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Abstract
In this paper convergence theorems for sequences of scalar, vector and multivalued Pettis
integrable functions on a topological measure space are proved for varying measures vaguely
convergent.

Keywords Setwise convergence · Vaguely convergence · Weak convergence of measures ·
Locally compact Hausdorff space · Vitali’s theorem
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1 Introduction

Conditions for the convergence of sequences of measures (mn)n and of their integrals
(
∫

fndmn)n in a measurable space � are of interest in many areas of pure and applied
mathematics such as statistics, transportation problems, interactive partial systems, neural
networks and signal processing (see, for instance, [1–3, 9–12, 17]). In particular, for the
image reconstruction, which is a branch of signal theory, in the last years, interval-valued
functions have been considered since the process of discretization of an image is affected
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by quantization errors [19] and its numerical approximation can be interpreted as a suitable
sequence of interval-valued functions (see for instance [22, 28]).

Obviously, suitable convergence notions are needed for the varying measures, see for
example [15, 16, 18, 21, 23, 24, 30] and the references therein. In a previous paper [13] we
have examined the problem when the varying measures converge setwisely in an arbitrary
measurable space. This type of convergence is a powerful tool since it permits to obtain strong
results, for example the Vitali-Hahn-Saks Theorem or a Dominated Convergence Theorem
[18].
But sometime in the applications it is difficult, at least technically, to prove that the sequence
(mn(A))n converges to m(A) for every measurable set A, unless e.g. the sequence (mn)n is
decreasing or increasing. So other types of convergence are studied, based on the structure of
the topological space �, such as the vague and the weak convergence which are, in general,
weaker than the setwise. These convergences are useful, for example, from the point of view
of applications on non-interactive particle systems (see [9, 23]).

In the present paper we continue the research started in [13] and we provide sufficient con-
ditions in order to obtain Vitali’s type convergence results for a sequence of (multi)functions
( fn)n integrablewith respect to a sequence (mn)n ofmeasureswhen (mn)n converges vaguely
or weakly to a finite measure m.
The known results, in literature, as far as we know, require that the topological space �,
endowed with the Borel σ -algebra is a metric space [15, 16], or a locally compact space
which is also: separable and metric [18], metrizable [20] or Hausdorff second countable
[30]. An interesting comparison among all these results is given in [23].

In the present paper, following the ideas of Bogachev [4], we assume that � is only
an arbitrary locally compact Hausdorff space. The paper is organized as follows: in Sect. 2
the topological structure of the space � is introduced together with the convergence types
considered and some of their properties. In Sect. 3 the scalar case is studied; the main result
of this section is Theorem 3.4, where we obtain the convergence of the integrals (

∫
fndmn)n

over arbitrary Borel sets under suitable conditions. In Sect. 4 Theorem 3.4 is applied in order
to obtain analogous results for the multivalued case, obtaining as a corollary also the vector
case. In both cases the Pettis integrability of the integrands is considered. Finally, adding
a condition as in [13, Theorem 3.2] we obtain a convergence result for (multi)functions in
Proposition 4.4 on measurable spaces.

2 Topological case, preliminaries

Let�be a locally compactHausdorff space and letB be itsBorelσ -algebra. The symbolF(�)

indicates the class of all B-measurable functions f : � → R. We denote by C(�), C0(�),
Cc(�) and Cb(�) respectively the family of all continuous functions, and the subfamilies of
all continuous functions that vanish at infinity, have compact support, are bounded.
Throughout, we will use Urysohn’s Lemma in the form ([29, Lemma 2.12]):

• If K is compact and U ⊃ K is open in a locally compact �, then there exists f : � →
[0, 1], f ∈ Cc(�), such that χK ≤ f ≤ χU .

All the measures we will consider on (�,B) are finite and by M(�) we denote the family
of finite nonnegative measures. As usual a measurem ∈ M(�) is Radon if it is inner regular
in the sense of approximation by compact sets.
We recall the following definitions of convergence for measures.

Definition 2.1 Let m and mn be in M(�). We say that
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Convergence for varying measures... 73

2.1.a) (mn)n converges vaguely to m (mn
v−→ m) ([18, Section 2.3]) if

∫

�

gdmn →
∫

�

gdm, for every g ∈ C0(�).

2.1.b) (mn)n converges weakly to m (mn
w−→ m) ([18, Section 2.1]) if

∫

�

gdmn →
∫

�

gdm, for every g ∈ Cb(�).

2.1.c) (mn)n converges setwisely to m (mn
s−→ m) if limn mn(A) = m(A) for every

A ∈ B ([18, Section 2.1], [16, Definition 2.3]) or, equivalently [23], if
∫

�

gdmn →
∫

�

gdm, for every bounded g ∈ F(�).

2.1.d) (mn)n is uniformly absolutely continuous with respect to m if for each ε > 0 there
exists δ > 0 such that

(E ∈ B and m(E) < δ) �⇒ sup
n

mn(E) < ε. (1)

We would like to note that the condition mn ≤ m, for every n ∈ N, implies that (mn)n is
uniformly absolutely continuous with respect to m.

Remark 2.2 As observed in [18] the setwise convergence is stronger than the vague and the
weak convergence. For the converse implications we know, by [21, Lemma 4.1 (ii)], that if
(mn)n is a sequence inM(�)withmn ≤ m, wherem ∈ M(�) and (mn)n converges vaguely
to m, then (mn)n converges setwisely to m. If m is R-valued this is not true in general, see
for example [18, page 143]. The weak convergence is stronger than the vague convergence;
as an example we can considermn := δn (the Dirac measure at the point x = n) andm := 0.
The sequence (mn)n converges vaguely to m, but since mn(R) = 1 �→ 0 = m(R) the
convergence cannot be weak.
Moreover we note that if (mn)n converges weakly to m, then mn(�) → m(�) (it is enough
to take g = 1 in the definition).

We have

Proposition 2.3 Let mn, n ∈ N, and m be in M(�), with m Radon. If (mn)n is uniformly
absolutely continuous with respect to m and (mn)n is vaguely convergent to m, then (mn)n
is weakly convergent to m.

Proof We fix ε > 0 and let f ∈ Cb(�). We set c := max{1, sup� | f (ω)|}, let δ ∈]0, ε[ be
taken in such a way that if E is a Borel set with m(E) < δ, then

max

{∫

E
| f | dm, sup

n
mn(E)

}

< ε.

Let K be a compact set such that m(Kc) < δ. Then by Urysohn’s Lemma let h : � → [0, 1]
be a continuous function with compact support such that h(ω) = 1 for ω ∈ K . Let g :=
f · h. Then g ∈ C0(�). We have for sufficiently large n ∈ N, depending on the vaguely
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convergence,
∣
∣
∣

∫

�

f dm −
∫

�

f dmn

∣
∣
∣

≤
∫

�

| f − g|dm +
∫

�

| f − g|dmn +
∣
∣
∣

∫

�

g dm −
∫

�

g dmn

∣
∣
∣

=
∫

Kc
| f | · |1 − h| dm +

∫

Kc
| f | · |1 − h| dmn +

∣
∣
∣

∫

�

g dm −
∫

�

g dmn

∣
∣
∣

≤ ε(c + 2).

	

For other relations among weak or vague convergence and setwise convergence see [21,
Lemma 4.1]. Moreover

Proposition 2.4 Let mn, n ∈ N, and m be in M(�) with m Radon. If mn ≤ m, for every
n ∈ N, and (mn)n is vaguely convergent to m, then for every f ∈ L1(m) and A ∈ B

lim
n

∫

A
f dmn =

∫

A
f dm. (2)

In particular (mn)n converges to m setwisely.

Proof Let f ∈ L1(m) be fixed. Given ε > 0 there exists g ∈ Cc(�) such that
∫

�

| f − g|dmn ≤
∫

�

| f − g|dm <
ε

3
. (3)

Moreover, since (mn)n is vaguely convergent to m, let N (ε/3) be such that
∣
∣
∣

∫

�

g dm −
∫

�

g dmn

∣
∣
∣ <

ε

3
(4)

for n > N . Therefore by (3) and (4) for n > N we obtain
∣
∣
∣
∣

∫

�

f dm −
∫

�

f dmn

∣
∣
∣
∣

≤
∫

�

| f − g|dm +
∫

�

| f − g|dmn +
∣
∣
∣
∣

∫

�

g dm −
∫

�

g dmn

∣
∣
∣
∣ < ε.

Now if A ∈ B, also f χA ∈ L1(m) and (2) follows. In particular mn
s−→ m. 	


Results of the previous type are contained for example in [18, Proposition 2.3] for the
setwise convergence when the measuresmn are equibounded by ameasure ν for non negative
f ∈ L1(ν) or in [18, Proposition 2.4] under the additional hypothesis of separability of �

for non negative and lower semicontinuous functions f .
We now introduce the following definition

Definition 2.5 Let (mn)n be a sequence in M(�). We say that:

2.5.a) A sequence ( fn)n ⊂ F(�) has uniformly absolutely continuous (mn)-integrals on
Ω , if for every ε > 0 there exists δ > 0 such that for every n ∈ N

(A ∈ B and mn(A) < δ) �⇒
∫

A
| fn | dmn < ε. (5)

Analogously a function f ∈ F(�) has uniformly absolutely continuous (mn)-integrals
on Ω if previous condition (5) holds for fn := f for every n ∈ N.
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2.5.b) A sequence ( fn)n ⊂ F(�) is uniformly (mn)-integrable on Ω if

lim
α→+∞ sup

n

∫

| fn |>α

| fn | dmn = 0. (6)

Remark 2.6 As we observed in [13, Proposition 2.6] if (mn)n is a bounded sequence of
measures and ( fn)n ⊂ F , then, ( fn)n is uniformly (mn)-integrable on Ω if and only if it has
uniformly absolutely continuous (mn)-integrals and

sup
n

∫

�

| fn | dmn < +∞ . (7)

3 The scalar case

Proposition 3.1 Let (mn)n be a sequence inM(�)which is uniformly absolutely continuous
with respect to a Radon measure m ∈ M(�) and vaguely convergent to m. Let f ∈ C(�)

be a function which has uniformly absolutely continuous (mn)-integrals on Ω . Then,

sup
n

∫

�

| f | dmn < +∞ . (8)

Proof Let ε > 0 be fixed and let σ = σ(ε) be that of the uniform absolutely continuous
(mn)-integrability of f as in formula (5) (with fn = f for each n ∈ N). Moreover let
δ = δ(σ ) > 0 be that of the uniform absolute continuity of (mn)n with respect to m, as in
formula (1).

Sincem is Radon, there is a compact set K such thatm(�\K ) < δ. By Urysohn’s Lemma
there exists a continuous function h : � → [0, 1] with compact support such that h(ω) = 1
for ω ∈ K . Let g := | f | · h. Then g ∈ C0(�). Hence

∫

�

| f | dmn ≤
∫

K
| f | dmn +

∫

�\K
| f | dmn ≤

∫

�

g dmn + ε.

Since (mn)n converges vaguely to m, then
∫

�

g dmn −→
∫

�

g dm < +∞.

Hence

sup
n

∫

K
| f | dmn ≤ sup

n

∫

�

g dmn < +∞.

	

Proposition 3.2 Let (mn)n be a sequence inM(�)which is uniformly absolutely continuous
with respect to a Radon measure m ∈ M(�) and vaguely convergent to m. Moreover let
f ∈ C(�) be a function which has uniformly absolutely continuous (mn)-integrals on Ω .
Then f ∈ L1(m) and

lim
n

∫

�

f dmn =
∫

�

f dm. (9)

Proof By Proposition 3.1 supn
∫
�

| f |dmn < +∞ . We denote by (gk)k an increasing
sequence of functions in Cb(�) such that 0 ≤ gk ↑ | f |, m a.e.
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By Proposition 2.3 (mn)n is also weakly convergent to m. Now fix k ∈ N. Let N1(k, 1) be
such that if n > N1 ∫

�

gk dm − 1 <

∫

�

gk dmn . (10)

By Proposition 3.1 we infer
∫

�

gkdm − 1 <

∫

�

gkdmn ≤ sup
n

∫

�

| f |dmn < ∞ . (11)

So, by the Monotone Convergence Theorem applied to the sequence (gk)k we obtain f ∈
L1(m).
We are showing now that (9) holds. We fix σ > 0. Since f ∈ L1(m) there exists a positive
δ0 such that for every A ∈ B with m(A) < δ0 then

∫

A
| f |dm < σ. (12)

Moreover let ε(σ ) > 0 be that of the uniform absolutely continuous (mn)-integrability of f
in Ω (with fn = f for each n ∈ N) and δ = δ(ε) ∈]0,min{ε, δ0}[ be that of the absolute
continuity of (mn)n with respect to m.
So, if m(A) < δ then supn mn(A) < ε and

sup
n

∫

A
| f |dmn < σ. (13)

By Urysohn’s Lemma one can find a compact set K with m(Kc) < δ and a function
h : � → [0, 1] in Cc(�) and equal to 1 on K . So g := f · h ∈ Cc(�).
Since the sequence (mn)n is vaguely convergent to m, there is N2(σ ) > N1 such that for
n > N2 ∣

∣
∣
∣

∫

�

g dmn −
∫

�

g dm

∣
∣
∣
∣ < σ. (14)

Then by (13), (14) and (12), for n > N2, we have
∣
∣
∣
∣

∫

�

f dmn −
∫

�

f dm

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

�

( f − g) dmn

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

g dmn −
∫

�

g dm

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

(g − f ) dm

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

�

f (1 − h) dmn

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

g dmn −
∫

�

g dm

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

f (1 − h) dm

∣
∣
∣
∣

≤
∫

Kc
| f | dmn + σ +

∫

Kc
| f | dm < 3σ

and the thesis follows. 	


Now our aim is to obtain a limit result

lim
n

∫

A
fndmn =

∫

A
f dm, for everyA ∈ B. (15)

For the scalar case, using a Portmanteau’s characterization of the vague convergence inmetric
spaces (see for example [20]), sufficient conditions when A = �, are given
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Convergence for varying measures... 77

• in locally compact second countable and Hausdorff spaces, ([30, Theorems 3.3 and 3.5]),
by Serfozo, for the vague and weak convergence respectively, when the sequence ( fn)n
converges continuously to f . Under a domination condition in the first result while, in
the second, the uniform (mn)-integrability of the sequence ( fn)n , with fn ≥ 0 for every
n ∈ N, is required;

• in locally compact separable metric spaces [18] by Hernandez-Lerma and Lasserre,
obtaining a Fatou result and asking for the convergence of the sequence of measures
an inequality of the lim inf of the mn on each Borelian set;

• in metric spaces [15, 16], where the authors obtained a dominated convergence result for
sequences of equicontinuous functions ( fn)n satisfying the uniform (mn)-integrability.

In Theorem 3.4, taking into account Remarks 2.2 and 2.6, we extend [30, Theorem 3.5],
obtaining a sufficient condition when the convergence is vague, the functions fn are real
valued and using the uniformly absolutely continuous (mn)-integrability of the sequence
( fn)n . Later, in Sect. 4, we will also extend it to the vector and multivalued cases making use
of the Pettis integrability.
We assume only that � is a locally compact Hausdorff space and then, in our setting, � is
a Tychonoff space, i.e. a completely regular Hausdorff space ([14, Theorem 3.3.1]). So we
are able to use the following Portmanteau’s characterization of the vague convergence for
positive measures given in [4].

Theorem 3.3 ([4, Corollary 8.1.8 and Remark 8.1.11]) Let � be an arbitrary completely
regular space and let m and mn, n ∈ N, be measures in M(�) with m Radon and assume
that limn mn(�) = m(�). Then the following are equivalent:

3.3.i) (mn)n is vaguely convergent to m;
3.3.i) for any closed set F ⊂ �, lim supn mn(F) ≤ m(F).

So we have

Theorem 3.4 Let m andmn, n ∈ N, be measures inM(�), with m Radon. Let f , fn ∈ F(�).
Suppose that

(3.4.i) fn(t) → f (t), m-a.e.;
(3.4.ii) f ∈ C(�);
(3.4.iii) ( fn)n and f have uniformly absolutely continuous (mn)-integrals on Ω;
(3.4.iv) (mn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m.

Then f ∈ L1(m) and

lim
n

∫

A
fndmn =

∫

A
f dm for every A ∈ B. (16)

Proof By Proposition 3.2 the function f ∈ L1(m). We proceed by steps.

Step 1 We prove (16) for A = �. Fix ε > 0 and let δ := min
{

ε
6 , δ(

ε
6 ), δ f (

ε
6 )

}
> 0 where

δ f (
ε
6 ) is that of the absolute continuity of

∫
.
| f |dm, and by (3.4.iii) δ( ε

6 ) is that of
(5) for both ( fn)n and f with respect to (mn)n .
By the hypothesis (3.4.iv) let 0 < δ0 < δ be such that

(E ∈ B and m(E) < δ0) �⇒ sup
n

mn(E) < δ. (17)
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By theEgoroff’s Theorem,we can find a compact set K such that fn → f uniformly
on K and m(Kc) < δ0.
We observe that by condition 3.4.iv) and by Proposition 2.3 (mn)n weakly converges
to m and then limn mn(�) = m(�). So by Theorem 3.3, let N0 ∈ N be such that

mn(K ) < m(K ) + 1, (18)

for every n > N0. Moreover, since the convergence is uniform on K , let N1 >

N0 ∈ N be such that

| fn(t) − f (t)| <
ε

6(m(K ) + 1)
, (19)

for every t ∈ K and n > N1. Then, for all n > N1,
∫

K
| fn − f |dm <

ε

6
. (20)

Therefore by (18) and (19) we obtain, for every for n > N1,
∫

K
| fn − f |dmn ≤ ε

6(m(K ) + 1)
· mn(K ) <

ε

6
. (21)

Since m(Kc) < δ0 by (17) it follows that mn(Kc) < δ for every n ∈ N. Moreover,
by hypothesis 3.4.iii) and by the choice of δ, we have that

max

{∫

Kc
| f |dm,

∫

Kc
| fn |dmn,

∫

Kc
| f |dmn

}

<
ε

6
. (22)

By Urysohn’s Lemma let h : � → [0, 1] be a continuous function with compact
support equal to 1 on K . Then g := f · h ∈ Cc(�) and by (22) we have

max

{∫

Kc
| f − g|dmn,

∫

Kc
| f − g|dm

}

<
ε

6
. (23)

Moreover, since (mn)n is vaguely convergent to m, let n > N2 ≥ N1 be such that
∣
∣
∣

∫

�

g dm −
∫

�

g dmn

∣
∣
∣ <

ε

6
. (24)

Therefore by (21)–(24) for n > N2 we obtain
∣
∣
∣
∣

∫

�

f dm −
∫

�

fndmn

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

�

( fn − f )dmn

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

f dm −
∫

�

f dmn

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

K
( fn − f )dmn

∣
∣
∣
∣ +

∫

Kc
| fn |dmn +

∫

Kc
| f |dmn +

∣
∣
∣
∣

∫

�

f dm −
∫

�

f dmn

∣
∣
∣
∣

≤ ε

2
+

∣
∣
∣
∣

∫

�

f dm −
∫

�

f dmn

∣
∣
∣
∣

≤ ε

2
+

∫

Kc
| f − g|dm +

∫

Kc
| f − g|dmn +

∣
∣
∣
∣

∫

�

g dm −
∫

�

g dmn

∣
∣
∣
∣ < ε (25)

so (16) follows for A = �.
Step 2 Now we are proving that (16) is valid for an arbitrary compact set K .

Let once again, ε > 0 be fixed. By (3.4.iii) and (3.4.iv) there exist δ1, δ2 > 0 such
that:
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j1) if mn(E) < δ2, then
∫

E
| fn | dmn < ε for every n ∈ N;

j2) if m(E) < δ1, then mn(E) < δ2 for every n ∈ N;

j3) if m(E) < δ1, then
∫

E
| f | dm < ε.

Let now U ⊃ K be an open set such that m(U \ K ) < δ1. Then let g : Ω → [0, 1]
be continuous and such that g = 1 on K and zero on Uc.
Observe that the sequence ( fng)n and the function f g satisfy all the hypotheses of
Theorem 3.4 so, for the Step 1, we have

lim
n

∫

U
fng dmn = lim

n

∫

�

fng dmn =
∫

�

f g dm =
∫

U
f g dm.

Then, by the previous inequalities and for n sufficiently large, we have
∣
∣
∣

∫

K
fn dmn −

∫

K
f dm

∣
∣
∣ =

∣
∣
∣

∫

K
fng dmn −

∫

K
f g dm + (

∫

Kc
fng dmn −

∫

Kc
f g dm

)+

−
(∫

Kc
fng dmn −

∫

Kc
f g dm

) ∣
∣
∣

≤
∣
∣
∣
∣

∫

Ω
fng dmn −

∫

Ω
f g dm

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

Kc
fng dmn −

∫

Kc
f g dm

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ω
fng dmn −

∫

Ω
f g dm

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

U\K
fng dmn −

∫

U\K
f g dm

∣
∣
∣
∣

<

∣
∣
∣
∣

∫

Ω
fng dmn −

∫

Ω
f g dm

∣
∣
∣
∣ +

∫

U\K
| fn | dmn +

∫

U\K
| f | dm < 3ε.

Step 3 Let now B a Borelian set and let ε > 0, δ1, δ2 > 0 as in Step 2. LetC1 be a compact
set with C1 ⊂ B such that m(B \ C1) < δ1. So

∣
∣
∣
∣

∫

B
fn dmn −

∫

B
f dm

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

C1

fn dmn −
∫

C1

f dm

∣
∣
∣
∣ +

+
∣
∣
∣
∣

∫

B\C1

fn dmn −
∫

B\C1

f dm

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

C1

fn dmn −
∫

C1

f dm

∣
∣
∣
∣ +

∫

B\C1

| fn | dmn +
∫

B\C1

| f | dm.

So the assertion follows from j1)− j3) and the compact case in Step 2 and this ends
the proof.

	

Corollary 3.5 Let m and mn, n ∈ N, be measures in M(�), with m Radon. If (mn)n is
vaguely convergent to m and uniformly absolutely continuous with respect to m, then (mn)n
converges setwisely to m.

Proof It is a consequence of Theorem 3.4 if we assume fn = f ≡ 1 for every n ∈ N. 	

Remark 3.6 3.6.a)] We observe that under the hypotheses of Theorem 3.4, if f ∈ C(�),

then also f ± are in C(�) and f ±
n (t) → f ±(t) m-a.e. as n → ∞. In fact

∣
∣
∣ | fn | − | f |

∣
∣
∣ ≤ ∣

∣ fn − f
∣
∣

2 f +
n = fn + | fn | → f + | f | = 2 f +;

2 f −
n = | fn | − fn → | f | − f = 2 f −.
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Moreover also ( f ±
n )n and f ± satisfy condition 3.4.iii) since

f ±
n ≤ | fn | and f ± ≤ | f |.

Therefore in the hypotheses of Theorem 3.4 we get also

lim
n

∫

A
f ±
n dmn =

∫

A
f ±dm, for every A ∈ B.

3.6.b) Theorem 3.4 is still valid if we replace condition 3.4.i) with

3.6.i’) fn converges in m-measure to f .

In fact, by 3.4.i’), there exists a subsequence of ( fnk )k which converges m-a.e. to f .
Then Theorem 3.4 is true for such subsequence. So this implies that the result of this
theorem, equality (16), is still valid for the initial sequence (with convergence in m-
measure) because if, absurdly, a subsequence existed in which it is not valid, there would
be a contradiction.

A simple consequence of the Theorem 3.4 is the following

Theorem 3.7 Let m andmn, n ∈ N, be measures inM(�), with m Radon. Let f , fn ∈ F(�).
Suppose that

(3.7.i) fn(t) → f (t), m-a.e.;
(3.7.ii) f ∈ Cb(�);
(3.7.iii) ( fn)n has uniformly absolutely continuous (mn)-integrals on Ω;
(3.7.iv) (mn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m.

Then

lim
n

∫

A
fndmn =

∫

A
f dm, for every A ∈ B.

Proof The assertion follows from Theorem 3.4 since f has uniformly absolutely continuous
(mn)-integrals, in fact it is enough to take the pair (ε, δ(ε/M)) where M > supt∈� | f (t)|. 	


4 Themultivalued and the vector cases

4.1 Themultivalued case

Let X be a Banach space with dual X∗ and let BX∗ be the unit ball of X∗. The symbol
cwk(X) denotes the family of all weakly compact and convex subsets of X . For every
C ∈ cwk(X) the support function of C is denoted by s(·,C) and defined on X∗ by s(x∗,C) =
sup{〈x∗, x〉 : x ∈ C}. Recall that X is said to be weakly compact generated (briefly WCG)
if it possesses a weakly compact subset K whose linear span is dense in X .
A map � : � → cwk(X) is called a multifunction. A space Y ⊂ X m-determines a
multifunction � if s(x∗, �) = 0m a.e. for every x∗ ∈ Y⊥, where the exceptional sets depend
on x∗.
A multifunction � is said to be

• scalarly measurable if t → s(x∗, �(t)) is measurable, for every x∗ ∈ X∗;
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• scalarly m-integrable if t → s(x∗, �(t)) is m-integrable, for every x∗ ∈ X∗, where
m ∈ M(�);

• scalarly continuous if for every x∗ ∈ X∗, t → s(x∗, �(t)) is continuous.

A multifunction � : � → cwk(X) is said to be Pettis integrable in cwk(X) with respect
to a measure m (or shortly Pettis m-integrable) if � is scalarly m-integrable and for every
measurable set A, there exists M�(A) ∈ cwk(X) such that

s(x∗, M�(A)) =
∫

A
s
(
x∗, �

)
dm for all x∗ ∈ X∗.

We set
∫

A
�dm := M�(A).

For the properties of Pettis m-integrability in the multivalued case we refer to [5–8, 26,
27], while for the vector case we refer to [25]. If � is single-valued we obtain the classical
definition of Pettis integral for vector function.
Given a sequence of multifunctions we introduce now some definitions of uniformly abso-
lutely continuous scalar integrability using Definition 2.5.

Definition 4.1 For every n ∈ N, letmn be ameasure inM(�) and let�n : Ω → cwk(X) be a
multifunction which is scalarlymn-integrable. We say that the sequence (�n)n has uniformly
absolutely continuous scalar (mn)-integrals on Ω if for every ε > 0 there exists δ > 0 such
that, for every n ∈ N and A ∈ B, it is

mn(A) < δ ⇒ sup

{∫

A
|s(x∗, �n)|dmn : ‖ x∗ ‖≤ 1

}

< ε. (26)

Analogously amultifunction� has uniformly absolutely continuous scalar (mn)-integrals on
Ω if previous condition (26) holds for �n := � for every n ∈ N. Moreover we say that � has
uniformly absolutely continuous scalar m-integrals on Ω if, in formula (26), it is �n := �

and mn = m for every n ∈ N. In this case we have, for every A ∈ B,

m(A) < δ ⇒ sup

{∫

A
|s(x∗, �)|dm : ‖ x∗ ‖≤ 1

}

< ε. (27)

Theorem 4.2 Let �,�n, n ∈ N, be scalarly measurable multifunctions. Moreover let m, mn,
n ∈ N, be measures in M(�) and let m be Radon. Suppose that

(4.2.j) (�n)n and � have uniformly absolutely continuous scalar (mn)-integrals on Ω;
(4.2.jj)) s(x∗, �n) → s(x∗, �) m-a.e. for each x∗ ∈ X∗;
(4.2.jjj) � is scalar continuous;
(4.2.jv) (mn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m;
(4.2.v) each multifunction �n is Pettis mn-integrable.

Then the multifunction � is Pettis m-integrable in cwk(X) and

lim
n

s
(
x∗,

∫

A
�n dmn

)
= s

(
x∗,

∫

A
� dm

)
, (28)

for every x∗ ∈ X∗ and for every A ∈ B.
Proof Let x∗ ∈ X∗ be fixed. Then the sequence of functions

(
s(x∗, �n)

)
n and the function

s(x∗, �) defined on � satisfy the assumptions of Theorem 3.4. So, for each A ∈ B

lim
n

∫

A
s(x∗, �n) dmn =

∫

A
s(x∗, �) dm. (29)
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In order to prove that � is Pettis m-integrable, following [26, Theorem 2.5], it is enough to
show that the sublinear operator T� : X∗ → L1(m), defined as T�(x∗) = s(x∗, �) is weakly
compact (step Cw) and that � is determined by a WCG space Y ⊂ X (step D).

Cw) First of all we prove that the operator T� is bounded. By (4.2.jjj) � is scalarm-integrable.
Therefore � is Dunford-integrable in cw∗k(X∗∗), where X∗∗ is endowed with the w∗-
topology, and for every A ∈ B let MD

� (A) ∈ cw∗k(X∗∗) be such that

s(x∗, MD
� (A)) =

∫

A
s(x∗, �)dm < +∞, (30)

for every x∗ ∈ X∗. So s(x∗, MD
� (·)) is a scalar measure and

∫

�

|s(x∗, �)|dm ≤ 2 sup
A∈B

∣
∣
∣
∣

∫

A
s(x∗, �)dm

∣
∣
∣
∣ < +∞. (31)

Hence, the set
⋃

A∈B
MD

� (A) ⊂ X∗∗ is bounded, by the Banach- Steinhaus Theorem, and

sup
‖x∗‖≤1

∫

�

|s(x∗, �)|dm ≤ 2 sup

{

‖ x ‖: x ∈
⋃

A∈B
MD

� (A)

}

< +∞.

Since the set
{
s(x∗, �) :‖ x∗ ‖≤ 1

}
is bounded in L1(m), the operator T� is bounded.

In order to obtain the weak compactness of the operator T� it is enough to prove that �

has absolutely continuous scalar m-integrals on Ω . Let x∗ ∈ BX∗ be fixed. Now fix ε > 0
and let σ(ε) > 0 satisfy (4.2.j). Moreover let δ(σ ) > 0 verify (4.2.jv).
Let E ∈ B be such that m(E) < δ and set

E+ = {t ∈ E : s(x∗, �(t)) ≥ 0} E− = {t ∈ E : s(x∗, �(t)) < 0}.
By (29) let now Nx∗ ∈ N be an integer such that for every n ≥ Nx∗

∣
∣
∣
∣

∫

E±
s(x∗, �)dm

∣
∣
∣
∣ <

∣
∣
∣
∣

∫

E±
s(x∗, �n)dmn

∣
∣
∣
∣ + ε

2
.

So, for every n ≥ Nx∗ ,
∫

E
|s(x∗, �)|dm =

∫

E+
s(x∗, �)dm +

∣
∣
∣
∣

∫

E−
s(x∗, �)dm

∣
∣
∣
∣

<

∣
∣
∣
∣

∫

E+
s(x∗, �n)dmn

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

E−
s(x∗, �n)dmn

∣
∣
∣
∣ + ε.

Since, by (4.2.jv), it is in particular mn(E) < σ for every n ≥ Nx∗ , we get
∫

E
|s(x∗, �)|dm ≤

∫

E
|s(x∗, �n)|dmn + ε < 2ε

so � has uniformly absolutely continuous scalar m-integral on Ω .

D) We have to show the existence of a WCG subspace of X which determines �. Since �n

is Pettis mn-integrable, for every n ∈ N, let Yn ⊆ X be a WCG space generated by a set
Wn ∈ cwk(BX∗) which mn-determines �n , by [26, Theorem 2.5].
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We may suppose, without loss of generality that each Wn is absolutely convex, by Krein-
Smulian’s Theorem. Let Y be the WCG space generated by W := ∑

2−nWn . We want to
prove that � is m-determined by Y .
If y∗ ∈ Y⊥, then y∗ ∈ Y⊥

n for each n, hence s(y∗, �n) = 0 mn-a.e. Applying (29) with
A = �+ := {t : s(y∗, �(t)) ≥ 0} (A = �− := {t : s(y∗, �(t)) < 0}) we get

∫

�±
s(y∗, �) dm = lim

n

∫

�±
s(y∗, �n) dmn = 0.

Therefore s(y∗, �(t)) = 0 m-a.e. on the set �. Thus, Y m-determines the multifunction �

and the Pettis m-integrability of � follows. Moreover (28) follows from (29). 	

As an immediate consequence of the previous theorem we have a result for the vector

case:

Corollary 4.3 Let g, gn : � → X, n ∈ N, be scalarly measurable functions. Moreover let
m, mn, n ∈ N, be measures in M(�) and let m be Radon. Suppose that

(4.3.j) (gn)n and g have scalarly uniformly absolutely continuous (mn)-integrals on Ω;
(4.3.jj)) gn → g scalarly m-a.e. where the null set depends on x∗ ∈ X∗;
(4.3.jjj) g is scalar continuous;
(4.3.jv) (mn)n is vaguely convergent to m and uniformly absolutely continuous with
respect to m;
(4.3.v) each gn is Pettis mn-integrable.

Then g is Pettis m-integrable in X and

lim
n

x∗
(∫

A
gn dmn

)

= x∗
(∫

A
g dm

)

,

for every x∗ ∈ X∗ and A ∈ B.

We conclude with the following result that holds in a general measure space without any
topology on the space �.

Proposition 4.4 Let � be a measurable space on a σ -algebra A and let �,�n, n ∈ N, be
scalarly measurable multifunctions. Moreover let m, mn, n ∈ N, be measures in M(�).
Suppose that

(4.4.j) (�n)n have scalarly uniformly absolutely continuous (mn)-integrals on Ω;
(4.4.jj) � is scalarly m-integrable;
(4.4.jjj) (mn)n is uniformly absolutely continuous with respect to m;
(4.4.jv) each multifunction �n is Pettis mn-integrable.
(4.4.v) for every A ∈ A and for every x∗ ∈ X∗ it is

lim
n

∫

A
s(x∗, �n) dmn =

∫

A
s(x∗, �) dm.

Then the multifunction � is Pettis m-integrable.

Proof The weak compactness of the sublinear operator T� : X∗ → L1(m), defined as
T�(x∗) = s(x∗, �) can be proved as Theorem 4.2, taking into account hypotheses (4.4.jj),
(4.4.jjj) and (4.4.v).

Moreover, the proof that � is determined by aWCG space Y ⊂ X follows as in Theorem
4.2, taking into account hypotheses (4.4.j), (4.4.jjj), (4.4.jv) and (4.4.v). Therefore � is Pettis
m-integrable. 	
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At this point it is worth to observe that a similar result has been proved in [13, Theorem
3.2] under the hypothesis of the setwise convergence of the measures. Here instead of the
setwise convergence we assume the uniform absolute continuity of (mn)n with respect to m.
For the vector case, as before, we have:

Corollary 4.5 Let � be a measurable space on a σ -algebra A and let g, gn : Ω → X,
n ∈ N, be scalarly measurable functions. Moreover let m, mn, n ∈ N, be measures in
M(�). Suppose that

(4.5.j) (gn)n have scalarly uniformly absolutely continuous (mn)-integrals on Ω;
(4.5.jj) g is scalar m-integrable;
(4.5.jjj) (mn)n is uniformly absolutely continuous with respect to m;
(4.5.jv) each function gn is Pettis mn-integrable;
(4.5.v) for every A ∈ A and for every x∗ ∈ X∗ it is

lim
n

∫

A
x∗gn dmn =

∫

A
x∗g dm.

Then the function g is Pettis m-integrable.

5 Conclusion

Some limit theorems for the sequences
(∫

fn dmn
)
n are presented for vector and multivalued

Pettis integrable functions when the sequence (mn)n vaguely converges to a measure m. The
results are obtained thanks to a limit result obtained for the scalar case (Theorem 3.4).
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