Annali di Matematica Pura ed Applicata (1923 -) (2024) 203:87-107
https://doi.org/10.1007/510231-023-01354-7

®

Check for
updates

Transference of bilinear multipliers on Lorentz spaces

Ziyao Liu'® - Dashan Fan'-2

Received: 14 April 2023 / Accepted: 20 June 2023 / Published online: 5 July 2023
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer
Nature 2023

Abstract

We study DeLeeuw type transference theorems for multi-linear multiplier operators on the
Lorentz spaces. To be detail, we show that, under some mild conditions on m, a bilinear
multiplier operator 7,, 1 (f, g) is bounded on the Lorentz space in R™ if and only if its
periodic version T, ¢(f, €) is bounded on the Lorentz space in the n-torus 7" uniformly on
& > 0. Most significantly, we prove that these two operators share the same operator norm. We
also obtain the same results on their restriction versions and their maximal versions 7, (f, g)
and T‘n’; ( f, 2). The previous method by Kenig and Tomas to treat the sub-linear operator
T,:(f) is to linearize the operator and then invoke the duality argument. This approach seems
complicated and difficult to be used when we study the sub-bilinear operator 7, (f, g). Thus,
we will use a simpler, but different method. Our results are substantial improvements and
extensions of many known theorems.

Keywords Bilinear multipliers - Maximal operator - Transference - Restriction of
multiplier - Lorentz spaces

Mathematics Subject Classification 42B15 - 42B20 - 42B25

1 Introduction

The classical multiplier operator on R” is defined initially on f € S (R") in the integral form

Tne(f)x) = /Rn JTEm(es)e'E¥dg,

where ¢ > 0 and m is a function, which is called the multiplier of the operator. For the same
m, the corresponding multiplier operator on the n torus 7" is defined via the Fourier series
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as

Tm,e(f)(X) = Z akm(sk)ei(kvx),

keZ

where we initially assume f € C* (T") so that f equals to its Fourier series

F) =3 ae®

kez"
It is well-known that
lim [T e (7) = m©) F| oy = 0 e))
if and only if
[Foe Pllrcrry = 17 rcrm @

uniformly on ¢ > 0. On the cﬁher hand, the famous DeLeeuw theorem [6] says that, under
some mild conditions on m, T, . is bounded on L? (T") uniformly on ¢ > 0 if and only if
(see [1, 13])

| Tt GO Loy = 1 o ey, &)

This result is quite significant since it shows that the classical convergence problem of the
Fourier series is equivalent to an L? boundedness of the corresponding operator on R”.
Further more, for the maximal operators

T Hx) = sup | T ()]

and

T (f)() = sup | T e (/)]
>0

Kenig and Tomas in [10] proved that 7, is bounded on L” (R") if and only if ij‘l is bounded

on LP (T").

DeLeeuw’s theorem, as well as the result by Kenig and Tomas, have many extensions.
Among numerous papers in this direction, the reader may see [8] for the extension of
DeLeeuw’s theorem on the Lorentz spaces L?9; see [3, 11] for the extension of DeL.eeuw’s
theorem on the Hardy spaces H?,0 < p < 1.

Now, we turn to study the bilinear multiplier operator on R” defined by

Tne(f.g)(x) = /R . FENTEDM(eEy, eb2)e! ©1HE22)dg dgy,

where x, &1, & € R". Again, in the definition, f and g are initially assumed to be Schwartz
functions.
The corresponding bilinear multiplier operator on the n-torus 7" is defined as

Toe(F, 00 = Y D axbrym(eki, eky)e! 1142,
k1 €Z" kyeZ
where

fy =3 a ™300 = ) belte

kyez" kpeZ
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Transference of bilinear multipliers on Lorentz spaces 89

are assumed initially C* functions on 7", and ¢ > 0.
For simplicity of notation in our discussion, we denote

Tm: m,1>s Tm: m,l-

The study of Fourier analysis in multi-linear setting is very active in last two decades.
Among many non-trivial extensions from the linear setting, we recall following two theorems,
which are the first DeLL.eeuw type theorems on the multi-linear multiplier operators.

Theorem A [7] Suppose thatm € L® N CR*), 1 < p,q,r < oc. If

| Tone (F D gy < A 7]

Lr(Tm) 1glacrm, 1/p=1/r+1/q,
for all fandg uniformly on € > 0, where A> 0, then

[ Ton.1 (f. 8)||LP(R”) = AlSfllpr@ny Iglawny, 1/p =1/r +1/q,
forall fand g, where 0 < A < A.
Theorem B [7] Suppose thatm € L N C(R*"), 1 < p,q,r < oo. If

|7 oy < B 7]

L (T") 181l Lacrny - 1/p=1/r +1/q,
then

1T (F2 ) gy < BUF Ny gl oy - 1/p = 1/7 +1/4.,
where ) < B < B.

In Theorem B, the maximal operators is defined, same as the linear case, by

Tr: (f7 g) (.X) = Sug |Tm,£ (f? g) (.X)|

and
T D) = sup |Tone (F, D)) -

Inspired by [7], many research papers related to multi-linear DeLeeuw’s theorem have
appeared in the literature. For this information, the reader may check the citations on [7] in
MathSciNet. In [2], Blasco and Villarroya extended Theorem A from the Lebesgue spaces
to the Lorentz spaces. However, the result of Blasco and Villarroya is on the case n = 1,
because of their methodology (see also [12]). Based on this observation, and we feel that it is
interesting to have multi-linear DeLeeuw type theorems on Lorentz space for all dimensions
n, the purpose of this article is to extend Theorems A and B to Lorentz spaces for all n.
More importantly, our method allows us to show that the operator norms on Lorentz spaces
of Tyy.e, T,y and ’fm,g are identically the same.

To state our main results, we first recall the definition of Lorentz spaces. Let (X, 1) be a
measure space. For a measurable function f, its distribution A 7 is defined by

hp @ =plxeX:|f @) >a).
The non-decreasing rearrangement of f, fi is defined by

fe@) =inf {a: Ay (@) <t},1>0.
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90 Z.Liu, D. Fan

The Lorentz space L9 (X),1 < p, g < oo, is the set of all measurable functions f on X
satisfying

||f||Lm(x) < 00,

where

' g de)'
||f||vaq(X):{*/ [I /pf*(l)] *} 1 <g<o0
P Jo t
and
1 I zroccey = supt'/? £u(0).
t>0
In fact, p = oo only ¢ = oo makes sense. It is well known (see [9])

1 flpsscocxy = N f lpeocx) s
||f||Lp,p(x) = ||f||Lp(X)-

Define the triplets
P=wp.p)eR,T =@ .q.q) €R.
Let T be a bilinear operator
T : LPVIYR") x LP22(RY) — LP9(R").
We define the operator norm
1Tl 2 =inf {c: IT(f. )l ragan < c} .
where the infimum is taken over all Schwartz functions f and g satisfying
Il rrar ey = 1, 81l L2z mny = 1.
Similarly, let T be a bilinear operator
T : LPVO(T™) x LP292(T™) — LP9(T™).
We define the operator norm
17155 =inf {e: \TF D ppagrm = ]
where the infimum is taken over all C* functions f and g satisfying
| 71 porar cgmy = 1 NE N Lnar oy = 1.
We will establish the following two theorems.

Theorem 1 Suppose that m € L® N C(R?*"), 1 < p, q,pi qi <oo,i =1,2and1/p =
1/p1 + 1/ pa. Then the following three statementsare equivalent.

(a) ” Tine(f, 8) HLp,q(Rn) . H Tne ”77),7 I Flprar qrey 181 Lr2az (rey »
forall fand g.

b) | Tn1(f. &) ||Lp,q(Rn) < | T ”77),7 If e piar ey 181 Lp2a2 (ny »
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Transference of bilinear multipliers on Lorentz spaces 91

forall f and g.
(C) || Tm,é‘(fa g) ||Lp.q(Tn) =< || T;n,£| 7}17 H f”Lpl.q] (") “g”L/’ZﬂZ(T”) ’

forall fand g uniformly on & > 0.
Moreover, we have

(el = VToill5. 7 = Vel 7

Theorem 2  Suppose that m € L*° ﬂC(RZ"), 1 < p,q,pi,qi < oo, i =1,2and
I/p=1/p1+1/p>. Then

” Tr;lk (fa g) ||Ll’*‘/(R")

Sfor all f and g if and only if

1T 2 1A oy gLz e

H fnt(f @qu(w) = ” Tnt H?? ”f”me (T™) ||§||L”2="2(T”)’
forall fand § . Moreover;
1Tl .2 = 1Tal5 .2

Remark 1 The proof of Theorem 1 is based on refinements of the methods used in [7],
together with some estimates involving analysis on measure. This method allows us to obtain
Theorem 2 easily. In [10], in order to show the transference between 7,%(f) and Tn’; ( f ),
Kenig and Tomas create linearizations of the maximal operators so that they are able to use
the duality to complete the proof. However, in our case (Theorem 2) this method seems quite
complicated and hard to be inherited. As a different method from those in [10], Theorem 2
however can be easily obtained as a consequence from the process in proving Theorem 1.

Remark 2 We state our theorems on bilinear multiplier operators. But our results are easily
extended to multi-linear cases.

This paper is organized as follows. Sect. 2 we give some basic lemmas in order to prove
main theorems. The proofs of Theorems 1 and 2 will be presented in Sect 3. In Sect 4, we give
some extensions and discuss the transference between certain bilinear pseudo-differential
operators and restrictions of bilinear multiplier operator. Finally we give some notes in
Sect. 5. Throughout out this paper, the notation A < B means that there is a positive constant
C independent of all essential variables such that A < C B. Also we write A & B to mean
that there are two positive constants C; and C; independent of all essential variables such
that C1A < B < (A.

2 Basic lemmas

We need several lemmas. The first lemma was proved in [8]. For convenience to the reader,
we give its proof here.

Lemma 1 Suppose that { f,} is a sequence of nonnegative functions on the measure space
(X, ) andthat f is a nonnegative function on the measure space (Y, v). If {a,} is a positive
sequence such that

nli)ngoanu{xeX:fn(X)>a}zv{y€Y:f(y)>a}
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92 Z.Liu, D. Fan

forall a > 0, then we have

fe (©) < Himiinf (f), (t/an)
forallt > 0.
Proof Let

E,(t/ay) ={a>0:puf{xe X: f(x) >a} <t/a,}
and
EW)={a>0:v{yeY:f(y) >a} <t}.

If B ¢ E (¢t) then

viyeY:f(y >8>t
By the assumption, there is an N > 0, such that if n > N then

puix € X1 fu(x) > B} > t/ay.
This says that 8 ¢ E, (t/ay,) . Thus we obtain the inclusion
E, (t/an) C E (1)
forn > N. As a consequence we now obtain
f«@) =inf E () <inf E, (t/an) = (fu), (t/an)
forn > N. The lemma is proved. O
The following lemma can be regarded as a Fatou Lemma on measure.
Lemma 2 (A Fatou type lemma) Let f, be a sequence of measurable functions.
ulx e X ctiminf | £,001 > o} < liminf e (x € X 1£,(0)] > @)

forany o > 0.

Proof 1t follows trivially from Fatou’s lemma when applied to g, = X{xex:|f,(x)|>«) and
observing that liminf, oo g0 = X{xeX:liminfu_ ool f (x)|>a}- m]

Let [—m, w]" = Q be the fundamental cube of 7", that is

| i=[7
" 0
for any integrable function on 7". We let W € S(R") be a radial function and satisfy
supp¥ C Qk,0<W¥(x) <1,and ¥(x) = lon O,
where
Qg =[-7 —27n/K,7m +27/K]".
for a large integer K. By this notation, we see

0 C Q,
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Transference of bilinear multipliers on Lorentz spaces 93

and
Qg - Q0 as K — oo.
For any positive integer N, denote Wy,y as the function such that
Wi/n(x) = Y(x/N).
For this defined W we have the following lemma.

Lemma 3 Let m be bounded and continuous. For C*° (T™) functions

fo =) aye®

kyezn

and

gx) = Z by, e’ k20

koeZ

the error function
Ene(fo D)) = W& /N Te ([ D)) = Tone (Wiyn [ W1/ w D ()
satisfies
lim Ey.(f.5)(x) =0
N—o0
uniformly on x € R", for fixed ¢ > 0.

Proof The detail of the proof to Lemma 3 is contained in the proof of Theorem 3. (one also
can see [7]). m]

Lemma4d Let X = R”". Fore > 0 define

fe (x) = f(ex).
Then

I fellpagny = €PN fll Loany -

Proof By an easy scaling argument. O

3 Proof of main theorem

3.1 Proof of Theorem 1

First we show that (b) implies (a). By changing variables, we see that
Tne(f. 8)x) = /R @B EIm G, &) G g gy

X
&

= Tu(fe8) (5).
where

Je () = f(ex), g (x) = g (ex).
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94 Z.Liu, D. Fan

Since

I/p=1/p1+1/p2,

by Lemma 4 and the assumption, we have that

H Tm,e(f» g) HLV'q(R”) = 871/[7 ”Tm (f87 gé‘)”LPJI(]R”)

= Sn/p ||Tm||7,>,7 ”fa”Ll’lv"Jl(]R”) ||gs ||LP2-‘12(R”)

A

||Tm||—p>,7 ”f”LFlJH(R") ||g||LPz-q2(Rn).
This clearly shows that, for any & > 0,
HTm,sH7’7 =< ”Tm”?,_q’ .
To show that (a) implies (b), we observe
T (f,8) (X)) =T e(fe-1,8e-1) (6x).
So, by Lemma 4,
”Tm (f7 g)”LPuKI(]R") = —n/p H Tm,&‘(fgfl B ggfl)”Lp,q (R")

eP | for | LP141(R)

H ”7;’,7 ’gs*‘ ||LP2-42(R")
” m 5“7; 7 ||f||Lp1~ql(Rn) ||g||Lpz.qz(Rn) ,
which yields

”Tm”?? =< ”Tm,s”??

for any ¢ > 0.
(4) and (5) give

”Tm”;),ﬁ) = || Tn.e ||_p),7])

for any ¢ > 0.

“

(&)

6)

We continue to prove that (a) implies (c). Using a density argument we may consider
f g € C®(T"). Note that Tm g(f 2) (x) is a periodic function. For any & > 0, and fixed

e >0,
{x € Q:|Tne(f. D ()| > af|
=N"|xeNQ: |Tp:(f.2) )| > a}].
Since ¥ (%) =1if x € NQ, using Lemma 3, we may write
{x € Q:|Tne(f. D ()] > e}
—n { N . ‘\IJ (i 2? (N “’) }
xeNQ: W (5) TueFD @] >0
<N |{x e NQ : |Tue(Wiyn f. Wi/nd) ()] > Oa}|
AN [{x eNQ: |Eno(f,3) ()] > 1 —0)al],

where 6 is a fixed small number in the interval (0, 1).
By Lemma 3, we choose sufficiently large N such that

N"|{xeNQ: ‘EN,E(f,@(x)‘ > (1 -0)a}|=

=N
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Transference of bilinear multipliers on Lorentz spaces 95

It further yields

|{x €0: |Tm,€(fs§)(x)| > 0{}|
< Jim N7 [{x € NQ t T e (Wiyn F. W1w3) ()| > bar}].

By Lemma 1, we obtain that
(Tne(F.), () < Jim (07T o (1w [ W18 ), (N"D).

Without loss of generality, here we assume that the limit on the right side of the inequality
above exists. If 1 < g < 0o, then we have that

” fm,s (Fv g) ” LP-a(Tm)

p (h]l/q

o0
< lim 67! [1 /0 ("7 (T (Wiyy £ W1N D)), (N"D)) ;

T N—o>oo p

o) ~ dr
=6~ Lim NP 1/ P (T e (W n Fo W n D). () 2
Jim [p | (P (T e (Y1yn f, W18 D)), () p

1/q

Here

o0

a [~ e RPNV ) i
o ) (P (T e (Wiyn fL W1/n D), (1) ;

= H Tm,E(\IJl/va \Ijl/Ng) HLI“I(R")

=< ||Tm||77 ”\III/N]’F”Lm,ql(Rn) |“I"1/N§||Lpz~qz(Rn)'

If ¢ = oo, then we have that

|| Tm,&(]’;’! ?)”Lp,oc(]‘n)
< suptl/P lim (g_le,e(\pl/N]?: %/Ng))* (N"1)
>0 N—o0

<07 lim supt'/PT, (Wi 5 f) W1ND(N"1)

N—00 -
=071 lim N™YPsuptV/PT,, (Wi /n f, W1 /n)x(1)
N—o0 =0

< Tl 01 Jim N 00 P 9 e

Therefore, for all 1 < g < oo we obtain

” Tm,g(ﬁ g)”LP,q(Tn)

—1 q: — it
< Tullgz 07" Jim N7 0N F s

@)

|\IJ1/N§”LP2»‘I2(]R”) :

In the inequality in (7), we need to further estimate
lw1/n £l Lo (®n and H‘IJI/NgHLl’zqu(Rﬂ) :

Clearly we only need to estimate || VNS ” P14t (Rn) ° since two estimates share the same
idea.
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96 Z.Liu, D. Fan

By the support condition of W;,y, we have

)“Pl/NfN'(a)
=|{x € [-N7 —2Nn/K,Nm +2N7 /K" : [ W1,y (x) f ()] > ]|
= |{x e [Nz, Na1": | f ()| > o}
+ }{x € [-Nm —2Nn/K,—Nx=]": |\IJ1/N (x) f(x)| > oz}|
+ |{x € [Nm, Nx +2N7 /K" : |W1)n (x) f (0)| > a}].
First,
|{x € [-Nm, Nn]": |f(x)| >a}| =N"|{x e [-7,7]": |f(x)| > al|
= N"kf(a).
Also, we choose N for which % are positive integers. It yields that
|{x € [-N7 —2N7/K,—Nx1": |Wi)n (x) f ()] > |
< |{x € [Nz —2Nz/K, ~N=z]": | f ()| > «}]

N n
= <?) )Lf((x).

[{x € N7, Nm + 2N /K" 1 W)y () f (0)] > @]

N n
< (f) }»f(oz).

By this computation, we obtain that

(Wiynf), @ < (f), (N1 +2k)7").

We first assume 1 < g; < oo. In this case, by the definition,

Similarly,

a a [y —n IRV
Wi/ f] Lrra @y < [E/o (P (F), N7+ 2k 7h) 7:|
00 - 1/q1
=N/ (142K )P [ﬂ/ (t"771 ()" g}
P1 Jo t
=N"/P1 (1 +2K—”)1/p1 ”fN”LPlv‘Il(T")'
Next, if g1 = oo then
||\111/Nf||Lm<oo(Rn) = ?Egtl/m (f)* (tN—"(l +2k—n)—1)
< NYPU(142K7) P sup /71 (F), ()
t>0
—\p1 | F
= N/ (1+2K7")"" Hf||L1’1-°°(T")'
We now obtain that
190 F vy < N7 (12K P o ®)
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Transference of bilinear multipliers on Lorentz spaces 97

forall 1 < ¢g; < 0o, and similarly,

“lpl/Ng“Lm,qz(Rn) = NP2 (1 + ZK_n)l/pz ||§||LP242(T") 9

forall 1 < ¢g» < oo.
Combining (7), (8), (9), we finally obtain that

|| Tm,s(fl §)||Ll’*‘](T") f 971 ”Tm”;)’?) (1 + 2K7”)1/p]

lim
N—o0
X (1 + 2K_n)l/p2 ” fHLm-q] (1) ||§”L”2“12(T”) :

By letting first K — oo then & — 1, we obtain that

1T (Fo D acrny < 1Tl 5 | F ] v oy WE N onan oy
which clearly yields
|Tnel= = < 1Tmll 2 - (10)
P.9q P,q

Next, we will show that (c) implies (a). By a density argument, we may assume f,
g € C°(R™). We obtain their dilation-periodic versions

keZ
~ - X+ 2wk
T =¢ Zg(—g :
keZ
By the Poisson summation formula (see [13]),

) =) Jlekye'™h,

kez"

g =) gehe™h.

keZ

Let n be the characteristic function of Q. We now claim that for each x € R",

lim 62Ty, o (F5, %) () = T (f, 8) (0).

e—0

In fact,

e e (F1.7°) (ex) = 3" 3" Flek)@ekam(eky, eky)e! € FHh)
ki1 €Z ko

is a Riemann sum of

/R L FENZEImE . &) T Ay = T, (f 8) ().
We choose {¢} as a discrete sequence going to 0. By Lemma 2, for any « > 0,

|{x e R" 2T (f, ) (0)] > a]

< lin%)}{x eR": |82”Tm,5 (fg, §5) (ex)n(z-:x)| > a}|

= lime™" |{x eR": ’sznfm,g (fa,:g's) (x)r;(x)’ > oz}|.

e—0

@ Springer



98 Z.Liu, D. Fan

By Lemma 1, without loss of generality, here we assume that the limit on the right side of
the inequality below exists. We have that

(T (f 8))s ()
< (glgr%) (inf {o > 0:|{x e R": fsznfm,g (fs,?’:) (ex)n(ex)| > a}| < t}).
But
inf {ot >0: |{x eR": |e2"Tm,,3 (ff,gf) (sx)n(sx)| > cx}‘ < t}
=inf{a > 0:|{x e R": }Tmys (fg,EE) On@)| > e™a}| < et}
=einf{B>0:|{xeQ: |Tm,5 (fa,gg) | > B} < e&"t}.

Thus we obtain

(T (f ) (1) < Tim 2" (T, e (7. 7)), ("1). (11)
If g # oo, from (11) and the definition we see that
. C pam (F (T e g dr)
1T (f )l Loageny < lim {fo (/P& (Tne (£5.3°)),. (1) 7}

= i | [ @, (7, 0 4]
e—0 0 e ’ * t

=< Sli_I)T%)S_n/pSzn H fm,a (fls’ ga) Hvaq(T”)

= Elif})gin/pgzn ” Tma*?”?,? ”fg ||LP1~’II(T”) g ”Ll’2v‘12(T")'

If ¢ = oo, from (11) and the definition we obtain that

1Ton (f Ollzpooany < supr!/? lim &' (T (F°.7°)), (¢"1)
> g
%)), ("t

&

< lim ¢”" sups'/? (Tm,g (fS, g )
e—0 >0

= Tim 2" ~"/? sup¢\/? (fm’s (fs §€))* )
e—0 >0

< i e T 1 Ly o [ Lo -
We notice that since f € C°(R"),
Feo=er(2)

if x € O and ¢ is sufficiently small. Therefore

i@ =l o lr (2] -

and
(F), 0 =("f), ™.

An easy computation gives that when g1 # oo,

~ q o9} _ _ dt 1/‘]1
||f8HL1’1v‘11(T”) = {ITII/O (tl/pl (e nf)* (re n))ql 7}
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Transference of bilinear multipliers on Lorentz spaces 29

= e """V fll Lorar @omy

and when g1 = oo,

“J’Fg “me(w) = sup;l/m (éfnf)* (te™)

t>0
— on/p 1 —n
= &"/Plsup /P (e f), ®
t>0
8711811/1)1

£ Nl Lproo ny -
Similarly, for any 1 < g1 < o0,

” ”Lpz @ Ty = gg"/ P2 ||g||L1'2v42(]Rn) .

Finally,

87n/17€2n || ga || Lo (1)

|f€ ||L[J1.q1(Tn) = ||f||Lqu|(1Rn) ||g||LP2qu(Rn)~
Combining all estimates, we complete the proof. The process of the proof clearly yields
1Tl 7 < 1Tnell5 - (12)
Particularly, combining (10), (12) and (6), we have
|Tell5 2 = 1Tullp.5 =1 Tnel5 2

forall e > 0.

3.2 Proof of Theorem 2

The proof of Theorem 2 follows the same idea used in the proof of Theorem 1. We consider

T (L0 = swp [T (F.D0)|.

1/R<e<R
Since
Jim Tp o (7.9 = Ti (7 D)
monotonically, we have
1TaF- D oarny = Jim 1T F D s -
To prove | 75| = = | Tz . it needs to show

175 kG- ey = 1Tl 2 1P v ooy B s

uniformly on R. The proof is the same as before. The only place that we need to pay attention
is that when we apply Lemma 3, we observe

lim sup ENg(f Hx)=0
N—o001/R<e<R

uniformly on x € R".
To prove H 1) ||—> - < ”T* ||—> — , we follow the same proof as that in Theorem 1, and
notice that

gznfm,f,t? (sts g‘s) (gx)
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100 Z.Liu, D. Fan

=g Z Z J/C\(Sk]):g’\(skz)m(&s}q , £8ky)e! (exkitka)
ki €ZM koM

is a Riemann sum of
/R L FEORE)m(681, 62)e! 81T dE s = Tyns (f. 2) (0)

for any § > 0. We leave the details to the interested reader.

4 Pseudo-differential operators and restriction of bilinear multiplier
4.1 Transference of pseudo-differential operators

Following the linear case [14], we may consider the bilinear pseudo-differential operators

Su(F.D) = Y > anbiym(x. ki, kye FrHhes),

k1 €Z ko
Sulf )(6) = /R  TEREm(r. &1 6600 06,
where m(x, &1, &) satisfies

m(x +2m, &1, £2) = m(x, §1, &2).

Theorem 3 Letm(x, &1, &) € L°NC (R*") uniformlyonx, 1 < p,q, pi,qi < o00,i = 1,2
Af

1Sm(fs O Lra@ny = ANSfllprrar ey 181l Lr2a2 ey » 1/ P = 1/p1 + 1/ p2,
forall f and g, then

150 (D oairny < ANF povas oy 18 Loz gny s 1/p = 1/ p1 +1/ 2,
forall fand3.

Proof The idea is consistent with the proof that (a) deduces (c) in Theorem 1, and only the
following error function needs to be considered:

En(f, D) = W(x/N)2S,u(f, D) — Sn(Wi/n [, Wi/ng) ().

Recalling

W /NS (F. )0 =W /N Y Y arbiom(x, ki, ke 10,
k1 €Z" kyeZ
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where {ay, | , {bx, } are the sets of Fourier coefficients of f, g respectively, and they all decay
rapidly to O. First, we notice

\I/(X/N)zgm(]?, E)(x) — Z Z aklbkzei<kl+k2qX)N2n

k1 €ZM koe"

« / mix, ki ko) B (NED T (NEDE 60 g iy
RZn

= Y abpeititen

k1 €ZM ko

< / Gk k)BT N
Rﬂ

On the other hand, we recall that
S (V1N 5 W1 N (x)
= /R L m(. £, &) (Vi E) (W1yng) E)e! 1 dg dgy.

where we easily compute

WynE) = Y a N"U(NE — ki),

kyezr
(W nB)E) = Y by N"U(N (& — k).
koeZ

It is easy to check
Sm(\pl/N]?» Wi ng)(x)

— Z Z aklbkzei<k1+k2,x>

ki1 €ZM kyeZ

x /R m(x, ky + ‘5—‘ k2+€2)‘y($l)‘1’(§2)e €1+62.7) dg  dgy.

Thus
[En(f. )]
/ 2 2 lan] b, k2< §i3 )\W(a)\!\v(sz>|dadsz,
R¥ (e kyezr
where
My ey (X, il] i;) ‘ (x k1+§ k2+i§> —m(x, ki1, ka)|.

By the dominated convergence theorem,
lim Ex(f,®)(x) =0
N—oo
uniformly on x € R”. The theorem is proved. O
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4.2 Restriction of bilinear multiplier

The purpose of this subsection is to establish transference and restriction of bilinear multiplier
to subspaces. These results are similar to those of DeLeeuw [6] for Fourier multipliers. The
study of such transplantations was initiated by DeLeeuw [6], see also Calderén [4] and
Coifman and Weiss [5]. Recall

a0 = [ FlenEm et sk 5ty der,
Tm,a(fs ) = Z Z ag, br,m(eky, cky)etkitkax)

ki €Z kol

Let d be an integer in the interval [1, n). Write & = (£, &™), (i = 1,2), where &
is the d-vector of first d components of & and Si("_d) is the (n — d)-vector of last n — d
components of &;. Similarly, we write

ki =0, D) i =12,

where k' € 74 and k" € 7",
Now for a multiplier m (&1, &) on R" x R”, we define its restriction m’ on RY x R4 by

d) . d d
m' &7, 67 =mE?, 1,60, c2)

for any fixed c¢1, c; € R"~¢. We have the following two theorems.
Theorem 4 Suppose that m € L°° N C(Rz"), 1<p,q,pi,qgi <oo,i=1,2.If

” Tne(f,8) ||Lp,q(Rn) <Clfllgria (R") ||g||LP2qu(Rn)v 1/p=1/p1+1/p2,
forall f e LPV9'(R™) and g € LP>92(R"), then

T e (fs ) Lpagay < C N Iiporar ay 18l oo @y, 1/p = 1/p1 + 1/ p2,
forall fe LPh9(RY) and g € LP>9(RY).
Proof By Theorem 1, we assume ¢ = 1. We define another multiplier m,, ., by

d —d d —d
Meyer 81, 82) =mED &0 41,57, 670 + o).

By definition and changing variables, we see that

Tm(-]&-z (fv g)(x)

_ /R mE® g e 60 T o) FlEnREe e ds ey

Tre(d —d ~ s (d —d
= [ mer e Fe® 6 - oz e — )
x el E1+62.0) gilc1ter02) gg, 4,

e HIFORIT, (fe), 86r) (%),

where

for (x1,x2) = f(x1, xp)el €172,

8o (X1, ¥2) = g(xy, xp)el (€272,
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Thus,

” Tmcl,gz (f» g) = H Tm(fclagCQ)”Lp.q(Rn) s

LPd (R
”f”LPI»‘Il R = ” fC] ||Lp],q| (Rn)
”g”LPquZ (R") = Hng ”Lpz,qz ®")

By the assumption, we have now

H Tmcl,cz (f. 8

=C ” fer ”me (R") |g02 ||LF2~112(Rn)

LP-4(RM)
=C I flizr1a (R™) llgllppa (R") -

By rescaling, it is trivial to check

T,

Mey,ep

H qu,cz’s O ‘ - —
P.q P.q
forall ¢ > 0.
So by the transference result in Theorem 1, we further have

[T e (7| < C | 7l v oy 1B Loz oy

LPa(T™)

uniformly on ¢ > 0. For any

Fan) e LPrardy N ™ (1), g(xy) € LP»2(14) N (1Y),

write
~ . (d)
flx) = Z al/c(d)el(kl 1)
KDezd :
- 2 (d)
S(x)) = Z b;(d)et(kz A1)
P ezd :
We define
F(x) = F(x1,x2) = (f ® D(x1,x2) = f(x1)
and

G(x) = G(x1,x2) = (g @ D(x1,x2) = g(x1),

where x = (x1,x2) € T", x; € T, xy € T" 4.
Clearly

(F,G) € LP»91(T") x LP»9(T")

and

1/p1 ~
—d

| Fllpprar ny = ‘Tn ‘ A1 s (Tdy
/p2

‘ ||g||LPz»q2(Td) .

1G 2 rny = |77~
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Therefore,

Do e (F- QY1) = 30 3 @bl

KD ezd k¥ ezt

Tn—d ‘2

() - (d)
X Mey,cr (351@)7 0, 3%_2@)7 0)e' tky 'Xl)Cl {hy 1)

/ / 2
2. 2. Gublw
ky' ks

KD ezd kD ezd

Tnfd

@D @
x m(e&\ D, c1, 6657, ep)el kTR x)

2 ~ ~
= || T P ).

Now
Moo @ =[x € T2 [T (P G) (@1, x2)| > |
:/ / o ) dxidxy
Tnd [xler:|Tm/7£(f,§')(X|)‘>oz/|T"—d|]
2
= ‘Tnid‘)“fn,ﬁg(f,g)("‘/ ’T"id‘ ).
Thus,

~ 1/p+2  ~ ~
[Ty F. G = 1= T o F D ey -

LPa(T™)

By Theorem 1, we have

Tnfd‘—(l/p+2)

” Tm/,g(f, @”an(Td) =C

[ Ell e rmy 1G I raa2 (7

2 N
=C T”*d‘ 11 Lo iy V&N oo

uniformly on ¢ > 0.
Finally by the transference result in Theorem 1 again, we obtain

-2
[ToweCF ) ooy = € [T"7| 1F Do gy Il nn oy
where

I/p=1/p1+1/p.

The proof is done. O

Recall

3

T (f+8) (x) = sup | T e (f, ) (x)
e>0
T (f, () = sup | Te (f, D)) .
e>0
Now we define a restriction to R x R? of the multiplier m(&], £&) on R” x R” by

mlED, Dy =mE@ 0,6, 0).
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Theorem 5 Suppose that m € L N C(R?"), 1 < P.q, Pi»qi <00,i =1,2. If
| T N Lragny < C UL NLorarny I8l Lraz@ny - 1/p = 1/p1 + 1/ p2,
forall f e LPV1(R") and g € LP292(R"), then
” T},:;O(fv g) ”L,,_q(Rd) <C I 1l Lorar (may ||g||Lpzvq2(]Rd)s l/p=1/p1+1/p2,
forall f e LPH9(RY) and g € LP>»%(RY).

Proof The proof of Theorem 5 follows the same idea used in the proof of Theorem4. O

5 Some notes

Recall that in Theorems 1 and 2 we assume m € L®(R*")NC (R?"). Actually, this condition
me C (Rz”) can be relaxed. In [10], Kenig and Tomas assume that m is regulated, which
means every point of R” is a Lebesgue point of m [6]. Clearly, we can define the regulated
condition on m (&1, &) and use this condition instead of m € C (R?") to ensure that the
transference can be completed from 7" to R". However, to prove the transference can be
completed from R” to 7", we only need the condition

1
s [ mek e sk &) —m ek skl = o),
17 i<t il =t

if t — 07T, for all {eky, €k2} (k. kp)ezn xz . This means that we only need that all points in
{ek1, eka} k) k) ez x 70 >0 are Lebesgue points of m (&1, §2).
In the proof of || T HT?’ 7 > || T ||77> 7 the condition on m is used to show

lim Ey(f,3)(x)=0. (13)
N—oo
In the proof || 75— — < | T — - » the condition on 7 is used to show that

e Y D" Flek)@leko)m(eky, eky)e Ehith (14)

ki €Z ko

is a Riemann sum of

/R | TEngEm @ e g dy. (15)
We look the bilinear Hilbert transform
H(f, &)(x) =i /R FENZE)sgn(& — e 1) dg de,
and its periodic version

HF.D@) =i Y Y aybiysgnky — ky)e'Frthes),

k1€Z ko €Z

It was proved in [7] that the symbol sgn (§; — &) ensures that (13) holds. Also, it is
clear that sgn (£ — &) makes that (14) is a Riemann sum of (15). Also, we observe sgn
(e&1 — €&) = sgn (&1 — &). Therefore, we have the following result.
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Theorem6 For1 < p,q, pi,qi <00,i = 1,2,

IH(f, g)“LP-‘I(]R) = ||H||7,>,7 ||f||L11|~ql(R) ||g||L112~qz(R) A/p=1/p1+1/p2,
forall f and g if and only if

VHF D poacry < VH 5 5 17 Lovar ooy 18 L2y s 1/ = 1 p1 + 1/ 2,

forall fand3.
Moreover,

IHI3 2 =H| -

Remark 3 We may further consider the transference of bilinear multiplier between Lorentz
spaces of R"” and Z".
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