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Abstract
We establish the asymptotic expansion of the fundamental solutions with precise error esti-
mates for second-order parabolic operators

0y — div(A(x/e, t/sg)V), 0<e<l1, 0< ¥ < o0,

inthe case £ # 2, where the spatial and temporal variables oscillate on non-self-similar scales
and do not homogenize simultaneously. To achieve the goal, we explore the direct quantitative
two-scale expansions for the aforementioned operators, which should be of some independent
interests in quantitative homogenization of parabolic operators involving multiple scales. In
the self-similar case £ = 2, similar results have been obtained in Geng and Shen (Anal PDE
13(1): 147-170, 2020).
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1 Introduction

We consider the asymptotic behavior of fundamental solutions to a family of second-order
parabolic operators

& + Lo =9, —div(A(x/e, t/e)V)  in RIFL, (1.1)

where 0 < ¢ < 1,0 < £ < o0, the coefficient tensor A = A(z, 1) = (Af;ﬁ(z, 7)),1 <
i,j<d,l <a,B <m,isreal, bounded measurable and satisfy

o Ellipticity condition: there exists 1 > 0 such that

» wrh _ |
wl? < AP ngrel < e (1.2)
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for any matrix £ = (§%) € R"*? and ae. (z, 7) € RIF1,
e Periodicity condition: for any (y, s) € Z4t! and ae. (z, 7) € R4,

Alz+y, t+5)=A(z,1). (1.3)

Under the conditions (1.2) and (1.3), it is well known that 9; + £, G-converges to 9; + Lo,
which has constant coefficients and depends on £ in three different cases: 0 < ¢ < 2, ¢ = 2,
and 2 < £ < o0. See [1] and also Section 2 for the details.

Quantitative homogenization of (1.1) has aroused great interests in recent years. In the
case £ = 2, where the spatial and temporal variables oscillate on self-similar scales, the
uniform Holder and Lipschitz estimates in homogenization were derived by Geng and Shen
in [7], while the two-scale expansions with precise error estimates for the operators were
studied in different contexts in [8, 14, 17, 20, 21]. In particular, the asymptotic expansion of
the fundamental solutions to (1.1) with sharp error estimates was established in [9].

In the case ¢ # 2, the scales of the spatial and temporal variables do not coincide with
the scales of the parabolic operators. As a result, the temporal and spatial variables do
not homogenize simultaneously [1], and the quantitative homogenization theory for (1.1)
is therefore much more intricate. Few results on the quantitative theory is known until very
recently [10]. In[10], Geng and Shen developed an effective approach to study the quantitative
homogenization theory of (1.1). One of the key ideas is to introduce a family of intermediate
operators

3 — div(A(x/e, 1/(ke?)V), 1 >0, (1.4)

which converts the original operator to the one with self-similar scales (for each fixed A).
Then by the quantitative two-scale expansions for (1.4) and some intricate estimates on the
corresponding (A-dependent) correctors, they were able to establish the convergence rate and
the large-scale estimates for the original operator (1.1).

In this paper, we shall explore the direct quantitative two-scale expansions of (1.1) in the
non-self-similar case ¢ # 2, and study the quantitative homogenization theory without intro-
ducing the intermediate operators (1.4). To fix the idea, we study the asymptotic expansion
of the fundamental solution Iy of (1.1). Our results, combined with those in [9] for the case
£ = 2, provide the whole view of asymptotic expansions of the fundamental solutions to
(1.1).

Since the homogenized operator d; + Lo has constant coefficients. It is well known that
the matrix of fundamental solution 'g(x, #; y, s) exists, and for any x, y € RY, —c0 <5 <
t <oo,and M, N > 0,

Kl =yl
VYN Do, 5,91 = = == (15)

§)@+MT2ZN)]2 eXp{ T s

where ¥ > 0 depends on i, and C dependsond, m, i, M, and N. See [2, 11] and also [3-5]
for earlier works.

For the operator (1.1), in the case m = 1 Nash’s theorem [15] implies that under the
assumption (1.2) the local solutions to (d;4+L. )u, = 0 are uniformly (in ¢) Holder continuous.
For the case m > 2, the uniform Holder estimate still holds if A satisfies (1.2), (1.3) and the
assumption that A € VMO, (see Section 3 for the details). Here A € VMO, means that

limy_,0 wp(A) =0, (1.6)
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where

wo(A) = sup ]{ 2 ][GB(X r) TeeBem |A(z, T) — A(y, T)|dzdyd.
O<r<p
(x, z)eRd“
As a result, under the assumptions (1.2), (1.3), and also (1.6) if m > 2, the matrix of
fundamental solutions I'; of (1.1) exists and satisfies the Gaussian type estimate

{_M} wan

C
|FS(X,Z,)’,S)|§WCX s

forany x,y € R? and —oo < s < t < 00, with ¥ > 0 depending only on y, and C > 0
depending only on d, m, v and w, (A) (if m > 2).

Theorem 1.1 Assume A(z, T) satisfies (1.2) and (1.3), and also (1.6) if m > 2. Also assume
that ||9: Alleo < 00 if0 < £ < 2, and | V?Allee < 00 if2 < £ < 00. Then forany x, y € R¢
and —00 < § <t < 00,

|Te(x, 25y, 8) — Tolx, 15, 9)|
ep{ /<|x—y|2} {ez/2+82£«/t—s if0 <t <2,
x _—— .

1.8
t—s e+el"2/r—5 if2 <t < oo, (1.8)

where k > 0 depends only on , and C depends only ond, m, ju, and w,(A) (if m > 2), and
also |9z Alloo (if0 < € < 2) and |V Allso (if 2 < £ < 00).

Given a function f (x, t) in R4t for E € RY*! we define for0 < 6 < 1

[fx.0) = f(y, 0l

. (nneEandx £y} (19)

1/ lcroce) = sup |

Let

1.10
¥ if2 <€ < oo, (1.1)

x>z, 1) if0<? <2,
(z, 1) =
where x® and x° are the correctors given by the cell problems (2.1) and (2.20) respectively.
Theorem 1.2 Assume A satisfies (1.2) and (1.3), and
0
Az, 0) — A T < h(lz = 2| + It = '|'/?) (1.11)

forany (z, 1), (z', t') € R4 where h > 0and 6 € (0, 1). Assume also that ||9; Ao < 00
if0 <t <2, and ||V2A||C9,o < 00 if2 < < o00. Then forany x,y € R? and —o00 < s <
t < 0o,

d
’—F“’S(x ty,s) — —(S“ij +8Xay(x/s t/e )) Fyﬁ(x,t; v, )

<C10g(2+8_1 t—s)e { K|x—y|2} gl/2+gH r—s if0<t<2,
xp | _ KXY
- 42 P e+et2/r—s if2 < € < o0,

(t—s9)72 r=s
(1.12)

wherel <i,j <d,1 <a,B,y <m,and§ isthe Kronecker symbol. The constant k depends
only on , and C depends ond, m, ., (h,0) in (1.11), and also ||0;: Allso (if 0 < £ < 2) and
V2 Al coo (if2 < £ < 00).
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LetA(z, 1) = (AP (z. D)) with AT (2. 1) = AR (2. —1).and £, = —div(A(x/e. 1/e)V).
Let FS (x,t;y,8) = (Fgﬁ (x,t;y,s)) be the fundamental matrix associated to the operator
8t+£ It follows that 2% (x, 7; y,8) = Fgﬂ(y, —s; x, —t). Since A(z 7) satisfies the same
conditions as A(z, 7), (1.12) implies that

0
[T, s w0 - 5y 07 + 6% (/e =s/e0) 5 - LB s )
Vi Yj
(1.13)

can be bounded by the right hand of (1.12), where f(;‘y (y/e, —s /8[) is the corrector of
o + Zg. Therefore, we have

0 a
Gy TG 5 ,8) = (8 T O s/) 5 F‘”(x 5 y,9)]

Clog(Z—i—s1 t—s) l K|x—y|2} {6‘”24—82_[ t—s if0<? <2,
expy — ——t -
t—s

t—s5)% etel2i—s  if2 <t < oo
(1.14)

This, together with (1.12), allows us to derive the asymptotic expansionfor V, Vy I (x, £; y, ).

Theorem 1.3 Assume A satisfies (1.2), (1.3) and (1.11). Assume also that ||0; Allcc < 00 if
0 <€ <2 and ||[V*Alcoo < 00 if2 < £ < oo. Then for any x,y € RY and —0o0 < s <
< 00,

82 2

d
rB(x,t:y,s) — — (8% ex ¥ (x/e, t/et
Txay (x,1:y,9) 8x,~( xe+ex " (x/et) ))anayl

I‘ﬂ(x £y, s)—((Sﬁ;yl—i-sxl (v/e, —s/ee))’

Clog(2+g ! t_s)ex {_le—ylz} g2 420 —s if0 <t <2,
(t—s)d+3 P r—s e+et2/r—s if2 < £ < oo,
(1.15)

where 1 <i,j,k,1 <d,1 <a,B,y,¢ <m, and § is the Kronecker symbol. The constant
k depends only on u, and C depends on d,m, u, (h,0) in (1.11), and also |0: Al (if
0<?<2)and||V*Allcoo (if2 < £ < 00).

The proof of Theorem 1.1 follows the scheme of [9] (see [13] for the elliptic operators).
Our main contribution is on the direct two-scale expansions for the operator (1.1). Two-scale
expansions are essential in the study of quantitative homogenization theory. Here different
from [10], we try to deal with the non-self similar scales directly, and introduce the two-scale
expansions for (1.1) from the point view of reiterated homogenization [1]. Very recently, the
second author developed the quantitative reiterated homogenization theory and established
the convergence rate and uniform regularity estimates for the parabolic operators with several
spatial and temporal scales [16].

Precisely speaking, in the cases 0 < ¢ < 2 and 2 < £ < 0o, we introduce respectively
the auxiliary functions

We(x, 1) = ug(x,1) —up(x, 1) —ex>(x/e, t/sZ)Sge/z (Vug(x, 1))
— "Bt /€YY S0 (Vuo(x, 1) — e2VB(x /e, 1 /)Y S0 (Vuo(x, 1)), (1.16)
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and

e (x, 1) = ue (x, 1) = uo(x, 1) — ex°(x/8)Se (Vuo(x, 1)

— eIV /e, 1/69)S: (Vug(x, 1) — 6P (x/e, 1/6) Vs (Vuo(x, 1))

— &2V (x/e)VSe(Vug(x, 1)), (1.17)
to perform the two-scale expansions, where S, is the smoothing operator, x>, x° are the
correctors, and B, B, ®, T are understood as the flux correctors for (1.1). See Sect. 2 for
the exact definitions and the properties. Compared with [10], the key ingredient in (1.16)
and (1.17) is that the spatial and time variables are considered separately when we introduce
the flux correctors. This is coherent with reiterated homogenization process, and allows us

to overcome the problem brought by the non-self similar scales in the spatial and temporal
variables, and show that

(3 + Lo)w, = edivF, and (8; + L)W, = edivF, (1.18)

with proper F; and fs depending only on uy.
Prepared with the quantitative two-scale expansions, we then follow the ideas in [9] to
consider the weighted functions

t
ug(x,t)zf frg(x,r;y,s>f<y,s)e*"f<>’>dyds,
—00 Rd

t
uog(x, t) =/ / Co(x, t; y,s)f(y,s)e_‘/’(y)dyds,
—o0 JRE

where f € CZ°(Q,(xo, 1)) and ¥ is a bounded Lipschitz function in R?, and establish
proper bounds for ||wge‘”||Lz(Rd) and ||1Z£e‘/’||Lz(Rd). This, together with the uniform L*°
estimates for 9; + L., allows us to bound |le¥ (u, — uo) 120 (0, (xo,10)) bY 1112200, (vo.50))
By duality this gives the weighted L? bound for I, — Iy (see (6.4) and (6.6)). Finally, by
utilizing the L*° estimates for the dual operator 9, + L, and proper choice of the weight
function, we get the desired estimate (1.8) and complete the proof of Theorem 1.1. The proof
of Theorem 1.2 is based on Theorem 1.1 and the uniform Lipschitz estimate of w, and we.
Theorem 1.3 is a direct consequence of Theorem 1.2 and (1.14).

2 Correctors and flux correctors
2.1 Thecase0 < £ <2

Forl <j <d,let X;?O = X;’O (z, 7) be the correctors given by the cell problem

—div(AV{®) = div(AVz;) in RA+1
X}?o = X;’O(z, 7) is 1-periodic in (z, 1), 2.1)
Jpa x50z, 1) dz = 0,

where T¢ = [0, 1)? = RY/Z?. By the energy estimate and Poincaré’s inequality,

L0957 @ oP + e Pz < . 22)
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where C depends only on d and w. Thanks to [1], the homogenized operator of 9; + L; is
given by 9; — div(Ax V) with Ao = de+1 (A+ AVx®)dzdr.

Lemma 2.1 Suppose that A(z, t) satisfies the conditions (1.2) and (1.3). Ifm > 2, we assume
that

lim sup B(x,r)|A(z, T) — ]g(x,r)A(z, r)dz|dz =0 2.3)
Q_’00<r<g
xeR4

uniformly in T. Then x$° € LT+,
Proof The result follows from the classical De Giorgi-Nash estimate in the case m = 1, and

from the W7 estimate for elliptic systems with VMO coefficients in the case m > 2 [12].
Moreover, we have for any x € RY, and0 <r < 1,

[ee) 2 1/2 o—1
sup( B | VX2 1) dz) <Cro!, whereo € (0, 1). (2.4)
TeR

[m}

Remark 2.1 If A satisfies (1.6) and ||0; A||oo < 00. It is not difficult to see that A satisfies
2.3).

We now introduce the flux correctors.

Lemma 2.2 Suppose that A(z, T) satisfies the assumption of Lemma 2.1. There exists a
unique 1-periodic (in (z, 1)) function B(z, t) in RIT! such that Jpa Bz, 1)dz = 0,
B e L0, 1; HX(T?)), VB, V2B € L®(T¢+), and

AgB(z,7) = x¥(z, 1) inRITL

Moreover, if |0 Allco < 00, then

sup{[|9: VB(z. T)ll Lo (pay + 10: V2B (@, Dl oepay} < C forany1 < p <oo.  (2.5)
TeR

Proof Since [, x*°(z, T)dz = 0, for any 7 € R there exists B(-, 1) € HZ(T?) such that
Jra B(z, 1)dz = 0 and

AyB(z,7) = x®(z,7) in RIHL (2.6)
Note that under the assumptions of Lemma 2.1, x *°(z, ) is indeed Holder continuous in z

for any T € R. Standard Schauder estimates for (2.6) imply that

sup [ VB(., )l poo(rdy < C{ sup [VB(., D)l L2(Tdy + sup x>, T)||L00('[rd)} =<C,
TeR TelR TeR

sup V2B (-, D)l poo(ray < C.
teR

To prove (2.5), we differentiate the first equation in (2.1) to get

—div(AVo, X.,?O) =div(0;AVz;) + div(afAVX}’o) in R 2.7)
We claim that
sup [|0; x> (z, Dlligaeray = C forany 1 < g < oo. (2.8)
el
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As a result, the desired estimate (2.5) follows directly from the W2P estimate for
Agd:B(z.7) = 0 x (. 7) in R, (2.9)

and Poincaré’s inequality.

Itremains to prove (2.8). Inthe case m > 2, since ||d; A||co < 00 and (1.6) holds, A satisfies
(2.3). Standard W17 estimate for (2.1) implies that sup, g [IVx™>(z, DllLrerey < C. This
together with the W2P estimate for (2.7) gives (2.8) directly.

In the case m = 1, we just assume A satisfies (1.2) and (1.3). To prove (2.8), for B =
B(xp, R) CR4,0 < R < 1/8, we decompose Iex O as B x50 = 8,)(;’0’1 + 8,)(;’0’2, where

—div(AV&er‘?o’l)=Oin Bgr, and afx;?"’l:arxfo on 9Bg, (2.10)
and

{—div(AvarXJ‘.’o’z) = div(d; AVz;) + div(3; AVX>) in Bg, e

arxj‘.“ =0, on 3Bg.

The De Giorgi-Nash estimate and energy estimate for (2.10) imply that
1/2
19X 5% o DBy < c(ﬁR|afx;?°~‘<-, P)

< c|(Fosloexe. o) + R(Foelvoexe or) )

2.12)

where standard energy estimates have been used in the last step. By Caccioppoli-type estimate
for (2.7), and (2.4), we deduce that

172 12 172
R(ﬁuvarxf"(-, nP) " = C{(ﬁR|afx;?°(-, nP) "+ R(ﬁRfo%, 0P) " + R
172
= c|(foulver0R)” + v,
where 0 < o < 1. This combined with (2.12) implies that

00,1 00 2\ /2 o
10015 o Dl = | (Fralter®Co0R) "+ BT @13)

On the other hand, by Poincaré’s inequality, standard energy estimate for (2.11), and also
2.4),

1/2 12
(w2 08) " < CR(folvoex2e.or) * < cr ). @14

By using Theorem 4.2.3 in [19] with F = BTX]C.’OC, 1), Fp = 8,X;°’1(', 7), and R =
8,)(;.’0’2(-, 7), we get (2.8) from (2.13) and (2.14) immediately. The proof is complete. O

Forl<i,j<d,1<a,B<m,let
d ——af
B .1y =A@ o) + A (e, T)axfoyﬂ(z, ) — Ace; - (2.15)
It is obvious that B is 1-periodic in (z, 7), and B € L>®(0, 1; L>(T%)). Define

B(r) = / B(z, 7)dz. (2.16)
’]I‘d
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Lemma 23 Letl <o,B <m,1<k,i,j <d. Thereexists a 1-periodic (in (z, T)) function

¢ku(z ) € L™(0, 1; H),, (T9), such that

ol = —oil. and Bl (2,0 = B/ (1) = ——aifi(2, 0. @17)
Furthermore, under the assumptions of Lemma 2.1, one has ¢Z’i ;€ LO°(Td+1y,

Proof By (2.16), [1a ( B (z, 1) — A“ﬁ (r))dz = 0. As aresult, for any T € R there exists a
1-periodic (in (z, r))functlon £ z) € H2(T%) such that [, f (z. 7)dz = 0 and

Adfl.‘;ﬁ(z,r) = B;"jf’(z, T) — B;"f’(r) in RY. (2.18)
Define

¢kﬁ(z T) = i “ﬂ(z 7)— (z 7). (2.19)
Zk Z

It is obviously that qﬁ,‘fi € L>®(0, 1; H(T?)) and ¢kz/ = —d)f;g. Moreover by (2.1) and
(2.15),

0
B—Zi(Bf’f @0 - B ()=

It follows from (2.18) that % fl‘jﬁ (z, 7) is a 1-periodic harmonic function, and thus a constant.
Therefore,
op 82 otﬂ 7]
¢k,](z 7) = Adf,] (z, r)—i (z T) = B;; (z.7) — B;; (D).

To show ¢,‘:ij e L% (T4t1), we note that by (2.4) for any x € R and0 <r < 1,

S“p/ Iijﬁ(z, 7) — E,fj-ﬁ(r)ﬁ < Cpidt20-2
teR J B(x,r)
for some o € (0, 1). By Holder’s inequality,
4 / 1B (z,0) = Bf ()] = Crétot,
teR J B(x,r) . .

This implies that

of 7]
/ |B;; (z.7) — B;; ()]
Td

sup sup - b4
7€R xeTd lx —z|
o0
<C supZ2J(d_1)/ _ |B§}’3(z, ) — Bf‘jﬁ(r)ldz <C.
TeR j=1 |x—z|~27J

In view of (2.18), we can use the fundamental solution of A, to deduce that

aff o
/ |Bl‘j (z, f)_Bij (T)|dZ§C
Td

||Vfl | poo(ra+1y < C sup ||f1 (z, Dl L2¢pey + sup sup —
Jj ( ) J lx — Zld 1

7eR xeTd

It follows from (2.19) that ¢,‘:£ € L°°(T4+1). The proof is complete. O
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Lemma2.4 Let §(r) be deﬁAned as in (2.16). There exists a 1-periodic function B(t) €
L*°(R) such that 9:B(t) = B(7).

Proof Since fol B(t)dt =0, B(x) = Iy B(t)dr is the desired function. ]

Remark 2.2 Under the assumption (1.11), V. x> € COO/2(Td+1 je.,

[Vox®(z1, 1) — Vo x* (22, ©2)|
sup 17270 <C.
(Tl,zl),(fz,zz)ETdH (|Zl - Z2| + |T1 - TZ| )

(t1,2)#(12,22)

By the definition, B(t) is Holder continuous in 7. On the other hand, by (2.6) and (2.19), we
know that VB, V?%, ¢ and V,¢ are also Holder continuous. Moreover, if ||0; Allco < 00,
(2.7) implies that 9, x*° € C?0(T4+!) for some 0 < 6 < 1, i.e.,

|0 x> (21, 1) = 9 x® (22, DI _

C,

sup sup Tl
T€R 71,20€T9 21 #2, a2

which by (2.9) implies that 9; VB(z, ) € C 9.0(T9+1y. These regularity results would be
used in the proof of Theorems 1.2 and 1.3.

2.2 Thecase2 < { < ©
Forl <j<d,let X}) = X?(z) be the correctors given by the cell problem

—div(AV X;?) =div(AVz;) inR9,
Xj? = X;?(z) is I-periodic in z, (2.20)
Jra X3 @)dy =0,

where A = A(z) = fol A(z, T)dt. By the energy estimates and Poincaré’s inequality,

/w (IVx)@P + 1x)@I7)dz < C, (221

where C depends only on d and p. Thanks to [1], the homogenized operator of 9; + L, is
given by 9, — div(AgV) with Ag = de (A + AVxOdz.
Similar to Lemmas 2.1 and 2.2, it is not difficult to prove the following two lemmas.

Lemn‘_la 2.5 Suppose that A(z, t) satisfies conditions (1.2) and (1.3). If m > 2, we assume
that A € VMO, i.e.,

lim sup B(x,,)M(z) — ]g(x,,)/i(z)dz!dz =0.
<8

d—>00<r
xeR

Then x}’ € L%(T9).

Lemma2.6 Let x°(z) be defined as in (2.20). There exists a 1-periodic function Y (z) €
H2(T?) such that AgY(z) = Xo(z). Moreover, assume that A € VMO for m > 2. Then
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Let

1
Bo(z,7) = Az, T) + Az, 1)V:x"(2) — Ap, and Bo(Z)Z/ Bo(z, v)dt.  (2.23)
0

Lemma 2.7 Forl <o,B <mandl <k,i, j <d, there exist functions \112[5 () in HIIW (’]1‘d)
such that

of _ 0B ~aop 0 _ap
Wl = - and By —@‘I’kir (2.24)

Furthermore, under the assumptions of Lemma 2.5 we have \I/;:l. ;€ L®(T%).
Proof Note that
~ 0 ~
/ Bongﬁ (z)dz =0 and 730(143 =0.
T4 Zi
The proof is almost the same as that for Lemma 2.3. O

Lemma 2.8 Zhere exist 1-periodic functions ®(z,t) in R such that 0:P(z,7) =
Bo(z, t) — Bo(z). Moreover, assume that ||VZ2A||OQ < 00. Then ®, V& € LT and
® e L0, I; Wz’f’(']I‘d))for anyl < p < oo.

Proof Let ®(z,7) = [ (Bo(z,s) — Bo(z))ds. We have 3; ®(z, 7) = Bo(z, T) — Bo(2). If
||V12A||OO < 00, standard Schauder theory for the system (2.20) implies that

12 %l e pay + 1V X poogmay + Xl ooy < C. (2.25)
By the definition of ®(z, t), By and EZ), we have
@Il oo (pa+1y < CllBoll poocpa+ty + ClIBoll oo (pay < € + CIVX |l oo ray < €,
and
IV poopasty < € + CIV2 Al Lo pay + CIIV Xl Loopay < C.

where (2.25) is used for the last step.
Finally, note that

—div(AV (3,3, x?)) = div(d,,d,, AVz;) +div(d,, AV (3, x?))
+div(d;, AV(2;, x})) + div(d;,0;, AV 1)

in R?. Standard W7 estimate implies that ||V2)(OIIW1.,;(T(1) < Cforany 1 < p < oo,
which, together with the definition of @, implies that

sup [® (. D llw2.perey < C.
TeR

The proof is complete. O

Remark 2.3 If A satisfies (1.11), it is easy to see that Vx?, V2T, W, V¥ e C?(T%). More-
over, assume that || V2A lco.0 < oo, then (2.20) implies that v3x0ec? (T9). As aresult, by
the definition of ®(z, T) we know that V2® € C?0(T9+1),
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3 Existence of fundamental solutions

In this part, we provide the uniform regularity estimates for the operator d; 4+ L, and also
the existence and the size estimates for the fundamental solutions.

Theorem 3.1 Assume that A = A(z, ©) satisfies (1.2), (1.3), and (1.6) if m > 2. Let u. be the
weak solution to (0; + L)ue. = div f in Qo = Qo (x0, to) with f € LP(Q2,), p > d + 2.
Then for6 =1 —(d +2)/p,

o1 1/2 1/p
sl = €[ (fouue®) " + (ot r7) ). (3.1)

where C depends ond, m, p, u and w,(A) in (1.6) (if m > 2). In particular,

el = C{(foulue?)” +r(fou1517)"). (2)

Proof 1t suffices to prove (3.1), since (3.2) is a direct consequence of (3.1). For the scalar
case m = 1, the estimate follows from the well-known De Giorgi-Nash estimates.

‘We now considerthe casem > 2.1f2 < £ < oo, welet A = 82/8Z > 1,and7 = A~ 1[A]7.
By setting v (x, ") = ue(x, A~1[A]¢"), where [1] denotes the integer part of X, we get

A(x/e, t)e%) = A(x /e, At Je?) = A(x /e, [A]1/€%).
Let Af(z, T) = A" [A]A(z, [A]7). Then A*(z, 1) is periodic in (z, 7), and
3yve — div(A®(x /e, 1 /e¥)Vve) = A~ [A]divf.

By the uniform Holder estimates in periodic homogenization of parabolic equations [7],

ol 1/2 1/p
ellcnsion = €' [+ (fou ) + (Jou 1117) ") (3.3)

This by changing variables gives (3.1).
Likewise, if 0 < £ < 2weset & = £¢/62 > 1 and x = (vVA) " [VAx". Let o (x', 1) =
s (WA HW/A1x', 1). 1t follows that

A(x/e,t/e") = A(Vax/e"?,1/e") = A(IWAIx /62, 1/€"),
and
30e — div(A*(x'/e"?, 116" VT,) = div f,

where A*(z,7) = AWVAI2A(WAlz. 1) and F(x', 1) = VAIWVAIT AWV 1).
Since A* (z, ) is periodic in (z, ). The uniform Holder estimates in periodic homogenization
of parabolic equations implies that v, satisfies the estimate (3.3). This gives (3.1) by a
changing of variables. The proof is complete. O

As we have mentioned, the uniform Holder estimate (3.2) implies that the matrix of
fundamental solutions for d; + L, exists and satisfies the Gaussian type estimate (1.7).

By using the same reperiodization argument above, it not difficult to prove the following
uniform Lipschitz estimate (see [6, 18]), which provides further estimates on the upper bounds
for V,\I'e(x,t;y,5), VyTe(x,t; y,5), and V, Ve (x, 15 y, 5).
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Theorem 3.2 Assume that A = A(z, t) satisfies (1.2), (1.3), and the Hélder continuity con-
dition (1.11). Let u, be the weak solutions of (3; + L¢)u. = F in Q2 = Q2 (x0, to), where
0O<r<oocand F € LP(Q2r), p > d+2. Then

1 Y N
IVuclimo, = (5 fou luel?) ~ +r( o 1F17) ). (34)

where C depends ond, m, p, u and (h,0) in (1.11).

Theorem 3.3 Suppose A satisfies the assumptions in Theorem 3.2. Then for any x, y € R¢,
—00<s<t<oQ

VTt 3 9, Tt £ e [ = Y )
(t — S)(d+l)/2 t—s
VoV, Te(x, 13y, 5)| < #exp{ _ M} (3.6)
LY = T @ PR £

where k depends only on u, and C depends ond, m, i, (h,0) in (1.11).

Proof The estimates follow directly from (3.4) and (1.7). We refer readers to Theorem 2.7
in [9] for the details. m]

4 Two-scale expansions

We now perform the two-scale expansions for the operator 9, + L. in the case £ # 2. For
fixed ¢ € C°(B(0, 1)) such that ¢ > 0 and f]Rd ¢(x)dx = 1. We define the smoothing
operator

S5()(x, 1) = fR 050 f(x—y. 1) dy, @.1)

where @5 (x) = 5%(,0()5 /8). The following two Lemmas have been proved in [9].
Lemma4.1 Let g(z, ) be a 1-periodic function in (z,7) in R and = ¥ (x) be a
bounded Lipschitz function in R4, Thenforl < p<oo,0<e<é<landk=0,]1,

le” §°Ss (VX P)ll o asty < €8SV sup g (D)l praylle? fllppmarty,  (4.2)
R

TE
where g°(x,t) = g(x/e, t /&%) and C depends only on d and p. Likewise,

le” g5 Ss (VX Pl Lrxcr.ry < €8 1YV sup lg(0) Lo cpay lle” Fll ey, 1 Lr sy

TeR
4.3)
forany Q C R9 and (Ty, T1) C R, where Qs is given by
Qs = {x e RY : dist(x, Q) < 8). (4.4)

Lemma4.2 Lety = y(x) be a bounded Lipschitz function in R%. Then forany 1 < p < 00,

T T
/ /|e‘/f(55(Vf)—Vf)|”dxdr5C5Pe51’”W”w/ / eV V2 f|Pdxdt,  (4.5)
To /Q To /s

where C depends only on d and p.
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‘We now perform the two-scale expansions for 9, + L, = 9, —div(A(x /e, t/ee)V). Assume
O + Le)ue = (0 + Lo)uo in Q2 x (To, T1), (4.6)

where 9; + Lo is the homogenized operator associated with d; 4+ L. Recall that

oo {—div(AooV) if0 <0 <2, @

—div(AgV) if2 < ¢ < oo.
Let S5 be defined as in (4.1). For 0 < ¢ < 2, we consider the two-scale expansion
we 5(x, 1) = e (x, 1) — uo(x, 1) — e x> (x/e, /") S5 (Vuo(x, 1))
— "Bt/ VSs(Vug(x, 1)) — e2VB(x /e, 1))V Ss(Vug(x, 1)),  (4.8)

where x *° is the corrector, and B, 8B are the flux correctors defined in Sect. 2.1. For2 < £ <
oo, we consider the two-scale expansion

e (x, 1) = ue (x, 1) — ug(x, 1) — ex"(x /&) Se (Vuo(x, 1)
— eIV (x/e, 1/69) S (Vug(x, 1) — et d(x /e, 1/e)V S (Vug(x, 1))
— 2V Y (x/e)VSe(Vuo(x, 1)), 4.9)
where XO is the corrector, and ®, Y are the flux correctors defined in Sect. 2.2. For conve-
nience, hereafter we shall use f° to denote f(x/e, t/e%). Particularly f° = f(x/e) if f is

independent of 7, and f® = f(t/e’) if f is independent of x. For example, B° = B(t/e%)
and B¢ = B(x /e, 1/e).

Lemma 4.3 Let u. and ug satisfy (4.6), and w, s be defined as in (4.8). Then we have
(B + Lo)wes = ediv(Fes) in Qx (Ty, Ty), (4.10)
where
Fop = e~ (A® — Ao0) (Vg — S5(Vuo)) — ¢V S5(Vuo) — £~ 558, S5(Vuo)
+ ' 7VASBEV2 S5 (Vug) + A% (x®)°V S5 (Vug) — e(VB)Ed; Ss(Vug)
— &80, VB) S5(Vug) + A*(VZB)VSs(Vug) + £ A° (VB V2S5(Vug). (4.11)
Proof By direct calculations, we deduce that
(O + Lo)we,s = (Lo — Lo)uo — (0 + L) {e(x™)S5(Vuo) |
— (3 + L) BV S5 (Vug)} — (3 + L) {e* (VB VSs5(Vug) }
= —div[ (Ao — A%)(Vug — S5(Vup))} — div{ (Ao — A%)S5(Vuo))
+ div{A*(Vx*®)* S5(Vuo) } 4 ediv{A® (x*)*VSs(Vuo) }
— 3 {e(X™)F Ss(Vuo)} — (3 + Lo){e BV S5(Vug))
— (3 + L) (VB) VS5 (Vug)}. (4.12)
In view of Lemma 2.2, we have
I e (X S5(Vug)} = e2d,div{(VB)* S5(Vug)} — &2, {(VB)* VS5(Vup) }
= e2div{(VB)*8,Ss(Vuo) } + &>~ div{(3; VB)* S5(Vuo) }
— &20,{(VB)* VS5 (Vuo) . (4.13)
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On the other hand, note that
— div{ (Ao — A%)S5(Vitg)} + div{A® (V™) S5(Vuo) }
= div{(B® — B®)S5(Vuo)} + div|{B* S5(Vuo)},

where B and B are defined by (2.15) and (2.16). By Lemmas 2.3 and 2.4, we deduce that

%{(B&—E%>Sa(a”°)}+ax,[ 55555,

{¢k”(x/8 /e )S‘s( J>} _Sf{%,(x/a t/e" )—kS (3”0)}

0x;

ax Xy
et s ()] -t oo (2

Xj

= _837)”{‘1’1?5()6/8’ t/gz)asa@ﬂ)] + Slat{BZﬁ(’/Sz)Tis(%)}

8)Cj axj'

0 oug
- s‘—{sg‘;f‘“‘(r/s“)at&(—
dx

0X; j

)] (4.14)

where we have used the skew-symmetry of ¢ for the last step.
Finally, note that

— (3 + L)' BV S5 (Vug)} = —e'8,{B°VS5(Vug)} + e"div{A°BV2S5(Vuo)},
(4.15)

and

(3 + L] (VB) VS5 (Vug) |} = 28, {(VB)* VS5 (Vug)} — ediv|{A*(V*B)* VS5(Vuo) }
— e2div{A*(VB)* V2 S5(Vup) . (4.16)

By taking (4.13)—(4.16) into (4.12), one gets (4.10) immediately. O

Lemma4.4 Let u, and ug be given by (4.6). Let W, be defined by (4.9). Then we have
(3 + Lo)We = ediv(Fe) in Q x (Ty, T1), (4.17)
where
Fe =71 (A" = A9) (Vo — Se(Vuo)) + A* () VS (Vug)
— e %9, 8. (Vug) — WEV S (Vug)
+ 63 A% (V2 D) S (Vug) + 26172 A5 (VD) VS, (Vi)
+ e A D VS, (Vug) — e(VY)?0;Se (Vuug)
+ A5 (V2P VS, (Vug) + e A5 (VYY) V2 Se (Vuo). (4.18)
Proof In view of (4.6), we deduce that
(3 + Le)We = (Lo — Le)uo
— @ + LX) Se(Vuo)} — (0 + L) {e ™ (VO)*Se(Vuo)}
— (3 + L PV S (Vug)} — (3 + L) {e*(VIIEVS.(Vug))
= —div{(Ag — A®)(Vuo — Se(Vup))} — div{(Ag — A®)Ss(Vuo)}
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+ div{A*(Vx°)* Se(Vug)} + ediv{ A* (x*) VS (Vuo) )
— 3 {e((") Se(Vug) | — (3 + L) (VD) Se(Vug) )
— @ + L[ PVS(Vug) | — (3 + L2 (V) VS (Vug)}. (4.19)
Thanks to (2.23), we have
— div{(Ag — A)Ss(Vuo)} + div{A*(Vx*)* S, (Vuo))
= div{(B§ — Bo")Se(Vuo)} + div{Bo" Sz (Vuo)}.
By Lemma 2.8 and (2.24), we deduce that

%{((Bg)ij - (E)S)ij)&(gi)s)} 3x; {(BO )ij S (ng)}

, duto 3 u
_ gt ap £ ¢ w ‘ .
=g [0 e e (F)} = g {of e asehans (5]

[ yep dug 9 [ gep 3 (dug
T S, }— [\IJ A s }
+ aax‘ax]([ kij (X/€) E(axj) Eax- klj(x/e) o 8(8)6]')

gl la{ —Cbaﬁ)(x/s 1/ )Se( >}+s a,{ % (x/e.1/e )—55(8”0)}
J

Xi 0x;

—861[ o (x/e.1/690,5 (10)] ~ ¢ aa [wif /) (3”0)} (420)

ax; 0x; X; 0x;

where the skew-symmetry of W is used in the last step. On the other hand, by Lemma 2.6,
—3{e(x") Se(Vug)} = —e?3,div{(VY)* Se (Vug) } + 28, { (V) VS, (Vug))
= —&2div{(V)* 8, S, (Vup)} + 28, { (VI VS, (Vug)}. (4.21)

By taking (4.20) and (4.21) into (4.19), and some direct calculations, one gets (4.17) imme-
diately. O

Theorem 4.1 Assume A(z, ©) satisfies (1.2) and (1.3), and also (1.6) if m > 2. Also assume
that ||0; Allee < 00 if0 < € < 2, and ||[V*Allse < 00 if2 < £ < o0. Let F¢ 5 be given
by (4.11), and fg be given by (4.18). Let ¥ = yr(x) be a bounded Lipschitz function in R%.
Then for any 1 < p < 0o, we have

T,
/ / |e‘”F£’5|pdxdt
To Q

T
< C((SZPS_I’ + 8P 4 gPE=D +£p)8_pe5pw'/’”°°/ / |e¢V2uo|pdxdt
o Js

T
+ C(s”(l_l) + Sp)é_pespww”“’ / / |e‘l’8,uo|pdxdt
Ty Js

T
+C8P(17£)68P|\V¢||oo/ : / |€WVMo}pdxdt, (422)
T Jos
and
T, - T
/; /;2 |e¢Fg|pdxdt < C(l +8p(£72))e‘€”||v'/’”°°/; /;2 {|e‘/’V2uo|p + |e'/’8tu0|p}dxdt
0 0 £

@ Springer



2372 Q. Meng, W. Niu

T
+ gPEDePIVY Il f / eV Vuo|"dxat, (4.23)
To &

where Qs is defined as in (4.4), and C depends only on d, m, p, i, and wy(A) (if m > 2).

Proof Tt suffices to prove (4.22), as the proof of (4.23) is almost the same by using the
estimates for XO, T, ¥, and ®. As a consequence of (4.11), we note that

T
/ / !e'/’Fg,5|pdxdt
To Q
T

T
508—1’/ /|Vuo—55(w0)|Perxdt+C/ / |p°V Ss(Vug)|PeP¥ dxdt
To JQ To JQ

T
+C8W—1>/ /|B£3[55(w0)|1’e1’¢dxdr
To Q

T
+ CePt=D / / |BEV2Ss(Vug)|PePV dxdt
To Q

T
+C/ / |(XOO)EVSB(Vu0)|peP¢dxdt
To Q

T
+CeP / / [(VB)® 0, S5(Vuo)|PePV dxdt
T, JQ

T
+ CePU1—0 / / |(8; VB)? S5 (Vug)|PePV dxdt
T, JQ

T
+C/ / |(V2B)EV S5 (Vug)|PePV dxdt
To Q

T
+ Cse? / / [(VB)V2Ss(Vug)|PeP¥ dxdt
To Q

=L +..+1, (4.24)

where C depends only on d and . By Lemma 4.2, we obtain that
T
Iy < C8Pe PPVl / / |V V2u| dxdt.
Ty JQs
By (4.3) and the estimates for x*°, B, ¢ in Lemmas 2.1, 2.2, and 2.3, we may deduce that
T
L+ 15+ 13 < CePPIVYleo / / |e‘/’V2uofpdxdt.
Ty JQs
On the other hand, by (4.3) and the estimates of 28, 15 in Lemmas 2.2 and 2.4, we get

Ty
B+ I+ I < CePDgr PVl / / (le¥V2uo|” + le¥ duo|")dxdt
To Qs

T
+C8p(1fl)e<317\|V1//Hoc/ 1/ }e¢vuo|pd.xdl‘,
To Qs
and also

T
I + Iy < CePsPetPIVY I / / (|e‘”V2uo|p + |e1/’8,u0|p)dxdt.
Ty J9s
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By taking the estimates for /1-Iy into (4.24), one gets (4.22) immediately. The proof is
complete. O

5 Weighted estimates

Let I'y be the matrix of fundamental solutions of the homogenized operator 9; 4 Lo in RY*!
and ¥ be a bounded Lipschitz function in R?. Given f € Cy° RI*1), Tet

t
uog(x, 1) = / / To(x,t;y,8) f(y,s)e VPdyds. (5.1)
—00 Rd

Then (3, + Lo)uo = e~V f in R¥*!. The following two lemmas concerning on the weighted
estimates of d; + Lo and d; 4+ L, have been proved in [9].

Lemma 5.1 Let ug be given by (5.1), where f(x,t) = 0 fort < so. Then we have

t t
/ / le¥ Vuo|2dxdt < C(t — s0)e 10— 0IVV Iz / / | f12dxdt, (5.2)
so JR4 so J R4

t t
// |e¢(|v2uo|+|atuo|)|2dxdz§Cek<’—30>”v‘/’"§o// | f12dxdt (5.3)
so JRR4 so J R4

forany sy <t < oo, where k, k1 > 0 depend only on , and C depends only on . and d.

Lemma 5.2 Assume that

:(at T Lowe = ediv(F.)  inRY x (s, 00), 54

we =0 on R x (t = s).

Let  be a bounded Lipschitz function in R?. Then for any t > so,
t
/ |we (x, )22 Ddx < Ce2eX = 0IVV I / f |Fe(x, $)|%e* @dxds,  (5.5)
R4 50 R4

where k > 0, and C > 0 depends only on 1.

Theorem 5.1 Assumethatu, € L>((—oo, T); H' (RY)) andug € L*((—o00, T); H*(RY)), T €
R, satisfy

(0 + Leyue = (3 + Loyug  in RIF!,

ug(x,t) =up(x,t) =0 for t < sg.

Let r be a bounded Lipschitz function in R?. Let we 5 be given by (4.8) with § = &%, Then
we have for any t > s,

/ we.s (x, )PPV Wl
Rd
t
5Celezsm”V'/’””Jr"(’*m)”w/’”go/ / (le¥ V2uo|* + ¥ duo|*)dxds
so JIR4

t
1 et 2 IV oot (1=50) |V I3 / / |e¥ Vuo|*dxds, (5.6)
so JR4
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where k > 0 depends only on u, and C > 0 depends only on i and d. Likewise, let w, be
given by (4.9), we have for any t > s,

/ | e (x, )2V D dx
R
t
<ngezeHwnww—so)uwn&// (¥ V2uo* + [ dyuo[2)dxds
a so J R4

t
+ Cet42e IV Voot t=s0) VY / / |e¥ Vuo|*dxds, 5.7)
so /R4

where k > 0 depends only on ., and C > 0 depends only on n and d.
Proof Since w; s satisfies (4.10) and w, s = 0 on RY x (t = s9). By taking w, = w, s and
Fe = F; 5 1in (5.5), we obtain that
t
/ lwe.s (x, )22 Ddx < Ce2eX—s0IVV I / / |Fes(x,5)|e?V ®dxds,
R4 S0 R4

which, together with~(4.22) in the case p = 2 and § = gt/2, gives (5.6). Similarly, taking
we = We and F, = F, in (5.5), it yields

t
/ We (x, D2V O dx < Ce2e =50 IV¥ I / / [Fe(x, )72V Pdxds,
R4 so J R4

which, combined with (4.23) with p = 2, gives (5.7). ]
Next, we consider the weighed L estimates.

Theorem 5.2 Assume that A satisfies (1.2), (1.3), and A € VMOy ifm > 2. Also assume that
10: Alloo < 00if0 < £ < 2, and | VZAlloo < 00if2 < £ < 00. Let (9;+Le)ug = (3;+Lo)uo
in B(xg, 3r) x (to — 4r2, o) with e + ¥/ < r < oc0. Let Y be a bounded Lipschitz function
in RA.

e Forthe case 0 < £ < 2, we have

lle? (e — uo)llL2(0, (xo.10))

12
=< CerVileo (][éb(xo,to)'ew(ug - u0)|2)

3 o0
+ C&‘Z/zre rIvyl ||€¢(|V2MO| + |3tu0|)”LOO(B(xo,3r)X(t074r2,t0))
+ ng_ereSVHVV/”oo ||€]// Vuo”LOO(B(XU,3V)X([074I‘2,!0))
+ Cw(";‘eSrHVv/”:>O ”el//vuo”LOO(B(JC(),3V)><(IO—4F2J()))’ (58)

where C > 0 depends only on d, jv, m, wy(A) in (1.6) (if m > 2), and |07 Al so-
e Forthe case 2 < £ < 0o, we have

lle¥ (e — 10) |l (0, (xo.10))
1/2
= Ce¥r VYl (]gzr(xo,toﬂew(us - ”‘0)|2)

3 o0
+ Cere IVl ||€1//(|V2u()| + |a[u0|)||LOO(B(X(),SV)X(I()—4}‘2,[()))
+ C8£_2r63rllv¢|loo ||€¢Vu(] ”L°°(B(Xo,3r)x(t0—4r2,to))
+ C8(33r”v¢‘|m ||€¢VM(] ”LOC(B(X(),3V)X(t()—4r2,IO))’ (59)

where C > 0 depends only on d, i, m, and IV A |l o
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Proof Let w, s be defined by (4.8). By Lemma 4.3, we have (9; + L;)w, s = ediv(F s) in
0>, (x, tg). It follows from Theorem 3.1 that

2 1/2 » 1/p
||w€.5||L°°(Q,(xo,t0)) = C{( Qz,-(xO‘;O)le,Bl ) + Er( er(xo,t())IFS,Sl ) }a

where p > d + 2. This gives

12
lue — uollLe(0, (xo,10)) < C(][Qz,(xo,,m lug — Molz) + Cer(][QZ,(xo,zo)lFa,slp)
+ CellSs(Vuo) |15 (0ar(o.10)) + C (€4 4 DI85 (V2u0) | 150 (0ar (x0.10))

where we have used the boundedness of x*°, B and VB in Lemmas 2.1, 2.4 and 2.2, respec-
tively. Using [y (x) — ¥ (y)| < 2r||V{r|loo for x, y € B(xo, 2r), we obtain

1/p

le? (ue — u0) (0, (xo.10))

1/2 1/p
< XV (ﬁhr(mm) ¥ G — o)) 4 Cere? 171 (][Qz,(xa,to)le‘” Feal?)

+ CEleHVIIIHoo ||e]/f55 (VMO)HLOO(QQI‘(JCO,[U)) + C8£e2rIIV1//||oo ||ew S5 (V2M0)||L°C(Q2r(xo,t0))-

02

By setting § = £%/2, and using the assumption /> < r and Theorem 4.1, we derive (5.8)

immediately.
The proof of (5.9) is completely parallel by using Lemma 4.4 and the estimates of x°, ®,
and VY. We therefore omit the details for concision. O

6 Proof of the main results

We are now ready to provide the proofs of Theorems 1.1 to 1.3.

Proof of Theorem 1.1 We follow the scheme of [9]. For fixed xq, yo € R and so < fo, it
suffices to consider the case ¢ + /2 < r = /fp — 50/100, since otherwise the estimate
(1.8) follows directly from (1.7). For f € C§°(Qr(yo, 50)), let

t
wo(x, 1) = f / Fotr. £: 3. 8) £ (v s)e ™V Ddlyds,
—00 JRA

t
ug(x,t) = / /Rd Co(x, 25y, 5) f (v, s)e Y Pdyds. (6.1)

Then (3; 4+ Lo)ug = (3 +Le)ue = e~V fin R and u, (x, 1) = ug(x, 1) = 0ifr < so—r2.
We first consider the case 0 < £ < 2. Let w, s be defined by (4.8) with § = &%/ Tt follows
from (5.2), (5.3) and (5.6) that

/ we.s (e, PV D dx
Rd
t

02 _ 2 2
< Cel 2 P IV oot 26 =50+ V¥ 1% / \fRdxds
2 JRd

so—7r
t

4 C(t — 50 4 r2)84—236255/2HVI/I|‘00+2K(Z—S()+r2)||V¢||Cz>o f |f|2dxds (62)

R4

so—r2
for any t > so — r2. By (5.8) and the definition of w, 5, we obtain that

lle? (ue — 10) | L0, (xo.10))
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12
< Ce¥IVVle (][er()foyto) ¥ we s |2)

+ CePre Ve e (1V2ug] 4 19:1401) | 100 (B x,3r) x (t9—4r2.10))

+ Ce* eIVl ”ev/V”O”L°°(B(x0,3r)><(t0—4r2,to))

+ Cee¥ V0¥ Vgl Loo g 3r) x (1 —dr2.10)) (6.3)
Since f € C3°(Q:(yo, S0)), (1.5) implies that

IV2uo(x, 1) + |90 (x, )] + 1~ [Vuo(x, 1)]

][Q Oo.so)|fe” V|dyds

leo—yol

§Cexp{ ;
0—

for any x € B(xp, 3r) and |t — fp| < 472 where k > 0 depends only on . Therefore, by
taking (6.2) into (6.3) we deduce that

lle¥ (e — o)l (0, xo.10))
. 2 2 1/2
< C(2r + 274 2) e IV looter IV Y 15 <][Qr(y0,so)|f|2)
: _ K|xo — yol2 172
+ Csl 2 Hx0—30DIVY oo gy l _ ﬂ Q,<yo,so>|f|2)

2
— —y K |xo )’0| 1/2
Ce2 2 pctr+lo—yoDIVilloo exp { pR— 0,030, s0)|f| .

By duality we find that for any (x, t) € Q,(xo, fo),

- 1,2
(For00amle? VO e 15 y.9) = Tow. 15y, 5)Pdyds)
< C(eM2pd1 4 g2-tp=d) | VWl erIV Y1
2
 Cell2ym1 DIV g | M}
o — S0

2
4 €Ty DIV xp | M} (6.4)
o — S0

Let A = Z(z, ) = A*(z, —1) and Es = —diV(ZV). Let v (y, s) = Te(xo, t0; y, —5)
and vo(y, s) = Co(xo, f0; y, —s). Then

(8 + Le)ve = B + Lo)vo = 0 in B(yo, 3r) x (—so — 4r2, —sp),

where 0; + Eo be the homogenized operator of 9; + Eg. Since A satisfies the the same
conditions as A(z, t), we apply Theorem 5.2 with ¢ replaced by — to obtain that

eV GO=V 00 (y, (39, —s0) — v0 (Y0, —50))!
< e? OV (g (y, —5) — vo(y, =)L, (v0.—-s0))
- 12
< CITVI (][Qrmyo,—so)IeW") YO (y, — vo)|2dyds)
+ Cet2red WVl |V GOV O) (15200 + 18,00 ]) | Lo (84,3 x (—s0—4r2. —s0)
2—0.. 3rIVY|eo -
+Ce?re rIVyl ”elﬁ(xo) W(y)vv()”LOO(B(YO,3V)X(_SO_4r2!_SO))

+ Ceed VYoo ||e¢(xo)—1/f(y)vv0 ”L°°(B(yo,3r)x(—so—4r2,—so))
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B 1/2
= ce¥ IV ( Fo, 0501 VO T, . 107 3. 5) — Toao. 1 . ) Pdyds)

2
., K|Xo) —
et 2 IV o VOV 00 e | Ixo — yol |
o — S0
2
b Ce2 eIV e ¥ G0)—¥ 00) g [ _ Klxo — yol }
o — S0
< C@E2ra1 4 827Zr7d)ecr||V1//Hoo+6r2||V1/r||§o

2
4 Cet/2p=d=1 yetr+1x0=y0D I V¥ [l exp[ _ Klxo — yol ]
o — S0
2
+ Ce2tyd e+ =3IV lo e { _ #lxo = ol } 6.5)
to—so )
where we have used (1.5) for the third step and (6.4) for the last step.

Finally, to derive (1.8) we follow the ideas of [2, 11] (see also [9]) to set ¥ (y) = y Yo (ly —
Yol) with ¥o(p) = p if p < |xo — yol and ¥o(p) = |xo — yol if p > |x0 — yol, where y > 0
is to be determined later. Note that ||V{/| oo = ¥ and ¥ (x0) — ¥ (y0) = ¥ |x0 — yo|. By (6.5),
we have

[Te (x0, f0; ¥, 5) — Lo(xo, o5 ¥, $))|
< 41 ¢ 82—€r—d)e—y\XO—yo\eCo(Vvto—SO+(to—SO)y2)
o2
+ Cel/2y—d=1,=vIx0=y0l ,co(v1o—s0+|x0=yoD¥ exp{ _ K':O Yol }
0 — 50

_ 2
+ Ce2—ty—d g=71x0=yol yco(Vio=s0+|x0— Y0¥ exp { _ K|):O Yol ]
0 — 950

where co depends at most on . If |xg — yo| < 2co+/to — S0, we choose y = 0. As a result,

e _ 2
ITe (x0. f0: . 8) — To(xo. f0: y. ) < Ce2(t9 — 50) T+ exp | — klxo = yol”
o — S0
o2
+ ng—z(to — so)_% exp[ - 7K|x0 Yol ]
fo — So

If [xo—yo| > 2co+/to — S0, wechoose y = o |xo—yo|/(to—so) witho < min{%cal, 1/2(co+
1/2)"'k}. As a result, we get

—olxo — yol?

—y1x0 — Yol + coy/to — 5o + colto — s0)y* <
4(to — s0)

and

K|xo — yol? 1 lxo — yol?
coy X0 — yol + coy /1o — 50 — ————— < {50 + oo — Kk} ———

to — So 2 to — So
—k|xg — yol?
~ 2(t0 — s0)

Recall that » = /f9 — s59/100. We have thus proved that

k1lxo — yol? }

[T (k0. 103 y..8) = Too. 103 v, )] = Ce2 (10 = 30)~F exp | — =2
0—50
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2

d K1|X0 —

+C52_e(to—s0)_5exp!—7l| 0~ Yol ]
Io — 50

This gives the estimate (1.8) for 0 < £ < 2.
Next we consider the case 2 < £ < oo. Let w, be defined by (4.9). By (5.2), (5.3) and
(5.7,

/ |, (x, 1)|e*V Ddx
Rd

1
< 22NV Y oot 2 (=s0+r)) IV 1%, / | fI2dxdt

so—r2

+C(t—so+r )82@ —4 o2&l Vlloo+2u (1 — —so+rH)IVy %, / |f|2dxdt
R4

S0— r2

for any t > s¢. By using (1.5) and (5.9) we can deduce that
le? (ue — uo)llz>(0, (xo.10))

2 2 172
< C(er + 8@*2r2)ecrHV1//Hoo+N IVYlis (][Qr(yo,So)|f|2)

2
+ Cerer+Hso—nDIV ¥l ey { _ "Pt‘O — Yol }(][Qr(m,m) |f|2)1/2
0— S0

2
_ - Kklxo — yol”
4 Cet2p2 DIVl o | L ][Q, ol F12)
This, by duality, implies that

1/2
( o0l OO T w15 3,5) = ot 13, ) Pdyds)

—d— -2 _ 2 2
< Clerd=) 4 pt=2p=d) eIV oot IV I

K| xo —yolz}

F Cerd71 4 g02pd) T Hx0=30DIVV o oy { _
o — So

(6.6)

for any (x, t) € Q,(xo, fo). Then we perform the same argument as in the case 0 < £ < 2 to
consider the dual operators and chose proper function ¥ and finally to deduce that

= k1xo0 — yol?
ITexo. 107 .8) = To(xo, 1 ¥, )| = Celto —s0) “* exp | — Z0 =30
w2
+Cet 2, —So)_% exp[ _ Ki1lxo — yol }
fo — S0
which is exactly (1.8) in the case 2 < £ < oo. The proof is complete. O

To prove Theorem 1.2, we shall use the following Lipschitz estimate.

Theorem 6.1 Assume that A satisfies conditions (1.2), (1.3) and (1.11). We further assume
that |3;Alle < 00 if 0 < € < 2, and |V?Allcoo < o0 if 2 < £ < oo. Suppose that
0r + Loue = (0; + Lo)uo in Q2 (x0, ty) for some (xo, ty) € Rt gnd e + &Y% < r < c0.

o For the case 0 < £ < 2, we have
Vue — Vg — Vx> Vuoll L0, (x0.10))

_ 172 _
' 1(][er<xo,to)|“6_“0|2) +er Vol L 0s o.ton + €721V U001 L% (03, (o.10)
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+ Celn(re™" +2)111V2uo| + 7118, Vol + eVl + '~ Vuolll 0 (0a (x0.10))
+ Ce"N[V2ug| + &3, Vuol + & V3uol + ' Vuol o0y, (xo.0))- (6.7)

where C depends ond, m, w, (h,0) in (1.11), and ||0: A|| 6.0
e Forthe case 2 < £ < 0o, we have

IVue = Vug — V" Vuoll (0, (ro.t0))
—1 2 172 —1
=Cr ( 03, (xo.10) | tts — U0 ) + Cer™ " [[Vuoll L= (05, (x0.10))
+ Celn(re™" +2)[1|V2uo| + |3, Vuo| + &|V3uol + 7 |Vuol | 220 (0sr (x0.10))
+ Ce"V2uol + €19, Vuo| + &[V3uol + &> 1Vutolll 6.0y (x0.100)» ©.3)

where C depends ond, m, u, (h,0) in (1.11) and ||V2A||C9,o.

Proof For the case 0 < £ < 2, we define
we (X, 1) = up(x, 1) —uo(x, 1) — ex™>(x/e, t/e")Vug(x, 1)
—e'B(t/eHYV2uo(x, 1) — e2VB(x /e, t/eH)Viuo(x, 1).

By Lemma 4.3, we have (3; + L.)w, = ediv(F;) in Qs (xo, tp), where F; is defined by
(4.11) with Ss replaced by the identity operator. Let ¢ € C3° (RI*1) such that 0 < ¢ < 1
and

7 7 \?
=1 in Q3 ,(x0.%0), ¢=0 if|x—xo|zzrort<to—(*r>,

4 (6.9)

IVl < Cr!, V20| + |39 < Cr 2.
Note that
(3 + L) (pwe) = Brp)we + div(epFe — A*Vouw,) — (eF, + A*Vw,)Ve.

For any (x, 1) € O, (xo, tp), we have
t
we(x, 1) = / fd Ce(x,t;y, s){(asgo)wg —¢eF.(Vp) — A8Vw£(V<p)}dyds
—o0 JR

1
—/ / Vye(x, 1y, 5){epFs — A°(Vo)w, }dyds
—00 d
=11+ D,

where I, = —¢ fioo Jra VyTe(x, 15y, $)9(y, $)Fe(y, s)dyds. By Theorem 3.3, we deduce
that

t
V1G] < c/ fRd V.o e 15 3, ) {1350l lwel + £ Fel Vol + (Ve [ Voldyds
—00

t
+f fmvyrgoc,z;y,s>||w||ws|dyds
—00 Rd

IA

1
C{;][Q7r/4(xo,to)|w8| + 9][er(xo,t0)|F8| + ][Q7r/4(xo,to)|vw8|}

1 2\ 1/2 N\ 1/2
C{;( Q2r(X0JO)|w5|> +5< er(Xoyt0)|F8|) }

IA
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1 2 ¢
< C[;( 0, (x0.10) |1te — U0 ) + ;||VM0||L°C(Q2r(XOJ0))
82 8Z ) 2 1/2
+ (7 + 7)||V U0l L2 (Qy, (x0.10)) T 8( 02, (xo.10) | Fel ) }’

where we have used Caccioppoli’s inequality for the third step. By the boundedness of ¢,
VB, V29 and 3; VB (see Lemmas 2.3 and 2.2, and Remark 2.2), we know that

|Fe| < C{IV2uol + (" + ©)18, Vuo| + (e + eI V3up| + &'~ Vuol},  (6.10)

which implies that |V 1] 10, (xo.1)) can be bounded by the right-hand side of (6.7).
To estimate />, we note that

t
hL(x,t) = —8/ /Rd Ville(x, 15y, )y, )}(Fe(y, s) — Fe(x, 5))dyds

t
+s/ / Ce(x,t;y, 9)Vyp(y, s)Fe(y, s)dyds.
—o0o JRA

Then for any (x, t) € O, (xo, ty),

IV (x,1)| < 8/Q ( )IVxVy{Fs(x,t; v, )y, HHIFe(y,s) — Fe(x, s)|dyds
2r (X0,10
+8/ [Vile(x, 15y, )IIVyo(y, )| Fe(y, s)|dyds
Q2 (x0,10)
|Fe(y,s) — Fe(x, 5)| ][
=ce /er(xo,to) (x — y| + |t — s|1/2)d+2 dyds + C& Jou (xo.0) | Fel
Fe(y,s) — F.(x,
< CS/ [Fe(y,s) S(T/zsi'ﬂdyds
02 (0t Qe ey (IX — Y[+ [t = s]1/2)
|Fe(y,s) — Fe(x, 5)| ][
e /Q(x n (Ix =yl + |t — s|1/2)d+2 dyds + Cé J0,, (xo.10) | Fel

< Celn(e™"r + D)1 Fell Lo(0a o0 + C& I Fell 00003y (x0.100) -
In view of (6.10) and the regularity of ¢, 25, we obtain that

VI (x,1)]
< Celn(e™"'r + 2)[|V2uo| + & 113; Vuol + & [V3uol + &'~ 1Vuolll L0y (vo.10)
+ Ce")1V2uo| + €718, Vuo | + &1V uol + &' Vuolll o090y ot -

Thus VL2l 20, (xo.10)) 1S bounded by the right-hand side of (6.7). Since
IVwe — (Ve — Vg — (VX ) Vol Lo (0, o0y < elllVZutol + V3 uo !l 2200, (xo.10))

one gets (6.7) immediately.
For the case 2 < £ < 0o, we consider the function

We(x, 1) =ug(x,t) —ug(x,t) — sxo(x/g)Vuo(x, t) — az_IVCD(x/e, t/sz)Vuo(x, 1)
— el d(x/e, t/eHVug(x, 1) — 2V Y (x/e)Viuo(x, ).

By performing similar analysis as above, it is not difficult to derive (6.8). Let us omit the
details. O
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Proof of Theorem 1.2 For fixed xg, yo € R? and sy < fo, it suffices to consider the case
e+et? <r = (19— s0)1/2/100, since otherwise the estimate follows directly from (3.5).
Note that (0; + L)u, = (9; + Lo)ug = 0 in Q4 (x9, t0). We apply Theorem 6.1 to the
functions u.(x, t) = [ (x, t; yo, S0) and ug(x, ) = [o(x, t; yo, So) in Q2 (x0, fp). For the
case 0 < £ < 2, it follows from (6.7) that

|V Te(x, 5 y0, 50) — VDo (x, 13 y0, 50) — VX (x/e, 1/e)V,To(x, 15 o, 50)|

\2 | ¢ 2212
*( 0 (xo.10) IT'e = Tol ) + 2 IVTollL(0a o) + &IV Toll L (02 xo.10))
+ Celn(re™" +2)[[V2Tol + & 18, V| + 1|V To| + &' |V T0lll 0y o.10))
+ Ce" ) [V2Do| + & 718, Vol 4+ & VTl + '~ V0!l 0.0 0, (x0.100) -
Since £/ < r, by (1.5) and (1.8), we deduce that
’VXFE(x, t:y,5) — Vilo(x, 15y, 8) — Vx®(x/e, t/e")V To(x, 1; , s)|
o)
= )d+2 In2 + V1 — /e)exp{ 7|} (P e ).
tr—s5) 2

For the case 2 < £ < oo, we use (1.5) and (1.8) to bound the right-hand side of (6.8) to get
the desired estimate. The proof is complete. O

/\

Proof of Theorem 1.3 For fixed xg, yo € R? and 5o < 19, we may assume that & 4 g2 <y =

(fo — 50)'/%/100. For otherwise, the estimate (1.15) follows directly from (3.6). For fixed
l<j<d 1=<B<m,let

d
u®(x, 1) = —{T*}(x, 1; yo, 50),
ay.,-

0 d
u§(x, 1) = —(TVx, 15y, ) — (85 yi + X% (v/e, —s /e
0 3)’k 0 3yj( k )

where )T;’V (y/e, —s/e‘z) is the corrector of 9, +Eg. Note that (0, + L¢)ue, = (0; + Ly)ug =0
in Q4 (x0, fo). We can apply Theorem 6.1 to u, = () and ug = (ug)) in Q2 (xo, to), and
then use (1.5) as well as (1.14) to derive the desired estimate. ]
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