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Summary. Edge Sobolev spaces are proposed as a main new tool for the investigation
of weakly hyperbolic equations. The well-posedness of the linear and semilinear Cauchy
problem in the class of these edge Sobolev spaces is proved. An application to the propagation
of singularities for solutions to the semilinear problem is considered.
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1. Introduction

This paper is devoted to the study of weakly hyperbolic Cauchy problems

Lu = f(u), (0, x) = uo(x), u;(0,x) =ui(x), (1.1)
Lv =0, v(0, x) = up(x), v,(0,x)=u;(x), (1.2)

where

n n
L=074+2Y MDcj090; — > A1) aij()dy, 0y,
j=1 i,j=1

+ Y N Obj 00y, + co(t), (1.3)

j=1

and A(r) = t** forsome [, € Ny ={1,2,3,...}.

The special choice of the exponents of ¢ in (1.3) reflects so-called Levi con-
ditions which are necessary and sufficient for the C* well-posedness of the lin-
ear Cauchy problem, see [10], [14]. As the basic new ingredient, solutions to
(1.1), (1.2) are sought in edge Sobolev spaces, a concept which has been ini-
tially invented in the analysis of elliptic pseudodifferential equations near edges,
see [8], [18].
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The assumptions are as follows:

Cj, ajj, bj, Cco € C°°([0, Tol, ]R), (1.4)
2

Y g | + ) ayEE = alsl’, a0, Y8, (1.5)
j=1 i,j=1

f = f(u) is an entire function, f(0) = 0. (1.6)

We employ standard notations like D = —iV, D, = —id,.
The operator L can be written in the form

_(ADN" A
_<W> P( e a”A(t)a> (47

where A(f) = f(; A(t') dt’ and P(t, 1, €) is a certain polynomial in 7, & of degree
n = 2 with coefficients depending on ¢ smoothly up to t = 0. Operators with
such a structure arise in the investigation of edge pseudodifferential problems
on manifolds with cuspidal edges, where cusps are described by means of the
function A(¢). The singularity of the manifold requires the use of adapted classes
of Sobolev spaces, so-called edge Sobolev spaces. The principles of forming these
edge Sobolev spaces are expounded in Sect. 2.

A lot of results concerning the well-posedness of the Cauchy problem for
weakly hyperbolic operators have been provided over the last decades. Under suit-
able assumptions on the data, the right-hand side, and the coefficients, the solutions
have been proved to belong to the spaces C*([0, T, H*@®R™) ([5], [12], [14], [17]),
CH([0, T], C*(R™) ([3], [4]), and C*([0, T, y(R")) (I3], [11]), respectively,
where y @ (R") denotes the Gevrey space of order s.

All these function spaces, however, have the disadvantage that their elements
have different smoothness with respect to t and x. We do not know any result
concerning the weakly hyperbolic Cauchy problem stating that solutions belong to
a function space that embeds into the Sobolev spaces H;; .((0, T) x R"), for some
s € R, under the assumption that the initial data and the right-hand side themselves
belong to appropriate function spaces of the same kind.

We are going to introduce Sobolev spaces H*%*((0, T) x R"), where s > 0
denotes the Sobolev smoothness and § € R figures as an additional parameter, in
which unique solutions u, v to (1.1), (1.2) exist provided that the initial data belong
to suitable Sobolev spaces on R”. These spaces possess the property that

(R, x R" C HY¥*((0,T) x R")
C Hi (Ry x R"

comp ) | (0,T)xR"

)|(O,T)><IR”’
with continuous embeddings. Furthermore, the space of all smooth functions on
[0, T] x R" with bounded support is dense in H"54((0, T) x RY).

The spaces H*%*((0, T) x R") additionally reflect the loss of Sobolev regularity
observed when passing from the Cauchy data to the solution. Namely, there are
traces

HY 40, T) x RY) — HPHBLPR®RY), - u(t, x) e (3/u)(0, ),
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forall j e N, j<s—1/2,8=1/(.+ 1), leading to a higher regularity at = 0
if § > 0. The phenomenon of the loss of regularity was first recognized by Qi [15]
for the equation

Lv=1vy; — 20 — (@m+ Do, =0, meN, (1.8)

with initial data v(0, x) = u(x), v,(0, x) = 0. He found an explicit representation
of the solution v,

m

v(t, x) =Y Cint™ (3u0)(x +12/2),  Cyum # 0. (1.9)
j=0

Then the assumption ug € H*'™(R) implies v(¢,.) € H*(R), and this is the
best possible. The phenomenon of the loss of regularity makes, for example, the
investigation of the semilinear problem Lu = f(u) delicate, since the usual iteration
approach in standard function spaces, for example, in C([0, T'], H*(R)), does not
work.

The surprising fact, however, is that the iteration approach is applicable if
we employ the edge Sobolev spaces H*%*((0, T) x R"). We will show that the
solutions u and v belong to the same edge Sobolev space. A discussion of this
result in the case of Qi’s operator is given in Example 5.4. In other words, the
nonlinearity does not induce an additional loss of regularity. Similar results have
been proved in [6], [7], where function spaces

By = {u: 9(t,x, Du(t, x) € C([0, T], *(R")}

have been utilized. Here ¢ = 9(z, x, &) is a suitably chosen elliptic pseudodifferent-
ial symbol of variable order. These spaces generalize the spaces C([0, T'], H*(R")).
In the present article, the spaces By are replaced by the edge Sobolev spaces
H*%*((0, T) x R") which admit a more uniform treatment of space and time
variables.

A future challenge consists in developing a calculus of pseudodifferential oper-
ators of the form (1.7) acting in the spaces H 5840, T) x R"). The primary aim is
both to admit operators L that depend on the spatial variable x and to come closer to
the interesting branching phenomena arising in the propagation of singularities, as
observed for the linear Cauchy problem, for example, in [1], [2], [21]. It is known
that these branching phenomena crucially depend on the lower-order terms of the
operator L, see, for example, Qi’s example. The pseudodifferential calculus to be
developed has to be organized in part as a calculus of pseudodifferential operators
on cuspidal wedges for which, in determining the ellipticity, besides the invertibil-
ity of usual principal pseudodifferential symbol 01‘; (L)(t, x, T, §), the invertibility
of the so-called principal edge symbol ok (L)(x, &) living on T*R" \ 0 and taking
values in a certain class of pseudodifferential operators on R enters. In [6], the
Cauchy problem for operators L with x-dependent coefficients has been treated in
the spaces By. Elements of a calculus of pseudodifferential operators on cuspidal
wedges have been developed in [16], [19].

The paper is organized as follows. In Sect. 2, we introduce the Sobolev spaces
H*%*((0, T) x R") for T > 0 and derive their basic properties. Well-posedness of
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the linear Cauchy problem in these classes of Sobolev spaces is shown in Sect. 3.
In Sect. 4, we then prove that the spaces H*%*((0, T) x R") are algebras under
pointwise multiplicationif s, § are sufficiently large. This enables us to consider the
semilinear Cauchy problem (1.1) in Sect. 5, where we prove uniqueness and local
in time existence of the solution u in the same Sobolev space as v. We conclude
with an application to the theory of the propagation of mild singularities.

2. Edge Sobolev spaces

Here we are concerned with the spaces H*%*((0, T) x R"). Details on the abstract
approach to edge Sobolev spaces can be found, for example, in [8], [18].

2.1. Weighted Sobolev spaces on R

For s € N, § € R, the weighted Sobolev space #*°(R,) consists of all v €
leoc (R.) such that

t7%]ve L*(Ry), VjeN, j<s.

For general s, § € R, the space #*°(R_.) is defined by interpolation and duality.
A norm on the space #%°(R ) is given by

1 12
vl ges.6 my = {Z_m AeZ]/z_a(Z)ZSIMU(Z)IZdz} , (2.1)

where Mu(z) = [, #*'v(1) dt is the Mellin transform. Recall that M : L*(R) —
L*({z € C: Rez = 1/2}; (2mi)~'dz) is an isometry and

M{(—19;)v}(z) = zMv(z),
M{t~%v}(z) = Mu(z — ).

(R,) is dense in H*3(Ry).
ve H\@®R")} and H{[Ry x R") = {v €

Furthermore, the space C7,,,
Let H*(Ry x R") = {U’uhxw:
HR'™"): suppv € Ry x R"}.

Example 2.1. Fors > 0, H3(R;) = HOO(R,) N HS(Ry).

2.2. Abstract edge Sobolev spaces

A Hilbert space (E, {k,},~0) With a strongly continuous group action is a Hilbert
space E together with a strongly continuous group {«},~¢ of isomorphisms acting
on E. In particular, «,k,, = ks for v, v' > 0 and k| = idg.
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For s € R, the abstract edge Sobolev space W*(R"; (E, {ky},~0)) consists of
allu € 8'(R"; E) suchthat # € L2 _(R"; E) and the norm

loc

1/2
|MwmmmmM»=L@@Wh@lmm@@} (2.2)

is finite. Here (&) = Fu(§) = f e ™y (x) dx is the Fourier transform of u and
k(&) = k). WH(R"; (E, {Ky},~0)) equipped with the norm (2.2) is a Hilbert space.

Example 2.2. For s > 0,

H Ry x R") = W (R"; (H'R4), {kv}h=0)),
Hy[Ry x R") = W (R"; (HyRy), {£u}1=0)). (2.3)

where i, v(f) = v'/?v(vr), v > 0. See, for example, [18].

In applications, the spaces E often consist of functions v = v(#) on R, where
characteristic features of such functions are expressed by prescribing a different
behaviour as t — +0 and t — o0, respectively.

In the following, let @ = w(f) be a cut-off function close to r = 0, i.e.,
w e C*(R,), supp w is bounded, and w(f) = 1 for ¢ close to 0.

Lemma 2.3. Let s € R, Ey, E; be Hilbert spaces of functions on Ry such that
H3yo(Ry) C E; C Hiy (Ry), i=0,1,

with continuous embeddings. Furthermore, the multiplication operators Ey — E,
ug +— wug and Ey — Ei, uy — (1 — w)uy should be continuous, where w is
a cut-off function as above. Then the space

E = {(,()uo—|-(1 —w)uyi: ug € Ey, uy € El},

equipped with the norm

5 , 12
lulls = {lould, + 10 —ould, |
is a Hilbert space.

Proof. By virtue of the open mapping theorem, the spaces {#; € E;: suppu; C
[ag, a1]} fori =0, 1and {u € H*(R;): suppu C [ap, a;]} coincide algebraically
and topologically, for any 0 < ap < a; < oo. In particular, the space E is
independent of the choice of the cut-off function w, up to the equivalence of norms.

It remains to show completeness of the norm ||.||z. So let {uj}_/eN C E be
a sequence such that ou! — ug in Eg and (1 — w)u/ — u; in E;. Set u =
uo+u; € E. Then w(l — w)u/ — wu; in E; thus in H*(R.) and in E;. We obtain
ou! = o*ul + o(l — w)u! — wuy + ou; = wu in Ey. Therefore, wu = uq and
(1 —w)u = uy. O
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We will also need the following result:

Lemma 2.4. Let (E, {k,}v-0), (E, {Ky}v=0) be Hillzert spaces with strongly con-
tinuous group actions. Further let a: R" — L(E, E) be measurable with

|#® " a@K@| p iz = C &, E€R" ae,
for some . € R and some constant C > 0. Then, for each s € R,
Op(a): W (R"; (E, {k}r=0)) = W H(R"; (E, {&1}r=0))

continuously, where Op(a)u = Féix{a(é)ﬁ(g)}.

2.3. The spaces H*%*(R,. x R")

Below we will use the group {K\(fs) =0,
K‘()‘S)U(l‘) = P2l v(vﬁt), v>0,
B =1/ 4+ 1). Here § € R is a parameter to be specified later on.

Lemma 2.5. Lets > 0andthe space E be as in Lemma 2.3 with E, = #%% (R,)N
F55UsFDH8L (R ) (Here the space Ey satisfying the conditions of Lemma 2.3 is
arbitrary otherwise.) Then, for each a > 0,

WS(R”; (E, {K,gs)}v>0))’(a’oo)><]Rn
= {1(0"*Pv(A@), x): ve H' Ry x R}

|(a,oo) xR

holds algebraically and topologically, where ’ (a.00) xR 1TH€ANS restriction of func-
tions u = u(t, x) from the corresponding function space to (a, c0) x R”". In par-
ticular,

HpmpR X R") C W (R"; (E, {k{"}1=0)) C Hjpo(Ry. x RY),
with continuous embeddings.

Proof. If suppv C [a, co) forv = v(¢) and some a > 0, then supp(x;lv) C la, 00)
for each v > 1. We obtain

—1 —1
o ||KV U||3{0,61*(R+)ﬂ3{.s,s</*+1)+a/*(R+) = ||K,, vl

—1
< e iy vl g0 myynges st Do Ry, V= 1,

with certain constants 0 < ¢y < ¢ depending on a > 0 provided that suppv <
[a, 00).
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Therefore, the norm of the space {u € W*(R"; (E, {x{},~0)): suppu <
[a, 00) x R"} is equivalent to

12
{/(S)ZS”K((S) (%-)7112('1 E)”igo,a/* (R4 )NFs:5 s+l (R ) d%-}
_ { / 2 1O @) A O o g, &
12
+ /(S)ZSHK(S)(&)lﬁ('s5)||§gx,x(l*+1)+sl*(m+)dé}
_ { / (€ 10,10 s, I

1/2
+/||12(',5)||§fs.x(1*+1>+61*(R+)ds} ’

since vl ges vt ntoi oy = VY VIl gpsvttt ot fors € R, v > 0. (Use the
norm (2.1).) Thus the latter space coincides with the space

{M c HS(R”; ,}60’8]* (RJ'_)) N HO(R”; RS,S(]*+1)+(SZ* (RJ'_))

suppu C [a, 00) X R”}.

The space H*(R"; #%% (R )) N HOR"; F5sU«+D+3k (R, )), however, is readily
seen to be equal to the space {A(£)"/*v(A(r),x): v € Hg(@Jr x R™)}, since
HOO (R N FSsGHDH (R ) = (A2 Pu(A@): v € Hg(@Jr)} in view of
Example 2.1 and by employing (2.3) of Example 2.2. O

Lemma 2.6. Let the assumptions of the previous lemma be fulfilled.

(a) J(EJF x R"™) is contained and dense in 'W* (R”; (E, {Kﬁ‘s)}wo)) provided that
S(R,) is contained and dense in E.
(b) ¢ (R, x R") is dense in 'WX(R”; (E, {K,(,‘S)}wo)) if and only if CZ°__(R,)

comp comp
is dense in E.

Proof. We prove (a); (b) is similar. _
Since 8(R,) is dense in E and 8(R, x R") = 8(R;)®,S8(R"), we obtain that
the space

[Fo (@7 P age) o) u e s@. xR, 2.4)

where (1, §) = Fe_¢{u(t, x)}, is dense in W*(R"; (E, {k,},~0)). But (2.4) is the
Schwartz space (R, x R"), as shown by elementary estimates. O

Definition 2.7. (a)Fors > 0,8 € R, the space H*%*(R, ) is defined to be the space
E from Lemma 2.3 with Eg = H*(Ry) and E; = F%% (R,) NFessEGHDH (R ).
Analogously, HS’&’\(@Q is defined to be the space E from Lemma 2.3 with
Ey = H§(R,) and E as before.
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(b) Fors > 0,5 € R, we set
H* (R, x R") = W(R"; (H*** (R, (k] }r-0))
HY MRy x R = WH(R™; (Hy " (Ry), (£ }120)).
We summarize results obtained so far.
Proposition 2.8. Lets >0, 5§ € R.
(a) H (Ry xR") C Hé"”(@+ x R") € H*%*(Ry x R") C Hf (R x R")

comp
with continuous embeddings. The spaces in the middle coincide if and only if

s <1/2

() S8Ry x R") is dense in H¥**(R, x R™).

(c) The space HS’&"\(KJr x R"™) is closed in HS"S;)‘(]RJr x R™) if and only if s ¢
1/2 + N. In this case, HS’&"\(@Jr x R") is the closure of C3,,(Ry x R") in
HS Ry x R").

Lemma 2.9. {HS"M(IRJr x R"): s > O}for 6 € R forms an interpolation scale

with respect to the complex interpolation method.

Proof. Obviously, {H***(R): s > 0} forms an interpolation scale with respect
to the complex interpolation method. It remains to apply the functor
Ws(Rn; (’7 {KI(JS)}\»O))- O
Prgposition 2.10. Lets > 0, § € R. Then, for each j € N, j < s —1/2, the map
SR, x R") — S(R"), u > (3]u)(0, x), extends by continuity to a map
71 HYM Ry x R") — H - PIHAL=F2(Rr), (2.5)
Furthermore, the map
HY Ry xR — [ HTPHPRPRRY, ue {rju}
j<s—1/2

j<s—1/2

is surjective.

Proof. By Lemma 2.9, we may assume that s ¢ 1/2 + N. Then
. ti . cs =
H"M(R,) = { Z o(t) —d;: dj e C v]} ® HY" (R,
Jj<s—1/2 J:
where w is a cut-off function as above. We get

H** Ry x R")

BpJ .
| = e soner O Gl

il
j<s—1/2 J:

dj € H'R") v]'} ® HY (R x R")

J
_ { Y F fe@ne;@)) a0 %

j<s—1/2

cj € Hsfﬂj+ﬂ81*fﬂ/2(Rn) V]} @ HS’S;A(E+ x Rn)’
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where @ = @(r) is another cut-off function such that w((§)’n@(1) = w((€)P1) for
all £ € R". Now, for u € (R, x R") ¢ H***(R, x R") written in the form

J
u(t, x) = EjF;AM@Wwﬁnmo%+mmm

j<s—1/2

with uniquely determined coefficients ¢; € 8(R") c H* P/TAL=F/2(R") and
uy € Hg““(ﬁ+ x R™), we obviously have

¢;(x) = (8/u)(0,.x)
forall j € N, j < s — 1/2. This yields the desired result. O

Proposition 2.11. For s > 0, § € R, we have continuity of the following maps:

(a) at: Hs+1,8;)»(R+ X R") — Hs,8+1;A(R+ X R”);

() 1 HS5* (R x R") — HSH/EMW R xR forl =0, 1, ..., 1;

(©) By, : HFISA (R, x RY) — H* Ry x R for | < j <n;

(d) ¢: H¥%* Ry x R") — H"S* R, x R") for each ¢ = ¢(f) € $(RL).

Here t' means the operator of multiplication with t'; similarly for ¢. In particular,
the differential operator L from (1.3) is continuous from HT254(0, Ty) x R™) to
HY54((0, Ty) x R"), where the space H>%*((0, Tp) x R") fors > 0,6 € Ris
defined in (2.6) below.

Proof. These are consequences of Lemma 2.4 and

(@) 8 HWHRy) — HY TR, 1T (©) 710D (€) = (£) 8y

(b) tl: HS’S;)‘(]RJF) N HS,6+]/Z*;)\.(]R+),K(8+l/]*)(g)7lth(s)(s) — tl;

(©) i&j: HTWHRY) — HYWH(Ry), (@) 1igj P (§) = i&j;

(d) p((&)Pr): HY*(R,) — H***(R,) is uniformly bounded in £ € R”",
K@@ o)k (&) = o((§) .

Another possibility in proving this lemma consists in utilizing the norm (2.7). 0O

Remark 2.12. For s € N, the norm of the space H*~S*(R, x R") can be shown
to be equivalent to the norm

flu ||HL—S:X(JR+ xRM)
1/2

oo
kial, 12 2
~ A < Z ||t 7 at]uHH/(]Rn) + ”uHHﬁS(Rn)) dt )

JHI<s

where kj; = max{0, —s + j + (I + 1)!}. Without the additional term ||u|| ;55 gn)
this norm has been used for treating degenerate elliptic operators of type 4 in [13] .



460 M. Dreher, 1. Witt

2.4. The spaces H*%*((0, T) x R")

For T > 0, we define
H%*((0, T) x R") = H***(R, x R”)yw’mxw (2.6)
and equip this space, for the time being, with its infimum norm.

Lemma 2.13. For s € N, § € R, and T > 0, the infimum norm of the space
H*%*((0, T) x R") is equivalent to the norm -l grs.5:2 0.7y xrny> Where

2
HS82((0,T)xR")

- min{(§)~#, T}
= Z/Rn@ZHZ/O AE)PYTH2100 (e, &) dr de
=0 3

[[uell

s T
+> /R ()2 / }A(r)*2’*25|a,’a(t, £)|? dt dt. 2.7)
1=0 VEE r

min{(§) 4,

Proof. First of all, note that the norm ||. || 7.1, xre) 1S given by

2
H‘Y’B:)‘(R+XR’1)

=) f (&) f "ol ) ae) P, o) P de
1=0 /R 0

+ S (&)
2.

x f w|k(r)—5—’a£<1 — w(D)(E) PP () Pr, &) Pdr dt
0

lJull

S min{(€)~F.7}
~> [ e | M) )Pl € dr e
=0 &

S T
+> / > / M0y 27210l e, &)1 dr d,
=0 Y% T}

min{(¢) 4,

where w is a cut-off function as above. Thus, for each u € H s"“(RJr x R™), the
norm (2.7) evaluated for u ’(O,T)X]R” is finite.

Conversely, suppose that, for some u, the norm (2.7) is finite. We choose
a measurable family {175: H*O0,T) > H'Ry): £ € R”} of extension operators,
i.e., we have H§v|(ho) = v for all v, such that

s & ~#
> / (&)Y 8 T v () | dt
=0 70

s o0
+> / A 220 () dt
1=0 (&~F
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s . —

min{(§)~#. T}
<y / A () ) B gl u(o) 2 dr
1=0 70
§ T

+C2Z/

A0 20| dt
1=0 in{(¢)~A, T}

with some constant C > 0 independent of €, i.e., in the indicated norms of the spaces
H*(0, T) and H*(R,), respectively, the operator norm of I7; does not exceed C.
To get rid of the possibly unrestricted growth of the factors A(1) T+ as t — oo,
the extension operators [1¢ are constructed in such a way that supp v € (0, 71] for
allvand some 77 > T.

Now, letting U be defined by U, &) = Heu(t, &) = IT:(a(-, §))(1), we get that
U e HS"”‘(IRJr x R™) is an extension of u, for

2
|| U||H.S,E:X(R+><Rﬂ)
-B

s &)
=3 [ @ [ ae Bl oP drde
=0 &
e 3 L@ [ o, o e
=0 §

2 - 252 min((€) .7} 20-2 2
<cC Z/ () S—l/ MNP0, &)1 dr de
1=0 RE 0

min{(§)~#,T}

ey [ @ [ o el
1=0 RE r

=C ”””iﬁﬁzk((o,r)xﬂ{")'
This completes the proof. O
Lemma 2.14. Fors, s > 0,68, 8 e R, and T > 0,

HY (0, T) x R") € H¥*((0, T) x R") (2.8)
if and only if

s>s', s+ Bl >s" + BSl,. (2.9)
In particular, for s > Bl,, § € R,
H%((0, T) x R") € HHAHEA(0, T) x RY).

Proof. Necessity. By the embeddings in Proposition 2.8 (a) and the trace theorems
in Proposition 2.10, (2.8) forces (2.9) to hold.

Sufficiency. Here we treat the case s, s’ € N. The general case is treated in the
appendices. If (2.9) is fulfilled, then

& E DT = cEr e H L 0=,
& < e, & <t=T.
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forall0 <t < T, €e R",0 <[ <s,and some constant C = C(8,8', T),

CG.5.T) = 1 ifé6 <¢,
T Tk otherwise.
This implies (2.8) with the embedding constant C(§, 8’, T') for the norms (2.7). O

The norm eventually used for the space H*%*((0, T) x R") is |.||s.s.7» where

N
2 21—1
||”||5,5;T= E T X
=0

min{(§) "4, T}
f ()22 / AE) Y22 i, ) di de
" 0

s T
DMl NCEY | MO 3l ) di de.
=0 RE min{(§)=#, T}

&

For later reference note that the embedding in (2.8) with constant 1 in the case that
s>, 5+ Bl = 5"+ BS'l, and § < §' remains valid for the norms |.||s.s:7-

3. The linear Cauchy problem

We start our considerations with the linear Cauchy problem
Lw(z, x) = g(t, x), w(0, x) = wo(x),  w(0,x) = w(x). (3.1

The partial Fourier transform (¢, §) = F,_w(t, x) solves the following Cauchy
problem for a second-order O.D.E. with parameter &:

DXi(t, &) + QA1) |E|c(t, &) — ico(1)) Dyib(t, &) (3.2)
— (M®*IE1Pa(t, & — iX D)IEIb(, &) (1, &) = —&(1, &),
W(0,8) = wo(&), W,(0,8) = (&),

where
. - &&; . - &;
at,©) = Y ay(nF, bt,§ =—) b0t (3.3)
=l i
3 n E]
c(t.§) =) ¢
e

It is clear that a unique solution W to (3.2) exists. Then we may conclude that
a solution w to (3.1) exists and belongs to some Sobolev space. The scope of this
section is to prove well-posedness for the linear Cauchy problem (3.1) in edge
Sobolev spaces.
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Introduce the number

0o = 1 + sup 1b(0, &) 4 ¢(0, §)] (3.4)
2 & 20,82 +a(0,8)

and fix Ag = Qoly/(x + 1) = BQoL,.

Theorem 3.1. Let s, Q € R, s > 1, Q > Qq. Further let wy € H*TA(R"),
w; € HHA PR, and g € H 21540, T) x R"), where A = BOl,. Then
there is a solution w € H*2*((0, T) x R") to (3.1). Moreover, the solution w is
unique in the space H*>20*((0, T) x R").

Remark 3.2. (a) The parameter A describes the loss of regularity. The explicit
representations of the solutions for special model operators in [15] and [21] show
that the statement of the Theorem becomes false if A < Aj.

(b) Under the assumption that wy € H**4R"), w; € H* 4"P(R") for some
A > Ag we obtain w e HT4740.00%((0, T) x R") provided that g e
HTA=4=1L00+ 2 (0, T) x R™). If we merely have g € HS~-C+52((0, T) x R")
(note that H*+A=40=L.Co+L2((0, TYxR") € H~LO+EA((0, T) xR™)), then we get
the weaker conclusion w € H>2*((0, T)xR") (note that H*T4~40-Q0:% (0, T)xR")
C H*22((0,T) x R")).

Let H®(R") =[x HR"), H**((0, T) x R") =[5 H***((0, T) xR"),
Ho4((0, T) x R") =, H*H((0, T) x RY).

Corollary 3.3. (a) Assume that wy € H®[R"), wy, € H®R"), and g €
H L2940, T) x R") for some s > 1. Then w € H**((0,T) x R"). In
particular, w € H®*((0, T) x R") if g € H®%*((0, T) x R").

(b) Assume that wo = wy = 0 and g € Hgfl’QH;’\([O, T) x R"™) for some s > 1,
0 > Qo. Then w € Hy ¢*([0, T) x R").

From (a) we infer C* well-posedness for the linear Cauchy problem.

By interpolation, it suffices to prove Theorem 3.1 when s € N,. In this case,
Theorem 3.1 will follow by standard functional-analytic arguments if the following
a priori estimate is established:

Proposition 3.4. For each s € N, Q > Q,, there is a constant Cy = Cy(s, Q)
with the property that

lwlls, o;7
< Co (llwoll grs+a gny + lwi | gs+a-p ey + T Iglly—1.01.7)

forall0 < T < Ty. The constant Cy does not depend on T.

For the proof, we introduce

v, §) = Q@O0 8, ht,H =kCTVE 8w H (3.5)
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and split the (¢, §) space into two zones: the pseudodifferential zone Z,q and the
hyperbolic zone Zpy,:

Zpa ={(1,8 € [0, T] x R": HEY < 13,
Znyp = {(2,8) € [0, Tp] x R™: t(é)ﬂ > 1}.

Occasionally, we employ the equivalent description Zpq = {(t, §): t < 1}, Zpyp =
{(t,8):t > t}, where t; = (€)7# . In terms of the functions v and / from (3.5), the
borders of the two zones are given by t = 1.

3.1. Estimates in Zpyg

We start the proof of Proposition 3.4 with an estimate in Zq.

Lemma 3.5. Let w be the solution to (3.2) and v, h the functions defined in (3.5).
Then, for every s € Ny, there is a constant C = C(s) such that

Z (T/ZIfl ||85U(, £) ||2LZ(O,T’) + T/2/|(at/v)(T/’ E)|2)

=0
< CUE) P i ® 2 + T2 ()24 [y (&) )
s—1
T T O
=0

forall0 < T' < 1.

The proof is based on the following lemma the proof of which can be found in the
appendix:

Lemma 3.6. Let ay = ap(t), ..., am—1 = an—1(t) be smooth functions and sup-
pose that f = f(t) € H*'(0, Ty) for some s € N.. Then the solution y = y(f)
to

'y + an_1OF" 'y + - +aoy=f©), 0<t<T<Ty, (3.6)
(3ijy)(0) =yoj, J=0,....m—1,

satisfies the estimate

s+m—2
> (105 a0y + T @) 3.7
=0
- 21 2 2m = 201l £]|2
SCZT lyorl“+ CT ZT ||3tf||L2(o,T)’
=0 =0

forevery0 < T < Ty, where the constant C depends only on Ty and Haj

([0, ToD)"
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Proof of Lemma 3.5. We apply @ (£)~! to both sides of (3.2) and recall that
K@ @ f(1)) = v B3k (c® £(1)). Then we find

DX (1, &) + (wn%c((srﬁt, &) —ico((€) "1, s)> Dyu(t, &)
- (Amz@a (&) P16 — ix’@@b((srﬁt, s>) u(t, &)
(€)2 (€)
=& "Ph, 8.

This equation shows the effect of the group action k(@) (£)~!: the parameter £ € R”
has lost almost all of its influence, only terms of the form |£|/(£) or (&)~# are still
present.

We easily find that v(0, &) = (£) #2440 (8), v,(0, &) = (&) 3F/2F440 (£). An
application of Lemma 3.6 concludes the proof. O

3.2. Estimates in Zyy,

The goal of this subsection is to prove the following estimate:

Lemma 3.7. Let w be the solution to (3.2) and v, h be the functions defined by
(3.5). Then, for every s € Ny, there is a constant C such that

s ©Fr

> @ / )29l ) dr < CT Y ()2 ) (1, &)

1=0 1 1=0

s—1 (&P
1

=0

T 2
(A0~ oth @, )] ar,

provided that (E)PT > 1, i.e., (T, &) € Zhyp-

The proof will be given after we have found pointwise estimates of w(z, §). We
introduce the vector W(t, &) = ' (A(t)|$|ﬁ)(t, &), Dy(t, S)) and obtain the first-
order system

DW(1,8) = A1, 5 W(t,§) + G(1. §),

4 _ 0 1 ; % 0
(t’é)_<a(t,é) —2c(t,5))k(t)|é|_l KObt &) —c)’

Ao

where a(t, £), b(t, §), c(t, &) are given by (3.3) and G(z, &) = (0, —2(, &)). If
X(t,1, &) denotes the fundamental matrix, i.e.,

DZX(tv tlsé) = A(ts E)X(ts IJ!E)? X(tlst/vé) = Is

then W(t, &) = X, 1, &)W{', & + i ftt, X(t,t", )G (1", §)dt”. This immediately
gives estimates of |W(z, &)| if estimates of X(z, ¢, ) have been found. For the



466 M. Dreher, 1. Witt

investigations of higher-order derivatives Df W(t, &), we define
Wit &) = WOE) DLW &), Gt & = (&) T DIG, &),

A\
X1, 8) = X(, 1, ) ( A((tt))) ,

and observe that

A ~
DW= <A -+ 1);) Wi+ G

Y L -
= (A -+ 1);) Wi+ G+ Z <m> A EN ™D AW,

m=1

hence

t

Wit, &) = Xi1 (1,1, OWi(r', &) + i / Xt 1, G (", &) dt”. (3.8)
t/
Lemma 3.8. There are some (large) constants ¢, C > 0 such that

A1)
A1)

Qo+l
HX(t,tZE)HsC( ) . e <t <1< T,

holds for all £ € R", where Qo < Q is given by (3.4).
Proof. See [7]. O

From this and | X(1,#,&)| < exp(/, |A(". &)| dt") we obtain |X(z,7,&)| <
CO.(0)/A(t')) 2T for arbitrary t; < ¢’ <t < Tp.
Next we derive the following estimate:

Lemma 3.9. For (t,§) € Zyy, and eachl € N,

WO (Wl ®] [T 168
0L fc’n;)( TSI ARYOY: dt)' 59

Proof. This is true for [ = 0, compare with (3.8). Now let/ > 1 and assume (3.9)
for [ — 1. From (3.8) and [ > 1 it follows that

A o t A 0-1 »
Wi (2, 8)| < C(ﬁ> |Wi(te, )] +C/ ( (t)> |Gi(', &)l dr’.
L

M) M)
For the estimate of the integral, we recall that

m )\4/ /
AE)EN™ | D AW, )| < Cut)EN AN E)NT < CK((;))'
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Then we conclude that

t
MO LW, £)] < Cr(te) CIWi(te, &) + C f M) QG )| ar’
i3

/ t )L/(l‘/)
- / —Q , ,
+C; T O W B

The induction assumption gives

W) Wi @O _ X0 S [ Wilte. ©) / Gt &)l
M A2 T M) Ate)? e M2 '

k=0

Partial integration shows (3.9). O

Let us formulate the statement of Lemma 3.9 in another way:

Lemma 3.10. I[fs € N, £ e R" andt > t¢, then

A

D ETA@ (L &) < CY () M) T I@ ) (1, §)]

=0 =0
s—1 t
+CY / A 9jea, o)l dr',
=0 s

Proof of Lemma 3.7. From the identities 8,(/{5‘3) fln) = vﬂxgﬁ)(a, f(®)) and
)\(t)“/clﬂ‘s) F) = vl Kﬁ‘” (A(D)* f(r)) we obtain

A~ (P f(0) = v TP (M2 8L £().

Hence it follows that

s s

D E A @) e, B =Y (&)@ (1, ©)].

=0 =0
Utilizing the identity A(1) '8! (x> (1)) = Vi@ (A(H)~'3! f(+)) and squaring the
inequality of Lemma 3.10, we obtain

N

> (62 a0 7 [ Q@0 e o < €3> @Elw AL

=0 =0
s—1 t
+ CZ@W*%/ A PCHD | LD @) Talh( s)|2dt’.
1=0 s
Integrating over (¢, T') and employing

)8

t (&Pt
/ M) 22 Q@) )| di' = / A 2L f() ar’
3 1

yield the assertion of Lemma 3.7. O



468 M. Dreher, 1. Witt

3.3. Estimates in edge Sobolev spaces

In this part, we patch the inequalities of Lemmas 3.5 and 3.7 together in order to
prove Proposition 3.4.

Proof of Proposition 3.4. The norm [|w|[; o.7 can be written in the equivalent form

s min(1, (§)PT) 5
i gr ~ 7 [ @ [ 8o, &)[* dr ds
1=0 ¢ 0

s ©Fr
_ —0— 2
+y T / (&) / A~ oju(t, )| dr de.
—o R} min(1, (§)AT)

A similar representation holds for [Igll;_ g41.7- We set T" = min(l, ()PT) and
make use of Lemma 3.5. Then it follows that

7 ol &) 20,1

T 20—1
<C <?) (&) P24 o @) + T (&) 24 iy (8))
-1
Lot Z 7722 21 (£)20+H) ” h(.. ) ”iZ

r=0

(YN

forall 1 <1 < 5. Consequently,

s
ST 0 ) a0

=0
s T 21—1
< CUEY PP @ P + T 24 i @)1 Y <T>
=0

s—1

/4 12r—1 o\ —2(148) || ar 2 (TN
+CT ZT (&) [7RC. O] 20,7 Z T

r=0 I=r+1
< Cp () P24 o ®) 2 + T72€) 241y ()% (&)

s—1

+ Cr, 27" Z T gy 2P |a7h (.. & ”iZ(O,T’) :
r=0

By Lemma 3.7, we obtain

o /<s>
1
T

1 (&
+cr?y T <s>—2/ MO ok, )| dr,
1

r=0

BT [
- alu, &))" dr < CT* Y (&)P13u) (1, H)I?
r=0 (3.10)
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foralll <[ <s, and

©Fr 1
_ _ 2 ,
[ o e sl @ < €@ 6L oF

: r=0 (3.11)
©°r 5

+CT(S)’2/ A0 (e, &) dr.
1

Summing up (3.10) for/ =1, ..., s and (3.11) yields
s &*

T
x5~ olu(r, &) dr

Z T21—1 /l

=1
< Cp, Y _ T 100, 9
r=0

s—1 L
+Cn e [ o g o) d
r=0 1
Employing this technique (of picking one term and summing up) a third time, we
deduce from Lemma 3.5 that

N

Do TTE @)L O < Cr (&)o@ + T7E) i (&)
r=1

s—1

+ Cr, T3 T HE) P oh(, ) ”iz(o,n :
r=0

Finally, Lemma 3.5 shows that
1

Y @I, O < CUE i@ + (&) P41 ©)1)

r=0
+CTE IR D2 ) »
where we have used (& VP < T Taking into account all estimates obtained so far,

we find

N

20-1 ! 2 @ Lol 2
DRl (T P I ORI
T/

=0
< CUE Mo (B 1P + ()P4 01 ()]

s—1
+C2 Y 1) 7 [9h 9 |

=0
71 ®°r 5

+ CTZZTZH(E)_Z/ ()" 8, &)|” dt.
1=0 T

Multiplying by (£)** and integrating the resulting expressions over R” with respect
to & completes the proof. O
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4. The algebra property

In this section, we show first that edge Sobolev spaces HY%4((0, T) x R") are
algebras under certain conditions on s and 8. Then we easily conclude that super-
position operators which are formed by entire functions map these edge Sobolev
spaces into themselves.

Proposition 4.1. Assume that s + 6 > 0. We suppose that s € N and min{s, s +
B8} > (n + 2)/2. Then H***((0,T) x R") is an algebra under pointwise
multiplication for any O < T < Ty. In other words, we have

luvllss,r = Cllullys.r vlss.7
foru,v € H*¥*((0, T) x R"). Moreover, the constant C is independent of 0 <
T <T.

Corollary 4.2. Let f = f(u) be an entire function with f(0) = 0, i.e., f(u) =
Z;il fiu’ for all u € R. Then, under the assumptions of Proposition 4.1, there
is, for each R > 0, a constant C|(R) with the property that

I fls.5.0 < CL(R) ullss.7
Il f(u) — f)ls50 < C1(R) lu —vlls 57
provided that u, v € H>%*((0, T) x R") and lullys.r < R Vlls50 < R.

The proof is split into several lemmas and makes heavy use of so-called weight
functions.

Definition 4.3. A function «: R’g — [c, 00) (¢ > 0) is called a weight function if
« is a continuous, monotonically increasing function of |&| with the property that
a(28) < Ca(é) holds for all £ € R”.

Lemma 4.4. Suppose that o, B, y are weight functions with
a(§)?
C: = sup ———————dn < Q. “4.1)
O cern Jry BODPY(E — )?

If u,v are functions with BEaE) € I*(R") and y()d(E) € L*(RY), then
a(® )€ € *(R") and

le(®) @) WOl 2y < Co [BEE | o g,

V&UE| 2, -

Proof. Choose some arbitrary w € L*(R"). By the Cauchy—Schwarz inequality,
we have

a()? "
A 2 > dnd
5{/]@;"”@' g ByE 5}

1/2
x If ﬁ(n)2|ﬁ(n)|2f V(E—n)zlﬁ(é—r/)lzdédn}
R R}

/R a(§@uy§) () dé
&

< CollWwll 2gn)

BOXE) | 2, | YOO 125, -

Applying the Riesz representation theorem concludes the proof. O
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The following lemma gives a sufficient condition for (4.1):

Lemma 4.5. Suppose that o, B, y are weight functions. Furthermore, assume that

e’ e
ry B2y (n)? ’

wp <a(§)2 / dn +a<s>2 / dn )<oo
gern \ BE? Jip<2e) Y2 (0?2 Jiy<2ie) B)?

Then (4.1) holds.

Proof. For each § € R", we split R} into three parts:

A = {n: Inl = 2|&]},
B(&) = {n: Inl =2|&,1§ —nl < Inl},
C@ ={n: Inl =218, 1& —nl = Inl}.

Case 1: 1 € A(§). We have [§ — n| > [n]/2, hence y(§ —n) = y(n/2) = Cy(n).
From this and «(§) < «(n), it follows that

a(£)?
— = d
/A@ BaNyE —m2 =

Case2:m € B(§).Itholds|&| < |§—n|+In| < 2|n|,hence B(n) = B(§/2) = CB(&).
Then we obtain

2 2
/ 201(5) dn < Coz(é)z/ dgz _c
B BN YE —n) BE)* Jici<2ie) YO
Case 3: 1 € C(§). Inthis case, we have |&| < |E—n|+|n| < 2|& —n|, consequently,
v(E —n) > y(&/2) > Cy(§) which implies

a(&)? a(g)? dn
— C— — <C.
fa@ By —m2 "= Y@R e BODE

The proof is complete. O

In a certain case, a more precise estimate than that of Lemma 4.4 is required:

Lemma 4.6. Let u, v € [2(R") N L®°(R") be Sfunctions with a(§)u(§) € LZ(RM),
a(E)D(E) € [2(R"), where  is a weight function. If

¢ = sup [ @O ) —a ) ()
O tern Jmy a(n)’a(E —n)?

dn < o0, 4.2)

then

lee(®) @vY )l 2ny < NuO) o) e (E)DE N 2mn)
+ Colla()it(8) /(€| 12 )l E) D) 12 ey
+ v || oo @y e (E) it (B) | 12 ey -
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Proof. We can decompose the term (&) (uv) &) as
[ @i —man= [ awimite ~na
+ [ ate=mamie - may
[ @@ ~ ot —at ~ i - nan

From fR’ﬁ a(mit(mdE —n) dn = Frg (v(x) Fe x(a(§)it (£)))(§) and Plancherel’s
theorem we get

< o) || oo @)
LZ(]RIZ)

a@)ﬁ@) ||L2(]R”) .

| e -y

n

Now choose some arbitrary w € L*(R"). By the Cauchy—Schwarz inequality, we
have

/” /Rn (@(§) — a(n) —aE —m)u(miE —n) dni(§) d§
¢ Ry

172
oo [ (@® —al) — al —m)An)?
dnd
sl ) /R a1 n s}

2 1/2
x /0“7)2 lﬁ(n)lz/ a(E — )’ |0 — n)|> dE dn
r: (1) R!

@1 /)] 2, [€®DE /)| 12, -

Applying the Riesz representation theorem concludes the proof. O

= Co ”{'DHLZ(]R”)

Now we present a sufficient condition for (4.2):

Lemma 4.7. Suppose that o = «a(§) is a weight function with

(®) — ()] < Clé — nl% Vg — | < %m, 43)
(n)?
/1;:', e dn < oo. “4.4)

Then (4.2) holds.

Proof. Foreach § € R", we split R} into four parts:

A = {n: Inl = 2I&},

B(&) ={n: Inl = 2§, 1§ — nl < Inl/2},

C® ={n:Inl =28, 1& —nl = 2Inl},

D) = {n: Inl < 2[&l. Inl/2 < 1§ = nl < 2[nl}.
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For the sake of brevity, we introduce the notation

((§) — a(n) —aE —n)*(n)?
a(n)?a(€ —n)? '

Case 1: n € A(§). We have |§ — | < 3|n|/2 and |n| < 2|§ — n|, hence

8, n) =

2 _ 2
(@& — a(n) —aE —n)* < Ca(n)® < CW’
which implies 8(&, n) < C(& — n)?/a(& — n)*.

Case 2: n € B(§). By (4.3) we deduce that
(@(®) —a() —aE =) < 2@ —am)® +2aE — 1)

a(n)?
C _ 2
<C{¢—n )2

and, consequently, 8(£, ) < C(& — n)? /(€ — n)* + C(n)*/a(n)?.
Case 3: n € C(§). Applying (4.3) again, we get
(@@ —a() — aE —n)* < 2(@E) — aE —n)* + 2’
2 2
<C a —n)” 4 Ca 2 (E—1)
= G g

(& —n)?

m?
Then we obtain 8(&, n) < C(n)*/a(n)? + C(& — n)*/a(§ — n)*.

Case 4: n € D(&). Here we have |&| < |& — n| + |n| < 3]|n|, hence
(& —n)?
(n)?

Proceeding as in Case 1 we find 8(£, n) < C(€ — n)*/a(& — n)>.
From (4.4) we obtain fRZ 8(¢,n)dn < C uniformly in &. O

+2a(§ —n)?,

< Ca(t —n)?* + Ca(n)?

(@(&) — a(& —n) —a(m)* < Ca(n)* < Ca(n)?

Definition 4.8. Let {¢}; = ¥;(¢, §)};_, be a family of weight functions depending
on the parameter ¢ € [0, Tp]. Then we define the norm

|u||sT—ZT” ‘ / 91 921t &)| 2o,

Lemma 4.9. Assume that the family of weight functions {¥y, .. ., ¥y} satisfies the
following conditions:
(n)?
sup/ dn < o0, 4.5)
0,71.Jry Do(t, m)?

Je>0: (EV/7 <CO(1,8) Y, &) €0, Ty x R, (4.6)
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I, H1/(E) < 91,6 < COHELEE) V(1,9 @)
0011 (1 8] + 011 (1.6) < CO1,6), [<s—1, V1,8, 4.8)
2(2, )
90016 = Dot I = Cle =052 Ve Vig—al <Igl2 @)
0i(t, m)?
0.1 /R P O G S0 PEE L 10
(1,87 dn

— 1 — <00, [>k+1. 4.11)
[0.7] xR} D1-i(t, 82 J <26 P18, 1)?

Then there is a constant Cy (independent of T) such that

luvllg,r < Collullyr vl -
Proof. Obviously,
s 1 )
luvl} 7 < €YY T 90, ©(@OFw O 0) (&) | 20071200 -
I=0 k=0
First we consider the terms with / > 1. Without loss of generality we may assume

that k + 1 <[ (otherwise we change the roles of k and / — k in the sequel). Due to
(4.10), (4.11) we may apply the Lemmas 4.4 and 4.5 in the following way:

T
7 /0 [ 9162, &) (@10 B 0) &, &) 2 g

T
< cr?-! /0 | P11 (1. 852, &) | 12 g, 9140, 301, )| 2 g

< CT* | 0ys1dfa N (2

2
H L°([0, T1, L2 (R™)) (0,71, L2(R™)) *

We have the embedding W21 (0, T) C L*°(0, T). More precisely,

gl < CT " g2 + CT 198l 2.1 - (4.12)

Then (4.8) yields

T ” ﬁk+1azk’2 Hiw([o,r],LZ(Rn)) = cr¥! ||l9k+lazk’2 HzLZ

+ CT% @ 0e)d ] 2

(10,71, L2 (R™))

([0,T],L2(R™))
CTE ool

2
= Cllullyz -

([0, T1,2R™))
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Now it remains to consider the term with / = 0. According to Lemmata 4.6 and 4.7,
we have

T 190(2, ) @) ) 1510 71,2y
< T, )3 go,rymm 19000720071 12
+ CT 1908, ) (t, 8 /) 100 q0.11.122m 1900 720,71 2R
+ T, 2) e o, 7y 190821172 40, 71,12 ey

The embedding H"/**¢(R") C L®(R"), an argument similar to that of (4.12), and
(4.6), and (4.8) imply

2 2 ~ 2
||M(t, -x)”Loo([O,T]X]R”) = CT”(E)’U +Salu(tv é)”LZ([O,T],LZ(R"))

+ CT_] || (é)n/2+812(t7 é) ||iz([0,T],L2(R”))

S C (T”ﬂl 8112”?‘2([0,7*]’[12(1@1)) + T71 ”ﬂoﬁ||i2([0,T],L2(R”))) .

Exploiting (4.7) we deduce, in a similar manner, that

|90, it /) | 100 0,71, 120
< T 90, 9t /) | 120, 17.1268m)
+CT | @, 90(t, ©)(t. &) /)| 1201 12m)
+ CT || 90(t, & (1, /)| 120,71, 200

112 . 112
=C (T [ 2qo.n.2ey T T o] LZ([O,T],LZ(]R”))) :

The proof is complete. O

Proof of Proposition 4.1. The norm ||.||; 5.7 of the space HS52((0,T) x R") is
equivalent to the norm ||.||; 7 from Definition 4.8, where

(5)5*’)\(@)7871 0<r< t&' = <E>7ﬂ’

n(t &) = {(g)s’k(t)‘” it <t <T

It is easy to check that these functions are continuous, increasing in |£| (since
s + 8 > 0) and that 9;(¢, 2&) < C9(¢, &) for all (z, &) and all I. Hence they are
weight functions in the sense of Definition 4.3. The proof is complete provided we
show that 9y, . . ., ¥y satisfy the conditions (4.5)—(4.11).

If § > 0, then

2
/ <T]) zdnf)\‘(T)zsf (}7)7254*2 d7]< 00,
Ry Uo(t, 1) R}

sinces > (n+2)/2.1f § <0, thens > (n +2)/2 + B|d|ls, hence

(n)? / 2542, 1, \28
< | )PP dn < oo
/M, o2 = g v
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This proves (4.5), and (4.6) can be considered similarly. We observe that

Bo(t. ©) B (1,8) 1995, )|
nae ~ DE S0 SESC Thae

)

—1
S Cté I

which yield (4.7) and (4.8). Now we prove (4.9). Fix t, &, n. The derivative of the
function Vo (t, £ + o(n — £)): [0, 1] — R, has at most two jumps, say at 01, 02
with 0 < o) < 02 < 1. We write

Vo(t, §) — Do(t, n) = (Do (1, §) — Do (1, § + 01(n — §)))
+ (Do(1, & +01(n —8)) — Vo(t,§ + 02(n — §)))
+ (Do(t.§ + 02(n — &) — Vo(t, M),

and apply Hadamard’s formula to each term on the right. We obtain, for example,

Q1
[D0(2, 8) — Do(r, & +01(n = )| =< /O IVdo(t, & +0(n — ) - 1€ —nlde
- C/Ql Dt.E+em—=9) Do(z, &)
0

— C
E+om—p) ‘e lEmn=C7g

since |€ — n| < |&|/2. Then (4.9) follows. By (4.7) we deduce that

& — nl,

0i(t, ) _ 1 - C(n)
Dk, MOt ) it n) ~ Vot n)

Then (4.10) follows from (4.5) immediately. It remains to show (4.11). Suppose
that (7, 28) € Zpq. Then we have

2 2(8+k+1)
L M~ (@rae ™ / M) dn

D11 (t, ©)2 Jip<2e) Vi1 (1, )? Inl<2l¢]

= C(f)fzk‘s/ () 26K LHBGH DL b1 1
[n|=<2[¢|
< C(é_—)72k/372(s7k71+ﬂ(6+k+1)l*)+n+s — C<E>725+n+272,3(3+1)1*+8‘

()26—k=1)

Due to our assumptions, the last exponent is negative. Now assume that (¢, &) €
Znyp, Which is equivalent to t~®&+D < (£). Then a short calculation reveals

0i(t, §)* dn
D11 (t, ©)? Jipi<2e) Vi1 (1, )?

= ((é)k(t))ﬂk/ AP iy

l<i=Gen () 2ER=D

+ (B0 / MO d

i~ <pyi<ppe) (m)2ETAD
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< Clgmo ™ [ e sk gy
Il <=t D)
+ C(&)HamPD / () 720k
[n1=2|¢]

< C(E) 2 (1)~ 2 g~ et D(2s—h=1+BG kA Dl ) tnte)

+ CX(I)2(8+]) <%—>—25+n+2+8
= CUE)AW) HA@» " 2200 =0 4 0o, (1, )2 ()"
<C,

where we have used (4.6). The remaining case of (¢, &) € Zpq, (t,28) € Zpy, can
be considered similarly. The proof is complete. O

5. The semilinear Cauchy problem

First we prove a local in time well-posedness result for the semilinear Cauchy
problem.

Theorem 5.1. Lets € Nand assume that min{s, s+ Qol.} > (n+2)/2, where Qg
is the number from (3.4). Let Q > Qo and A = BQL. Then, for uy € H T4 R"),
uy € HTA=BRM), there is a number T > 0 with the property that a solution
u e HYS*((0,T) x R") to the Cauchy problem (1.1) exists. This solution u is
unique in the space H* Qo4 ((0, T) x R™).

Proof. Uniqueness follows from the basic energy estimate and the local Lipschitz
continuity of the map H*%*((0, T) x R") — H%%*((0,T) x R"), u — f(u);
see Proposition 3.4 and Corollary 4.2. To get existence, let

R = Q.C() (”MOHHH'A(]R”) + ||M] ”H'H'A_ﬁ(]R”) + 1),
and choose 0 < T < Ty such that

Co (”MO”HHA(Rn) + [lur | gs+a—p @y + TC) (R)R) <R,
TCyCi(R) < 1/2,

where Cy and C; (R) are the constants from Proposition 3.4 and Corollary 4.2. Re-
call that the constant of the embedding H*2*((0,T)xR")CH*~ 2+ ((0,T)xR")
is (uniformly in 0 < T < Tp) bounded by 1. Fix the closed ball,

B={ueH"P"0,T) xR"): |lullyo.r < R},

and observe that the map A: w +— u, Lu = f(w), u(0, x) = up(x), u,(0, x) =
u1(x) maps B into itself, according to Proposition 3.4 and Corollary 4.2. Moreover,

1
[ W) — AW)ls,0:7 < 5 lhw = wlls, g:7

such that Banach’s fixed point theorem applies to yield the existence of a unique
fixed point u € B of « which is then a solution to (1.1). m|
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Remark 5.2. The same proof yields local in time well-posedness in H*20:*((0, T')
x R™) for semilinear equations of the form

Lu = f(u, ou, tl*8xlu, R tl*BXnu),

where f is an entire function on R"*? satisfying f(0, ...,0) = 0 provided that
s—1>m+2)/2.

Eventually we state a result concerning the propagation of mild singularities.

Theorem 5.3. Let s satisfy the assumptions of Theorem 5.1. Assume uy €
H3 POk (R, uy € H¥HPQ0=B(R™), where Q is given by (3.4). Then the unique
solutions u, v € H>20*((0, T) x R") to (1.1) and (1.2) satisfy

u—ve HMM0,T) x R).
Proof. Corollary 4.2 implies f(u) € H*20*((0, T) x R"). From Lemma 2.14
we deduce that f(u) € H* '7FQot+LA((0, T) x R"). The function w(t, x) =

(u — v)(t, x) solves Lw = f(u) and has vanishing initial data. An application
of Theorem 3.1 concludes the proof. O

Example 5.4. Consider Qi’s operator L from (1.8). Thenl, = 1, 8 = 1/2, and
Qo = 2m. Theorems 3.1, 5.1, and 5.3 state that the solutions u, v to (1.1), (1.2)
satisfy

u, ve H*"*(0,T) x R), u—ve 2220, T) x R),
provided that ug € H*""(R), u; € H**"~/2(R). Proposition 2.8 then implies

u, ve H.(0,T) xR),  u—ve HI0,T) xR).

loc

We find that the strongest singularities of u coincide with the singularities of v.
The latter can be looked up in (1.9) in the case u; = 0.

A. Appendix
A.l1. End of Proof of Lemma 2.14

The proof that (2.8) is implied by (2.9) is divided into several lemmata.
For s > 0, § € R, we introduce the spaces
Eo(s,8,T) = W (R"; {H'Ry), {}=0})
E] (S, 81 T)
= W (R {#% (R N AR, (1) 120})

|(0,T)><]R”’

‘(O,T)X]R” :
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Lemma A.1. Lets > 0,5 € R, and 0 < a; < ay < T. Then, for some function u
on (0, T) x R", we have u € H*%*((0, T) x R"), if and only if,

u(t,x) = uo(t, x) +ui(t, x),
where u; € Ei(s,6,T),i =0, 1, and
suppiio C {(1, §): 1(£)F <ap}, suppi S {(1,&): 1(€)’ > ar}.
Proof. It suffices to set
io(t, &) = w@(EHA(1, &), (1, E) = (1 — w(E)P)i, &),

where w € C*([0, T], R) satisfies w(r) = 1 for 0 < ¢t < a; and w(f) = 0 for
ap=t=T. O

Next we provide a characterization of the spaces E;(s, 5, T),i =0, 1:
Lemma A.2. Fors >0, e R, and T > 0,
Eo(s,8,T) = H*"PH@®", H(0, T)) N HFC TR (R", H*(0, T)).
Proof. This follows from a direct manipulation using properties like HS(KJF)
= H'OR,) N #**(R,) in Example 2.1, and vVl gosvtis 4o ) =
VYUl gps. vt 41000 ) fors e R,v > 0. O

Lemma A.3. Fors >0, € R, and T > 0,

E(s,6,T)
— Hs(]Rn, J{O"S[* (R+)|(0’T)) N HO(Rn, J(S,S(/*+])+5[* (R+)|(OT))

Proof. This has been shown in the proof of Lemma 2.5. O
Lemma A4. Lets, s > 0,6, § € R satisfy (2.9). Then

Eo(s,8,T) C Eo(s',8,T), E(5,8,T)C E\(s,8,T), (A.1)
with continuous embeddings.
Proof. (a)For Ey(s,8, T) C Eo(s', 8, T), note that

HS+[38]* (R”, HO(O, T)) N H,B(S+8)]* (Rn, HS(O, T))
g Hsfﬂs’ﬂ%l* (R”, HS, (0’ T)) g Hﬂ(s’+5,)]* (Rn, HS/ (0’ T))

by interpolation and s — Bs’ + B8l > B(s" + &)ls.
(b) For E (5,8, T) C E(s', 8, T), note that

HO(R” , RS,S(]*+1)+8]* (RJ’_) ’(()’T)) C HO (Rn , ﬂs/’g/(l*+l)+8/l* (R.;,.) ’(()’T))
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because of s + B8, > 5" + Bd'l, and
s n 0,84 0 n s,5(Lx +1)+81,
H (R » O (RY) (O,T)) nH (R bt (RJF)’(O,T))
C Hs/ (]Rn, J(S*S/’(X*S/)(]*+l)+al* (R+)|(0 T))

- Hsr (R" i J‘;O,yl* (R+) | (O,T))

by interpolation and (s — s")(lx + 1) + 8L, > §'l,. Also note that, for the spaces
J(S"S(R+)| 0.7) interpolation jointly in s, § is possible, as seen by (2.1) and the
three lines theorem of complex interpolation theory. O

In view of Lemma A.1, (A.1) completes the proof of Lemma 2.14.

A.2. Proof of Lemma 3.6

We introduce the vectors
Y="(y.Toy,....T"'3""'y), F="0,...,0, 7" f),

and obtain the first-order system 9, Y(¢#) = A(t)Y(¢) + F(¢), where A = A(¢) is some
m X m matrix with

IA®| < Co(T™! + max 17" ay (1)),

kA | < ckm?x|Tm—‘—fafaj(t)|, k>1.

If X =X (¢, t') denotes the fundamental matrix, 8, X (r, )= AN X (1, V'), X (', ') =1,
then Y(f) = X(1,0)Y(0) + [, X(t,#)F(¢')dt'. It is well-known that | X (7, )| <
exp(ftt, |A(t”) || dt") <C, where C does notdependon 7, since 0 <t' <t <T < T.
We differentiate our first-order system r times and obtain (9, — A(¢)) (9} Y) = F,(¢)
with some F, containing derivatives of ¥ up to the order r — 1. Then we find that

r—1 t t
|97 Y ()| §C|(8;Y)(O)|+CZ/ |8fY(t’)|dt’+C/ |07 F(«")| dt'.
=0 Y0 0

Multiplying with 7" and summing over r =0, ..., s — 1 gives
s—1 s—1
Y T Y@ < CY TTI0[Y)0)]
r=0 r=0
s—1 t s=2 t
+Cy T’/ |0y F(t)| di' + Cr Y T / 7Y (") dr.
r=0 0 r=0 0

Then Gronwall’s inequality leads to

s—1 s—1

YT YR < CY T <|(8,’Y)(0)| +/O |8,’F(t/)|dt/>.
r=0

r=0
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Taking squares, applying the Cauchy—Schwarz inequality, and integrating over
(0, T) give

s—1

ST 9
r—0
s—1 s—1
< CZ T, Y)(0)]* + CT? Z > 8trF”iZ(o,T) :
r=0 r=0

Now it remains to estimate the values [(9;Y)(0)|. Repeated application of (3.6)
shows

m—1 r
@O = €Y Iyl + €S 1@ HOI r=0.

=0 =0
From this, and gl 70,7y < CT ™" 18172,y + CT 18:81I72 7 We deduce that
s—1 s—1 m—1
ST YO =D T @ )0
r=0 r=0 [=0
m—1 s—2
< Cry Y T¥|yo;I* + Cr, Yy T3 £)(O)
j=0 =0
m—1 s—1
i — 2
<C Z T21|y0j|2 + CZ T2(l+m) 1 ”85]0”1‘2(01).
j=0 =0

This proves one part of (3.7); the other part can be proved similarly.
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