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Abstract
We extend the estimates for maximal Fourier restriction operators proved by Müller et al.
(RevMat Iberoam35:693–702, 2019) andRamos (ProcAmMath Soc 148:1131–1138, 2020)
to the case of arbitrary convex curves in the plane, with constants uniform in the curve. The
improvement over Müller, Ricci, and Wright and Ramos is given by the removal of the C2
regularity condition on the curve. This requires the choice of an appropriate measure for
each curve, that is suggested by an affine invariant construction of Oberlin (Michigan Math J
51:13–26, 2003). As corollaries, we obtain a uniform Fourier restriction theorem for arbitrary
convex curves and a result on the Lebesgue points of the Fourier transform on the curve.

Keywords Fourier restriction · Maximal functions · Convex curve · Affine arclength
measure · Affine measure

Mathematics Subject Classification 42B10 · 42B25

1 Introduction

The study of the restriction phenomena for the Fourier transform in R
n has been an active

research topic in harmonic analysis over the last decades. The most common instance of it, a
Fourier restriction estimate, comes in the form of the following inequality for every Schwartz
function f ∈ S(Rn)

∥
∥ f̂|S

∥
∥
Lq (S,ν)

≤ C(p, q, S, ν) ‖ f ‖L p(Rn) ,

where f̂ is the Fourier transform of f , S a hypersurfacewith appropriate curvature properties,
ν a suitablemeasure on S, the exponents p and q vary in an appropriate range, and the constant
C(p, q, S, ν) is independent of f . The a priori estimate in the previous display guarantees
the existence of a bounded restriction operator R : L p(Rn) → Lq(S, ν) such that R f = f̂
on S when f ∈ S(Rn). Such Fourier restriction estimates were first studied by Fefferman
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1644 M. Fraccaroli

and Stein who proved a result in any dimension ([11], pg. 28). This result was later improved
by the celebrated Stein-Tomas method [26, 31] which focuses on the case q = 2. Since then,
a huge mathematical effort has been put into studying the Fourier restriction phenomena
leading to the development of many new techniques. Despite that, many problems for any
arbitrary dimension n ≥ 3 are still open. For example, the question about sufficient conditions
on the exponents p and q in order for a Fourier restriction estimate to hold true.

In fact, standard examples (constant functions, Knapp examples) in the case of the sphere
S = S

n−1 with the induced Borel measure σ provide necessary conditions on the range of
exponents p and q in order for the inequality in the previous display to hold true, namely

1 ≤ p <
2n

n + 1
, q ≤ n − 1

n + 1
p′,

where 1
p + 1

p′ = 1. The main conjecture in the theory of Fourier restriction is that these
conditions are sufficient too. We refer to the exposition of Tao in [30] for a description of the
aforementioned standard examples.We point to the same reference also for amore exhaustive
introduction to the research topic of Fourier restriction, as well as an overview of the results
up to 2004.

In the case of a C2 convex curve � in the planeR
2 the conditions on the exponents are also

sufficient. Sharp estimateswere provedfirst for the circleS
1 byZygmund in [33], and formore

general curves by Carleson and Sjölin in [5] and Sjölin in [25]. In fact, in [25] Sjölin proved
a uniform Fourier restriction result for such curves upon the choice of a specific measure
ν = ν(�) on each curve. This is the so called affine arclength measure, encompassing the
curvature properties of the �. In the case of the circle, it coincides with the induced Borel
measure σ , thus proving the sharpness of the result of Sjölin.

In [18] Müller, Ricci, and Wright addressed a different feature of the Fourier restriction
phenomena, namely the pointwise relation between R f and f̂ for an arbitrary function
f ∈ L p(Rn). In the case of a C2 convex curve and a function f ∈ L p(R2), with 1 ≤ p < 8/7
they proved that ν-almost every point of the curve is a Lebesgue point for f̂ . Moreover, they
showed that the regularized value of f̂ coincides with that ofR f at ν-almost every point of
the curve. The main ingredient in their proof is given by the estimates for a certain maximal
Fourier restriction operator M defined as follows. For every Schwartz function f ∈ S(R2)

we define

M f̂ (x) := sup
R

∣
∣
∣
∣

∫

R2
f̂ (x − y)χR(y) d y

∣
∣
∣
∣
, (1.1)

where χR is a bump function adapted to R normalized in L1(R2) and the supremum is taken
over all rectangles R centred at the origin with sides parallel to the axes. Next, they use the
estimate

M f̂ ≤ (Mĥ)
1
2 ,

where M is the classical two-parameter maximal operator and h is defined by ĥ = ∣
∣ f̂

∣
∣
2
. To

obtain the desired result about the Lebesgue points for f ∈ L p(R2), they need to bound the
norms of h by those of f . This forces to assume the additional condition p < 8/7 on the
exponent.

In [22] Ramos extended their result to the full range 1 ≤ p < 4/3 in the case of the circle
S
1. The improvement relies on the estimates he proved for a more general class of maximal

Fourier restriction operators
{Mg : ‖g‖L∞(R2) = 1},
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Uniformmaximal Fourier restriction for convex curves 1645

where for every function g normalized in L∞(R2) we define Mg as follows. For every
Schwartz function f ∈ S(R2) we define

Mg f̂ (x) := sup
R

∣
∣
∣
∣

∫

R2
f̂ (x − y)g(x − y) |R|−1 1R(y) d y

∣
∣
∣
∣
, (1.2)

where the supremum is taken over all rectangles R centred at the origin with sides parallel
to the axes. In particular, the freedom in the choice of g allows Ramos to bring the absolute
value inside the integral defining the averages, thus bypassing the artificial limitation arising
in Müller, Ricci, and Wright argument.

The line of investigation about the boundedness properties of maximal Fourier restriction
operators initiated by Müller, Ricci, and Wright has been developed further in a series of
papers that followed up. In [32] Vitturi studied estimates for a maximal Fourier restriction
operator in the case of the sphere S

n−1 inR
n for any arbitrary dimension n ≥ 3. The operator

considered is of the form described in (1.1) with the supremum taken over averages on balls.
Vitturi used the estimates on this operator to prove the analogue of the Lebesgue points
property of f̂ for every function f ∈ L p(R2) with 1 ≤ p ≤ 8/7. The range of exponents
was later improved byRamos in [22] to 1 ≤ p ≤ 4/3 consideringmaximal Fourier restriction
operators of the form described in (1.2) with the supremum taken over averages on balls. It is
worth noting that in the case of dimension n ≥ 3, due to the range of Stein-Tomas estimates,
the endpoint p = 4/3 is recovered, as opposed to the case of dimension n = 2.

In parallel, in [16] Kovač studied estimates for certain variational Fourier restriction oper-
ators in any arbitrary dimension n ≥ 2. These operators are defined by variation norms, rather
than the L∞ norm, on averages of the form of those appearing on the right hand side in (1.1)
computed with respect to isotropic rescaling of an arbitrary measure μ. He developed an
abstract method to upgrade Fourier restriction estimates with p < q to estimates for the vari-
ational Fourier restriction operators with the same exponents. As a consequence, he obtained
a quantitative version of the qualitative result about the convergence of averages in Lebesgue
points. Kovač provided sufficient conditions for the method to work. These conditions are
expressed in terms of certain decay estimates on the gradient of μ̂. Together with Oliveira e
Silva, he later improved over the sufficient conditions in [17].

Next, in [23] Ramos studied estimates for certain maximal Fourier restriction operators
associated with an arbitrary measure μ in the case of dimension n = 2 and n = 3. Once
again, he considered operators of the form described in (1.2) with the supremum taken
over averages computed with respect to isotropic rescaling of μ. Ramos provided sufficient
conditions on themeasureμ to obtain estimates for themaximal Fourier restriction operators.
These conditions are expressed in terms of the boundedness properties close to L2(Rn) of
the maximal function associated with μ. In particular, he recovered the case of the spherical
measures that, in dimension n = 2 and n = 3, do not satisfy the sufficient conditions stated
in [16, 17]. Since Kovač and Oliveira e Silva use stronger norms but weaker averages than
Ramos, the results in [16, 17] and those in [22, 23] are not comparable, and we refer to those
papers for an exposition of the connections between their results.

Finally, in [15] Jesurum studied estimates for a maximal Fourier restriction operator in
the case of the moment curve {(t, 1

2 t
2, . . . , 1

n t
n) : t ∈ R} in R

n for any arbitrary dimension
n ≥ 3. The operator considered is of the form described in (1.2) with the supremum taken
over averages on balls. Jesurum followed the argument of Drury in [10], where Drury proved
Fourier restriction estimates for themoment curve in the full range 1 ≤ p < (n2+n+2)/(n2+
n), q = 2p′/(n2 + n). In particular, Jesurum recovered the analogue of the Lebesgue points
property of f̂ for every function f ∈ L p(Rn) with p in the same range of exponents.
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1646 M. Fraccaroli

In fact, both Ramos in [23] and Jesurum in [15] considered also stronger maximal Fourier
restriction operators. In particular, in the definition of these operators they substituted the
supremum taken over L1 averages on balls with that over Lr averages for arbitrary r ≥ 1.
By Hölder’s inequality, the operators are increasing in r . We refer to those papers for details
about the estimates for these maximal Fourier restriction operators, as well as the analysis of
the threshold values for r ≥ 1 in relation to such estimates.

In this paper, we are concerned with extending the results of Müller, Ricci, and Wright in
[18] and Ramos in [22] to the case of arbitrary convex curves in the plane, uniformly in the
curve. Such curves are the boundaries of non-empty open convex sets in R

2. Passing from
the case of the circle S

1 to the case of an arbitrary C2 convex curve � is straight-forward upon
the choice of the affine arclength measure on �. We are going to introduce such measure
in a moment. The main point of the paper is the removal of the C2 regularity condition on
the curve. It goes through the choice of a suitable extension of the affine arclength measure,
which was suggested by an affine invariant construction described by Oberlin in [21]. The
desired extension of the results then follows the line of proof by Ramos up to the appropriate
modifications.

We turn now to the description of two measures on an arbitrary convex curve � in the
plane. We elaborate in more detail in Sect. 2 and Appendix A. A first measure ν is built from
the arclength parametrization such a curve always admits

z : J → � ⊆ R
2,

where J is an interval in R, possibly unbounded. Let m be the Lebesgue measure on J . The
first and second derivatives z′ and z′′ with respect to m are functions well-defined pointwise
m-almost everywhere on J . We define a measure ν on J by

d ν(t) = 3
√

det
(

z′(t) z′′(t)
)

d t .

With a slight abuse of notation we denote by ν also its push-forward to � via the affine
arclength parametrization z. In particular, when � is C2 the argument of the cubic root is
well-defined everywhere in J and the measure ν on � is called affine arclength measure. We
extend the term to denote ν in the general case of arbitrary convex curves.

We define a secondmeasureμ on� following Oberlin. Oberlin’s construction of the affine
measures {μn,α : α ≥ 0} on R

n is analogous to that of the Hausdorff measures. The only
difference is that in the former we use rectangular parallelepipeds in R

n to cover sets while
in the latter we use balls. This change guarantees the affine invariance of μn,α , as well as it
allows μn,α to be sensitive to the curvature properties of the set on which μn,α is evaluated.
A general definition of μn,α can be found in [21]. Here, we restrict ourselves to the case
n = 2, α = 2/3 and we drop the subscripts from the notation of μ.

Definition 1.1 (Affine measure μ on R
2) For every δ > 0 and every subset E ⊆ R

2 we
define

μδ(E) := inf
{ ∑

R∈R′
|R| 13 : R′ ⊆ Rδ, E ⊆

⋃

R∈R′
R
}

,

where |R| is the Lebesguemeasure of the rectangle R andRδ is the collection of all rectangles
in R

2 with diameter smaller than or equal to δ. Next, we define

μ∗(E) := lim
δ→0

μδ(E).

Finally, we define the affine measure μ on R
2 to be the restriction of the outer measure

μ∗ on R
2 to its Carathéodory measurable subsets of R

2.
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Uniformmaximal Fourier restriction for convex curves 1647

With a slight abuse of notation we denote by μ also its restriction to the convex curve �,
as well as its push-forward to J via the inverse of the bijective function given by an arclength
parametrization z for �.

In [21] Oberlin proved that if the curve � is C2, then the affine measure μ and the affine
arclength measure ν are comparable up to multiplicative constants uniform in the curve. The
first observation of this paper is the extension of this property to the case of arbitrary convex
curves.

Theorem 1.2 There exist constants 0 < A ≤ B < ∞ such that for every convex curve � we
have

Aν ≤ μ ≤ Bν,

where μ, ν are the measures on � defined above.

The second observation of this paper is the uniform extension of the boundedness proper-
ties of the maximal Fourier restriction operator defined in (1.2) to the case of arbitrary convex
curves.

Theorem 1.3 Let 1 ≤ p < 4/3, q = p′/3. There exists a constant C = C(p) < ∞ such
that for every function g ∈ L∞(R2) normalized in L∞(R2), every convex curve �, and every
Schwartz function f ∈ S(R2) we have

∥
∥Mg f̂

∥
∥
Lq (�,ν)

≤ C ‖ f ‖L p(R2) ,

where ν is the measure on � defined above.

We have two straight-forward corollaries. The first is a uniform Fourier restriction result
for arbitrary convex curves.

Corollary 1.4 Let 1 ≤ p < 4/3, q = p′/3. There exists a constant C = C(p) < ∞ such
that for every convex curve � and every Schwartz function f ∈ S(R2) we have

∥
∥ f̂

∥
∥
Lq (�,ν)

≤ C ‖ f ‖L p(R2) ,

where ν is the measure on � defined above.

The second is the extension of the result on Lebesgue points of f̂ on the curve to the case
of arbitrary convex curves.

Corollary 1.5 Let 1 ≤ p < 4/3. Let � be a convex curve and ν the measure on � defined
above. If f ∈ L p(R2), then ν-almost every point of � is a Lebesgue point for f̂ . Moreover,
the regularized value of f̂ coincides with the one of R f at ν-almost every point of �.

The results stated in Theorem 1.3 and the corollaries highlight a strict relation between the
following objects. On one hand, the affine arclength and Oberlin’s affine measures, sensitive
to the curvature properties of the sets on which they are defined. On the other hand, uniform
estimates for classical operators involving smooth enough submanifolds in R

n , where the
curvature properties of the submanifold play a significant role. Beyond Fourier restriction
operators, it is the case of convolution operators, X-ray transforms, andRadon transforms.We
conclude the Introduction briefly mentioning previous works pointing at the aforementioned
relation in the analysis of all these operators [1–4, 6–9, 14, 19, 20, 28, 29]. We refer to these
papers and the references therein for a more thorough exposition of the relation. Finally, we
point out the work of Gressman in [12] on the generalization of the affine arclength measure
to smooth enough submanifolds of any arbitrary dimension d in R

n .
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1648 M. Fraccaroli

Guide to the paper

In Sect. 2 we introduce some notations, definitions, and previous results we clarify in
Appendix A. In Sect. 3 we prove Theorem 1.2. In Sect. 4 we prove Theorem 1.3 and the
corollaries.

2 Preliminaries

2.1 Notation

We introduce the following notations.
For every interval I ⊆ R we denote by �(I ) the lower triangle associated with I defined

by
�(I ) := {(s, t) ∈ I × I : t < s}.

For all vectors a, b ∈ R
2 \ {(0, 0)} we denote by θ(a, b) ∈ [0, 2π) the counterclockwise

angle from a to b.

2.2 Real analysis

We recall a result about the metric density associated with the absolutely continuous part of
a measure with respect to the Lebesgue measure.

Definition 2.1 Let x ∈ R
n . We say that a sequence {Eε : ε > 0} shrinks to x nicely if it is a

sequence of Borel sets in R
n and there is a number α > 0 satisfying the following property.

There is a sequence of balls {B(x, rε) : ε > 0} with limε→0 rε = 0, such that for every ε > 0
we have Eε ⊆ B(x, rε) and

m(Eε(x)) ≥ αm(B(x, rε)).

Theorem 2.2 (Rudin [24], Theorem7.14)For every x ∈ R
n let {Eε(x) : ε > 0} be a sequence

that shrinks to x nicely. Let μ be a Borel measure on R
n. Let

dμ = μ′ dm + dμs,

be the decomposition of μ into the absolutely continuous and singular parts with respect to
the Lebesgue measure m in R

n. Then, for m-almost every x ∈ R
n we have

lim
ε→0

μ(Eε(x))

m(Eε(x))
= μ′(x).

2.3 Convex curves

We introduce some auxiliary notations and definitions, and we recall some observations and
properties for convex curves in the plane. They guarantee a formalization of the definition of
the affine arclength measure ν we gave in the Introduction. These properties are standard, but
we were not able to find any clear reference for them. Therefore, for the sake of completeness
we include the required proofs in Appendix A.

Definition 2.3 A set K ⊆ R
n is convex if for all x, y ∈ K , 0 ≤ λ ≤ 1 we have

λx + (1 − λ)y ∈ K .

123



Uniformmaximal Fourier restriction for convex curves 1649

A convex curve � ⊆ R
2 is the boundary ∂K of a non-empty open convex set K ⊆ R

2.

From now on, we restrict ourselves to compact convex curves. We extend the definitions
and results to every non-compact convex curve� considering the sequence of compact convex
curves

{�N := ∂(K ∩ [−N , N ]2) : N ∈ N}.

Theorem 2.4 Every compact convex curve � is rectifiable.

Therefore, a compact convex curve � admits an arclength parametrization

z : J = [0, �(�)) → � ⊆ R
2,

where �(�) is the length of the curve�.Without loss of generality,we assume the parametriza-
tion to be counterclockwise.Moreover, we have an almost identical arclength parametrization
defined by

z̃ : J̃ = (0, �(�)] → � ⊆ R
2,

z̃(�(�)) := z(0), ∀t ∈ (0, �(�)), z̃(t) := z(t).

With a slight abuse of notation, we denote both of the arclength parametrizations by z. The
identification is harmless and involves a single point. At any time it will be made clear by the
context which one is the appropriate choice of the arclength parametrization we are consid-
ering. A first instance of the feature just described appears in the following statement about
the existence of well-defined left and right derivatives of the function z. Strictly speaking,
we should define the left derivative z̃′l of z̃ on J̃ , and the right derivative z′r of z on J .

Theorem 2.5 The left and right derivatives z′l and z′r of z with respect to the Lebesguemeasure
m on J are well-defined functions from J to S

1, and they coincide m-almost everywhere.

In fact, the functions z′l and z′r admit well-defined derivatives m-almost everywhere.

Theorem 2.6 The derivatives z′′l and z′′r of z′l and z′r with respect to the Lebesgue measure m
on J are well-defined m-almost everywhere. They are functions from J to R

2 and coincide
m-almost everywhere.

Next, we define the Borel measure σ on J as follows. For all a, b ∈ J , a ≤ b we define

σ((a, b)) := max{0, θ(z′r (a), z′l(b))}, σ ((a, b]) := θ(z′r (a), z′r (b)),
σ ([a, b)) := θ(z′l(a), z′l(b)), σ ([a, b]) := θ(z′l(a), z′r (b)). (2.1)

We denote by κ the metric density associated with the absolutely continuous part of σ with
respect to the Lebesgue measure m on J .

Theorem 2.7 The measure σ is positive. The function κ coincides m-almost everywhere with
the functions det

(

z′l z′′l
)

and det
(

z′r z′′r
)

.

Finally, we define the affine arclength measure ν on J by

d ν(t) = 3
√

κ(t) d t .

With a slight abuse of notation, we denote by ν also its push-forward to � via the affine
arclength parametrization z.
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1650 M. Fraccaroli

3 Proof of Theorem 1.2

We begin by stating and proving an auxiliary lemma about the qualitative relation between
the affine measure μ and the Lebesgue measure m on J .

Lemma 3.1 The measure μ is absolutely continuous with respect to the Lebesgue measure
m on J , namely for every subset E ⊆ J we have

m(E) = 0 ⇒ μ(E) = 0.

In its proof, we need the following auxiliary definition.

Definition 3.2 Let I ⊆ J be an interval. Let c and d be in the closure J̄ of J such that
Ī = [c, d]. Assume that σ((c, d)) ≤ π/2. We define the rectangle R(I ) over I to be the
minimal rectangle containing z(I ) as follows.

If z′ is constant on the interior of I , then z(I ) is a segment. The affine measureμ of z(I ) is
zero, as z(I ) can be covered by arbitrarily thin rectangles. We define R(I ) to be the segment
z(I ) itself.

If z′ is not constant on the interior of I , then we define R(I ) to be the rectangle with two
adjacent vertices in z(c) and z(d), and minimal width h(R(I )), see Fig. 1. The condition on
z′ guarantees that h(R(I )) > 0. Moreover, let b(R(I )) = |z(d) − z(c)|. Furthermore, let the
point z(e) be in the intersection between z(I ) and the side of the rectangle opposite to that
connecting z(c) to z(d). Finally, let φ and ψ be the angles defined by

φ := θ(z(e) − z(c), z(d) − z(c)), ψ := θ(z(c) − z(d), z(e) − z(d)).

Proof of Lemma 3.1 Let E ⊆ J be such that m(E) = 0. We want to show that for every
ρ > 0 there exists a covering of z(E) by a collection of rectangles with bounded diameter
such that the sum of their areas is bounded by ρ.

By assumption, E has 1-dimensional Hausdorff measure zero. Therefore, for every ε > 0
there exists a covering of E by disjoint intervals {In = [cn, dn) : n ∈ N} of bounded lengths
�n = m(In) = |dn − cn | such that ∑

n∈N
�n ≤ ε. (3.1)

Without loss of generality, up to splitting every interval into four subintervals, we can assume
σ(In) ≤ π/2.

The set z(E) can be covered by the family {Rn : n ∈ N} of rectangles, where for every
n ∈ N we define Rn = R(In) to be the rectangle over the interval In as in Definition 3.2. The
diameter of Rn is bounded from above by

|z(e) − z(c)| + |z(d) − z(e)| .

Fig. 1 The rectangle R(I ) over the interval I

123



Uniformmaximal Fourier restriction for convex curves 1651

By the definition of the length of a curve, see Definition A.6 in the Appendix, the sum in
the previous display is bounded from above by �(z(In)). Finally, since z is an arclength
parametrization, we have that �(z(In)) = �n . Therefore, for every n ∈ N the diameter of Rn

is bounded from above.
Moreover, we claim that for every n ∈ N we have

hn
�n

≤ σ(In), (3.2)

where hn = h(Rn). In fact, for en , φn , and ψn as in Definition 3.2 and Fig. 1 we have

hn
�n

≤ hn
|cn − en | + hn

|dn − en |
≤ hn

|z(cn) − z(en)| + hn
|z(dn) − z(en)| = sin φn + sinψn ≤ φn + ψn ≤ σ(In).

Therefore, we have

∑

n∈N
|Rn | 13 =

∑

n∈N
(bnhn)

1
3 ≤

∑

n∈N
�
2
3
n

(hn
�n

) 1
3

≤
∑

n∈N
�
2
3
n σ(In)

1
3

≤
( ∑

n∈N
�n

) 2
3
( ∑

n∈N
σ(In)

) 1
3

≤ ε
2
3 (2π)

1
3 ,

where we used the definition of the length of a curve to dominate bn = b(Rn) by �n in
the first inequality, the inequality in (3.2) in the second, Hölder’s inequality with the pair of
exponents (3/2, 3) in the third, and the inequality in (3.1), the disjointness of In , and the
definition of σ in the fourth.

By taking ε arbitrarily small, we obtain the desired result. ��
Next, we prove the quantitative relation between the affine measure μ and the affine

arclength measure ν stated in Theorem 1.2.

Proof of Theorem 1.2 Without loss of generality, up to splitting J into eight disjoint subinter-
vals, we can assume σ(J ) ≤ π/4. It is enough to prove the desired comparability for every
subset E ⊆ J .

Part I: Aν ≤ μ. Let R be a closed rectangle such that

R ∩ z(J ) = z([c, d]),
where [c, d] ⊆ J . Let � : �([c, d]) → R + R be the function defined by

�(s, t) = z(s) + z(t).

The determinant of its Jacobian is defined m-almost everywhere, and it is

det
(

z′(t) z′(s)
)

.

Since the area of the subset R + R is 4 |R|, we have
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1652 M. Fraccaroli

4 |R| ≥
∫

�([c,d])
det

(

z′(t) z′(s)
)

d s d t

=
∫

�([c,d])

( ∫

[t,s]
det

(

z′(t) d z′
) )

d s d t

≥
∫

�([c,d])

∫ s

t
det

(

z′(t) z′′(u)
)

d u d s d t, (3.3)

where d z′ is the distributional derivative of z′, and z′′ is a function coinciding m-almost
everywhere with z′′l and z′′r .

For m-almost all t, u ∈ J , t ≤ u we have

det
(

z′(t) z′′(u)
) = ∣

∣z′′(u)
∣
∣ sin(θ(z′(t), z′(u)) + θ(z′(u), z′′(u)))

= ∣
∣z′′(u)

∣
∣ cos(θ(z′(t), z′(u)))

≥ 1

2

∣
∣z′′(u)

∣
∣ sin(θ(z′(u), z′′(u)))

= 1

2
det

(

z′(u) z′′(u)
)

, (3.4)

where in the second and in the third equality, as well as in the inequality we used

θ(z′(u), z′′(u)) = π

2
,

and in the inequality we also used

0 ≤ θ(z′(t), z′(u)) ≤ σ(J ) ≤ π

4
.

Therefore, there exists a constant C < ∞ such that we have

ν([c, d]) =
∫ d

c

3
√

κ(u) d u

=
∫ d

c
((d − u)(u − c))−

1
3 ((d − u)(u − c))

1
3 3
√

κ(u) d u

≤
( ∫ d

c
((d − u)(u − c))−

1
2 d u

) 2
3
( ∫ d

c
(d − u)(u − c)κ(u) d u

) 1
3

≤ C
( ∫ d

c

∫ u

c

∫ d

u
κ(u) d s d t d u

) 1
3

≤ C
( ∫

�([c,d])

∫ t

s
κ(u) d u d s d t

) 1
3

≤ 2C |R| 13 ,

where we used the definition of ν in the first equality, Hölder’s inequality with the pair of
exponents (3/2, 3) in the first inequality, we evaluated the first factor, which is independent
of c and d , in the third equality, we used Fubini in the second inequality, and we used
Theorem 2.7 and the chains of inequalities in (3.4) and (3.3) in the third inequality.

Now, let {Rn : n ∈ N} be a set of rectangles covering z(E) and define En ⊆ E by

z(En) = z(E) ∩ Rn .
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Then {En : n ∈ N} is a covering of E , and we have
∑

n∈N
|Rn | 13 ≥ 2C

∑

n∈N
ν(En) ≥ 2Cν(E).

By taking the lim inf over all the possible coverings, we obtain the desired inequality.

Part II: μ ≤ Bν. By Lemma 3.1, there exists a function μ′ : J → [0,∞) defined m-almost
everywhere such that for every measurable subset E ⊆ J we have

μ(E) =
∫

E
μ′(t) d t .

By Theorem 2.2, for m-almost every t ∈ J we have

μ′(t) = lim
ε→0

μ([s, s + ε])
ε

, where t ∈ [s, s + ε].
As in the proof of Lemma 3.1, the limit is bounded from above by

lim
ε→0

ε
2
3 (σ ([s, s + ε])) 1

3

ε
=

(

lim
ε→0

σ([s, s + ε])
ε

) 1
3
.

By Theorem 2.2 and Theorem 2.7, we obtain the desired inequality. ��

4 Proofs of Theorem 1.3 and the corollaries

We begin with an auxiliary definition.

Definition 4.1 Ameasurable function a in R
n is a bump function if there exists a rectangular

parallelepiped R centred at the origin with sides parallel to the axes such that

‖a‖L∞(Rn) ≤ |R|−1 1R .

We denote by An the collection of bump functions on R
n .

The convolution with such bump functions is pointwise bounded by the strong Hardy-
Littlewood maximal function, uniformly in the rectangle.

Next, we state and prove an auxiliary lemma about the boundedness properties of the
adjoint operator of a certain linearised maximal Fourier restriction operator.

Lemma 4.2 Let 1 ≤ r < 2. There exists a constant C = C(r) < ∞ such that the following
property holds true.

For every convex curve� parametrized by arclength z : J → � ⊆ R
2 and every collection

{az(t) : t ∈ J } ⊆ A2 of bump functions such that, as a function in (t, x),

az(t)(x) ∈ L∞(d ν(t); L1(d x)),

let S = S(�, {a}) be the operator defined as follows. For every function f ∈ L4(J , ν) we
define

S f (ξ) =
∫

J
âz(t)(ξ)e2π iξ ·z(t) f (t) d ν(t).

Then, we have
‖S f ‖L2r ′ (R2)

≤ C ‖ f ‖
L

2r
3−r (J ,ν)

.
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Its proof relies on a lemma about the boundedness properties of an adjoint operator of a
linearised maximal operator combined with a Fourier transform proved by Ramos.

Lemma 4.3 (Ramos [22], Lemma 1) Let n, k ≥ 1. There exists a constant C = C(n, k) < ∞
such that the following property holds true.

For every collection

{

bx : b̂x =
k

∏

i=1

b̂x,i , bx,i ∈ An, x ∈ R
n
}

,

of convolution products of k bump functions such that, as function in (x, y),

bx (y) ∈ L∞(d x; L1(d y)),

let T = T ({bx }) be the operator defined as follows. For every function f ∈ L2(Rn)∩L1(Rn)

we define

T f (ξ) =
∫

Rd
b̂x (ξ)e2π i x ·ξ f (x) d x .

Then, we have
‖T f ‖L2(Rn) ≤ C ‖ f ‖L2(Rn) .

Proof of Lemma 4.2 Without loss of generality, by the definition of ν, we restrict our attention
to I ⊆ J where z′l and z′r coincide, and κ(t) is well-defined and strictly positive.

Following the idea of Carleson-Sjölin in [5] and Sjölin in [25], we rewrite the square of
S f via a two-dimensional integral

S f (ξ)2 =
∫

I×I
âz(t)(ξ )̂az(s)(ξ)e2πξ ·(z(t)+z(s)) f (t) f (s) d ν(t) d ν(s)

= 2
∫

�(I )
âz(t)(ξ )̂az(s)(ξ)e2πξ ·(z(t)+z(s)) f (t) f (s) d ν(t) d ν(s).

We change variables via the bijective function � : �(I ) → � ⊆ R
2 defined by

�(s, t) = z(s) + z(t),

and for (s, t) ∈ �(I ) we define

b̂z(s)+z(t) := âz(s)âz(t),

F(z(s) + z(t)) := f (s) f (t)
∣
∣det

(

z′(s) z′(t)
)∣
∣
−1 3

√

κ(t) 3
√

κ(s).

By the definition of ν and �, we obtain

S f (ξ)2 = 2
∫

�

b̂x (ξ)e2π iξ ·x F(x) d x .

Next, we prove by interpolation that for every 1 ≤ r ≤ 2 there exists a constant C =
C(r) < ∞ such that we have

‖S f ‖2r
L2r ′ (R2)

= ∥
∥S f 2

∥
∥
r
Lr ′ (R2)

≤ C ‖F‖rLr (R2)
.

The case r = 1 follows from
∥
∥b̂x

∥
∥
L∞(R2)

≤ C . The case r = 2 follows from Lemma 4.3.

After that, to estimate the Lr (R2) norm of F for 1 ≤ r < 2, we invert the change of
variables �,
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∫

�

|F(x)|r dx =
∫

�(I )
| f (t) f (s)|r κ(t)

r
3 κ(s)

r
3
∣
∣det

(

z′(t) z′(s)
)∣
∣
1−r

d t d s

=
∫

�(I )
| f (t) f (s)|r κ(t)

r
3 κ(s)

r
3 |sin(θ(t) − θ(s))|1−r d t d s, (4.1)

where we define θ : I → [0, 2π) by requiring
(

cos θ(t)
sin θ(t)

)

= z′(t).

We split �(I ) in the four subsets defined as follows. For j ∈ {1, 2, 3, 4} we define

� j :=
{

(s, t) ∈ �(I ) : θ(s) − θ(t) ∈
[ ( j − 1)π

2
,
jπ

2

)}

,

and we observe that

for (s, t) ∈ �1, sin(θ(s) − θ(t)) ≥ 1

2
(θ(s) − θ(t)) ≥ 0,

for (s, t) ∈ �2, sin(θ(s) − θ(t)) ≥ 1

2
(π + θ(t) − θ(s)) ≥ 0,

for (s, t) ∈ �3, sin(θ(t) − θ(s)) ≥ 1

2
(θ(s) − θ(t) − π) ≥ 0,

for (s, t) ∈ �4, sin(θ(t) − θ(s)) ≥ 1

2
(2π + θ(t) − θ(s)) ≥ 0.

We obtain the desired estimate by controlling the portions of the integral in (4.1) in the
corresponding subsets separately.

Case I: (s, t) ∈ �1. We have

θ(s) − θ(t) ≥
∫ s

t
κ(u) d u ≥ 0. (4.2)

By the assumption on I made at the beginning of the proof, the function �1 : �1 → �̃1 ⊆
[0, 2π)2 defined by

�1(s, t) = (α(s), β(t)),

α(s) =
∫ s

0
κ(u) d u, β(t) =

∫ t

0
κ(u) d u, (4.3)

is bijective. Together with the change of variables via the function �1, the inequality in (4.2)
yields that the portion of the integral in (4.1) on �1 is bounded from above by

∫

�̃1

| f (s(α))|r | f (t(β))|r κ(s(α))
r
3−1κ(t(β))

r
3−1 |α − β|1−r d α d β.

ByHardy-Littlewood-Sobolev inequality, up to amultiplicative constant, the previous display
is bounded from above by

∥
∥
∥| f ◦ s|r (κ ◦ s)

r
3−1

∥
∥
∥

2

L
2

3−r ( Ĩ ,̃ν)
,

where Ĩ = α(I ) and ν̃ is the push-forward to Ĩ via α of the measure ν on I . We change
variables via the inverse of the bijective function α defined in (4.3). Up to a multiplicative
constant, we obtain the desired estimate for the portion of the integral in (4.1) on �1 by

‖ f ‖2r
L

2r
3−r (I ,ν)

.
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Case II: (s, t) ∈ �2. For S2(t) defined by

S2(t) := sup
{

u ∈ J : θ(u) ≤ θ(t) + π
}

≥ s,

we have

π + θ(t) − θ(s) ≥
∫ S2(t)

s
κ(u) d u ≥ 0. (4.4)

By the assumption on I made at the beginning of the proof, the function �2 : �2 → �̃2 ⊆
[0, 2π)2 defined by

�2(s, t) = (α(s, t), β(t)),

α(s, t) =
∫ S2(t)

s
κ(u) d u +

∫ t

0
κ(u) d u + π, β(t) =

∫ t

0
κ(u) d u, (4.5)

is bijective. Since the function S2 is increasing then it is differentiable almost everywhere.
Therefore, the function �2 is approximately totally differentiable almost everywhere in its
domain, see Theorem 1 and the following Example in [13]. Together with the change of
variables via the function �2, the inequality in (4.4) yields that the portion of the integral in
(4.1) on �2 is bounded from above by

∫

�̃2

| f (s(α))|r | f (t(β))|r κ(s(α))
r
3−1κ(t(β))

r
3−1 |α − β − π |1−r d α d β,

where we used the result stated in Theorem 2 in [13] for changes of variables that are
approximately totally differentiable almost everywhere.

As in Case I, we conclude by Hardy-Littlewood-Sobolev inequality and the change of
variables via the inverse of the bijective function defined in (4.5).

Case III: (s, t) ∈ �3. For S3(t) defined by

S3(t) := inf
{

u ∈ J : θ(u) ≥ θ(t) + π
}

≤ s,

we have

θ(s) − θ(t) − π ≥
∫ s

S3(t)
κ(u) d u ≥ 0.

We conclude as inCase II, with the change of variables via the bijective function�3 : �3 →
�̃3 ⊆ [0, 2π)2 defined by

�3(s, t) = (α(s, t), β(t)),

α(s, t) =
∫ s

S3(t)
κ(u) d u +

∫ t

0
κ(u) d u + π, β(t) =

∫ t

0
κ(u) d u.

Case IV: (s, t) ∈ �4. We have

2π + θ(t) − θ(s) ≥
∫ �(�)

s
κ(u) d u +

∫ t

0
κ(u) d u ≥ 0.

We conclude as in Case I, with the change of variables via the bijective function �4 : �4 →
�̃4 ⊆ [0, 2π)2 defined by

�4(s, t) = (α(s), β(t)),
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α(s) = 2π −
∫ �(�)

s
κ(u) d u, β(t) =

∫ t

0
κ(u) d u.

��
Next, we prove the boundedness of the maximal Fourier restriction operator uniformly in

the convex curve stated in Theorem 1.3.

Proof of Theorem 1.3 The proof follows a standard argument that we repeat for the sake of
completeness. Let g ∈ L∞(R2) be a function normalized in L∞(R2). Let R be a measurable
function associating a point in � to a rectangle centred at the origin with sides parallel to
the axes. We consider the linearised maximal Fourier restriction operator Mg,R defined as
follows. For every Schwartz function f ∈ S(R2) we define

Mg,R f̂ (t) =
∫

R2
f̂ (z(t) − y)g(z(t) − y) |R(z(t))|−1 1R(z(t))(y) d y.

We aim at proving boundedness properties for Mg,R with constants independent of the
linearising function R.

The operator is bounded from L1(R2) to L∞(J , ν). To prove its boundedness properties
near L4/3(R2), we introduce the bump function

ax (y) := |R(x)|−1 1R(x)(y)g(x − y),

and, by Plancherel, we rewrite

Mg,R f̂ (t) =
∫

R2
âz(t)(ξ)e2π iξ ·z(t) f (ξ) d ξ.

The adjoint operator M∗
g,R with respect to the L1(J , ν)-pairing is defined by

M∗
g,Rh(ξ) =

∫

J
âz(t)(ξ)e−2π iξ ·z(t)h(t) d ν(t).

By Lemma 4.2, for 1 ≤ r < 2 we have

M∗
g,R : L 2r

3−r (J , ν) → L2r ′
(R2),

∥
∥
∥M∗

g,R

∥
∥
∥
op

< ∞,

hence, for 1 ≤ p < 4/3 we have the desired result

Mg,R : L p(R2) → L
p′
3 (J , ν),

∥
∥Mg,R

∥
∥
op < ∞,

where ‖·‖op stands for the norm of the operator and p′ = 2r ′. ��
Finally, we prove the corollaries.

Proof of Corollary 1.4 For every function f ∈ S(R2) we define the function g by

g(ξ) =

⎧

⎪⎨

⎪⎩

∣
∣ f̂ (ξ)

∣
∣

f̂ (ξ)
, if f̂ (ξ) �= 0,

1, if f̂ (ξ) = 0.

In particular, we have
‖g‖∞ = 1, f̂ g = ∣

∣ f̂
∣
∣ .

Therefore, the function Mg f̂ dominates the function
∣
∣ f̂

∣
∣, and the desired result follows

from Theorem 1.3. ��
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1658 M. Fraccaroli

Proof of Corollary 1.5 The desired result holds true for every function f ∈ S(R2).
For 1 ≤ p < 4/3, the desired result for every function f ∈ L p(R2) follows from a

standard approximation argument and the boundedness properties of the maximal operator
stated in Theorem 1.3. ��
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Appendix A. Compact convex curves

A.1. Proof of Theorem 2.4

First, for every compact convex curve � we define a continuous parametrization γ in
Lemma A.5. We achieve this formalizing the following intuition, see Fig. 2. Let x0 be a
point in the bounded open convex set K ⊆ R

2, whose boundary ∂K is �. We parametrize �

by S
1 via the unique intersection between � and each positive half-line emanating from x0.

Moreover, we choose to parametrize S
1 by [0, 2π) counterclockwise, hence � too.

After that, we prove the rectifiability of every compact convex curve � = ∂K claimed in
Theorem 2.4. The main ingredient in the proof is the inequality between the perimeters of
convex polygons A and B such that A ⊆ B stated in Lemma A.11.

We beginwith the definition of the continuous parametrization γ for every compact convex
curve � = ∂K outlined above. We first state and prove three auxiliary lemmata.

Lemma A.1 Let x ∈ K, y ∈ ∂K. For every 0 < λ ≤ 1 we have λx + (1 − λ)y ∈ K.

Proof Fix 0 < λ ≤ 1. Since y ∈ ∂K , there exists a sequence {yn : n ∈ N} ⊆ K converging
to y. Moreover, the sequence {xn : n ∈ N} defined by

xn := x − 1 − λ

λ
(y − yn),

converges to x . Therefore, there exists N such that xN ∈ K , yielding

λx + (1 − λ)y = λxN + (1 − λ)yN ∈ K .

��

Fig. 2 The intuitive parametrization of � = ∂K
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Lemma A.2 Let x0 ∈ K. The function T = T (x0) defined by

T : S
1 → (0,∞), T (e) := sup

{

t ≥ 0 : x0 + te ∈ K
}

,

is well-defined. Moreover, for every e ∈ S
1 we have

∂K ∩ {x0 + te : t ≥ 0} = {x0 + T (e)e}.
Proof Since K is open and bounded, for every e ∈ S

1 we have T (e) ∈ (0,∞).
Next, by the definition of T (e), there exists an increasing sequence {tn : n ∈ N} ⊆ (0,∞)

converging to T (e). Therefore, the sequence {x0+tne : n ∈ N} ⊆ K converges to x0+T (e)e.
Since for T (e) < t < ∞ the point x0 + te ∈ R

2 \ K , then x0 + T (e)e ∈ ∂K .
To conclude, suppose there exists t > 0, t �= T (e) such that x0 + te ∈ ∂K .
If t < T (e), by Lemma A.1 we have x0 + te ∈ K , yielding a contradiction with x0 + te ∈

∂K .
If t > T (e), the same argument yields a contradiction with x0 + T (e)e ∈ ∂K . ��

Lemma A.3 Let x0 ∈ K. For T = T (x0) the function τ = τ(x0) defined by

τ : S
1 → ∂K ⊆ R

2, τ (e) := x0 + T (e)e,

is well-defined and bijective

Proof The function is well-defined by Lemma A.2.
Injective. Suppose there exist e1, e2 ∈ S

1, e1 �= e2 such that

x0 + T (e1)e1 = x0 + T (e2)e2.

If e1 �= −e2, they are two linearly independent vectors, hence T (e1) = T (e2) = 0,
yielding a contradiction with T (e1), T (e2) > 0.

If e1 = −e2, then T (e1) = −T (e2). Since T (e1) > 0, then T (e2) < 0, yielding a
contradiction with T (e2) > 0.

Surjective. Let x ∈ ∂K and consider

e = x − x0
|x − x0| ∈ S

1.

Then x ∈ ∂K ∩ {x0 + te : t ≥ 0}. By Lemma A.2, we have x = x0 + T (e)e. ��
The remaining ingredient to define γ is the following collection of parametrizations of

S
1.

Definition A.4 Let e ∈ S
1 ⊆ R

2. We define the the counterclockwise continuous
parametrization � = �(e) of the circle S

1 with starting point e by

� : [0, 2π) → S
1 ⊆ R

2, �(θ) :=
(

cos θ − sin θ

sin θ cos θ

)

e.

In particular, for every x1 ∈ ∂K let � = �(x1) be the counterclockwise continuous
parametrization of the circle S

1 with starting point τ−1(x1) ∈ S
1.

Lemma A.5 Let x0 ∈ K, x1 ∈ � = ∂K. For τ = τ(x0), � = �(x1) the function γ =
γ (x0, x1) defined by

γ : [0, 2π) → � = ∂K ⊆ R
2, γ := τ ◦ �,

is well-defined, bijective and continuous.
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1660 M. Fraccaroli

Proof The function is well-defined and bijective by Lemma A.3 and the definition of �. The
continuity of γ follows from that of � and T ◦ �.

It is enough to prove that the function T ◦ � is continuous. We argue by contradiction
and we suppose that it has a discontinuity in θ . Let {θn : n ∈ N} be a sequence converging
to θ such that {T (�(θn)) : n ∈ N} does not converge to T (�(θ)). In particular, there exists
ε > 0 and a subsequence {θn : n ∈ M ⊆ N} ⊆ {θn : n ∈ N} such that

inf
{

|T (�(θ)) − T (�(θn))| : n ∈ M
}

≥ ε.

Since K is compact, there exists a subsequence {θn : n ∈ M̃ ⊆ M} ⊆ {θn : n ∈ M} such that
the limit of {T (�(θn)) : n ∈ M̃} exists and is T̃ �= T (�(θ)). We distinguish two cases.

Case I: T̃ > T (�(θ)). Fix t such that T̃ > t > T (�(θ)). The sequence
{

x0 + t

T̃
T (�(θn))�(θn) : n ∈ M̃

}

⊆ K ,

converges to x0 + t�(θ). Therefore, we have x0 + t�(θ) ∈ K ∪ ∂K . Then, by the convexity
of K and Lemma A.1, we have x0 + T (�(θ))�(θ) ∈ K , yielding a contradiction with
x0 + T (�(θ))�(θ) ∈ ∂K .

Case II: T (�(θ)) > T̃ . Fix t such that T (�(θ)) > t > T̃ . The sequence
{

x0 + t

T̃
T (�(θn))�(θn) : n ∈ M̃

}

⊆ R
2 \ (K ∪ ∂K ),

converges to x0+ t�(θ). Therefore, we have x0+ t�(θ) ∈ R
2\K . However, by Lemma A.1,

we have x0 + t�(θ) ∈ K , yielding a contradiction. ��
We continue with the proof that every compact convex curve � = ∂K is rectifiable. We

first recall the definition of rectifiability.

Definition A.6 Let γ : I → � ⊆ R
2 be a continuous parametrization of a curve, where

I ⊆ R is a bounded interval of either of the following forms

I = [a, b], I = [a, b), I = (a, b], I = (a, b).

Let P = {P0, . . . , Pk} be a finite and strictly increasing collection of points in I , namely
P0 < P1 < · · · < Pk . Let σγ (P) be the polygonal curve given by the segments between
γ (Pi ) and γ (Pi+1). Let �(σγ (P)) be the length of σγ (P) defined by

�(σγ (P)) :=
k−1
∑

i=0

|γ (Pi+1) − γ (Pi )| .

Let P be the set of all possible finite and strictly increasing collections of points in I . The
curve γ (I ) is rectifiable if

�(γ (I )) := sup
{

�(σγ (P)) : P ∈ P
}

< ∞,

and we call �(γ (I )) the length of γ (I ).

Remark A.7 If I = [a, b], without loss of generality we consider only finite and strictly
increasing collections {P0, . . . , Pk} of points in I such that P0 = a, Pk = b.
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Now, for every parametrization γ : [0, 2π) → � = ∂K we define the parametrization
γ̃ : [0, 2π] → � = ∂K by

∀t ∈ [0, 2π), γ̃ (t) := γ (t), γ̃ (2π) := γ (0).

In particular, for γ̃ we can apply the observation made in Remark A.7. Moreover, it is
straight-forward to observe that �(γ ([0, 2π))) = �(γ̃ ([0, 2π])). Therefore, with a slight
abuse of notation, we denote by γ also γ̃ .

Moreover, we introduce the auxiliary definition of convex hull we use in the remaining
part of the Appendix.

Definition A.8 Let Q = {Q1, . . . , Qk} be a finite collection of points inR
2. The open convex

hull ch(Q) is defined by

ch(Q) :=
{ k

∑

i=1

αi Qi : (α1, . . . , αk) ∈ (0, 1)k,
k

∑

i=1

αi = 1
}

.

Next, we state and prove three auxiliary lemmata.

Lemma A.9 Let x, y ∈ � = ∂K, x �= y. Let γ = γ (x) : [0, 2π] → � = ∂K be the
counterclockwise parametrization such that γ (0) = x. Let s ∈ (0, 2π) be such that γ (s) = y.
Then the two pieces γ ((0, s)) and γ ((s, 2π)) of the curve � are in the closure of the distinct
half-planes defined by the line l passing through x and y.

Proof Let x0 ∈ K . Let lx be the half-line emanating from x0 and passing through x , and ly
the half-line emanating from x0 and passing through y. We distinguish three cases.

Case I: s = π . Then lx , ly ⊆ l, and the statement is satisfied.

Case II: s < π . In particular, x0 /∈ l. Let H0 be the open half-plane such that ∂H0 = l
and x0 ∈ H0. The piece γ ((0, s)) of the curve � is in the section of the plane defined
by the counterclockwise angle from lx to ly . We claim that γ ((0, s)) ⊆ Hc

0 . We argue by
contradiction and we suppose that there exists 0 < u < s such that γ (u) belongs to the open
subset C = ch(x, y, x0) ⊆ K , see Fig. 3. Then γ (u) ∈ K , yielding a contradiction with
γ (u) ∈ ∂K .

Let � be the open section of the plane defined by the counterclockwise angle from ly
to lx . Let A and B be the connected open subsets of the plane such that A ∩ B = ∅,
A ∪ B = � ∩ (H0 ∪ ∂H0)

c, x ∈ ∂A and y ∈ ∂B, see Fig. 3. The piece γ ((s, 2π)) of the
curve � is in the set �. We claim that γ ((s, 2π)) ⊆ H0 ∪ ∂H0. We argue by contradiction
and we suppose that there exists s < u < 2π such that γ (u) belongs to either of the subsets
A and B. Without loss of generality, we assume γ (u) ∈ A. Then x ∈ ch(γ (u), y, x0) ⊆ K ,
yielding a contradiction with x ∈ ∂K .

Case III: s > π . We proceed as in Case II, switching the arguments for the two subcases. ��

Fig. 3 The open subsets A, B,C in Case II

123



1662 M. Fraccaroli

Lemma A.10 Let γ : [0, 2π ] → � ⊆ R
2 be a parametrization of a compact convex curve �.

Let P = {P0, . . . , Pk} be a finite and strictly increasing collection of points in [0, 2π] such
that P0 = 0, Pk = 2π . Then the open convex hull ch(γ (P)) is an open convex polygon, and
∂ ch(γ (P)) = σγ (P).

Proof Consider the segment between γ (Pj ) and γ (Pj+1). By Lemma A.9, all the points
in γ (P) are in the same closed half-plane defined by the line passing through γ (Pj ) and
γ (Pj+1). Therefore, the open convex hull ch(γ (P)) is in the same closed half-plane, and the
segment between γ (Pj ) and γ (Pj+1) belongs to the boundary ∂ ch(γ (P)).

Lemma A.11 Let A, B be two convex polygons such that A ⊆ B. Then

�(∂A) ≤ �(∂B).

Proof We prove the claim by induction on the number n of sides of ∂A that are not contained
in ∂B. If n = 0, then A = B and the desired inequality is satisfied.

Next, suppose that there are n ≥ 1 sides of ∂A that are not contained in ∂B. We choose
one, we draw the line l defined by it, and we let H be the closed half-plane defined by l
containing A, see Fig. 4. Then C = B ∩ H is a convex polygon and, by triangle inequality,
we have

�(∂C) ≤ �(∂B).

We observe that there are n − 1 sides of ∂A that are not contained in ∂C . Therefore, by
induction hypothesis, we obtain the desired inequality. ��

Proof of Theorem 2.4 Let B(0, R) be a ball centred at the origin with radius R containing K .
Let � be an equilateral triangle containing B(0, R).

By Lemma A.10, for every finite and strictly increasing collection P = {P0, . . . , Pk} of
points in [0, 2π] such that P0 = 0, Pk = 2π the open convex hull ch(γ (P)) is an open
convex polygon contained in �. Moreover, we have σγ (P) = ∂ ch(γ (P)).

By Lemma A.11, we have

�(γ (I )) := sup
{

�(σγ (P)) ≤ �(∂�) : P ∈ P
}

< ∞.

��
Remark A.12 Let x0 ∈ K , x1 ∈ � = ∂K . Let γ = γ (x0, x1) : [0, 2π) → � be the coun-
terclockwise parametrization defined in Lemma A.5. Let z = z(x1) : [0, �(�)) → � be the
counterclockwise affine arclength parametrization defined by

z(0) = x1.

The function γ −1 ◦ z is strictly increasing, because both γ and z are counterclockwise
parametrizations.

Fig. 4 The inductive step
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A.2. Proofs of Theorem 2.5, Theorem 2.6, and Theorem 2.7

We introduce two auxiliary functions θl and θr defined geometrically in every point of the
convex curve � = ∂K by the minimal cone centred at the point and containing the convex
set K . These functions are strictly related to the left and right derivatives of the arclength
parametrization z of �, and are helpful in proving the desired theorems.

Definition A.13 Let x be a point in � = ∂K . The cone Ex is defined by

Ex :=
{

e ∈ S
1 : {x + te : t > 0} ∩ ∂K �= ∅

}

.

See Fig. 5.

Lemma A.14 For every x ∈ � = ∂K we have S
1\Ex �= ∅.

Proof We argue by contradiction and we suppose that Ex = S
1. We fix any arbitrary coun-

terclockwise parametrization � : [0, 2π) → S
1 as in Definition A.4. Let y1, y2, y3 ∈ ∂K be

the points corresponding to the directions e1 = �(π/3), e2 = �(π), and e3 = �(5π/3).
Therefore, we have x ∈ ch(y1, y2, y3) ⊆ K , yielding a contradiction with x ∈ ∂K . ��

The previous result guarantees that the following definition is meaningful. For every
x ∈ � = ∂K let e0 = e0(x) ∈ S

1\Ex . Moreover, let � = �(e0) : [0, 2π) → S
1 be the

counterclockwise parametrization of the circle with starting point e0 as in Definition A.4.

Lemma A.15 For every x ∈ � = ∂K we have that �−1(Ex ) is an interval with extremal
points a, b ∈ [0, 2π) satisfying

a < b ≤ a + π. (A.1)

Proof Let θ1, θ2 ∈ �−1(Ex ) such that θ1 < θ2. We claim that for every θ ∈ [0, 2π),
θ1 < θ < θ2 we have e = �(θ) ∈ Ex .

By the definition of �, we have θ1 �= 0 and θ2 �= 2π . Now, let e1, e2 ∈ S
1 be defined by

e1 = �(θ1), e2 = �(θ2),

and let y1, y2 ∈ ∂K be defined by

y1 = {x + te1 : t > 0} ∩ ∂K , y2 = {x + te2 : t > 0} ∩ ∂K .

We distinguish three cases.

Case I: θ2 > θ1 + π . We have

ch(y1, y2) ∩ {x + te0 : t > 0} �= ∅,

Fig. 5 Two instances of Ex
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yielding a contradiction with e0 /∈ Ex .

Case II: θ2 < θ1 + π . We have

ch(y1, y2) ∩ {x + te : t > 0} �= ∅,

hence θ ∈ �−1(E).

Case III: θ2 = θ1 + π . By Case I, we have

θ1 = inf
{

θ ∈ �−1(Ex )
}

, θ2 = sup
{

θ ∈ �−1(Ex )
}

.

Let y ∈ K . It belongs to one of the two half-planes defined by the line through y1, x, y2.
Therefore, we have

θ̃ := �−1
( y − x

|y − x |
)

∈ Ex , θ1 < θ̃ < θ2 = θ1 + π,

and we reduce to Case II for the couples (θ1, θ̃ ) and (θ̃ , θ2).
Therefore, �−1(Ex ) is an interval with extremal points a, b ∈ [0, 2π). By Case I, we

obtain the desired relation between a, b described in (A.1). ��
In particular, � = ∂K is contained in the closed section of the plane defined by the half-

lines {x + t�(a) : t ≥ 0} and {x + t�(b) : t ≥ 0}. Now, for every x ∈ � = ∂K let Ex be the
cone as in Definition A.13 and let e0(x) ∈ S

1\Ex . Next, let �x : [0, 2π) → S
1 be the coun-

terclockwise parametrization of the circle with starting point in e0(x) as in Definition A.4.
After that, let x1 ∈ � = ∂K and let the arclength parametrization z = z(x1) : J → � be
defined as in Remark A.12. Then, we choose the counterclockwise parametrization of the
circle ϒ = ϒ(x1) : [0, 2π) → S

1 with starting point

�x1

(

inf
{

θ ∈ [0, 2π) : �x1(θ) ∈ Ex1

})

.

as in Definition A.4. Finally, we define the functions θl : (0, �(�)] → [0, 2π) and
θr : [0, �(�)) → [0, 2π) by

θl(t) := ϒ−1
(

− �z(t)

(

sup
{

θ : θ ∈ �−1
z(t)(Ez(t))

}))

,

θr (t) := ϒ−1
(

�z(t)

(

inf
{

θ : θ ∈ �−1
z(t)(Ez(t))

}))

.

Lemma A.16 For all s, t ∈ (0, �(�)), s < t we have

θr (s) ≤ θl(t) ≤ θr (t). (A.2)

Moreover, for every s ∈ (0, �(�)) we have

θr (0) ≤ θl(s) ≤ θr (s) ≤ θl(�(�)). (A.3)

Proof The first inequality in (A.2) follows from

θr (s) ≤ ϒ−1
( z(t) − z(s)

|z(t) − z(s)|
)

= ϒ−1
(

− z(s) − z(t)

|z(s) − z(t)|
)

≤ θl(t). (A.4)

The second inequality in (A.2) follows from Lemma A.15 and the definition of a counter-
clockwise parametrization of S

1 in Definition A.4. The first and the third inequalities in (A.3)
follow from the chain of inequalities in (A.4). ��
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Lemma A.17 The functions θl and θr are increasing and have bounded variation. Moreover,
they coincide m-almost everywhere.

Proof By Lemma A.16, the functions θl and θr are increasing. Moreover, they take values in
a bounded set, hence they have bounded variation.

Now, suppose that the functions θl and θr do not coincidem-almost everywhere. Therefore,
there exists an uncountable collection X ⊆ (0, �(�)) of points such that for every x ∈ X we
have

lim
t→x− θr (t) ≤ θl(x) < θr (x) ≤ lim

t→x+ θr (t).

Hence, we have

lim
t→�(�)−

θr (t) ≥
∑

x∈X

(

lim
t→x+ θr (t) − lim

t→x− θr (t)
)

= ∞,

yielding a contradiction with θr ([0, �(�)) ⊆ [0, 2π). ��
Lemma A.18 Fix s ∈ J and consider the function φ = φs defined by

φ : J \ {s} → [0, 2π), φ(t) :=

⎧

⎪⎨

⎪⎩

ϒ−1
( z(s) − z(t)

|z(s) − z(t)|
)

, if t < s,

ϒ−1
( z(t) − z(s)

|z(t) − z(s)|
)

, if t > s.

Then, the function φ is increasing.

Proof For all t, u ∈ J\{s}, t < u we claim that

φ(t) ≤ φ(u). (A.5)

Let x0 ∈ K , x1 ∈ � = ∂K , and let γ = γ (x0, x1) and z = z(x1) be the associated
parametrizations as in Remark A.12. Moreover, we consider the points z(s), z(t), and z(u).
By Remark A.12, we have

γ −1(z(t)) < γ −1(z(u)).

We distinguish three cases according to the relation between s, t , and u.

Case I: s < t < u. We distinguish five additional subcases.

Case I.i. We assume

γ −1(z(t)) < γ −1(z(s)) + π < γ −1(z(u)).

By Lemma A.15, the points z(t) and z(u) belong to distinct open half-planes defined by the
line passing through z(s) and γ (γ −1(z(s)) + π). Moreover, let e0 ∈ S

1 be defined by

e0 = z(s) − x0
|z(s) − x0| .

In particular, we have

−e0 = γ (γ −1(z(s)) + π) − x0
∣
∣γ (γ −1(z(s)) + π) − x0

∣
∣

∈ Ez(s).

By Lemma A.15, we have that −e0 belongs to the interior of Ez(s), hence we have e0 ∈
S
1\Ez(s). Let �z(s) : [0, 2π) → S

1 be the counterclockwise parametrization of the circle
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with starting point in e0 as in Definition A.4. To prove the desired inequality in (A.5), it is
enough to prove the inequality

�−1
z(s)

( z(t) − z(s)

|z(t) − z(s)|
)

≤ �−1
z(s)

( z(u) − z(s)

|z(u) − z(s)|
)

. (A.6)

To prove the desired inequality in (A.6), we argue by contradiction and we suppose that

�−1
z(s)

( z(u) − z(s)

|z(u) − z(s)|
)

< �−1
z(s)

( z(t) − z(s)

|z(t) − z(s)|
)

.

Therefore, the points z(t) and z(u) belong to the same open half-plane defined by the line
passing through z(s) and γ (γ −1(z(s)) + π), yielding a contradiction.

Case I.ii. We assume

γ −1(z(t)) < γ −1(z(u)) < γ −1(z(s)) + π.

Let ls and lu be the half-lines emanating from x0 and passing through z(s) and z(u) respec-
tively. Since the parametrization z is counterclockwise, the point z(t) belongs to the open
section of the plane defined by the angle strictly smaller thanπ between ls and lu . To prove the
desired inequality in (A.5), we argue by contradiction and we suppose that φ(u) < φ(t). Let
l ′u and l ′s be the half-lines emanating from z(s) and passing through z(u) and x0 respectively.
Since φ(u) < φ(t), the point z(t) belongs to the open section of the plane defined by the
angle strictly smaller than π between l ′u and l ′s . Therefore, we obtain

z(t) ∈ ch(z(s), z(u), x0) ⊆ K ,

yielding a contradiction with z(t) ∈ � = ∂K .

Case I.iii. We assume

γ −1(z(s)) + π < γ −1(z(t)) < γ −1(z(u)).

We argue by contradiction and we suppose that φ(u) < φ(t). Analogously to Case I.ii, we
obtain

z(u) ∈ ch(z(s), z(t), x0) ⊆ K ,

yielding a contradiction with z(u) ∈ � = ∂K .

Case I.iv. We assume

γ −1(z(t)) < γ −1(z(s)) + π = γ −1(z(u)).

The desired inequality in (A.5) follows from the fact that the parametrizations z, γ , and ϒ

are counterclockwise.

Case I.v. We assume

γ −1(z(t)) = γ −1(z(s)) + π < γ −1(z(u)).

We prove the desired inequality in (A.5) analogously to Case I.iv.

Case II: t < u < s. We distinguish five additional subcases and we prove the desired
inequality in (A.5) analogously to Case I.

Case III: t < s < u. We prove the desired inequality in (A.5) by Case I applied to φt and
Case II applied to φu . ��
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Lemma A.19 The function θr is right-continuous, and the function θl is left-continuous.

Proof We focus on the case of the function θr . The case of the function θl is analogous.
We want to prove that for every s ∈ J we have

θr (s) = lim
t→s+

θr (t).

We fix s ∈ J . By Lemma A.17, the limit is an infimum and it is enough to prove that for
every ε > 0 there exists t > s such that

θr (t) ≤ θr (s) + 2ε.

By the definition of θr , there exists u ∈ J , u > s such that

θr (s) ≤ ϒ−1
( z(u) − z(s)

|z(u) − z(s)|
)

≤ θr (s) + ε. (A.7)

By Lemma A.9, the piece z((s, u)) of the curve � is in the closure of the half-plane defined
by the line passing through z(s) and z(u). In particular, by the definition of θr and θl , and
Lemma A.18, for every t ∈ J , s < t < u we have

θr (s) ≤ ϒ−1
( z(t) − z(s)

|z(t) − z(s)|
)

≤ ϒ−1
( z(u) − z(t)

|z(u) − z(t)|
)

≤ θl(u).

We distinguish two cases.

Case I. We assume

ϒ−1
( z(u) − z(s)

|z(u) − z(s)|
)

= θr (s).

Then, we have θl(u) = θr (s). By Lemma A.16, for every t ∈ J , s < t < u we have

θr (t) = θr (s).

Case II. We assume

ϒ−1
( z(u) − z(s)

|z(u) − z(s)|
)

> θr (s).

Then, we have θl(u) > θr (s). By Lemma A.15, there exists t ∈ J , s < t < u such that

0 ≤ ϒ−1
( z(u) − z(t)

|z(u) − z(t)|
)

− ϒ−1
( z(u) − z(s)

|z(u) − z(s)|
)

= �−1
z(u)

( z(t) − z(u)

|z(t) − z(u)|
)

− �−1
z(u)

( z(s) − z(u)

|z(s) − z(u)|
)

≤ ε. (A.8)

Together with the definition of θr , the inequalities in (A.7) and (A.8) yield

θr (t) ≤ ϒ−1
( z(u) − z(t)

|z(u) − z(t)|
)

≤ θr (s) + 2ε.

��
We turn now to the derivatives z′l and z′r and their relation with the functions θl and θr .

Proof of Theorem 2.5 In the proof that the derivatives are well-defined, we focus on the case
of the right derivative z′r . The case of the left derivative z′l is analogous.
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We want to prove that for every s ∈ J the limit

z′r (s) := lim
t→s+

z(t) − z(s)

t − s
,

is well-defined in S
1.

We fix s ∈ J , we choose ε > 0 such that s + ε ∈ J . First, we consider the function
ψ = ψ(s) defined by

ψ : [s, s + ε) → [0, 2π), ψ(t) := ϒ−1
( z(t) − z(s)

|z(t) − z(s)|
)

− θr (s).

By the definition of θr and Lemma A.18, the following limit exists and we have

lim
t→s+

ϒ−1
( z(t) − z(s)

|z(t) − z(s)|
)

≥ θr (s).

Moreover, by the definition of θr , for every δ > 0 there exists t ∈ J , t > s such that

ϒ−1
( z(t) − z(s)

|z(t) − z(s)|
)

≤ θr (s) + δ.

Therefore, by Lemma A.18 we have

lim
t→s+

ϒ−1
( z(t) − z(s)

|z(t) − z(s)|
)

= θr (s). (A.9)

To conclude that z′r is well-defined in S
1, it is enough to prove that

lim
t→s+

|z(t) − z(s)|
t − s

= 1. (A.10)

By Lemma A.19, for ρ > 0 small enough we have

θl(s + ρ) ≤ θr (s + ρ) < θr (s) + π

2
. (A.11)

For every t ∈ (s, s + ρ) let y(s, t) be the intersection between the half-line emanating
from z(s) in the direction ϒ−1(θr (s)) and the half-line emanating from z(t) in the direction
−ϒ−1(θl(t)). By the inequalities in (A.11), the arc z([s, t]) of the curve � is contained in
the closure of the open convex hull ch(z(s), z(t), y(s, t)), which is an obtuse triangle. This
obtuse triangle is contained in a right-triangle with the segment between z(s) and z(t) as
hypotenuse and a cathetus on the half-line emanating from z(s) in the direction ϒ−1(θr (s)),
see Fig. 6. By an argument analogous to that used to prove Theorem 2.4, we have

t − s ≤ |z(t) − y(s, t)| + |y(s, t) − z(s)| ≤ (sinψ(t) + cosψ(t)) |z(t) − z(s)| ,

Fig. 6 The obtuse triangle ch(z(s), z(t), y(s, t)) shaded in blue and the associated right-triangle in black

123



Uniformmaximal Fourier restriction for convex curves 1669

where t − s is the length of the arc z([s, t]) of the curve �. Therefore, we have

lim
t→s+

|z(t) − z(s)|
t − s

≥ lim
t→s+

1

sinψ(t) + cosψ(t)
= 1.

Together with |z(t) − z(s)| ≤ t − s, the inequality in the previous display yields the desired
equality in (A.10).

In particular, by the equality in (A.9), we proved

z′l = ϒ ◦ θl , z′r = ϒ ◦ θr , (A.12)

Therefore, by Lemma A.17, the functions z′l and z′r coincide m-almost everywhere. ��
Finally, we recall a result about the differentiability of a function of bounded variation.

Theorem A.20 (Stein and Shakarchi [27], Theorem 3.4) Let a, b ∈ R. If F is of bounded
variation on [a, b], then F is differentiable almost everywhere.

Proof of Theorem 2.6 By Lemma A.17, the functions θl and θr have bounded variation. By
Theorem A.20, they admit derivatives θ ′

l and θ ′
r well-defined m-almost everywhere.

Moreover, by Lemma A.16, the function θr − θl is positive everywhere. By Lemma A.17,
it has bounded variation and it is zero m-almost everywhere. By Theorem A.20, it admits a
derivative m-almost everywhere, hence the derivative is zero m-almost everywhere. There-
fore, the functions θ ′

l and θ ′
r coincide m-almost everywhere.

As we concluded in (A.12), we have

z′l(t) =
(

cos θl(t)
sin θl(t)

)

, z′r (t) =
(

cos θr (t)
sin θr (t)

)

, (A.13)

hence the functions z′′l and z′′r are well-defined m-almost everywhere by

z′′l (t) =
(− sin θl(t)

cos θl(t)

)

θ ′
l (t), z′′r (t) =

(− sin θr (t)
cos θr (t)

)

θ ′
r (t). (A.14)

In particular, they coincide m-almost everywhere. ��
Proof of Theorem 2.7 By Lemma A.16, the Borel measure σ on J defined in (2.1) is positive.
Now, by the equalities in (A.12), for all a, b ∈ J , a ≤ b we have

σ((a, b)) = max{0, θl(b) − θr (a)}, σ ((a, b]) = θr (b) − θr (a),

σ ([a, b)) = θl(b) − θl(a), σ ([a, b]) = θr (b) − θl(a).

The metric density associated with the absolutely continuous part of σ with respect to the
Lebesgue measure m on J is κ .

Next, we define the Borel measure σr on J as follows. For all a, b ∈ J , a ≤ b we define

σr ((a, b)) = max{0, lim
t→b− θr (t) − θr (a)}, σr ((a, b]) = θr (b) − θr (a),

σr ([a, b)) = lim
t→b− θr (t) − θr (a), σr ([a, b]) = θr (b) − θr (a).

The metric density associated with the absolutely continuous part of σr with respect to the
Lebesgue measure m on J coincides m-almost everywhere with θ ′

r .
For every b ∈ J we consider the sequence of sets {(b − ε, b] : ε > 0} that shrinks to

b nicely as in Definition 2.1. On each of these sets, the Borel measure σ − σr is zero. By
Theorem 2.2, the metric density associated with the absolutely continuous part of σ − σr
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with respect to the Lebesgue measure m on J is zero m-almost everywhere. Therefore, the
functions κ and θ ′

r coincide m-almost everywhere. Analogously we prove that the functions
κ and θ ′

l coincide m-almost everywhere. By Theorem 2.6 and the equalities in (A.13) and
(A.14), for m-almost every t ∈ J we have

θ ′
l (t) = det

(

z′l(t) z′′l (t)
)

, θ ′
r (t) = det

(

z′r (t) z′′r (t)
)

,

yielding the desired result. ��
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