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Abstract
Let � be a bounded, smooth domain of RN , N ≥ 2. For 1 < p < N and 0 < q(p) < p∗ :=
Np
N−p , let

λp,q(p) := inf

{∫
�

|∇u|p dx : u ∈ W 1,p
0 (�) and

∫
�

|u|q(p) dx = 1

}
.

We prove that if lim p→1+ q(p) = 1, then lim p→1+ λp,q(p) = h(�), where h(�) denotes the
Cheeger constant of �. Moreover, we study the behavior of the positive solutions wp,q(p) to
the Lane–Emden equation − div(|∇w|p−2 ∇w) = |w|q−2 w, as p → 1+.

Keywords Cheeger constant · p-Laplacian · Picone’s inequality · Singular problem ·
Sobolev constants

Mathematics Subject Classification 35B40 · 35J92 · 49Q20

1 Introduction

Let � be a smooth, bounded domain of RN , N ≥ 2. For 1 < p < N and 0 < q ≤ p∗ :=
Np
N−p , let

λp,q := inf
{
‖∇u‖p

p : u ∈ W 1,p
0 (�) and ‖u‖q = 1

}
, (1.1)

where

‖u‖r :=
(∫

�

|u|r dx
) 1

r

, r > 0.

We recall that ‖·‖r is the standard norm of the Lebesgue space Lr (�) if r ≥ 1, but it is not
a norm if 0 < r < 1.
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1554 G. Ercole

Note from (1.1) that

λp,q ≤ ‖∇u‖p
p

‖u‖p
q

for all u ∈ W 1,p
0 (�) \ {0} (1.2)

since the above quotients are homogeneous.
When 0 < q < p∗, the existence of a minimizer u p,q for the constrained minimization

problem (1.1) follows from standard arguments of the Calculus of Variations. Moreover, u p,q

is a weak solution to the Dirichlet problem for the p-Laplacian operator
{−div

(|∇u|p−2 ∇u
) = λp,q |u|q−2 u in �

u = 0 on ∂�.
(1.3)

In consequence, u p,q > 0 in � and u p,q ∈ C1,α(�) for some 0 < α < 1. (We refer to
Giacomoni et al. [9, Theorem 1(i)] for the regularity of u p,q when 0 < q < 1, in which
case (1.3) is singular.) These facts are well known when 1 ≤ q < p∗, since λp,q is the best

constant in the Sobolev (compact) embedding W 1,p
0 (�) ↪→ Lq(�).

It is worth mentioning that u p,q is the only positive minimizer to (1.1) in the sublinear
case: 0 < q < p. However, this uniqueness property might fail in the superlinear, subcritical
case: p < q < p∗. For examples and a discussion about this issue, we recommend the
recent paper [4] by Brasco and Lindgren, where an important result is established for general
smooth bounded domains: the uniqueness of the minimizer u p,q whenever 2 < p < q and
q is sufficiently close to p. We stress that such a uniqueness result for 1 < p < 2 is not yet
available in the literature.

When q = p∗, the infimum λp,p∗ cannot be attained in W 1,p
0 (�) if � 	= R

N . Actually,
λp,p∗ does not depend on � as it coincides with the well-known Sobolev constant SN ,p, that
is:

λp,p∗ = SN ,p := Nω
p
N
N

(
N − p

p − 1

)p−1 (
�(N/p)�(1 + N − N/p)

�(N )

) p
N

, (1.4)

where �(t) = ∫ ∞
0 st−1e−sds is the Gamma function and ωN := πN/2/�(1 + N/2) is the

N -dimensional Lebesgue volume of the unit ball of RN .

According to [2, Theorem 9] by Anello et al., for each fixed p ∈ (1, N ) the function

(0, p∗] � q �→ λp,q |�| p
q

is decreasing and absolutely continuous on compact sets of (0, p∗]. The same result, but for
q ∈ [1, p∗], had already been obtained by Ercole [8].

As for q varying with p, Kawohl and Fridman proved in [10] that

lim
p→1+ λp,p = h(�) (1.5)

where h(�) is the Cheeger constant of �.

We recall that

h(�) := inf

{
P(E)

|E | : E ⊂ � and |E | > 0

}
,

where P(E) stands for the perimeter of E in R
N and |E | stands for the N -dimensional

Lebesgue volume of E .
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The Cheeger constant as limit of Sobolev-type constants 1555

The Cheeger problem consists of finding a subset E ⊂ � such that

h(�) = P(E)

|E | .

Such a subset E is called Cheeger set of �.

We notice from (1.4) that

lim
p→1+ λp,p∗ = Nω

1
N
N = |�| 1

N h(�
) (1.6)

where �
 denotes the ball of RN centered at the origin such that |�
| = |�| . The second
equality in (1.6) is due to the fact that balls are Cheeger sets of themselves (i.e. they are

calibrable). Hence, as R = (|�| /ωN )
1
N is the radius of �
, one has h(�
) = N/R =

N (ωN / |�|) 1
N . It is well known that h(�
) ≤ h(�), the equality occurs if and only if � is a

ball.
Owing to (1.5), when p → 1+, the minimizer u p,p converges in L1(�) (after passing to

a subsequence) to a function u1 whose the t-superlevel sets Et := {x ∈ � : u1(x) > t} are
Cheeger sets, for almost every t > 0. As shown in [10], these properties are obtained from
a variational version of the Cheeger problem in the BV setting, which we briefly present in
Sect. 2.

The approach of solving the Cheeger problem by a p-Laplacian approximation, as p →
1+, has been extended by Butazzo, Carlier and Comte in [6] to a slightly more general
Cheeger problem where the volume and the perimeter are weighted by two positive weight
functions. In that paper, after showing that such an approach does not provide a criterion for
determining the maximal Cheeger set, they introduced an alternative approximation method
in the BV setting, based in concave penalizations, to select maximal Cheeger sets.

In this paper we suppose that q varies with p along a more general path, q = q(p) for
p ∈ (1, p∗), and study the behavior of λp,q(p) when p → 1+ and q(p) → 1. Adapting
an estimate from Ercole [8] (see Lemma 3.1 below) and making use of (1.5), we extend the
results of Kawohl and Fridman [10]. Our main result, which will be proved in Sect. 3, is
stated as follows.

Theorem 1.1 If 0 < q(p) < p∗ and lim p→1+ q(p) = 1, then

lim
p→1+ λp,q(p) = h(�), (1.7)

lim
p→1+

∥∥u p,q(p)
∥∥
1 = 1 (1.8)

and

lim
p→1+

∥∥u p,q(p)
∥∥q(p)−p

∞ = 1. (1.9)

Moreover, any sequence
(
u pn ,q(pn)

)
,with pn → 1+, admits a subsequence that converges

in L1(�) to a nonnegative function u ∈ L1(�) ∩ L∞(�) such that:

(a) ‖u‖1 = 1,

(b)
1

|�| ≤ ‖u‖∞ ≤ h(�)N

|�| h(�
)N
, and

(c) for almost every t ≥ 0, the t-superlevel set

Et := {x ∈ � : u(x) > t}
is a Cheeger set.
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1556 G. Ercole

Besides allowing q(p) → 1−, which embraces (1.3) in its singular form, our approach
holds for every family of extremals u p,q(p) in the superlinear, subcritical case: p < q(p) <

p∗.
It is simple to verify that the function

vp,q := λ
1

q−p
p,q u p,q , (1.10)

is a positive weak solution to the Lane–Emden-type problem{−div
(|∇w|p−2 ∇w

) = |w|q−2 w in �

w = 0 on ∂�.
(1.11)

The next corollary is stated to solutions to (1.11) in the form (1.10). It is an immediate
consequence of (1.7) and (1.9) since

∥∥vp,q
∥∥q−p
q = λp,q

∥∥u p,q
∥∥q−p
q = λp,q and

∥∥vp,q
∥∥q−p

∞ = λp,q
∥∥u p,q

∥∥q−p
∞ .

Corollary 1.2 If 0 < q(p) < p∗ and lim p→1+ q(p) = 1, then

lim
p→1+

∥∥vp,q(p)
∥∥q(p)−p
q(p) = h(�) = lim

p→1+
∥∥vp,q(p)

∥∥q(p)−p
∞ .

In the particular case where q(p) ≡ 1, this result had already been obtained in [5] by
Bueno and Ercole, without using (1.5).

As it is well known, (1.11) has a unique positive weak solution when 0 < q < p, which
is, of course, that given by (1.10). However, there are examples of smooth domains for which
(1.11) has multiple positive weak solutions when p < q < p∗, which may be of the form
(1.10) or not (see [4] and references therein). By the way, it is plain to check that

λp,q = ∥∥vp,q
∥∥q−p
q = min

{
‖w‖q−p

q : w is a weak solution to (1.11)
}

. (1.12)

Corollary 1.2 deals with the behavior of positive weak solutions to (1.11) that attains the
minimum in (1.12). Aiming to cover a wider class of positive weak solutions wp,q to (1.11),

including those satisfying
∥∥wp,q

∥∥q−p
q > λp,q , we provide the following stronger result,

which will be proved in Sect. 4 by using Picone’s inequality (see [1, 3]).

Theorem 1.3 Letwp,q(p) ∈ W 1,p
0 (�) be a positive weak solution to (1.11), with p < q(p) <

p∗. Then, either

lim sup
p→1+

∥∥wp,q(p)
∥∥q(p)−p

∞ = +∞ (1.13)

or

lim
p→1+

∥∥wp,q(p)
∥∥q(p)−p
q(p) = h(�) = lim

p→1+
∥∥wp,q(p)

∥∥q(p)−p
∞ .

The alternative (1.13) can be replaced with (see Remark 4.1)

lim sup
p→1+

∥∥wp,q(p)
∥∥q(p)−p
q(p) = +∞.

We believe that determining whether this alternative (or its equivalent version (1.13)) is
actually possible is a very interesting open question that we plan to study in the near future.
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The Cheeger constant as limit of Sobolev-type constants 1557

2 The Cheeger problem in the BV setting

In this section, we assume that� is a Lipschitz bounded domain and collect some definitions,
properties and basic results related to the variational version of the Cheeger problem in the
BV setting. For details, we refer to Carlier and Comte [7] and Parini [11].

The total variation of u ∈ L1(�) is defined as

|Du| (�) := sup

{∫
�

u div ϕdx : ϕ ∈ C1
c (�;RN ) and ‖ϕ‖L∞ ≤ 1

}
.

The space BV (�) of the functions u ∈ L1(�) of bounded variation in � (i.e. |Du| (�) <

∞), endowed with the norm

‖u‖BV := ‖u‖1 + |Du| (�),

is a Banach space compactly embedded into L1(�). Moreover, the functional BV (�) �
u �→ |Du| (�) is lower semicontinuous in L1(�).

The Cheeger constant is also characterized as (see [11, Proposition 3.1])

h(�) = inf
BV0(�)

|Du| (RN )

‖u‖1 (2.1)

where

BV0(�) :=
{
u ∈ BV (RN ) : ‖u‖1 > 0 and u ≡ 0 in R

N \ �
}

and

|Du| (RN ) = |Du| (�) +
∫

∂�

|u| dHN−1

(HN−1 stands for the (N − 1)-Hausdorff measure in RN ).

Proposition 2.1 ([7, Corollary 1(2)]) Let (un) ⊂ BV0(�) be such that un → u in L1(RN ).

Then,

|Du| (RN ) ≤ lim inf
n→∞ |Dun | (RN ).

Proposition 2.2 Suppose that

h(�) = |Du| (RN )

‖u‖1
for some u ∈ BV0(�). Then,

Et := {x ∈ � : u(x) > t}
is a Cheeger set for almost every t ≥ 0.

Inversely, if E ⊂ � is a Cheeger set of �, then

h(�) = |DχE | (RN )

‖χE‖1
where χE stands for the characteristic function of E in RN .
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1558 G. Ercole

Proof Combining Coarea formula and Cavalieri’s principle, we find

0 = |Du| (RN ) − h(�) ‖u‖1 =
∫ ∞

0
(P(Et ) − h(�) |Et |)dt . (2.2)

As |Et | > 0 a.e. t ≥ 0, we have that P(Et ) − h(�) |Et | ≥ 0 a.e. t ≥ 0. Therefore, it
follows from (2.2) that

h(�) = P(Et )

|Et | a.e. t ≥ 0.

Now, if E ⊂ � is a Cheeger set of �, then χE ∈ BV0(�). As P(E) = |DχE | (RN ) and
‖χE‖1 = |E |, we have

h(�) = P(E)

|E | = |DχE | (RN )

‖χE‖1
.

��

3 Proof of Theorem 1.1

We recall from the Introduction that u p,q (for 1 < p < N and 0 < q < p∗) denotes the
positive minimizer of the constrained minimization problem (1.1), so that u p,q ∈ W 1,p

0 (�),

u p,q > 0 in �,
∥∥u p,q

∥∥
q = 1, λp,q = ∥∥∇u p,q

∥∥p
p ,

and u p,q is a weak solution to (1.3).
If q = p, the Dirichlet problem (1.3) is homogeneous and thus it can be recognized as an

eigenvalue problem. In this setting, λp,p is known as the first eigenvalue of the Dirichlet p-
Laplacian.Actually,λp,p is simple in the sense that the set of its corresponding eigenfunctions

is generated by u p,p, that is, w ∈ W 1,p
0 (�) is a nontrivial weak solution to{− div

(|∇u|p−2 ∇u
) = λp,p |u|p−2 u in �

u = 0 on ∂�
(3.1)

if and only if w = ku p,p for some k ∈ R\ {0} .

In this section, we prove Theorem 1.1 by assuming that ∂� is smooth enough to ensure
that u p,q ∈ C1(�). In consequence, u p,q ∈ BV0(�) (after extended as zero onRN \�) and∣∣Dup,q

∣∣ (RN ) = ∥∥∇u p,q
∥∥
1 ,

since
∣∣Dup,q

∣∣ (�) = ∥∥∇u p,q
∥∥
1 and

∫
∂�

∣∣u p,q
∣∣ dHN−1 = 0.

The next result is adapted from Lemma 5 of Ercole [8] established there for 1 ≤ q < p∗.

Lemma 3.1 Let u ∈ W 1,p
0 (�) ∩C1(�) be a positive weak solution to the Dirichlet problem{−div

(|∇u|p−2 ∇u
) = λ |u|q−2 u in �

u = 0 on ∂�
(3.2)

with 0 ≤ q < p∗ and λ > 0. If σ ≥ 1, then

Cλ,σ,q ‖u‖
N (p−q)+pσ

p∞ ≤ ‖u‖σ
σ , (3.3)
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The Cheeger constant as limit of Sobolev-type constants 1559

where

Cλ,σ,q :=
(

λp,p∗

λ

) N
p

(
p

p + N (p − 1)

)N+1

Iσ,q

and

Iσ,q :=
{

σ
∫ 1
0 (1 − τ)

N (p−1)
p τ

N (1−q)
p +σ−1dτ if 0 ≤ q < 1

σ
∫ 1
0 (1 − τ)

N (p−1)
p τσ−1dτ if 1 ≤ q < p∗.

Proof For each 0 < t < ‖u‖∞, let us define

(u − t)+ := max {u − t, 0} and At := {x ∈ � : u(x) > t} .

As (u − t)+ ∈ W 1,p
0 (�) and u is a positive weak solution to (3.2), we have∫

At

|∇u|p dx = λ

∫
�

|∇u|p−2 ∇u · ∇(u − t)+dx

= λ

∫
�

uq−1(u − t)+dx = λ

∫
At

uq−1(u − t)dx . (3.4)

We also have
(∫

At

(u − t)dx

)p

≤ |At |p−
p
p∗

(∫
At

(u − t)p
∗
dx

) p
p∗ ≤ |At |p−

p
p∗

λp,p∗

∫
At

|∇u|p dx, (3.5)

where we have used Hölder’s inequality and (1.2). Note that

λp,p∗ ≤ ‖∇(u − t)+‖p
p

‖(u − t)+‖p
p∗

=

∫
At

|∇u|p dx
(∫

At

(u − t)p∗dx

) p
p∗

.

We divide the remaining of the proof in two cases.
Case 1. 0 ≤ q < 1. As∫

At

uq−1(u − t)dx ≤ tq−1
∫
At

(‖u‖∞ − t)dx, (3.6)

we obtain from (3.4) the estimate∫
At

|∇u|p dx ≤ λtq−1(‖u‖∞ − t) |At | . (3.7)

Combining (3.7) and (3.5), we obtain the inequalities

λp,p∗ |At |−p+ p
p∗

(∫
At

(u − t)dx

)p

≤
∫
At

|∇u|p dx ≤ λtq−1(‖u‖∞ − t) |At |

which lead to

λp,p∗ t1−q

λ(‖u‖∞ − t)

(∫
At

(u − t)dx

)p

≤ |At |p(1−
1
p∗ + 1

p ) = |At |p( N+1
N ) . (3.8)

Now, let us define the function

g(t) :=
∫
At

(u − t)dx .
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1560 G. Ercole

It is simple to verify that

g(t) =
∫ ‖u‖∞

t
|As | ds,

so that

g′(t) = − |At | .
Then, (3.8) can be rewritten as

(
λp,p∗

λ

) N
p(N+1)

(
t1−q

‖u‖∞ − t

) N
p(N+1)

≤ −g′(t)g(t)−
N

N+1 . (3.9)

Integration of the right-hand side of (3.9) over [t, ‖u‖∞] yields

−
∫ ‖u‖∞

t
g′(s)g(s)−

N
N+1 ds = (N + 1)g(t)

1
N+1 − (N + 1)g(‖u‖∞)

1
N+1

≤ (N + 1)g(t)
1

N+1 (3.10)

whereas integration of the function at the left-hand side of (3.9) over [t, ‖u‖∞] yields
∫ ‖u‖∞

t

(
s1−q

‖u‖∞ − s

) N
p(N+1)

ds ≥ t
N (1−q)
p(N+1)

∫ ‖u‖∞

t
(‖u‖∞ − s)−

N
p(N+1) ds

= p(N + 1)

p + N (p − 1)
t
N (1−q)
p(N+1) (‖u‖∞ − t)

p+N (p−1)
p(N+1) . (3.11)

Thus, after integrating (3.9) we obtain from (3.10) and (3.11) the inequality

(
λp,p∗

λ

) N
p

(
p

p + N (p − 1)

)N+1

t
N (1−q)

p (‖u‖∞ − t)
p+N (p−1)

p ≤ g(t). (3.12)

As g(t) ≤ (‖u‖∞ − t) |At |, it follows from (3.12) that

(
λp,p∗

λ

) N
p

(
p

p + N (p − 1)

)N+1

t
N (1−q)

p (‖u‖∞ − t)
N (p−1)

p ≤ |At | .

Now, for a given σ ≥ 1, we multiply the latter inequality by σ tσ−1 and integrate over
[0, ‖u‖∞] to get (3.3) after noticing that

σ

∫ ‖u‖∞

0
|At | tσ−1dt =

∫
�

uσ dx,

and that the change of variable t = ‖u‖∞ τ yields
∫ ‖u‖∞

0
t
N (1−q)

p +σ−1
(‖u‖∞ − t)

N (p−1)
p dt = ‖u‖

N (p−q)
p +σ

∞
∫ 1

0
(1 − τ)

N (p−1)
p τ

N (1−q)
p +σ−1dτ.

Case 2. 1 ≤ q < p∗. The factor tq−1 in (3.6) can be replaced with ‖u‖q−1∞ , so that (3.9)
and (3.11) become

(
λp,p∗

λ

) N
p(N+1)

(
‖u‖1−q∞

‖u‖∞ − t

) N
p(N+1)

≤ −g′(t)g(t)−
N

N+1
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The Cheeger constant as limit of Sobolev-type constants 1561

and

∫ ‖u‖∞

t

(
‖u‖1−q∞

‖u‖∞ − s

) N
p(N+1)

ds = p(N + 1)

p + N (p − 1)
‖u‖

N (1−q)
p(N+1)∞ (‖u‖∞ − t)

p+N (p−1)
p(N+1) ,

respectively. Hence, we obtain from (3.10) that

(
λp,p∗

λ

) N
p(N+1) p(N + 1)

p + N (p − 1)
‖u‖

N (1−q)
p(N+1)∞ (‖u‖∞ − t)

p+N (p−1)
p(N+1) ≤ (N + 1)g(t)

1
N+1 .

Then, using that g(t) ≤ (‖u‖∞ − t) |At |, the latter inequality leads to

(
λp,p∗

λ

) N
p

(
p

p + N (p − 1)

)N+1

‖u‖
N (1−q)

p∞ (‖u‖∞ − t)
N (p−1)

p ≤ |At | . (3.13)

Multiplying (3.13) by σ tσ−1 and integrating over [0, ‖u‖∞], we arrive at (3.3) with

Iσ,q = σ

∫ 1

0
(1 − τ)

N (p−1)
p τσ−1dτ.

��
Remark 3.2 The estimate (3.3) can be rewritten as

Cλ,σ,q ‖u‖
N
p∗ (p∗−q)+(σ−q)

∞ ≤ ‖u‖σ
σ .

In the sequel, ep denotes the L∞-normalized minimizer corresponding to λp,p , that is:

ep := u p,p∥∥u p,p
∥∥∞

. (3.14)

As ep is also a positive weak solution to the homogeneous Dirichlet problem (3.1),
Lemma 3.1 applied to ep, with q = p, σ = 1 and λ = λp,p, yields

(
λp,p∗

λp,p

) N
p

(
p

p + N (p − 1)

)N+1 ∫ 1

0
(1 − τ)

N (p−1)
p dτ ≤ ∥∥ep∥∥1 .

Hence, we have

0 < |�|
(
h(�
)

h(�)

)N

≤ lim inf
p→1+

∥∥ep∥∥1 , (3.15)

since

lim
p→1+

(
λp,p∗

λp,p

) N
p = |�|

(
h(�
)

h(�)

)N

and

lim
p→1+

(
p

p + N (p − 1)

)N+1

= lim
p→1+

∫ 1

0
(1 − τ)

N (p−1)
p dτ = 1. (3.16)

Lemma 3.3 If qn → 1 and pn → 1+, then (up to a subsequence) epn converges in L1(�) to
a function e. Moreover,

lim
n→∞

∫
�

eqnpndx = lim
n→∞

∫
�

epnpn dx = ‖e‖1 > 0. (3.17)
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1562 G. Ercole

Proof We have
∥∥ep∥∥1 ≤ ∥∥ep∥∥∞ |�| = |�| and, by Hölder inequality,

∥∥∇ep
∥∥
1 ≤ ∥∥∇ep

∥∥
p |�|1− 1

p = λ
1
p
p,p |�|1− 1

p .

Hence, it follows from (1.5) that the family
(
ep

)
is uniformly bounded in BV (�). Therefore,

owing to the compactness of the embedding BV (�) ↪→ L1(�), we can assume that (up to a
subsequence) epn converges to a function e in L1(�) and also pointwise almost everywhere
in �. In view of (3.15), the convergence in L1(�) shows that ‖e‖1 > 0. As the nonnegative
functions eqnpn and epnpn are dominated by 1, the convergence a.e. in � leads to the equalities
in (3.17). ��
Lemma 3.4 If 0 < q(p) < p∗ and lim p→1+ q(p) = 1, then

lim sup
p→1+

λp,q(p) ≤ h(�) (3.18)

and

lim sup
p→1+

∥∥u p,q(p)
∥∥
1 ≤ 1. (3.19)

Proof Let us take pn → 1+ such that

lim
n→∞ λpn ,q(pn) = L := lim sup

p→1+
λp,q(p).

Using (1.2) for λpn ,q(pn) and the definition of epn , we have that

λpn ,q(pn) ≤
∥∥∇epn

∥∥pn
pn∥∥epn∥∥pn

q(pn)

= λpn ,pn

( ∥∥epn∥∥pn∥∥epn∥∥q(pn)

)pn

.

Hence, we can apply Lemma 3.3 to get (3.18) from (1.5), since

L = lim
n→∞ λpn ,q(pn) ≤ lim

n→∞ λpn ,pn

limn→∞
∥∥epn∥∥pn

limn→∞
∥∥epn∥∥q(pn)

= lim
n→∞ λpn ,pn = h(�).

Using Hölder’s inequality and exploiting (1.2) with respect to λp,p, we obtain

∥∥u p,q(p)
∥∥
1 ≤ ∥∥u p,q(p)

∥∥
p |�|1− 1

p ≤ λ
− 1

p
p,p

∥∥∇u p,q(p)
∥∥
p |�|1− 1

p = λ
− 1

p
p,pλ

1
p

p,q(p) |�|1− 1
p .

(3.20)

Hence, (3.19) follows from (1.5) and (3.18). ��
Lemma 3.5 If 0 < q(p) < p∗ and lim p→1+ q(p) = 1, then

1

|�| ≤ lim inf
p→1+

∥∥u p,q(p)
∥∥∞ and lim sup

p→1+

∥∥u p,q(p)
∥∥∞ ≤ h(�)N

|�| h(�
)N
. (3.21)

Proof The first estimate in (3.21) is immediate since

1 = ∥∥u p,q(p)
∥∥q(p)
q(p) ≤ ∥∥u p,q(p)

∥∥q(p)
∞ |�| .

According to Remark 3.2, we have that

Cp
∥∥u p,q(p)

∥∥ N (p∗−q(p))
p∗∞ ≤ ∥∥u p,q(p)

∥∥q(p)
q(p) = 1 (3.22)
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where

Cp :=
(

λp,p∗

λp,q(p)

) N
p

(
p

p + N (p − 1)

)N+1

Ip

and

Ip :=

⎧⎪⎨
⎪⎩
q(p)

∫ 1
0 (1 − τ)

N (p−1)
p τ

N (1−q(p))
p +q(p)−1dτ if 0 ≤ q(p) < 1

q(p)
∫ 1

0
(1 − τ)

N (p−1)
p τ q(p)−1dτ if 1 ≤ q(p) < p∗.

It follows from (3.22) that

∥∥u p,q(p)
∥∥∞ ≤ C

− p∗
N (p∗−q(p))

p .

As

lim
p→1+

p∗

N (p∗ − q(p))
= 1 = lim

p→1+

(
p + N (p − 1)

p

)N+1

= lim
p→1+ Ip

and

C−1
p =

(
λp,q(p)

λp,p∗

) N
p

(
p + N (p − 1)

p

)N+1

I−1
p ,

we obtain the second estimate in (3.21) from (1.6) and (3.18). ��
Proof of Theorem 1.1 Of course, (1.9) follows directly from (3.21).

Let us prove (1.8). If 0 < q(p) < 1, then Hölder’s inequality yields

1 = ∥∥u p,q(p)
∥∥q(p)
q(p) ≤ ∥∥u p,q(p)

∥∥
1 |�|1−q(p)

so that

1 = lim
p→1+

1

|�|1−q(p)
≤ lim inf

p→1+
∥∥u p,q(p)

∥∥
1 .

As for 1 ≤ q(p) < p∗, we first note from (3.21) that

lim
p→1+

∥∥u p,q(p)
∥∥q(p)−1

∞ = 1.

Then, taking into account that

1 = ∥∥u p,q(p)
∥∥q(p)
q(p) ≤ ∥∥u p,q(p)

∥∥q(p)−1
∞

∥∥u p,q(p)
∥∥
1 ,

we get

1 = lim
p→1+

1∥∥u p,q(p)
∥∥q(p)−1

∞
≤ lim inf

p→1+
∥∥u p,q(p)

∥∥
1 .

We have thus proved the estimate

1 ≤ lim inf
p→1+

∥∥u p,q(p)
∥∥
1

which, in view of (3.19), leads us to (1.8).
Exploiting (1.2) with respect to λp,p again (see (3.20)), we obtain from (1.5) and (1.8)

that
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h(�) = lim
p→1+

(
λ−1
p,p |�|1−p

∥∥u p,q(p)
∥∥p
1

)
≤ lim inf

p→1+ λp,q(p).

Bearing in mind (3.18), this proves (1.7).
In order to complete the proof, let us take pn → 1+ and set

qn := q(pn) and un := u pn ,qn .

Then, λpn ,qn = ‖∇un‖pn
pn , ‖un‖qn = 1, and limn→∞ qn = 1. Moreover, it follows from

(1.8) that

lim
n→∞ ‖un‖1 = 1. (3.23)

We note that

|Dun | (RN ) = |Dun | (�) = ‖∇un‖1 ≤ ‖∇un‖pn |�|1− 1
pn = λ

1
pn
pn ,qn |�|1− 1

pn .

Hence, (1.7) implies that

lim sup
n→∞

|Dun | (RN ) ≤ lim
n→∞ λ

1
pn
pn ,qn |�|1− 1

pn = h(�). (3.24)

We conclude from (3.23) and (3.24) that the sequence (un) is bounded in BV (�). Thus,
by the compactness of the embedding BV (�) ↪→ L1(�) we can assume (up to passing to a
subsequence) that un → u, in L1(�) and also pointwise almost everywhere in �. Extending
un as zero onRN \�, we have that un converges in L1(RN ) to u extended as zero onRN \�.

Owing to (3.23), we have ‖u‖1 = 1, which confirms item (a) and also implies that
u ∈ BV0(�). Hence, it follows from (2.1) that

h(�) ≤ |Du| (RN )

‖u‖1 = |Du| (RN ).

Moreover, Proposition 2.1 and (3.24) yield

|Du| (RN ) ≤ lim inf
n→∞ |Dun | (RN ) ≤ h(�),

showing that |Du| (RN ) = h(�). Then, item (c) is consequence of Proposition 2.2.
Now, let us prove item (b). Let us fix r > 1 and ε > 0. As qn → 1, we have that qn < r

for all n ≥ n0 and some n0 ∈ N. Moreover, owing to the second estimate in (3.21) we can
also assume that

‖un‖∞ ≤ h(�)N

|�| h(�
)N
+ ε, for all n ≥ n0. (3.25)

By Hölder’s inequality, we have

1 = ‖un‖qn ≤ ‖un‖r |�| 1
qn

− 1
r ,

so that

|�| 1r − 1
qn ≤ ‖un‖r , for all n ≥ n0. (3.26)

We also have

‖un‖rr ≤ ‖un‖r−1∞ ‖un‖1 ≤
(

h(�)N

|�| h(�
)N
+ ε

)r−1

‖un‖1 , for all n ≥ n0. (3.27)

Convergence dominated theorem and (3.25) imply that un → u in Lr (�). Hence, (3.26)
and (3.27) imply that
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|�| 1r −1 ≤ ‖u‖r ≤
(

h(�)N

|�| h(�
)N
+ ε

) r−1
r

‖u‖
1
r
1 =

(
h(�)N

|�| h(�
)N
+ ε

) r−1
r

. (3.28)

As r and ε are arbitrarily fixed, (3.28) implies that u ∈ L∞(�) and

|�|−1 ≤ ‖u‖∞ ≤ h(�)N

|�| h(�
)N
.

��
As mentioned in the Introduction, right after Corollary 1.2, Bueno and Ercole proved in

[5] that

lim
p→1+

∥∥vp,1
∥∥1−p
1 = h(�) = ∥∥vp,1

∥∥1−p
∞ .

As λp,1 = ∥∥vp,1
∥∥1−p
1 , a fact that was not noticed in [5], the first equality above leads directly

to

lim
p→1+ λp,1 = h(�), (3.29)

which is (1.7) in the case where q(p) ≡ 1. Thus, (3.29) combined with (1.5) and the mono-

tonicity of the function q �→ λp,q |�| p
q also produces (1.7) for q(p) ∈ (1, p). However, this

combination does not lead to the same result for q(p) ∈ (0, 1) ∪ (p, p∗) as, for example,
q(p) = pβ with β < 0 or β > 1 (and p close to 1+). Our approach combining (1.5) with
Lemma 3.1 provides a unified proof to (1.7) as well as allows us to estimate the limit function
u.

4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3, by applying Picone’s inequality to wp,q(p) and ep,
where ep is the first eigenfunction defined in (3.14).

Proof of Theorem 1.3 As

λp,q(p) ≤
∥∥∇wp,q(p)

∥∥p
p∥∥wp,q(p)

∥∥p
q(p)

= ∥∥wp,q(p)
∥∥q(p)−p
q(p) ≤ ∥∥wp,q(p)

∥∥q(p)−p
∞ |�| q(p)−p

q(p) ,

we obtain from (1.7) that

h(�) ≤ lim inf
p→1+

∥∥wp,q(p)
∥∥q(p)−p
q(p) ≤ lim inf

p→1+
∥∥wp,q(p)

∥∥q(p)−p
∞ . (4.1)

Applying Picone’s inequality and using that wp,q(p) is a weak solution to (1.11), we find

λp,p

∫
�

eppdx =
∫

�

∣∣∇ep
∣∣p dx

≥
∫

�

∣∣∇wp,q(p)
∣∣p−2 ∇wp,q(p) · ∇(

epp

w
p−1
p,q(p)

)dx

=
∫

�

w
q(p)−1
p,q(p)

epp

w
p−1
p,q(p)

dx =
∫

�

w
q(p)−p
p,q(p) eppdx .
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Hence,
∥∥wp,q(p)

∥∥q(p)−p
∞

∫
�

Wq(p)−p
p eppdx ≤ λp,p

∫
�

eppdx (4.2)

where

Wp := wp,q(p)∥∥wp,q(p)
∥∥∞

.

Now, let us assume that

L := lim sup
p→1+

∥∥wp,q(p)
∥∥q(p)−p

∞ < ∞.

Using again that wp,q(p) is a weak solution to (1.11), we have from Lemma 3.1, with
λ = σ = 1, that

Cp
∥∥wp,q(p)

∥∥ N (p−q(p))
p∞

∥∥wp,q(p)
∥∥∞ ≤ ∥∥wp,q(p)

∥∥
1 (4.3)

where

Cp := λ
N
p
p,p∗

(
p

p + N (p − 1)

)N+1

σ

∫ 1

0
(1 − τ)

N (p−1)
p dτ.

It follows from (4.3) that

Cp∥∥wp,q(p)
∥∥ N (q(p)−p)

p∞
≤ ∥∥Wp

∥∥
1 ,

so that (1.6) and (3.16) yield

0 <
|�| h(�
)N

LN
≤ lim inf

p→1+
∥∥Wp

∥∥
1 . (4.4)

We also have that

∥∥∇wp,q(p)
∥∥
1 ≤ |�|1− 1

p
∥∥∇wp,q(p)

∥∥
p = |�|1− 1

p
∥∥wp,q(p)

∥∥ q(p)
p

q(p)

so that

∣∣DWp
∣∣ (�) = ∥∥∇Wp

∥∥
1 ≤ |�|1− 1

p
∥∥wp,q(p)

∥∥ q(p)−p
p∞

∥∥Wp
∥∥ q(p)

p

q(p) .

Hence, as
∥∥Wp

∥∥ q(p)
p

q(p) ≤ |�| 1p and
∥∥Wp

∥∥
1 ≤ |�| , we conclude that the family

(
Wp

)
is

uniformly bounded in BV (�).

Now, let pn → 1+ be such that

lim
n→∞

∥∥wpn ,q(pn)
∥∥q(pn)−pn

∞ = L.

Owing to the compactness of BV (�) ↪→ L1(�), we can assume (passing to subsequences,
if necessary) that Wpn → W in L1(�) and also pointwise almost everywhere in �. It

follows from (4.4) that W > 0 a.e. in � and this implies that Wq(pn)−pn
pn → 1 pointwise

almost everywhere in �. As
∥∥∥Wq(pn)−pn

pn epnpn

∥∥∥∞ ≤ 1, dominated convergence theorem and

Lemma 3.3 guarantee that

lim
n→∞

∫
�

Wq(pn)−pn
pn epnpn dx = ‖e‖1 > 0.
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Hence, (4.2) and (1.5) yield

L ‖e‖1 ≤ h(�) ‖e‖1 ,

so that L ≤ h(�). Combining this inequality with (4.1), we conclude that

h(�) = lim
p→1+

∥∥wp,q(p)
∥∥q(p)−p
q(p) = lim

p→1+
∥∥wp,q(p)

∥∥q(p)−p
∞ .

��
Remark 4.1 One can derive from Remark 3.2 that if 0 < q(p) < p∗, then

lim inf
p→1+

∥∥wp,q(p)
∥∥q(p)−p
q(p) = lim inf

p→1+
∥∥wp,q(p)

∥∥q(p)−p
∞

and

lim sup
p→1+

∥∥wp,q(p)
∥∥q(p)−p
q(p) = lim sup

p→1+

∥∥wp,q(p)
∥∥q(p)−p

∞ .

Thus, the alternative (1.13) in the statement of Theorem 1.3 can be replaced with

lim sup
p→1+

∥∥wp,q(p)
∥∥q(p)−p
q(p) = +∞.
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