(t) on the local chart has the asymptotic expansion
u ∼

∑
j≥0

u j . The trace formula can therefore be formulated, locally, as follows:

∫
Uδ

∫
Uδ

u(t, x, ξ)dxd−ξ =
∫

Uδ

∫
Uδ

e−ta(x,ξ)dxd−ξ +
∫

Uδ

∫
Uδ

N−1∑
j=1

u j(t, x, ξ)dxd−ξ

+
∫

Uδ

∫
Uδ

pN(t, x, ξ)dxd−ξ,

where pN(t, x, ξ) ∼
∑
j≥N

u j(t, x, ξ). Corollary 5.3 and Proposition 5.4 give

∫
Uδ

∫
Uδ

e−ta(x,ξ)dxd−ξ ∼




Γ
(
1 + n

m

)
C̃m t−

n
m + o(t

n
m ) if µ > m

Γ
(
1 + n

µ

)
C̃∞ t−

n
µ + o(t−

n
µ ) if µ < m

Γ
(
1 + n

m

)
C̃� t−

n
m log 1

t + o
(
t−

n
m log 1

t

)
if µ = m,

where the constants C̃m , C̃∞ and C̃� have been defined in (5.6), (5.5) and (5.7),
respectively.

Recalling that, for any N > 0, pN(t, x, ξ) ∈ C∞([0, T ); S−N,−N (Rn)), we can
conclude, choosing N = n + 1 once for all, that

|
∫

Uδ

∫
Uδ

∑
j≥N

u j(t, x, ξ)dxdξ| ≤ C
∫

Uδ

∫
Uδ

〈x〉−N 〈ξ〉−N dxdξ,

with C independent of t. In order to have the proof completed we have to analyse
the contribution of the finite sum

R(t) =
∑

1≤ j≤n

∫
Uδ

∫
Uδ

u j(t, x, ξ)dxd−ξ.

Taking into account the expression of u j , R(t) is the sum of terms such as

R j,h(t) = th
∫

Uδ

∫
Uδ

e−ta(x,ξ) Shm− j,hµ− jdxd−ξ.

The summation is taken over 1 ≤ j ≤ N − 1 e 1 ≤ h ≤ 2 j . Lemma 5.2 ensures

that |R j,h(t)| = I j,h(t) + O(t−
n

m∗ + j
m∗ ), where m∗ = min{m, µ} and

I j,h(t) := th
∫

|ξ|≥r

∫
|x|≥R

e−ta(x,ξ)|ξ|hm− j |x|hµ− jdxdξ.

Here r and R are arbitrary positive constants. After a change of coordinates, we
can estimate I j,h(t) as follows:

I j,h(t) ≤ Ct−n/m+ j/m
∫ +∞

tRµrm
ρ

(n− j)/( 1
m − 1

µ )−1
Γ

(
n

µ
− j

µ
+ h, ρ

)
dρ,
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from which

I j,h(t) =
{

O(t−
n

m∗ + j
m∗ ) if m �= µ

O(t−
n
m + j

m log t−1) if m = µ.

All this shows that on any local chart Uδ

∫
Uδ

∫
Uδ

u(t, x, ξ)dxd−ξ ∼




Γ
(
1 + n

m

)
C̃m t−

n
m + o(t

n
m ) if µ > m

Γ
(
1 + n

µ

)
C̃∞ t−

n
µ + o(t−

n
µ ) if µ < m

Γ
(
1 + n

m

)
C̃� t−

n
m log 1

t + o
(
t−

n
m log 1

t

)
if µ = m.

We now prove the invariant meaning of the constants C̃∞, C̃m and C̃� showing that
these are, respectively, the local expression of the quantities defined by (5.3), (5.2)
and (5.4). Set

C̃( f )
∞ = 1

n

∫
Rn

∫
Sn−1

a( f )
∞ (ω, ξ)−n/µdωd−ξ,

where a( f )
∞ (ω, ξ) is the local expression of the exit symbol a∞ of A with respect to

the exit chart f . It suffices to prove that, if g ∼ f , then C̃(g)∞ = C̃( f )∞ .
In fact, let f −1g(ρ, ω) = (ρ, Θ(ω)) and F(x) = |x|Θ( x

|x| ); then from Theo-
rem 3.1, it follows that

C̃(g)
∞ = 1

n

∫
Rn

∫
Sn−1

a(g)
∞ (σ, η)−n/µdσd−η

= 1

n

∫
Rn

∫
Sn−1

a( f )
∞

(
Θ(ω),t dF−1

ω (ξ)
)−n/µ

det |dΘ(ω)| · ∣∣det dF−1
ω

∣∣dωd−ξ

= 1

n

∫
Rn

∫
Sn−1

a( f )
∞ (ω, ξ)−n/µ|det d(Θ ◦ F−1)(ω)|dωd−ξ.

Notice that Θ ◦ F−1(ω) = Θ(π−1 ◦ (Id, Θ)−1 ◦ π)(ω) = ω and therefore

C̃(g)
∞ = 1

n

∫
Rn

∫
Sn−1

a( f )
∞ (ω, ξ)−n/µ · 1 dωd−ξ = C̃( f )

∞ .

As far as C̃m and C̃� are concerned, it is readily seen ([18, proof of Lemma 13.1,
p. 110]) that

C̃m =
∫

{am (x,ξ)≤1}
dxd−ξ, C̃� = 1

m

∫
{a�(ω,ξ)≤1}

dωd−ξ.

Theorem 3.1 allows us to interpret these quantities as local expressions of the
global constants (5.2) and (5.4). This completes the proof of the theorem. ��
Corollary 5.5 (Weyl formula). Let A ∈ ECLm,µ(M), A∗ = A > 0 and m, µ > 0.
Then the corresponding counting function N (λ, A) can be estimated for large λ

as follows:

N (λ, A) = Cm λ
n
m + o(λ

n
m ) if µ > m,

N (λ, A) = C∞ λ
n
µ + o(λ

n
µ ) if µ < m;
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and, finally,

N (λ, A) = C� λ
n
m log λ + o(λ

n
m log λ) if µ = m.

Proof. Apply Karamata’s Tauberian Theorem ([20, p. 89]). ��

References

1. Atiyah, M., Bott, R., Patodi, V.K.: On heat equation and index theorem. Invent. math.
19, 279–330 (1973)

2. Boggiatto, P., Buzano, E., Rodino, L.: Global Hypoellipticity and Spectral theory.
Berlin: Akademie-Verlag 1996

3. Carleman, T.: Proprietés asymptotiques des fonctions fondamentales des membranes
vibrantes. C.R. 8me Congres Math. Scand. Stockholm 34–44 (1935)

4. Chazarain, J.: Formule de Poisson pour les variétés riemanniennes. Invent. math. 24,
65–82 (1974)

5. Cordes, H.O.: The Technique of Pseudodifferential Operators. London Math. Society,
Lect. Notes Series 202, Cambridge: Cambridge Univ. Press 1995

6. Duistermat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and perio-
dic bicharacteristics. Invent. math. 29, 39–79 (1975)

7. Gärding, L.: On the asymptotic distribution of eigenvalues and eigenfunctions of elliptic
differential operators. Math. Scand. 1, 237–255 (1953)
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