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Abstract
We characterize homogeneous hypersurfaces in complex space forms which arise as criti-
cal points of a higher order energy functional. As a consequence, we obtain existence and
non-existence results for CPn and CH

n , respectively. Moreover, we study the stability of
biharmonic hypersurfaces and compute the normal index for a large family of solutions.
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1 Introduction

Harmonic maps are critical points of the energy functional

E(ψ) = 1

2

∫
M

|dψ |2 dVg,

whereψ : M → N is a smooth map between two Riemannian manifolds (M, g) and (N , h).
Equivalently, ψ is harmonic if and only if it is a solution to the Euler–Lagrange equation
associated with this functional, namely:

τ(ψ) := Tr∇dψ = 0.

The section τ(ψ) ∈ ψ∗T N is called the tension field of ψ . In particular, if ψ is an isometric
immersion, it is harmonic if and only if ψ(M) is a minimal submanifold of N . We refer the
reader to the work of Eells and Lemaire [9, 10] for background on the theory of harmonic
maps.

The study of higher order functionals has already been proposed in [9] as a generalization
to the classic energy. In the last decades, this topic has raised the interest of many mathe-
maticians, leading to intriguing results from both the analytic and the geometric perspective,
see for instance [3–5, 19, 20]. If r = 2s and s ≥ 1, we define the r -energy functional as

E2s(ψ) := 1

2

∫
M

|�s−1τ(ψ)|2 dVg.
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If, on the other hand, r = 2s + 1, then

E2s+1(ψ) := 1

2

∫
M

n∑
j=1

|∇e j �
s−1τ(ψ)|2 dVg,

where {ei }mi=1 is a local orthonormal frame on M and � = d∗d denotes the rough Laplacian
acting on sections of ψ∗T N . A polyharmonic map of order r (in short, r-harmonic) is a
critical point for the r -energy functional. In particular, if ψ is an isometric immersion, we
say that M is an r-harmonic submanifold of N . The biharmonic case (r = 2) has shown
itself to be of special interest, and we refer to [8, 11, 23] for an introduction to this field.

Note that any harmonicmap is automatically polyharmonic of any order. If, on the contrary,
a map is a critical point for the r -energy functional but not for the classic energy, we refer to
it as a proper r -harmonic map. Specifically, an r -harmonic submanifold is said to be proper
if it is not minimal.

In this manuscript, we consider Hopf hypersurfaces in a complex space form (N , h, J ).
A hypersurface M of N is said to be Hopf if −Jξ is an eigenvector for the shape operator
of M , that is to say, S(−Jξ) = −α Jξ where ξ is a local choice of unit normal vector and
α ∈ R. Hopf hypersurfaces with constant principal curvatures in CH

n or CPn have been
classified in [2, 14]: they are all open parts of homogeneous hypersurfaces.

More specifically, the main results that we present here are the following.

Theorem A Let M be an open part of a homogeneous hypersurface in a complex space form
Nn(c), n ≥ 2. Then M is proper r-harmonic for r ≥ 2 if and only if

4
c (Tr S

2)2 − 2(n + 1)(Tr S2) = (r − 2)Tr S(Tr S+3α).

All these hypersurfaces inCPn andCHn can be seen as tubes of radius t ∈ I over a complex
submanifold. This interpretation yields the following result, where {Mt }t∈I denotes the family
of hypersurfaces of tubes of radius t over a fixed complex submanifold.

Theorem B Let {Mt }t∈I be a family of hypersurfaces inCPn as above. There exist two natural
numbers r ′ and r ′′ such that

(1) If r > r ′, the family {Mt }t∈I contains at least two proper r-harmonic hypersurfaces.
(2) If r > r ′′, the family {Mt }t∈I contains exactly four proper r-harmonic hypersurfaces for

some suitable choice of the complex submanifold.

Explicit bounds for r ′ and r ′′ are given. Moreover, we show that CHn does not admit any
polyharmonic hypersurface of this type.

For the biharmonic case, we recover the classification of proper biharmonic homogeneous
real hypersurfaces in CP

n given in [24], these are tubes over a totally geodesic CP
n−p in

CP
n of certain radii t− or t+, and obtain the following result regarding their stability.

Theorem C Every homogeneous and proper biharmonic hypersurface in CP
n is unstable.

Moreover, there exists C ≡ C(p) > 0 such that if n − p > C the normal index of the
biharmonic tube over CPn−p in CP

n of radius t+ is exactly 1.

The organization of the document is as follows. In Sect. 2 we introduce some basic notions
on polyharmonic maps and Hopf hypersurfaces. In Sect. 3 we prove TheoremA. TheoremB
and explicit upper bounds for r ′ and r ′′ are given in Sect. 4. The proof of TheoremC is given
in Sect. 5.
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2 Preliminaries

2.1 Polyharmonic maps

We introduce here some basic concepts on polyharmonic maps and the Laplace operator used
throughout the manuscript.

The r-tension field, τr , is a higher-order analog of the tension field, in the sense that the
system of partial differential equations τr (ψ) = 0 characterizes polyharmonic maps of order
r . The following equations depict an explicit formula for the r -tension field, see [16] for
a reference. Here, ψ : M → N denotes a smooth map between two Riemannian manifolds
(M, g) and (N , h). In order to simplify the notation, we write τr instead of τr (ψ).

If r = 2s, s ≥ 1, then

τ2s := �2s−1τ − RN (�2s−2τ, dψe j )dψe j

+
s−1∑
l=1

[
RN (�s−l−1τ,∇ j�

s+l−2τ)dψe j

− RN (∇ j�
s−l−1τ,�s+l−2τ)dψe j

]
.

(2.1)

On the other hand, if r = 2s,

τ2s+1 := �2sτ − RN (�2s−1τ, dψe j )dψe j

−
s−1∑
l=1

[
RN (∇ j�

s+l−1τ,�s−l−1τ)dψe j

− RN (�s+l−1τ,∇ j�
s−l−1τ)dψe j

]
− RN (∇ j�

s−1τ,�s−1τ)dψe j .

(2.2)

Recall that the rough Laplacian reads � := −Tr(∇∇ − ∇∇).
A proper biharmonic hypersurface M in N is said to be normally stable if the second

variation of the bienergy functional is non-negative for any normal variation with compact
support. Ou [22] showed that the second variation of the bienergy for a normal variation,
δ2E( f ξ, f ξ) = Q( f ), is given by

Q( f ) =
∫
M

[ f (Tr S2t −RicN (ξ, ξ)) − � f ]2 + | f ∇ Tr St −2(RicN (ξ))	 + 2 St (∇ f )|2dVg

+
∫
M

f 2 Tr St [(∇N
ξ RicN )(ξ, ξ)) − 2 Tr RN (ξ, ·,∇N

ξ (·), ξ)] − 4 f 2 Tr St Tr R
N (ξ,St (·), ·, ξ)dVg

(2.3)
where ξ is a normal vector field along M .

The Laplace operator � has proved to be useful in the study of the second variation of
biharmonic submanifolds, as shown in [18, 22]. For convenience, we recall some properties
of this elliptic operator and its spectrum, we use [7] as a reference.

Let M be a compact and connected manifold. The set of eigenvalues for

� f + μ f = 0,

where f ∈ C2(M), consists of a sequence

0 = μ0 < μ1 < · · · < μ� → +∞,

123



J. M. Balado-Alves

and each associated eigenspace is finite-dimensional. Eigenspaces belonging to distinct
eigenvalues are orthogonal in L2(M), and L2(M) is the direct sum of all the eigenspaces.
Furthermore, each eigenfunction is in C∞(M).

In addition, the following result turned out to be useful for our purposes

Theorem 2.1 [12, Theorem 2.1] Suppose that M is a compact orientable hypersurface
embedded in a compact Riemannian manifold N. If the Ricci curvature of N is bounded
below by a positive constant k, then 2μ1 > k − maxM |Tr S | where μ1 is the first nonzero
eigenvalue of the Laplacian of M.

2.2 Hopf hypersurfaces

Wegive in this subsection a brief introduction to the theory of Hopf hypersurfaces.We use [6]
as a reference.

Let (N , 〈·, ·〉, J ) be a Kähler manifold and σ be a plane in the tangent space TpN , p ∈ N .
We write

Kp(σ ) = R(X , Y , Y , X)

for the sectional curvature, where {X , Y } is an orthonormal basis of σ . If σ is invariant by
the almost complex structure J , then Kp(σ ) is called the holomorphic sectional curvature of
σ . In particular, if K (σ ) is constant for all planes σ in TpN invariant by J and for all points
p ∈ N , then N is called a space of constant holomorphic sectional curvature.

The Riemannian curvature tensor for a space of constant holomorphic sectional curvature
c 
= 0 can be expressed as

4
c R(X , Y , Z) = 〈Y , Z〉X − 〈X , Z〉Y + 〈X , J Z〉JY − 〈Y , J Z〉J X + 2〈X , JY 〉J Z . (2.4)

The sectional curvature for any plane σ in TpN spanned by two orthonormal vectors X , Y
reads

K (σ ) = c
4 (1 + 3〈X , JY 〉2).

The complex projective space endowed with the Fubini–Study metric or the complex hyper-
bolic space with the Bergman metric are examples of spaces with constant holomorphic
sectional curvature. Moreover, any simply connected complete 2n-dimensional Kähler man-
ifold of constant holomorphic sectional curvature c is holomorphically isometric to CPn(c),
C
n or CHn(c) depending if c > 0, c = 0 or c < 0, respectively. We refer the reader to [15]

for an overview of the general aspects of complex geometry.
Inwhat follows,we use Nn to denote eitherCHn orCPn . LetM be an (2n−k)-dimensional

Riemannian manifold, k < 2n, and let f : M → Nn be a Riemannian immersion. Write
BM for the bundle of unit normal vectors to f (M) in Nn . We define the tube of radius t > 0
over M , denoted by Mt , as the image of the map ft : BM → Nn defined by

ft (p, ξ) = expp(tξ).

Note that given any p ∈ M , there is always a neighborhoodU of p inM such that for all t > 0
sufficiently small, the restriction of ft to BU is an immersion onto an (2n − 1)-dimensional
manifold.

Let now M ⊂ Nn be a hypersurface and ξ a local choice of unit normal vector. We say
that M is a Hopf hypersurface if

W = −Jξ
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Table 1 Hopf hypersurfaces with constant principal curvatures in CH
n(−4)

Type Focal submanifold Principal curvatures Multiplicities

A0 Horosphere in CH
n α = 2 mα = 1

λ1 = 1 m1 = 2n − 2

A1 Totally geodesic CHn−1 α = 2 coth 2t mα = 1

λ1 = tanh t m1 = 2n − 2

A1 CH
0 α = 2 coth 2t mα = 1

λ1 = coth t m1 = 2n − 2

A2 Totally geodesic CHk α = 2 coth 2t mα = 1

1 ≤ k ≤ n − 2 λ1 = coth t m1 = 2(n − k − 1)

λ2 = tanh t m2 = 2k

B∗ Totally geodesic RHn α = 2 tanh 2t mα = 1

λ1 = coth t m1 = n − 1

λ2 = tanh t m2 = n − 1

∗The radius t = 1
2 ln(2 + √

3) is not allowed

is a principal vector for the shape operator S, that is, SW = αW where α ∈ R is called the
Hopf principal curvature. We will refer to W as the structure vector. In a Hopf hypersurface
M of CHn or CPn , the Hopf principal curvature remains constant [6, Theorem 6.16].

In particular, Hopf hypersurfaces for which all their principal curvatures are constant have
been classified by Kimura [2] in CH

n and by Berndt [14] in CP
n . They are all tubes of a

certain radius, as shown in Table 1 for CHn and Table 2 for CPn .
The following property turned out to be useful for our purposes.

Lemma 2.2 [6, Lemma 8.1]Let M be aHopf hypersurfacewith constant principal curvatures
in a complex space form Nn. For all eigenvalues λ,μ which are not the Hopf principal
curvature, we have

∇XY ⊥ Tλ if X ∈ Tλ, Y ∈ Tμ, λ 
= μ,

where Tλ, Tμ are the corresponding eigendistributions and ∇ is the Levi–Civita connection
on M.

Inwhat followswewrite “Hopf hypersurface” instead of “Hopf hypersurfacewith constant
principal curvatures” since we will not deal with the general case.

2.3 Quartic polynomials

We found it convenient to briefly recall here some general properties of polynomials and
their roots.

A general quartic equation over R is any equation of the form

a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0 (2.5)

where a4, a3, a2, a1, a0 ∈ R and a4 
= 0. If we divide every term by a4 and apply the change
of variable

y = x − a3
4a4

,
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Table 2 Hopf hypersurfaces with constant principal curvatures in CP
n(4)

Type Focal submanifold Principal curvatures Multiplicities

A1 Totally geodesic CPn−1 α = 2 cot 2t mα = 1

λ1 = − tan t m1 = 2n − 2

A2 Totally geodesic CPk α = 2 cot 2t mα = 1

1 ≤ k ≤ n − 2 λ1 = cot t m1 = 2(n − k − 1)

λ2 = − tan t m2 = 2k

B Totally geodesic RPn α = 2 tan 2t mα = 1

λ1 = − cot t m1 = n − 1

λ2 = tan t m2 = n − 1

C Segre embedding α = 2 cot 2t mα = 1

CP
1 × CP

k ↪→ CP
n , λ1 = cot(t − π

4 ) m1 = 2

k ≥ 2, n = 2k + 1 λ2 = cot(t − 3π
4 ) m2 = 2

λ3 = cot(t − π
2 ) m3 = n − 3

λ4 = cot(t) m4 = n − 3

D Plücker embedding α = 2 cot 2t mα = 1

G2(C
5) ↪→ CP

9 λ1 = cot(t − π
4 ) m1 = 4

λ2 = cot(t − 3π
4 ) m2 = 4

λ3 = cot(t − π
2 ) m3 = 4

λ4 = cot(t) m4 = 4

E Half spin embedding α = 2 cot 2t mα = 1

SO(10)/U (5) ↪→ CP
15 λ1 = cot(t − π

4 ) m1 = 6

λ2 = cot(t − 3π
4 ) m2 = 6

λ3 = cot(t − π
2 ) m3 = 8

λ4 = cot(t) m4 = 8

then (2.5) reads
y4 + p2y

2 + p1y + p0 = 0

where

p2 = 8a4a2 − 3b23
8a24

, p1 = a33 − 4a4a3a2 + 8a24a1
8a34

,

p0 = 16a4a23a2 − 64a24a3a1 − 3a43 + 256a34a0
256a44

.

In particular, if p1 = 0 then (2.5) can be reduced to a biquadratic equation and solved by

y1,2 = ±

√√√√−p2 +
√
p22 − 4p0

2
, y3,4 = ±

√√√√−p2 −
√
p22 − 4p0

2
.

We will make use of the so-called Cauchy bound for the roots of a polynomial (see, for
example [17, Chapter VII]), which states that an upper bound of the absolute value on the
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roots of (2.5) is given by

1 + max
{∣∣∣ a3a4

∣∣∣ ,
∣∣∣ a2a4

∣∣∣ ,
∣∣∣ a1a4

∣∣∣ ,
∣∣∣ a0a4

∣∣∣
}

.

3 Polyharmonic equation

The goal of this section is to obtain the r -harmonic equation for the isometric immersion of
a Hopf hypersurface into Nn(c). We write

it : Mt ↪→ Nn(c)

for the inclusion of the hypersurface Mt arising as the tube of radius t over the corresponding
complex submanifold. We use e0 for the local unit normal vector field to Mt in Nn(c) such
that if we flow in the direction of e0, the radius of the tube increases. Every object in Mt is
written with the subscript t , such as the shape operator St or the Hopf principal curvature αt .

Theorem 3.1 A Hopf hypersurface Mt in Nn(c) is r-harmonic, r ≥ 2, if and only if it is
minimal or

4
c (Tr S

2
t )

2 − 2(n + 1)(Tr S2t ) − (r − 2)(Tr St )
2 − 3αt (r − 2)Tr St = 0. (3.1)

In order to prove the theorem above, we first state a couple of auxiliary identities. The
first lemma below shows that for any m ∈ N the tension field τ(it ) is an eigenvector for the
mth-iterated rough Laplacian.

Lemma 3.2 For every m ∈ N, the following identity holds:

�mτ(it ) = (Tr S2t )
mτ(it ).

Proof We proceed by induction on m. Take an orthonormal basis {ei }2n−1
i=1 of TpMt and

extend it to a local orthonormal frame in a neighborhood of p. Since �0τ ≡ τ , by definition
of the tension field we get:

τ(it ) =
2n−1∑
i=1

∇ei dit ei − dit∇ei ei =
2n−1∑
i=1

∇ei dit ei −
2n−1∑
j=1

〈∇ei ei , e j 〉dit e j

=
2n−1∑
i=1

〈∇ei dit ei , e0〉e0 +
2n−1∑
j=1

[〈∇ei dit ei , dit e j 〉 − 〈∇ei ei , e j 〉
]
dit e j = Tr St e0,

where in the last identity we used the fact that it is an isometric embedding and applied the
Gauss formula. Assume that the property holds for an arbitrary m, then

�m+1τ = �(βm(t)e0),

where, in order to simplify the notation, we write βm(t) = Tr St (Tr S2t )
m . Note that since

the principal curvatures are constant on Mt , then βm is constant on Mt . By definition of the
rough Laplacian, we obtain:

�m+1τ =
2n−1∑
i=1

∇∇ei ei
βme0︸ ︷︷ ︸

(A)

−∇ei ∇ei βme0︸ ︷︷ ︸
(B)

.
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Let us start with the term (A). We have

2n−1∑
i=1

∇∇ei ei
βme0 = βm

2n−1∑
i, j=1

〈∇ei ei , e j 〉∇e j e0 = −βm

2n−1∑
i, j=1

〈∇ei ei , e j 〉St (dit e j ), (3.2)

and therefore
2n−1∑
i=1

〈∇∇ei ei
βme0, e0〉 = 0. (3.3)

For part (B) we get

2n−1∑
i=1

∇ei ∇ei βme0 = βm

2n−1∑
i=1

∇ei ∇ei e0 = −βm

2n−1∑
i=1

∇ei St (dit ei ), (3.4)

thus
2n−1∑
i=1

〈∇ei ∇ei βme0, e0〉 = −βm

2n−1∑
i=1

〈∇ei St (dit ei ), e0〉 = −βm Tr S2t . (3.5)

Once we prove that the tangential part vanishes, Eqs. (3.3) and (3.5) give the result.
Joining (3.2) and (3.4), we have that

(
�mτ(it )

)tan = βm

2n−1∑
i=1

⎛
⎝∇ei St (dit ei ) −

2n−1∑
j=1

〈∇ei ei , e j 〉St (dit e j )
⎞
⎠

tan

. (3.6)

This expression does not depend on the choice of the basis, since the normal part
does neither. Take then an orthonormal basis {Ei }2n−1

i=1 of TpMt such that {dit E1 =
W , dit E2, . . . , dit E2n−1} forms an orthonormal basis of principal vectors of Tit (p)it (Mt )

with respective principal curvatures {λ1 = α, λ2, . . . , λ2n−1}. Extend {Ei }2n−1
i=1 to a local

orthonormal frame, then expression (3.6) reads

(
�mτ(it )

)tan = βm

2n−1∑
i=1

⎛
⎝λi∇Ei dit Ei −

2n−1∑
j=1

λ j 〈∇Ei Ei , E j 〉dit E j

⎞
⎠

tan

,

where we used the property that the eigenvalues are constant on it (Mt ). Equivalently,

(
�mτ(it )

)tan = βm

2n−1∑
i, j=1

[λi 〈∇Ei dit Ei , dit E j 〉 − λ j 〈∇Ei Ei , E j 〉]dit E j

= βm

2n−1∑
i, j=1

[λi − λ j ]〈∇Ei dit Ei , dit E j 〉dit E j

by the Gauss formula.
It is clear that the terms with λi = λ j vanish. Moreover, Lemma 2.2 ensures that if

λi 
= λ j , and none of them are the Hopf curvature, then 〈∇Ei dit Ei , dit E j 〉 = 0. Hence, only
those terms involving the Hopf curvature, α, are left. In this case,

〈∇E1W , dit E j 〉 = −〈∇E1 Je0, dit E j 〉 = −〈J∇E1e0, dit E j 〉 = α〈JW , dit E j 〉 = 0,

and

〈∇Ei dit Ei ,W 〉 = −〈dit Ei ,∇Ei W 〉 = 〈dit Ei ,∇Ei Je0〉 = −λi 〈dit Ei , Jdit Ei 〉 = 0.
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This is, the tangential part vanishes, as we wanted to show. ��
Lemma 3.3 For any �,m ∈ N, the following identities hold:

2n−1∑
j=1

R(�mτ, dit e j , dit e j , e0) = c
42(n + 1)βm(t),

2n−1∑
j=1

R(�mτ,∇e j �
�τ, dit e j , e0) = − c

4βm(t)β�(t)[Tr St +3αt ],

where β�(t) = Tr St (Tr S2t )
�, � ∈ N, and {ei }2n−1

i=1 is any local orthonormal frame on Mt .

Proof Note that both terms are independent of the choice of the orthonormal basis. Take then
{Ei }2n−1

i=1 an orthonormal basis of TpMt such that {dit E1 = W , dit E2, . . . , dit E2n−1} is an
orthonormal basis of principal vectors in Tit (p)it (Mt ), and extend it to a local orthonormal
frame in Mt . Using formula (2.4) for the curvature tensor of a complex space form we obtain

4
c R(e0,W )W = e0 + 3〈e0, JW 〉JW = 4e0.

On the other hand, if j 
= 2,

4
c R(e0, dit E j )dit E j = e0 + 3〈e0, Jdit E j 〉Jdit E j = e0,

where in the last identity we used that 〈e0, Jdit E j 〉 = 〈W , dit E j 〉 = 0. Then the result
follows from a direct computation after noting that ∇E j �

mτ = −βmλ j dit E j . ��
Proof (Proof of Theorem 3.1) By Eq. (2.1), Lemmas (3.2) and (3.3) we get

τ2s(it )=(Tr S2t )
2s−3 [(Tr S2t )2−2(n+1) c4 (Tr S

2
t )−2(s−1) c4 (Tr St )

2−6 c
4αt (s−1)Tr St ]τ(it ).

If the hypersurface if minimal, then Tr St = 0, so τ2s(it ) vanishes. Note that Tr S2t = 0
would also imply Tr St = 0. In any other case, we obtain the equation stated in the theorem.
A similar computation applies for the (2s + 1)-tension field (2.2). ��
Corollary 3.4 There are no proper r-harmonic Hopf hypersurfaces in CHn(c).

Proof By Theorem 3.1 and since c < 0, we have that

4
c (Tr S

2
t )

2 − 2(n + 1)(Tr S2t ) − (r − 2)(Tr St )
2 − 3αt (r − 2)Tr St < 0

due to the fact that the principal curvatures of any hypersurface listed in Table 1 stay positive
for t > 0. ��

4 Existence of proper polyharmonic hypersurfaces inCPn
CP

n
CP

n

Let Mt be a Hopf hypersurface in CP
n(c). Note that the eigenvalues of the shape operator

scale with a factor of
√
c, so Eq. (3.1) is invariant with respect to the choice of the parameter

c. That is to say, the existence of r -harmonic hypersurfaces is not affected by the holomorphic
sectional curvature. We will then take c = 4 to be consistent with Table 2, so the equation
obtained in the last section reads:

(Tr S2t )
2 − 2(n + 1)(Tr S2t ) − (r − 2)(Tr St )

2 − 3αt (r − 2)Tr St = 0. (4.1)
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Table 3 Polynomials characterizing r -harmonicity

Type Variable Coefficients

A1 x = sin2 t a4 = 4(n2 + 3n)r − 8(n − 1)

a3 = −2(2n2 + 11n + 3)r a1 = −4r − 2(n + 1)

+4(n2 + 3n − 4) a0 = 1

a2 = 10(n + 1)r − 2(3n − 5)

A2 x = cos2 t a4 = 4(n2 + 3n)r − 8(n − 1)

a3 = −2(2n2 + (4k + 11)n + 6k + 3)r a1 = −2(2k2 + 5k + 2)r

+4(n2 − (2k − 3)n − 4) −2((2k + 1)n + (2k + 1)2)

a2 = 2((4k + 5)n + 2k2 + 11k + 5)r a0 = (2k + 1)2

+2((2k − 3)n + 4k2 + 4k + 5)

B x = cos2 2t a4 = n(n + 3)r − 2(n − 1) a1 = −4r + 2(n − 7)

a3 = −(n2 + 8n + 3)r + 4n2 + 2n − 10 a0 = 4

a2 = (5n + 7)r − 2(5n − 11)

C x = cos2 2t a4 = n(n + 3)r − 2(n − 1) a1 = −4r + 4(n − 17)

a3 = −(n2 + 7n + 6)r + 4(n2 − 3n − 4) a0 = 16

a2 = 2(2n + 5)r − 2(3n − 41)

D x = cos2 2t a4 = 27r − 4 a1 = −4r + 44

a3 = −48r + 11 a0 = 16

a2 = 25r + 46

E x = cos2 2t a4 = 135r − 14 a1 = −18r − 180

a3 = −234r + 100 a0 = 72

a2 = 117r + 184

By Theorem (3.1), a lengthy computation shows that there is a one-to-one correspondence
between r -harmonic Hopf hypersurfaces and roots of the polynomial P(x) = a4x4+a3x3+
a2x2 + a1x + a0, where the coefficients a4, a3, a2, a1, a0 and the variable x are given in
Table 3.

Remark 4.1 For the cases of type C , D, and E , it is convenient to write everything in terms
of 2t instead of t . To this end, we found the following trigonometric identities useful:

3∑
k=0

cot(t − k π
4 ) = 4 cot 4t,

3∑
k=0

cot2(t − k π
4 ) = 12 + 16 cot2 4t .

Note that ifn = 1, andweplug theHopf principal curvature of a type A1 Hopf hypersurface
(αt = 2 cot 2t) in Eq. (4.1), one easily sees that the tube around a point of radius t is a proper
r -harmonic curve if and only if

sin2 2t = r−1.

Since CP
1 is just the Riemann sphere, this agrees with [21, Theorem 1.1]. From now on,

unless otherwise indicated, we will assume n ≥ 2.
We point out that, in general, there are two values of t which will be of special interest

since they make the left-hand side of (4.1) independent of r : these are the solutions for

Tr St = 0,
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which yields minimal hypersurfaces, and

Tr St +3αt = 0.

Theorem 4.2 Let Mt , 0 < t < π
2 , be a family of type A1 Hopf hypersurfaces in CPn, n ≥ 2.

Then:

(1) The family Mt contains at least two proper r-harmonic hypersurfaces for r ≥ 2.
(2) If r ≥ 2n + 13, the family Mt contains exactly four proper r-harmonic hypersurfaces.

Proof The solution for Tr St = 0 is given by

t0 = arctan
(

1
2n−1

) 1
2
.

Define then x0 = sin2 t0 = (2n)−1. After simplifying, we get that

2n4PA1(x0) = −(n − 1)(2n − 1)2 < 0,

where PA1(x) is defined in Table 3. Thus, by Theorem 3.1, every zero x∗ of PA1(x) lying in
the interval (0, 1) corresponds to a proper r -harmonic tube of radius t∗ = arcsin

√
x∗ over

a totally geodesic CP
n−1. Since PA1(0) = 1, PA1(1) = (2n − 1)2 and PA1(x0) < 0 with

0 < x0 < 1, we obtain 4.2 (1).
For 4.2 (2), the equation Tr St +3αt = 0 is solved by

t2 = arctan
(

2
n+1

) 1
2
,

so it is natural to define x2 = sin2 t2 = 2(n + 3)−1, obtaining

(n + 3)4PA1(x2) = −(3n2 + 2n + 11)(n + 7)(n − 1) < 0.

The goal now is to define x1 in such a way that we have 0 < x0 < x1 < x2 < 1 with
PA1(0), PA1(x1), PA1(1) > 0 and PA1(x0), PA1(x2) < 0. By continuity, this would yield 4.2
(2).

Take x1 = x0 + (nr)−1, and write

Q(r) := 2n4r4PA1(x1) = b4r
4 + b3r

3 + b2r
2 + b1r + b0

where

[l]b4 = (2n − 1)(n2 − 1), b1 = 8(n3 + 4n2 − 5n + 4),
b3 = −2(2n4 + n3 − 2n2 + 7n − 4), b0 = −16(n − 1),

b2 = −4(2n3 − 7n2 + 9n − 6).

Since Q(r) is a fourth-degree polynomial with b4 > 0, it suffices to find a bound for its
largest root. A classic analysis shows that for n ≥ 4:

max
{∣∣∣ b0b4

∣∣∣ ,
∣∣∣ b1b4

∣∣∣ ,
∣∣∣ b2b4

∣∣∣ ,
∣∣∣ b3b4

∣∣∣
}

=
∣∣∣ b0b4

∣∣∣ < 2(n + 3).

For n = 2 and n = 3,
∣∣∣b1b−1

4

∣∣∣ dominates, but since this fraction is bounded by 16 for every

n ≥ 2, we can modify the former bound so that it also covers these cases. For instance,

max
{∣∣∣ b0b4

∣∣∣ ,
∣∣∣ b1b4

∣∣∣ ,
∣∣∣ b2b4

∣∣∣ ,
∣∣∣ b3b4

∣∣∣
}

< 2(n + 6).

Hence, using the Cauchy bound, we obtain that condition r ≥ 2n + 13 suffices to ensure
PA1(x1) < 0, obtaining the result. ��
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Theorem 4.3 Let Mt , 0 < t < π
4 , be a family of type B Hopf hypersurfaces in CP

n, n ≥ 2.
Then:

(1) If r ≥ min{6001, 12n2+16n−19}, the family Mt contains at least two proper r-harmonic
hypersurfaces.

(2) If r ≥ max{6001, 12n2 + 16n − 19}, the family Mt contains exactly four proper r-
harmonic hypersurfaces.

Proof In this case, we have that PB(0) = 4 and PB(1) = 4(n − 1)2. The equation Tr St = 0
is solved by

t1 = 1

2
arctan(

√
n − 1),

and if we plug x1 = cos2 2t1 = n−1 in PB we see that

n4PB(x1) = 2(3n − 1)(n − 1)3 > 0.

Thus, this is not enough to ensure the existence of proper r -harmonic hypersurfaces. To solve
this problem, define

x0 = 2r−1 and x2 = 1 − 5r−1.

Then we have PB(0), PB(x1), PB(1) > 0 and

PB(x0) = −4 + O(r−1),

PB(x2) = −(n − 1)2 + O(r−1)

as r → ∞. Hence, a similar argument as in the proof of the previous theorem using the
Cauchy bound shows that, to ensure PB(x0) < 0, it is enough to ask for

r ≥ 12n2 + 16n − 19.

On the other hand, for PB(x0) < 0 to hold it suffices to take

r ≥ 126 + 125(23n + 1)

(n − 1)2
.

Since the right hand side of the inequality above is bounded by 6001, the result follows. ��
Theorem 4.4 Let Mt , 0 < t < π

4 , be a family of type C Hopf hypersurfaces in CP
n, n ≥ 5.

Then:

(1) If r ≥ 300, the family Mt contains at least two proper r-harmonic hypersurfaces.
(2) If 4r ≥ 1125n2 + 375n − 1996, the family Mt contains exactly four proper r-harmonic

hypersurfaces.

Proof Note that PC (0) = 16 and PC (1) = 4(n − 2)2. Define

x0 = 5r−1, x1 = 2n−1 and x2 = 1 − 4r−1.

Since
PC (x0) = −4 + O(r−1),

PC (x2) = −12(n − 2) + O(r−1)

as r → ∞, and
n4PC (x1) = 8(3n − 1)(n − 1)(n − 2)2,

the result comes after using the Cauchy bound as we did before. ��

123



Polyharmonic hypersurfaces into complex space forms

Theorem 4.5 Let Mt , 0 < t < π
4 , be a family of type D Hopf hypersurfaces in CP9. Then:

(1) If r ≥ 32, the family Mt contains at least two proper r-harmonic hypersurfaces.
(2) If r ≥ 89, the family Mt contains exactly four proper r-harmonic hypersurfaces.

Proof Note that PD(0) = 16 and PD(1) = 25. Define

x0 = 5r−1, x1 = 4
9 and x2 = 1 − 3r−1.

Since PD(x1) > 0, the only conditionswe need to ensure are PD(x0) < 0 and PD(x2) < 0.
A simple computation shows

L(r) := d2

dr2
r4PD(Z0) = −48r2 + 2430r − 9700.

Hence, we know that if r ≥ 47 then the function L(r) is concave on r . As
PD(88) > 0 > PD(89), we obtain that PD(x0) < 0 if r ≥ 89. A similar argument applies to
the other condition. ��
Theorem 4.6 Let Mt , 0 < t < π

4 , be a family of type E Hopf hypersurfaces in CP15. Then:

(1) If r ≥ 27, the family Mt contains at least two proper r-harmonic hypersurfaces.
(2) If r ≥ 100, the family Mt contains exactly four proper r-harmonic hypersurfaces.

Proof The proof follows in the same way as in the previous theorem after defining

x0 = 5r−1, x1 = 2
5 and x2 = 1 − 4r−1.

��
Only the case of type A2 hypersurfaces is left. Even though this is the richest case, the

dependence on one additional parameter k leads to some extra difficulties. In [1], the author
constructed two uncountable families of explicit harmonic selfmaps by translation of these
hypersurfaces in the normal direction.

Theorem 4.7 Let Mt , 0 < t < π
2 , be a family of type A2 Hopf hypersurfaces in CPn, n ≥ 2,

1 ≤ k ≤ n − 2. Then:

(1) The family Mt contains at least two proper r-harmonic hypersurfaces for r ≥ 2. If, in
particular, 2k = n − 1, these hypersurfaces are tubes of radius t over a totally geodesic

CP
n−1
2 , with t given by

cos 4t = n
√

ω − 2(2n − 1)(n + 1)

n(n + 3)r − 2(n − 1)

where
ω = (n + 3)2r2 − 8n(n + 3)r + 16(n2 + 2n − 2).

(2) Let

k1 := 5n2 − 4n + 2 − n
√
13n2 − 8n + 4

4(n − 1)
.

If k < k1 and
r ≥ 4(22k4 + 85k3 + 123k2 + 54k + 8)k2,

the family Mt contains exactly four proper r-harmonic hypersurfaces.
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(3) Let

k2 := n
√
13n2 − 8n + 4 − n2 − 4n + 2

4(n − 1)
.

If k > k2 and
r ≥ 4(6k4 + 19k3 + 39k2 + 8k + 2)(2k + 1)k,

the family Mt contains exactly four proper r-harmonic hypersurfaces.

Proof If 2k = n − 1, equation PA2(x) = 0 reads

4[n(n + 3)r − 2(n − 1)] x4 − 8[n(n + 3)r − 2(n − 1)] x3
+ [5n(n + 3)r + 4(n2 − 2n + 2)] x2 − [n(n + 3)r + 4n2] x + n2 = 0.

(4.2)

Note that, in this case, the relation a33 − 4a4a3a2 + 8a24a1 = 0 holds for the coefficients of
PA2(x). Thus (4.2) can be reduced to a biquadratic equation, obtaining that the real zeros are
given by

x± = 1
2 ± 1

2 [2n(n + 3)r − 4(n − 1)]− 1
2 [n(n + 3)r − 4(n2 + n − 1) + n

√
ω] 1

2 .

Fix now k 
= n−1
2 . Note that PA2(0) = (2k + 1)2 and PA2(1) = (2k − 2n + 1)2, so if we

find x1 ∈ (0, 1) such that PA2(x1) < 0, we will have ensured the existence of at least two
r -harmonic hypersurfaces. The equation Tr St = 0 is solved by

t∗ = arctan
(
2n−2k−1
2k+1

) 1
2
.

Plugging x∗ = cos2 t∗ = (2k + 1)(2n)−1 in PA2 we obtain

2n4PA2(x
∗) = −(n − 1)(2n − 2k − 1)2(2k + 1)2 < 0,

from where 4.7 (1) follows.
Assume now that k < k1, where k1 is defined as stated in the theorem, and define

x0 = x∗, x1 = x∗ + r−1 and x2 = 1 − r−1.

A direct computation shows that

2n4PA2(x1) = (2k + 1)(2n − 2k − 1)η1(n, k) + O(r−1)

PA2(x2) = −3(2n − 2k − 1) + O(r−1)

as n, r → ∞, where

η1(n, k) = 4(n − 1)k2 − (10n2 − 8n + 4)k + 3n3 − 5n2 + 3n − 1,

which satisfies η1(n, k) > 0 since k < k1.
On the other hand, if k > k2, take

x0 = r−1, x1 = x∗ − r−1 and x2 = x∗.

Hence
PA2(x0) = −3(2k + 1) + O(r−1)

2n4PA2(x1) = η2(n, k)(2n − 2k + 1)(2k + 1) + O(r−1)

as n, r → ∞, where

η2(n, k) = 4(n − 1)k2 + 2(n2 + 4n − 2)k − 3n3 + n2 + 3n − 1,
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which also satisfies η2(n, k) > 0 since k > k2.
In this case the Cauchy bound leads to unmanageable expressions. We avoid this by using

a more direct method, paying the price of a worse bound. Since the strategy is similar for
each condition, we only write here the argument to ensure condition PA2(1−r−1) < 0 when
k < k1. We have that

Q(r) := r4PA2 (1 − r−1) = − 3(2n − 2k − 1)r4 − 2(2k2 − (2k + 13)n + 11k + 5)r3

+ 4(2k2 − (3k + 11)n + 5k + 4)r2 + 8((k + 4)n − 2)r − 8(n − 1).

Since, in any case, 3(2n − 2k − 1) > 1, a very conservative bound can be given by

Q(r) < −r4+(2k+13)nr3+4(2k2+5k+4)r2+8n(k+4)r < −r4+(18n2+65n+16)r3

since r ≥ 2 and k < n. Hence, it suffices to take

r > 18n2 + 65n + 16.

A similar computation holds for the rest of the conditions. ��

5 Biharmonic Hopf hypersurfaces

In this section we focus on the biharmonic case. Note that Eq. (4.1) for the case r = 2 reduces
to

Tr S2t = 2(n + 1). (5.1)

With this equation, we recover the classification of biharmonic Hopf hypersurfaces in CP
n ,

first studied in [13] and corrected later in [24].

Theorem 5.1 [24, Theorem 2.4] A Hopf hypersurface in CP
n is proper biharmonic if and

only if it is an open part of a tube over a totally geodesic CPn−p in CP
n, 1 ≤ p ≤ n − 1,

with radius t given by

cos2 t± = 3(n + 1) − 2p ± √
n2 + 6n − 4(n + 1)p + 4p2 + 5

4(n + 1)
.

Regarding stability, we obtain the following result.

Theorem 5.2 Every homogeneous and proper biharmonic hypersurface in CP
n is unstable.

Moreover, there exists C ≡ C(p) > 0 such that if n − p > C the normal index of the
biharmonic tube over CPn−p in CP

n of radius t+ is exactly 1.

Proof Write Mt for the biharmonic tube over CPn−p in CP
n . Since CPn endowed with the

Fubini–Study metric is an Einstein manifold with Ric(·, ·) = 2(n + 1)g(·, ·), we obtain the
following relations:

Ric(ξ, ξ) = 2(n + 1), (Ric(ξ))	 = 0, (∇ξRic)(ξ, ξ) = 0.

Moreover, for any local orthonormal frame {ei }2n−1
i=0 on CP

n we have

Tr R(ξ, ·,∇ξ (·), ξ) =
2n−1∑
i, j=0

〈∇ξ ei , e j 〉R(ξ, ei , e j , ξ) =
2n−1∑
i=0

〈∇ξ ei , ei 〉R(ξ, ei , ei , ξ) = 0.

Then, since
Tr R(ξ,St (·), ·, ξ) = Tr St +3αt
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and Tr St is constant on Mt , Eqs. (5.1) and (2.3) yield

Q( f ) =
∫
M

[(� f )2 + 4|St (∇ f )|2 − 4 f 2 Tr St (Tr St +3αt )]dVg.

By the Sturm-Liouville’s decomposition we have that

C∞(Mt ) = ⊕∞
i=0Eμi

in L2, where Eμi denotes the eigenspace of the Laplacian onMt with respect to the eigenvalue
μi . For a detailed discussion on the orthogonal decomposition of eigenspaces of the Laplacian
on compact manifolds see [7, Theorem III.9.1].

We see that for any constant function f0 we have Q( f0) < 0. Sinceμ0 = 0 hasmultiplicity
1, the index is at least 1 and therefore Mt is unstable. For any the other eigenfunction f note
that ∫

M
4|St (∇ f )|2dVg ≥ 4λ2min

∫
M

|∇ f |2dVg = −4λ2min

∫
M

f � f dVg,

where λ2min represents the minimum between all squared principal curvatures. With this

Q( f ) ≥
∫
M

[(� f )2 − 4λ2min f � f − 4 f 2 Tr St (Tr St +3αt )]dVg.

Since in our case we have limited knowledge about the spectrum of the Laplacian on Mt ,
we make use of the following bound for the first eigenvalue:

μ1 ≥ (n + 1) − 1
2 |Tr St |.

This is just an application for our particular case of Theorem 2.1. Hence, if we denote by f1
the eigenfunction corresponding to the eigenvalue μ1, we have

Q( f1) ≥
∫
M

[(μ1)
2 + 4λ2minμ1 − 4 Tr St (Tr St +3αt )] f 2dVg ≥

∫
M

[((n + 1) − 1
2 |Tr St |)2

+ 4λ2min((n + 1) − 1
2 |Tr St |) − 4 Tr St (Tr St +3αt )] f 2dVg.

After rearranging, we see that for Q( f1) > 0 to hold, it is enough to have

(n + 1)(4λ2min + n + 1) > 15
4 (Tr St )

2 + (2λ2min + n + 1)|Tr St | + 12αt Tr St . (5.2)

Now, if μ� denotes the �th-eigenvalue, and since μ� > μ1, it follows that

(μ�)
2 + 4λ2minμ� − 4 Tr St (Tr St +3αt ) > (μ1)

2 + 4λ2minμ1 − 4 Tr St (Tr St +3αt ),

so to check if Q( f�) > 0 for any � ≥ 1, it is enough to ensure (5.2).
Note now that for the values t+ given in 5.1, the following asymptotic relations hold:

4 cot2 2t+ = 2n
2p−1 + o(n) cot2 t+ = 2n

2p−1 + o(n)

tan2 t+ = 2p−1
2n + o(n−1) Tr St+ = 2

√
4p−2√
n

+ o(n− 1
2 )

as n → ∞. Therefore, there exists n1 > p such that λ2min = tan t+ for n > n1. Using this,
we get

(n + 1)(4λ2min + n + 1) = n2 + o(n2)

and

15
4 (Tr St )

2 + (2λ2min + n + 1)|Tr St | + 12αt Tr St = 48 + 2
√
4p − 2

√
n + o(

√
n)

as n → ∞, obtaining the result. ��
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