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Abstract »

This paper is devoted to the study of uniform W' =5 - and W2 P-estimates for periodic
homogenization problems of fully nonlinear elliptic equations. We establish sharp, global,
large-scale estimates under the Dirichlet boundary conditions. The main novelty of this paper
can be found in the characterization of the size of the “effective” Hessian and gradient of
viscosity solutions to homogenization problems. Moreover, the large-scale estimates work
in a large class of non-convex problems. It should be stressed that our global estimates are
new even for the standard problems without homogenization.

Keywords Uniform estimates - Periodic homogenization - Fully nonlinear equations -
Integrability

Mathematics Subject Classification 35J57 - 35J60 - 35B27

Contents
1 Introduction . . . . . . . . e e e e 2586
2 Preliminaries . . . . . . . o e e e e e 2589
3 Some technical tools . . . . . . . . L e e 2591
4 Universal decay estimates . . . . . . . . . ...t i i e e e 2595
4.1 Setoflarge gradient . . . . . . . . ... 2595
4.2 Setoflarge Hessian . . . . . . . . . . . e 2599
5 Uniform eﬂsptimates inthe interior . . . . . . . . . e 2600
S0 WETTP eStMAtes . . . o u s 2600
52 W2PoeSHMALES . . o o o o e e e e e e 2603
6 Estimates near boundary layers . . . . . . .. ... 2609
np
6.1 WY TP SHIMAIES o v e e e e 2609
6.2 WEP-@SHIMALES . . . o o oo o e e 2615
References . . . . . . o . L e 2626

The author was supported by postdoctoral fellowship from Knut and Alice Wallenberg Foundation.

B Sunghan Kim
sunghan@kth.se

1 Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-023-01331-0&domain=pdf
http://orcid.org/0000-0002-4987-1777

2586 S.Kim

1 Introduction

This paper is devoted to the study of uniform integrability of the Hessian and gradient of
viscosity solutions u® € C(€2) to fully nonlinear periodic homogenization problems, of the

type
F(D*f, 2)=f inQ,

&

ut =g on 0€2. (1.0.1)
In [7], the size of the “Hessian” of a continuous function at a point is characterized by the
smallest opening of touching convex and concave paraboloids at that point. Here we extend
this concept by allowing the touching to take place in a neighborhood of size ¢ around the
reference point, and denote this quantity by H§. Similarly, we characterize the size of the
“gradient” by replacing paraboloids with cones, and denote it by G§,. See Definition 2.2 for
more precise definitions for these quantities. Especially given u € C(£2), we designed H¢ (1)
(Gg(w)) in such a way that

|AZu(x)| < 2(HE ) (x), Vx € Q,

(1.0.2)
(resp., [Ageu(x)| < 2(Go)(x), Vx € Q)

where AZu(x) = (u(x + ee) + u(x — ee) — 2u(x))/e? (resp., Ageu(x) = (u(x +
ge) — u(x))/e) is the second (resp., first) e-differential quotient in direction e € dBy; see
Remark 2.3. From the above inequalities, the L”-estimates of HE, (1) (G (1)) yield the same
estimates for Ageu (resp. Agou) for all e € 3 By. Thanks to this relation, denoting by u? the
solution to our homogenization problem (1.0.1), the L”-estimates of HS (u®) (Gg (u®)) can
be understood as the so-called large-scale W2’1’-(resp., WLP )estimates of u.

As another important remark, from our definition, HS% — Hg (G‘?Z — Gg)ase — 0,
where Hgq (resp., Ggq) controls the standard Hessian (resp., gradient). The quantity Hg, is the
classical one introduced in [7]. On the other hand, the quantity G, for the gradient appeared
here, and also independently in a very recent paper [25], for the first time.

The first main result of this paper is the uniform integrability of HS (1®); see Definition 2.5
for domains of W2 ?-type.

Theorem 1.1 (W2 P-estimates) Let F € C(S" x R") be a functional satisfying (2.0.1)—
(2.0.4), @ C R" be a bounded domain, f € C(2) N LP(Q) for some finite p > po,
g€ CO)N WZP(Q) and uf € C(Q) be a viscosity solution to (1.0.1). Suppose either of
the following:
() Qisa W2"-type domain, and py < p < n;

(i) Qisa W2t type domain for some o > 0, and p = n;

(ili) € is a W>P-type domain and p > n, all with size (8, R).

Then HE(u®) € LP(R2), with Q¢ = {x € Q : dist (x, Q) > ¢}, and

P
( (Hfz(ue))pdx> < C(”'/‘EHLOC(Q) +IIf+ IngIIILp(Q)>,
Qe
where C > 0 depends only on n, A, A, ¥, k, 0, 8, R and p.

Let us provide some motivation for the assumption (2.0.4). Roughly speaking, the assump-
tion says that the effective problem F (D?v) = 0 has interior V M O-estimates for the Hessian
of its (viscosity) solutions. Note that u® converges to its effective profile iz, only, uniformly.
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This is too weak to ensure any closeness between their Hessian. Under the V M O-condition
on D2, however, D2 satisfies a small BM O-condition at an intermediate scale. We observe
that Pi(Dz(us —u— 82w(£i))) = o(1), at that scale, with w being an interior corrector.
This is one of the key observations in Lemma 6.7, which is an approximation lemma for the
interior W>?-estimates.

It should also be addressed that due to [16, Theorem 3.4], there is a large class of non-
convex functionals satisfying (2.0.4). More specifically, the result implies the following: if
there exists a functional F, : S" x R" — R, which is convex in the first argument and
satisfies (2.0.1)—(2.0.3), such that |[(F — F,)(P,y) — (F — Fy)(Q, y)| < 6|P — Q| for
all P, Q € 8" and all y € R”, for some small constant 6, then the effective functional F
satisfies (2.0.4). It is also noteworthy that unless the governing functional is continuously
differentiable [15], (2.0.4) is a strictly relaxed assumption than assuming that F(D%*i) =0
has interior C%“-estimates. For some further development in interior W2 ”-estimates for
standard fully nonlinear problems, see e.g., [26].

We remark that throughout this paper, we do not assume continuous differentiability of
F (or F). In fact, our result on the uniform L”-estimate for HE (u®) only requires F' to be
continuous. Here we encounter another subtle issue that arises from the homogenization of
LP-viscosity solutions. It is worth mentioning that homogenization of viscosity solutions has
not yet been justified for equations with measurable ingredients. For the moment, the author
is not sure whether the measurable ingredients would be homogenized either. We use the
continuity of F (as well as the datum f) to circumvent this issue.

The above estimates are sharp not only in terms of the regularity of the data, but also of the
regularity of the boundary layer. The major challenge here arises from the fact that boundary
flattening maps destroy the pattern of the rapid oscillation. For this reason, our analysis is
quite different from, and in fact more complicated than, the argument for standard problems,
c.f. [30].

As a matter of fact, the boundary estimates for the case pg < p < n are even new in the
context of standard problems. The analysis is based on the following sharp W5 estimates
up to the boundary, with % being the critical Sobolev exponent.

Theorem 1.2 (Wl’%-estimates) Let F € C(S" x R") be a functional satisfying (2.0.1)—
(2.0.3), 2 C R" be a (8, R)-Reifenberg flat, bounded domain, f € C(2) N LP(2) for some
po<p<mn geC@N WI’%(Q) and u¢ € C(Q) be a viscosity solution to (1.0.1).
Then there exists a constant §y € (0, 1), depending only on n, A, A, R and p, such that if
5 < 80, then G&,(u) € L7 (), and

1_1

np p n
Gowh))m—rd < C|||u®l > D n ,
([, aunas)" " < c(iu e 17+ 1081, )
where C depends only on n, A, A, 8o, R and p.

To the best of author’s knowledge, the closest result under the framework of standard
problemsis [11, Theorem 1.4], where interior gradient estimates are established in the Lorentz
space. Their result shows that f € L?7 implies |Du| € L?{i,/("_p)‘y for any p € (po,n)
and any y > 0. As for estimates for subcritical Sobolev exponents, the interior and boundary
estimates (for C2-domains and C!-%-data on boundaries) are obtained in [29] and respectively
[30].

Our analysis is based on the decay estimate of the set of large “gradient”, in the spirit of Caf-
farelli’s approach in [7]. We present a parallel study for the set of large gradient by replacing
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2588 S.Kim

the touching paraboloids of the Hessian with cones. The proof relies on the general maximum
principle as well as an elementary observation that the slope of supporting hyperplanes for
convex envelopes to viscosity solutions in the Pucci class can be universally bounded from
below. Recently, in the framework of standard problems (without homogenization),

It is worthwhile to mention that the above estimates for the uniform integrability of the
gradient are sharp in terms of the data, and that the domains are only required to be Reifen-
berg flat. Moreover, as a byproduct via the Sobolev embedding theorem, we obtain a uniform
interior C%-2~""/P_estimate, which is rather well-understood in the setting of linear homoge-
nization problems [2] and was proved in the setting of standard fully nonlinear problems [27].
Nevertheless, our uniform C%2~"/P_egtimates are new in the framework of fully nonlinear
homogenization problems.

Remark 1.3 A uniform L”-estimate for the full Hessian (gradient), Hg (u®) (resp., Go(u?)),
can be obtained under suitable hypotheses that ensure the regularity in small-scales. The
passage from Theorem 1.1 (resp., 1.2) to the full estimates is by now standard, whence is
omitted in this paper.

Let us briefly summarize the recent development of uniform estimates in the homoge-
nization theory. Needless to say, the study has gained its interests due to a series of papers by
Avellaneda and Lin. In particular, W L.p_estimates are established in [3] for linear divergence-
type equations, based on the study of Green functions. Later in [9], Caffarelli and Peral
proved W!P-estimates for nonlinear divergence-type equations, via Calderén-Zygmund
cube decomposition argument. In [24], Melcher and Schweizer proved the estimates via
a more direct approach, based on the observation that e-difference quotients solve the same
class of equations. We would also like to mention [19], where uniform integrability esti-
mates are established for nonlinear systems in divergence form. More recently, Byun and
Jang proved, in [4], uniform W!-7-estimates for linear divergence-type systems, under small
BM O-condition on the periodically oscillating operators, up to Reifenberg flat domains.
Some sharp “large-scale” estimates for linear divergence-type equations, without any regu-
larity assumption on the governing operators can be found in [28]. All the above results are
concerned with periodic homogenization of solutions to either interior problems or Dirichlet
problems. As for Neumann problems, some important sharp estimates can be found in [17].
There is also a large amount of literature concerning uniform pointwise estimates for ran-
dom homogenization, for which we would like to refer readers to a recent book [1] and the
references therein.

Most of the aforementioned works are concerned with weak solutions to divergence-type
problems. Uniform estimates for viscosity solutions to non-divergence type equations was
done only recently in a collaboration [18] by Lee and the author, where pointwise C¢- and
C!!estimates are proved for a class of non-convex functionals. The uniform integrability
estimates established in this paper are new, even for linear equations in non-divergence form.

The paper is organized as follows. In the next section, we collect the notation, main
assumptions and some preliminaries. Section3 is devoted to several technical tools used in
the subsequent analysis, yet of their own independent interests. In Sect. 4, we study universal
decay estimates for the set of large Hessian and gradient that will play an important role
in the subsequent analysis. In Sect. 5.1, we establish the uniform wh = -estimates for both
interior (Theorem5.1) and boundaries (Theorem 6.1). Finally, in Sect.6.2, we prove the
uniform W2 P-estimates, whose proof is again divided into the case of interior (Theorem 5.4)
and of boundaries (Theorem6.5).
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2 Preliminaries

We shall denote by B, (x) the n-dimensional ball centered at x with radius r, and by Q, (x) the
n-dimensional cube centered at x with side-length r. By S5(v) we denote the slab centered at
the origin with width § in direction v, i.e., Ss(v) = {x € R" : |x-v| < §}. By H,(v) we denote
the half-space in direction v with the lowest level being ¢, i.e., Hs(v) = {x e R" : x - v > ¢}.
Also we shall write Hy(v) simply by H (v). Moreover, by S"” we denote the space of all
symmetric (n X n)-matrices.

Throughout this paper, A and A will be fixed as some positive constants, with A < A,
and will also denote the lower and respectively upper ellipticity bound for the governing
functional. By py we shall denote Escauriaza’s constant such that the generalized maximum
principle holds for all p > pg; note ’5’ < po < n and it depends only on n and the ellipticity
bounds, A and A. For more details, we refer readers to [12] and [8]. In addition, we denote by
P_ and P, the Pucci minimal and respectively maximal functional on §”, associated with
ellipticity bounds A and A, such that

P(P)=1)Y ei+AY e, Py(P)=—P_(=P),
e;i>0 e;i <0
where ¢; is the i-th eigenvalue of P.
Let v : (0,00) — (0,00) be a nondecreasing, strictly concave function such that
¥ (0+) =0, and 2 be a domain in R". We say g € BM Oy (R2),if g € L'() and

(glBMoy (@) = sup (g)pldx < o0,

VB .

g —
Bca |BlY(rad B) Jp
where the supremum is taken over all balls B C Q. Givenany g € L'(R™) with g > 0, M(g)

denotes the maximal function of g, i.e.,

1
M(g)(x) =sup — [ g(y)dy,
B |BlJB

where the supremum is taken over all balls B containing x. Given any g € L ll oo R, 1y (8)
denotes the Riesz potential of g, i.e.,

Iy () (x) = cq f
R

with ¢, being a suitable normalization constant.
For definiteness, we shall assume that F' € C(S" x R") is a functional satisfying, for any
P,Q € 8" and any y € R",

g(y)
n|x — y|ne

’

P(P—-Q)<F(P,y)—F(Q,y) =P+(P— 0Q), (2.0.1)
F(P,y+k)=F(P,y), (2.0.2)
F(0,y) =0. (2.0.3)

Under the first two assumptions, there exists a unique functional F : 8" — R (the so-called
effective functional), according to [13, Theorem 3.1], such that any limit # € C(S2) of the
sequence of viscosity solutions u® € C(2) to F(D%u®, ) = fin Q, with f € C(2) and
& > 0, under locally uniform convergence as &¢ — 0 is a viscosity solution to F(D%ii) = f
in €. We shall suppose that

F(Dzv) = 0 has interior W>#MOv _egtimates with constant k. 2.04)
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2590 S.Kim

where ¢ : (0, 00) — (0, 00) is a concave, non-decreasing function satisfying ¥ (0+) = 0
and ¥k > 0 is a fixed constant. More specifically, by (2.0.4), we indicate the following:
given any ball Bg C R” and any function vg € C(dBg), there exists a viscosity solution
v e C(BR)NW?>1(Bg) to F(D*v) = 0in Bg, v = vg on d Bg such that for any r € (0, R),

1

K
) < mllvolle(aBR)-

Let us collect by now standard results regarding periodic homogenization for fully
nonlinear problems in the following lemma.

Lemma2.1 [13, Lemma 3.1-—3.2] Let F € C(S”_x R") be a functional satisfying (2.0.1)
and (2.0.2). Then there exists a unique functional F : 8" — R, satisfying (2.0.1), such that
foreach P € S", F(P) is the unique constant for which there exists a viscosity solution to

F(D*w+P,-) = F(P) inR",
w(y +k) =w(y) forally e R" k € Z".

In particular, if w € C(R") is a viscosity solution to this problem, w € C*(R") and
lw — w(O)l|ce@n) + [F(P)| < c(IP|+ | F(P, )o@,
where ¢ > 0 and o € (0, 1) depend only on n, A and A.

Next, we introduce the set of large “Hessian”, as well as the set of large “gradient”, with
room for errors of order 2 and respectively . These sets will play the main role throughout
this paper, as our primary goal is to establish “large-scale” estimates. The set of large Hessian
without any room for error has played a central role in the W2 P-theory for standard fully
nonlinear problems. Nevertheless, the set of large gradient seems to appear in this paper for
the first time, in the literature. Needless to say, the sets with room for errors are entirely new,
as far as the author is concerned. It should be stressed that one can generalize this concept
to homogenization problems under various oscillating structures, such as quasi-periodic,
almost-periodic or random environment.

Definition 2.2 Let @ C R” be a bounded domain, ¢ > 0,¢ > 0 and u € C(R2) be given.
Let A7 (4, ©2) (and L7 (4, 2)) be defined as a subset of 2 such that xg € Q\A? (u, ) (resp.,
Q\L{ (u, 2)) if and only if there exists a linear polynomial £ (resp., a constant a) for which
lu(x)—L€(x)] < %(|x —x0]2+¢€2) (resp., lu(x) —a| < t(Jx —xg|+¢)) for all x € Q2. Denote
by A;(u, 2) (and L;(u, 2)) the set A?(u, Q) (resp., L?(u, ). Let Hf‘z (u) (resp., GEZ (n)) :
Q2 — R U {xo00} be defined as

HE(u)(x) = inf{t > 0:x € A7 (u, Q)},

(resp., G(u)(x) =inf{r > 0:x € LY (u, Q)}),

and denote by Hq(u) (and Gg(u)) the function Hg (u) (resp., G% (n)).

We remark that H§ (and G¢,) controls the second (resp. first) e-differential quotients of
u®. Since the proof is essentially the same (and in fact shorter) as that of [6, Lemma?2.1], we
shall only present the statement.

Remark 2.3 Letu € C(2) ande > Obe given, and choose any xog € 2 withdist (xp, 92) > .
Suppose that H (1) (xo) < t for some ¢ > 0. Then

uf(xo £ ce) —u(xg) < *eb-e+ t£2, Ve € 0Bj.
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Uniform integrability in periodic homogenization of fully... 2591

Hence, Ageu(xo) < 2t. Taking infimum over all > 0 for which H§ (1) (xo) < t, we obtain
AZ,u(x0) < 2HE(u)(xo).

Similarly, one can prove the reverse inequality, which proves (1.0.2) for HS. In the same
way, we can also verify (1.0.2) for G§,.

The following is the definition for the Reifenberg flat sets, which will appear in uniform
boundary W' _estimates.

Definition 2.4 Let Q2 be a domain, and U be a neighborhood of a point at 3€2. Set Q2N U is
said to be (8, R)-Reifenberg flat from exterior (or interior), if for any xo € 92 N U and any
r € (0, R], QN B, (xg) C {x : (x —x0) vy, > —8r} (resp., B (x0)\2 C {x : (x —x0) vy, <
—4r}) for some unit vector vy, ,; here vy, , may vary upon both xo and r. The set 9Q2 N U is
said to be (8, R)-Reifenberg flat, if itis (8, R)-Reifenberg flat from both exterior and interior.
The domain €2 is said to be (§, R)-Reifenberg flat, if Q2 N Bgr(xp) is (8§, R)-Reifenberg flat
for each xo € 0€2.

Next, we define domains of W2 P-type.

Definition 2.5 Let p > 1 be a constant, 2 be a domain, and U be a neighborhood of a point at
9. Set 9QNU is said to be of W2 P-type with size «, if there exists a neighborhood V C R”
and a diffeomorphism ® € C'(U; V) N W*P(U; V) such that ®(Q N U) = H(ex) NV,
POQNU)=H(e,)NV,0scy DP < § and ||D2d>||Lp(U) < 4. The domain €2 is said to be
of Wz*p—type with size (k, R), if 9Q N Bg(xg) is of Wz’p—type with size x for each xg € 0%2.

We shall also need some covering lemmas. As for the analysis for interior estimates, we
shall use the classical Calderén-Zygmund cube decomposition lemma, c.f. [14, Section 9.2]
and [6, Lemma 4.1]:

Lemma 2.6 (Calder6n-Zygmund cube decomposition) Let A C Q1 be a measurable set such
that |A| < n for some n € (0, 1). Then there exists a finite collection F of cubes from the
dyadic subdivision of Q1, such that |AN Q| > n|Q| forall Q € F, and |AN Q| < lelfor
the predecessor of Q.

Let B be a measurable set such that A C B C Q1. If Q C B for the predecessor Q of
any dyadic cube Q satisfying |Q N A| > n|Q|, then |A| < n|B|.

As for the boundary estimates, we shall utilize the Vitali-type covering lemma for
Reifenberg flat domains [5, Theorem 2.8]. We present its statement for the reader’s
convenience.

Lemma 2.7 (Vitali-type covering [5, Theorem 2.8]) Let Q C R" be a domain such that
a2 N By is (8, 1)-Reifenberg flat, with some § € (0, %), and contains the origin. Let D C
E C QN By be two measurable sets. Suppose that |D| < n|By|, for some n € (0, 1), and
that for any ball B C By whose center lies in QN By and radius is at most 1, | DN B| > 1| B|
implies that Q N B C E. Then |D| < (10/(1 — 8))"n|E|.

3 Some technical tools

Let us begin with an assertion that the difference between a viscosity solution and a viscosity
sub- or super-solution belongs to the Pucci class in the viscosity sense. It is particularly
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2592 S.Kim

important that one of two must be a solution. This assertion might be known for some
experts. Still, we intend to present a proof because the assertion is not as simple as it sounds,
apart from the fact that the author was not able to find a proof in the literature. It should be
stressed that the assertion is yet to be known if we replace viscosity solution with viscosity
super- or sub-solution (depending on what it is compared with).

Lemma3.1 Let Q@ C R" be a bounded domain, and F € C(S" x Q) be a functional
satisfying P_(P — Q) < F(P,x) — F(Q,x) < PL(P— Q) forall P, Q € " and x € Q.
Letu,v € C(2) be such that F(Dzu, )= finQand F(Dzv, -) > g in Q2 in the viscosity
sense, for some f, g € C(Q). Then Po(D*(u — v)) < f — g in Q in the viscosity sense.

Proof Fix § > 0, and denote Q5 = {x € Q : dist (x, Q) > §}. Clearly, u,v € C(Q),
and s satisfies the uniform exterior sphere condition with radius at most §~!. Given any
pair (7, o) of real parameters such that 0 < o < t < §, let v; : @ — R be the sup-inf
convolution of v over Q2; i.e.,

2=y | lx =z

ve(x) = insf2 sup <v(y) — + > .

€8 yeQ 2t 20

Such a regularization is by now considered standard. Among other important properties, we
shall use the following, which can be found in [20, thm] that v; — v uniformly in Qs,
vy € WE(Q), |Dve| < cst~ /2 in Q, with ¢5 > 0 being a constant depending only on the
sup-norm and the modulus of continuity of v over Qs, and

FI(D2vts ) = gr a.c. in Qr,

where F; : 8" x Q; — Rand g; : Q; — R are defined by F;(P,x) = F(P,x — (T —
o0)Dv;(x)) and g, (x) = g(x — (t — o) Dv(x)). In particular, since t|Dv;| — 0 uniformly
on Q, F; — F locally uniformly in 8" x Qsand g, — g uniformly on Qs.

Consider an auxiliary Dirichlet boundary value problem,

Fe(D%*u;,-)= f inS%s
Ur = U on 02;.

Since F; € C(S" x Q) is uniformly elliptic, f € C(2s), u € C(32;s) and 2 satisfies the
uniform exterior sphere condition, there exists a unique viscosity solution u, € C(Qs) to
this problem, according to e.g., [10, Theorem 4.1]. Moreover, as the radius for the uniform
exterior sphere condition for Qs is independent of 7, it follows from the global regularity of
viscosity solutions [6, Proposition 4.14] that {u; : 0 < v < 8} is a uniformly bounded and
equicontinuous family on Qs. However, since F; — F locally uniformly on S” x Qs, by the
stability [6, Proposition 4.11] and the comparison principle [10, Theorem 3.3] for viscosity
solutions, one can easily deduce that ; — u uniformly on Qs as t — 0.

On the other hand, as v; € W2’°°(Q) and F; (Dzvr, -) > g; a.e. in 5, we can compute
that

P_(D*(ur — v7)) < Fo(D?uy,-) — Fr(D*v;,-) < f — g, in Qs,

in the L®-viscosity sense, but then in the usual (C-)viscosity sense as f — g € C(2s);
here, we refer to [8] the notion of L*°-viscosity solutions. Now letting t — 0, and recalling
that u; — u, v; — v and g; — g uniformly on Qs, we may conclude from the stability
theory again that

P_(D*(u—v)) < f —g inp.
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As § > 0 was an arbitrary constant, the assertion of the lemma follows by sending § — 0.0

Letus close this section with a few results that are essentially due to [ 18], but extended so as
to be adoptable in our subsequent analysis. We shall start with an interior L°°-approximation
of viscosity solutions to periodic homogenization problems by those to the corresponding
effective problems. The assertion is a slight generalization of [18, Lemma3.1, 4.2], which
was established for bounded data. Here we shall extend the result to L?-integrable data.

Lemma 3.2 (Due to [18, Lemma 3.1, 4.2]) Let F € C(S" x R") be a functional satisfying
(2.0.1)—(2.0.3), f € C(Bg) N LP(BR) for some p > py and some R > 0, u® € C(Bg) be a
viscosity solution to

F (D%ﬁ, i) — f inBg,
I

for some ¢ > 0. Let r € (0, R) be given. Then for each n > 0, one can find some &, > 0,
depending only on n, A, A and n, such that if 0 < & <reyand0 <r < R, then there exists
a viscosity solution u € C(B;) to

F(D*i) =0 in By,
for which

€ —_ U o0
lu® — ull Lo (B, _
n T (R—r)®

- 2—n
llall oo,y + (lIM‘8 lLooBr)y + R™ 7 ||f||LP(BR)) ,

where o € (0, 1) depends only on n, . and A, and C > 1 may depend further on p.

Proof The assertion for f = 0 is a direct consequence of [18, Lemma3.1, 4.2]. As for the
general case, we consider an auxiliary boundary value problem,

F(D?*i,2) =0 in Bg,
0t =uf on dBg,

which admits a unique viscosity solution. By the general maximum principle, one may easily
construct a barrier function to verify that

. 2-n
lu® — &%l Loo(Bry < cR™ P\ fllLr(Br)s

for some ¢ > 0 depending only on n, A, A and p. This combined with the assertion with
f = 0yields the conclusion. O

With the above lemma at hand, we can extend the uniform pointwise C!-%-estimates for
fully nonlinear homogenization problems, established in [18], to a more general setting.

Lemma 3.3 (Due to [18, Theorem 4.1]) Let F € C(S" x R") be a functional satisfying
(2.0.1)—(2.0.3), Q C R" be a bounded domain, f € C(2) N LP () for some p > po, and
u® € C(2) be a viscosity solution to

F(D%ﬁ, i) —f inQ,
&

for some & > 0. Suppose that F(D*v) = 0 admits an interior C1-®-estimates with constant
K, for some @ € (0,1) and k > 0. Let « € (0, @) be given. Given any xo € Q¢ for which

@ Springer



2594 S.Kim

Ta—ayp(fIP x@)(x0) < 00, there exists a linear polynomial Efco such that for any x € <,
|(u® — €5, (x)]
DEE | + su 0
S I

<C lu®]l L ()
- dist (xg, Q)1+«

1
+ (1=a)p (1 f1? x2) (x0)) 1’) .
where C > 0 depends only on n, A, A, k, @, o, p and diam (2).

Proof This assertion is proved for the case f € L in [18, Theorem 4.1]. However, the same
proof works equally well for any point xo € 2 featuring /(1—a), (| f|” x)(x0) < 00, since
this implies that

supr“*“)”’”/ | f1P dx < oo.
By (x0)NS2

r>0

With the latter observation, the iteration argument in [18, Lemma 4.3] works, without any
notable modification, once we invoke Lemma3.2 as the approximation lemma, in place of
[18, Lemma 4.2], in the proof there. Let us remark that the iteration technique for standard
problems is by now understood as standard, c.f. [29, Remark 2.5]. Therefore, we shall not
repeat the detail here. O

The following lemma is a uniform boundary C La_egtimates, which extends [18, Theorem
5.1] to LP-integrable datum, and Cl?_domains.

Lemma 3.4 (Due to [18, Theorem 5.1]) Let F € C(S" x R") be a functional satisfying
(2.0.1)—-(2.0.3), Q C R" be a bounded domain, U C R" be a neighborhood of a point on 92
such that 3Q2NU is a C*-graph, whose norm is bounded by k, for some a € (0, 1) and some
k>0 feCQNLP(QNU) forsome p >n, g e CL*QNU), andu® € C(QNU)
be a viscosity solution to

&€

F(D*uf, 2)=f inQNU,
ut =g ondQNU,

for some ¢ > 0. Set o), = min{a, 1 — %}. Given any xog € 0 N Uy, there exists a linear
polynomial U such that for any x € QN U,

|(u® — £5)(x)]
Des 0
IDE, | +§161SI_)2 Ix — xo|1Fer + gl+ep

( lu®ll Lo @nu)
dist (xp, 80U )1t

+ I fllLr@nuy + ||g||c1-a(amU)> ,

where C > 0 depends only on n, A, A, k, @, p and diam (U).

Remark 3.5 The reason that we state the above lemma for the case p > n is only because the
other case, i.e., pg < p < n, holds in a much general setting, namely for standard problems
in the Pucci class, c.f. [21, Theorem 1.6]; of course, in the latter case, one needs to replace
ap witha and || £ | Lr@nv) With (Ia—a)p (1 f1” xenv) (x0)) /7, as in the case of Lemma3.3.

Proof of Lemma 3.4 With a similar modification shown in the proof of Lemma 3.2, we can
extend f € L®(QNU), required in [18, Lemma 5.2 and 5.3], to L? (2 N U). To extend the
lemmas to dQ N U € CH¢ (from C!1), we may combine the compactness argument in [23,
Lemma3.1] with [18, Lemma 3.1, 5.2]. We skip the detail. ]
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4 Universal decay estimates

This section is devoted to a global, universal decay estimate of the measure of the set for large
“gradient” and “Hessian” of viscosity solutions to fully nonlinear equations, up to Reifenberg
flat boundaries. As surprising as it may sound, our estimates would not see the boundary value
of solutions, as long as the solutions are bounded up to the boundaries. Roughly speaking,
this is because of the fact that the boundary layer, as a Reifenberg flat set, can be trapped in
between a thin slab, which already has small measure and thus can be neglected. Of course, at
a cost, the decay rate we establish here could be extremely slow, yet universal. Let us remark
that such a global estimate is hinted in [30], which proves global universal decay estimate
for Hessians, up to flat boundaries.

4.1 Set of large gradient

Let us begin with estimates for the set of large gradient. Throughout this section, given any
u € C(Q) andt > 0, L,(u, 2) is the subset of Q such that xo € Q \ L,(u, Q) if and
only if there exists a constant a for which u(x) > a — t|x — xo| for all x € Q. Clearly,
Li(u, ) =L,(u, 2 N(—u,§),with L,(u, Q) as in Definition2.2.

Proposition 4.1 Let Q C R”" be a bounded, (8, R)-Reifenberg flat domain with R € (0, 1],
f € LP(2) be given, with some p > po, and u € C(2) N L () be an LP-viscosity
solution to P_(D?u) < f in Q. Then for any t > 0,
C||
L, (u, )| < RM[M(”””L‘”(Q) + 1 e @)

where C > 1, § > 0 and u > 0 depend only on n, A, A and p.

We shall split our analysis into two parts, each concerning interior and respectively bound-
ary layer. Let us begin with the interior case first. As the analysis below will be of local
character, we shall confine ourselves to the case 2 = By 5 and Q" = Q1. The following
lemma is the gradient-counterpart of [6, Lemma 7.5].

Lemma 4.2 Let Q2 C R" be a bounded domain with By CQue C(Q)bean LP-viscosity
solution to P_(D*u) < fin B4ﬁ, for some f € LP(RQ) satisfying ||f||Lp(34ﬁ) < 8o, with
p > po, such thatinf34ﬁ u>—1,infg,u <0andu(x) > —|x|forall x € Q\Bzﬁ. Then

[L,,(u, 2) N Q1] <o,
where m > 1, §o > 0 and o € (0, 1) are constants depending at most on n, A, A and p.

Proof As in the proof of [6, Lemma 7.5], we consider an auxiliary functionw =u + 1 + ¢
on By Ji where ¢ € C 2(B4 ﬁ) is the barrier function found in [6, Lemma 4.1]. Due to the
general maximum principle (which is available as f € L? with p > pg), one can argue as
in the proof of [6, Lemma 4.5] (where the smallness of o > || f || Lr (5, ) is determined) and
observe that

fw=Ty}N Qi =1-o0,

for some constant o > 0, depending only on n, A, A and p, where I'y, is the convex envelope
of —w™ in B4ﬁ. Our claim is, as again in the proof of [6, Lemma 7.5], that

L, (u, Q) C O1\{w=Ty},
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for some large constant m > 1, depending only on n, A and A.

The main observation here is that the gradient of the supporting hyperplanes for the convex
envelope I'y, at the contact set is universally bounded. This actually follows from a simple fact
that by construction, I'y, = O on BB4ﬁ, w > 0in B4ﬁ\B2ﬁ and —m < infg, w < —1, for
somem > Odepending only onn, A and A. These inequalities follows from the specific choice
of the barrier function ¢ in [6, Lemma 4.1], that ¢ > 0 on ]R"\Bzﬁ and infBzﬁ © > —m.

In what follows, we shall let m denote a generic positive constant depending only on n, A
and A and allow it to vary at each occurrence.

Keeping in mind of these properties of ¢, let xo € {w = I',} N Q1 be any. As I'y, is the
convex envelope of w in By /;, we can find a linear polynomial £ (as one of the supporting
hyperplanes of I'y, at x¢) such that w > £ in B4ﬁ and w(xg) = £(xp). Since I';, = 0 on
8B4ﬁ, £ <0on BB4ﬁ. However, as €(xg) = w(xg) > —m with xg € Q1, we deduce that
|D€| < m, where ¢, > 0 depends only on n. Thus,

w(x) > w(xg) — m|x — xol, (2.0.1)

for all x € Q.

Next, we observe that we have freedom to choose ¢ in such a way that | Dol ) S
M. To see this, note that ¢ is constructed in such a way that ¢(x) = m — mp|x|™* for
X € B4ﬁ\Bl/4, and it is extended smoothly inside B4 such that P_ (D2<p) < cp€ in B4ﬁ,
where £ € C(B, N, is a continuous function with 0 < & < 1 and spt & C Qj; here all
constants m1, my, @ and co depend only on n, A and A. Since |D¢| < m in B4ﬁ \ By /4, and
the extension leaves the gradient free, we can find an extension such that

sup |Do| < m, (2.0.2)
B4ﬁ
by taking m larger if necessary.
Finally, by the definition of w, we deduce from (2.0.1), (2.0.2) and the assumption that
u(x) = —|x|* forall x € Q\ B, s; that

u(x) = u(xo) —mlx — xol,
for all x € Q. This proves that xo € Q1\L,, (4, £2), as desired. O

Now we may argue as in [6, Lemma 7.7] to deduce a universal decay of the measure of
the set with large gradient “from below".

Lemma4.3 Letu € C(B4ﬁ) be an LP-viscosity solution to P_(D*u) < f in B4ﬁ, for
some [ € L”(B4ﬁ). Suppose that inf34ﬁu > —1, infg,u <0, and ||f||Lp(B4ﬁ) < 6p.
Let Ly and By denote L, (u, B4ﬁ) N Q1 and respectively {M (| f|” xB, ) > ngk”}. Then

for each integer k > 1,

i

[Lit1] < o|Lg U Bl,
where m > 1, §9 > 0 and o € (0, 1) depend only on n, A, A and p.

Proof The proof is almost the same with that of [6, Lemma 7.7]. The involvement of the
Riesz potential, which replaces the maximal function in the statement of the latter lemma, is
due to the linear rescaling of the solutions.

Fix an integer kK > 1. Due to Lemma4.2, |L{| < o.As Ly41 C Ly C --- C Ly, we have
|Li+1] < o.Hence, due to the Calder6n-Zygmund cube decomposition lemma, it suffices to
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prove that given any dyadic cube Q C Qy, if [Lx N Q| > o|Q], then Q C Ly U By where
Q is the predecessor of Q.

Suppose, by way of contradiction, that Q\(Lk UBy) # . Letxg and s¢ be the center and
respectively the side-length of Q, i.e., O = Qy,(xp). Let us consider the rescaled version
of u and respectively f,

u(xg +spx) —u(xg)
csgmk

ug(x) = . fotx) = CA;TQkf(XQ +50%),

with ¢ > 1 being a constant to be determined solely by n and p, and let Qp = sél (—xo +

B4ﬁ). Choose any X € Q \ (Lx U By). Then since X¢ € 035, (x0), one can easily verify
from X ¢ Ly that

inf ugp > —1, infug <up(0) =0, (2.0.3)
By 03

where the first inequality is ensured by choosing ¢ > 1 large, depending only on n. Moreover,
since By, /(x0) C B, /n(X0), 5@ < 1 and Xo ¢ By, we also obtain

C0SQ - 1
| folLr, s < 2 (MUFIP X8, ;) (F0))7 < o, (2.0.4)
provided that we choose ¢ > cp. Furthermore,
P_(D*ug) < fo in By (2.0.5)

in the LP-viscosity sense.
Thanks to (2.0.3)—(2.0.5), up and f fall under the setting of Lemma4.2, from which we
deduce that

L1, (o, )N Q1] <0

by choosing m > 1 larger from the beginning so that ¢ ~!m becomes the constant appearing
in the latter lemma. Rescaling back, we arrive at |Lig+1 N Q| < o|Q]|, a contradiction to the
choice of Q. Thus, the proof is finished. O

As a corollary, we obtain a universal decay estimate in the interior. We shall only present
the statement and omit the proof, as it is essentially the same with that of [6, Lemma 7.8].

Lemma 4.4 Under the setting of Lemma4.3, for any t > 0,
IL,(u, )N Q1] <ct™,
where ¢ > 1 and u > 0 depend at most on n, A, A and p.

From now on, we shall study the estimates near boundaries. As mentioned earlier, the
idea to combine the interior estimate with the small measure of the thin slab that contains the
boundary layer is originally from [30, Lemma 2.9]; here we simply extend the argument to
the framework of Reifenberg flat domains.

Lemma4.5 Let Q C R" be a bounded domain with 0 € 02 such that 9Q N By is (8, 1)-
Reifenberg flat, and u € C(2) be an LP-viscosity solution to P_(D*u) < f in Q for
some f € LP(Q), for some p > po. Suppose that || fllLr@ns,) < 1, inffonp, u > —1,
infong, u < 0and u(x) > —|x| forall x € Q\ By. Then

L, (u, Q)N By| < c(8HH 4 6),

foranyt > 0, where ¢ > 0 and u > 0 depend at most on n, A, A and p.
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Proof Since 32 N By is (8, 1)-Reifenberg flat and 0 € 92, there exists a unit vector v € R”"
such that 0Q N By C {x € By : |x - v| < 8}. Due to (a properly rescaled form of) Lemma
4.4, we have, for any t > 1,

IL,(u, Q) N{x € By :x-v>28}| <c§ Ht7H

The conclusion follows easily from the observation that |{x € B; : |x - v| < 2§} < ¢,,§, and
L,(u,2) C Q(hence L;(u, Q)N By =L;(u,)N{x € By : x-v>—=48}). O

Next, we obtain universal decay estimates near boundary layers.

Lemma 4.6 Let Q C R”" be a bounded domain with 0 € 92 such that 32 N By is (8o, 2)-
Reifenberg flat, andu € C(Q2NBy) be an LP-viscosity solutionto P_(D*u) < f in QN B, for
some f € LP(2N By), for some p > po. Denote by Ly and By, the sets L, (u, 2N By) N By
and respectively {M (| f|” xonB,) > mkPy, where I, is the Riesz potential of order p. Suppose
that |ull Lo @nB,) < 1 and || f|lLr(@nB,) < 1. Then for each integer k > 1,

1
|Li+1] < E|Lk U By,

where m > 1 and 8o € (0, %) are constants depending at most on n, A, A and p.

Proof Let m > 1 be a constant to be determined later, and set n = c1co(8, Fm=r 4 8p),
where ¢g > 1 and u > 0 are as in Lemma4.5, and ¢; > 1 is a constant to be determined
later, by 1, A, A and p only. Fix any integer k > 1. Then it follows from the latter lemma, as
well as the relation Ly C Ly C --- C Ly, that [Lg4q| < .

Fix anyball B C B; withcenterin QNBj andrad B < 1.Suppose that |L;{NB| > n|B|.
We claim that

QNB C LU Bg. (2.0.6)

Assume for the moment that the claim is true. Then it follows from Lemma?2.7 (along with
8o < %), that |Li+1] < cpn|Lix U Bi|. Then we first choose &y sufficiently small such that
4cpcpdo < 1. Selecting m accordingly large such that 4¢,coé " #m™" < 1, we obtain that
Cpll = Cpco (Saﬂm*“ + &) < L which finishes the proof.

Henceforth, we shall prove the claim (2.0.6). Suppose by way of contradiction that 2 N
B\(Ly U By) # . Here it suffices to consider the case 2B \ (2 N By) # @, since the other
case can be handled as in the interior analysis (see the proof of Lemma 4.3).

Set rg = rad B and choose xg € 32 N By in such a way that 2B C By, (xp). Set

Qp = —ﬁ(—xB + QN By) and rescale u and f as follows,
u(xp +2rpx) —u(xpg) re

up(x) = T .+ fB(x) = — f(xp +2rpx).
cm”rg cm

Arguing analogously as in the proof of Lemma4.3, we may deduce from 2 N B \ (L U
By) # ¥ that infonp, up > —1, infonp, up < 0, up(x) > —|x| forallx € Qp\Bj, and
Il fellLr(@znB,) < 1, provided that ¢ > 1 is a large constant, depending at most on n and p.
Moreover,

P_(D*up) < fp inQp N By,

in the LP-viscosity solution. Thanks to the scaling invariance of the Reifenberg flatness,
025 N By is (80, 2)-Reifenberg flat and contains the origin. Thus, we can employ Lemma4.5
to deduce that

IL,(up, ) N Bi| < co(8y"“t™" + &),
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for any ¢ > 0. Rephrase the above inequality in terms of «, and deduce that |L .,k (1, ) N
By, (xp)| < co(é(;“t_“ +80)|12rp|". As B C By, (xp) and rp =rad B, we derive that

2"¢
|L

—cm

K (u, Q)N B| <

08517 + 80)IBI,

n

where w, is the volume of the n-dimensional unit ball. Evaluating this inequality atr = ¢~ !m,

we reach contradiction against | Lg4+1 N By (x0)| > n| B, (xo)| with n = 2" w;lc“c(J (Som™H +
8o) (.e.,c1 =2"w, et from the notation in the beginning of the proof). O

Now we have a boundary-analogue of Lemma4.4. Let us skip the proof for the same
reason as mentioned above the statement of the latter lemma.

Lemma 4.7 Under the same hypothesis of Lemma4.6, for any t > 0,
IL,(u, ) N By| <ct™,
where ¢ > 1 and i > 0 depend at most on n, A, A and p.

Finally, we are ready to prove the global universal decay asserted in the beginning of this
section.

Proof of Proposition 4.1 With Lemmas 4.4 and 4.7, the assertion of this proposition follows
easily via a standard covering argument. The exponent p can be taken as the minimum
between those in both lemmas. We omit the detail. O

4.2 Set of large Hessian

Here we shall study universal decay estimates for the set of large Hessian. Note that an
interior estimate is by now considered classical, and can be found in [6, Lemma 7.8], while
an estimate near flat boundary is established rather recently in [30]. Here we extend the result
to Reifenberg flat boundaries.

Here given any u € C(2) and t > 0, A, (u, 2) is defined, as in [6, Section 7], as a subset
of Q such that xg € Q\A4, (4, Q) if and only if there exists a linear polynomial £ for which
u(x) = £(x) — §|x — xo|* forall x € Q.

Proposition 4.8 Let Q@ C R”" be a bounded, (8, R)-Reifenberg flat domain with R € (0, 1],

f € LP(Q) be given, with some p > po, and u € C(2) N L>®(Q) be an LP-viscosity
solution to P_(D*u) < f in Q. Then for any t > 0,

Cl€|

14,0, )] <

where C > 1, § > 0 and u > 0 depend at most on n, A, A and p.

(ulizoec) + I fle )",

Proof Since the proof repeats most of the argument presented in the section above, we shall
pinpoint the difference and skip the detail. First, observe that we can replace L, in Lemma
4.5 with A,, by simply applying [6, Lemma 7.5] (which holds equally well for L?-viscosity
solutions with L”-integrable right-hand side, due to [8]) in place of Lemma4.2 in the proof.
Now the assertion of Lemma4.6 holds true with L; now denoting the set A, (u, ) N By,
since the proof only uses Lemma4.2. Finally, iterating the modified version of Lemma4.6
would yield Lemma 4.7, again with L, (u, 2) replaced by A, (u, 2). Thus, a standard covering
argument along with the L?-variant of [6, Lemma 7.5] and the modified version of Lemma4.7
would yield the conclusion of this proposition. O
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5 Uniform estimates in the interior

l
5.1 W1’ n-p -estimates

. .. . . . 1,2 . . . .
This section is devoted to uniform interior W' n-7 -estimates in fully nonlinear homogeniza-

tion problems, for any p € (po, n); note that n"f is the (critical) Sobolev exponent of p.

The estimate is optimal, and is even new in the context of standard fully nonlinear problems.

Theorem 5.1 Let F € C(S" x R") be a functional satisfying (2.0.1)-(2.0.3), @ C R" be
a bounded domain, f € C(R) N LP(R), for some p € (po, n), and u® € C(2). for some
e > 0, be a viscosity solution to

F (D2u5, g) —f inQ. 2.0.1)

np

Then Gg(u®) € L7 (Q), and for any subdomain Q' € ,

loc

lu®]l Lo ()

1GowH w < C|l———"—5 +flr@ |,
L7 (%) dist (9, 92)> 7

where C > 0 depends only on n, A, A, q and p.

In what follows, we shall present our argument with Q& = B, Jn and Q' = Oy, as our
analysis will be of local character. Also, unless stated otherwise, we shall always assume that
F is a continuous functional on 8" x R”" satisfying (2.0.1)—(2.0.3), u® is a viscosity solution
to (2.0.1) with 2 replaced by B4ﬁ, for some ¢ > 0, and f € C(B4ﬁ) N LI’(B4ﬁ) for
some p > po.

Let us begin with an approximation lemma for the measure of the set with large “gradient".

Lemma5.2 Let @ C R" be a bounded domain such that By s C K, and suppose that
0<e<l, ||148||L°°(B4ﬁ) < land |u®(x)| < |x|forall x € Q\ B, /i Then for any s > N,

L@ N Qi < es M I f s,

where N > 1 and u > 0 depend at most on n, A, A and p.

Proof Consider an auxiliary boundary value problem,
F(D*h*,5) =0 in By,
h® =uf on By /.

Asu® € C(0By ;) and F € C(S" x R") satisfying (2.0.1), there exists a unique viscosity

solution #° € C (§4 /n) to the above problem. By the maximum principle, 125 | Lo B, =
lu® | Looa B, = 1. Now it follows from Lemma3.3, along with the Kyrlov theory [6,
Corollary 5.7], that for any xo € B3 /5, there exists a linear polynomial €5 such that | D | <

cand |(hf —€£))(x)] < c(lx—xo|' ¥ +¢'t) forallx € By s, forsomec > landa € (0, 1)
depending only on n, A and A. Thus,

Lo(h®, By z) N Q1 =9, (2.0.2)

by taking ¢ > 1 slightly larger if necessary.
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On the other hand, due to Lemma 3.1, one can compute that w® = 81 (uf — h®) satisfies

P_(D*w®) < £ <P (D*w) in B,y
wé® =0 on 8B4ﬁ,

in the viscosity sense. Since we assume || fl|Lr(s, M= 8, it follows from the general max-
imum principle that [|w®| L3, = Therefore, one can deduce from Proposition4.1 to

both w*® and —w® that |L;(w®, By ;)| < ct™# for all # > 0. Rephrasing this inequality in
terms of u?, we deduce that

|ILs(u® —h®, By )| < c8ts™H, (2.0.3)

forany s > 0. Thus, the conclusion follows from (2.0.2) and (2.0.3), as well as the assumption
that |u®(x)| < |x| forall x € Q\B; /- O

The following lemma is an analogue of [6, Lemma 7.12].
Lemma 5.3 Suppose that ||f||Lp(34ﬁ) < 8 for some § € (0, 1), and that ||u€||Loo(B4

Let Lj and By, denote L;k w?®, ) N Q1 and respectively {I,(| f|P
for any integer k > 1,

i =1

XB4W) > 8PmkPY. Then

|Ljy1] < 8"ILp U Byl
where M > 1 and . > 0 are constants depending at most on n, ., A and p.

Proof Fix an integer k > 1. Let M > N be a large constant such that coM ~#* < 1, with
co, N > 1 and u > 0 as in Lemma 3.2; note that M depends only on n, A, A and p. By
Lemma3.2 (along with coM ™ < 1), [L{| < M. Since Li ; C L; C --- C Lj, we have
Lyl <8* <L

The rest of our proof will resemble that of [6, Lemma 7.12]. Let O C Q1 be a dyadic cube
such that |Lk+1 N Q| > §*|QJ. We claim that Q C Ly U By, where Q is the predecessor
of Q. Once this claim is justified, the conclusion is ensured by the Calderén-Zygmund cube
decomposition lemma.

Suppose, by way of contradiction, that Q\(Li U By) # @. Denote by xp and s¢ the
center and respectively the side-length of Q;i.e., O = Qy,(xg). Choose any point xg €
Q\(Lg U By). Now since |[¥g — xg| < 3sQ«/?z, we have B4SQﬁ(xQ) - B6SQ\/E(3ZQ)-

Letus first remark thatsg > ¢,since Li ;N Q # ¢. Thereason is as follows. Suppose that
sp < e. Then since xp € Q\Le, there exists some constant a € R for which |u®(x) —a| <
mk(|lx — Xgl+e)forall x € By /- Therefore, as diam (Q) = 2504/n < 2e4/n, it follows
from the latter inequality that for any xg € Q [t (x) — a| < m*(jx — xo| + Q2/n+1)e) <
mF(|x — xo| + ¢) for all x € B4ﬁ, provided that m > 2./n + 1. This implies that
Q N Li+1 = (J, a contradiction.

Since Xp ¢ L, we can choose a constant a for which |u®(x) — a| < mk(|x — Xol+e¢)
forall x € By z;. This combined with [xg — xg| < %sQﬁ and ¢ < sg yields that

|uf (x) — a| < mF <§sQﬁ+ |x —xQ|>, (2.0.4)
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for all x ~e By /. In addition, due to the assumption xp ¢ By, as well as B4SQﬁ(xQ) -
Bgs, u(X0), one can compute that

If(x)l”dxff | f(x)|P dx

BGSQ\/E(}Q)OB4\/;I

5(6sQﬁ)"—Pf | f ()P dx (2.0.5)

Byyn |x —XQ|”_P

LASQﬁ(xQ)ﬂB4ﬁ

< cpsgpép,

where ¢ > 1 depends only on n and p.

In what follows, we shall use ¢ > 1 to denote a positive constant depending at most on n
and p, and allow it to vary at each occurrence.

Let us consider the following rescaled versions of u® and f,

u®(xg +sox) —a )

€0
Uy (x) =
e *) kaSQ S0

folx) = C%f(xg +50%).

Setting Qp = sél(—xQ + B4ﬁ), we have B4ﬁ C ¢, and thus in view of (2.0.1), usgg is
a viscosity solution to

2 € : .
Fo (D Uy 8Q> = fo in By,

where Fo (P, y) = 22 F(<™ P, y+%2) Clearly, Fp € C(S" x R") and it satisfies (2.0.1)
0 7 : 0

k
(2.0.3). On the othe;’illand, it follows immediately from (2.0.4) and (2.0.5) that with ¢ > 1
sufficiently large, [u®¢ (x)| < 1 for all x € By s, [u®2(x)| < |x] for all Qp\B, 4, and
I follLr (B, sz < 6.
Inall, eg, Fop, uSQQ and fo fall into the setting of Lemma 5.2, from which we obtain

n’

ILC W, Qo) N Qi < codts™,

for any s > N with N > 1 as in the latter lemma. Thus, taking M > N larger if necessary
such that coc™* M~ < 1, and then rescaling back to u®, we arrive at ILiJr1 N Q| < 8*Ql,
a contradiction. ]

. . . 1,2 .
We are ready to prove the uniform “large-scale” interior W’ 7—» -estimate.

Proof of Theorem 5.1 After some suitable rescaling argument, it suffices to consider the case
where Q = By /i, Q' =0, ||u5||Loc(B4ﬁ) < 1land ||f||Lp(34ﬁ) < §,where s € (0, 1) isto
be determined by n, A, A and p only.

Set p’ = % € (po, p), and apply Lemma 5.3, with p replaced by p’. Observe that
||f||L,,/(B4ﬁ) < c||f||Lp(34ﬁ) < ¢6 for some ¢ > 0 depending only on n and p. Hence,
with n = (¢8)* < 1 (by choosing & smaller if necessary), ax = |L{| and By = |Bi| =
|{1p/(|f|P’XBW) > (c6m*)P'} N B, |, we obtain that

k
ar <@g+ D) << u Y u B (2.0.6)

i=1
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, 2
Now as f € Lp(B4ﬁ), we have | f|P e L* (R") with % > 1. Thus, according to the

XBy s

’ L .
embedding theorem for the Riesz potential, 1,/ (| f1” x5, ﬁ) € L' a=-p) (R™), from which we
can compute that

oo

np k 00 ﬂ71 / ’
S M < [T A ) > 1710 B
k=1

p . 2.0.7)
=c | UpUf1P xB, )70D dx
B4ﬁ

<c.

i
To this end, we choose § € (0, 1) as a sufficiently small constant such that M»rn =

M % (coH* < l; clearly, it is the set of parameters n, A, A and p that determines how small
& should be. Then it follows from (2.0.6) and (2.0.7) that

] o) oo k
np np np . . np .
S Mt <> Mk £ 3N g ) <e
k=1 k=1 k=1i=1

Since {|Dgu®| >t} C L;(u®, By ), we have proved that ||Dgu8||L » o < c, as desired.
n—p 1
O

With the additional assumption in the statement of the theorem, we can replace L{ in
Lemma 5.2 with L. For we can now invoke the uniform interior C 1*-estimate below &-scale,
[18, Theorem 4.1 (ii)], to deduce that the approximating solution 4% belongs to cle (B; ﬁ)
with ||Dh8||ca(33ﬁ) < ¢, whence we can replace L%, (h®, -) with Ly (h®, -) in (2.0.2).

5.2 W?P-estimates

This section is devoted to interior W2 P-estimates for viscosity solutions to a certain class of
fully nonlinear homogenization problems.

Theorem 5.4 Let F € C(S" x R") be a functional satisfying (2.0.1)-(2.0.4), Q C R" be a
bounded domain, f € C(2) N LP(2) for some p € (pg, 00), and u® € C () be a viscosity
solution to

F (D2u8, g) —f inQ. 2.0.1)

Then HE(u®) € LY (Q) and for any subdomain ' € ,

loc

lu® Lo (@)

”Hggz(us)”Ll’(Q’) <C DN
dist (27, 92)" »

+ ||f||LP(Q)> ,

where C > 0 depends only on n, X, A, ¥, k and p.

Although Lemma 3.2 yields an error estimate between u® and & in L* norm, we cannot
expect u is close to u® in the viscosity sense (i.e., Pr(D?uf — i) # o(1) with Py being
the Pucci extremal operators), since D2u¢ is supposed to be rapidly oscillating around D%
in the small scales.

In the next lemma, we obtain the closeness between D?u® and D2ii in the viscosity sense by
incorporating interior correctors. To do so, we shall assume V M O-condition, or more exactly
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BM Oy, -condition for some modulus of continuity v, for D?ii. This condition replaces the
small oscillation condition for standard problems, F (Dzu, x) = f,c.t. [6, Theorem 7.1].
Let us remark that BM Oy -regularity does neither imply nor follow from the boundedness
of D%ii, and that it also allows D2# to be discontinuous.

With suitable rescaling argument, it suffices to take care of the case where Q@ = By 4, and
Q' = Q,.Inwhatfollows, we shall always assume that F is a continuous functional satisfying
(2.0.1)-(2.0.3), f € C(B4ﬁ)ﬂLP (B4ﬁ) with p > po,u® € C(B4ﬁ) is a viscosity solution
to (2.0.1), unless stated otherwise. Moreover, we shall let ¢ denote a positive generic constant
depending at most on a set of fixed quantities, shown in the statement of each lemmas below,
and we allow it to vary at each occurrence.

Lemma 5.5 Suppose that @ C R" is a bounded domain with B, ; C 2, ||M8||Loo(34ﬁ) <1
and |uf(x)| < |x|2 in Q\Bzﬁ. Letn > 0,5 > 1, p € (po,00) and q € (p, 00) be given
constants. Then there exists a constant &5, > 0, depending only on n, A, A, k, ¥, q, p, n
and s, such that if 0 < & < &, and ||f||Lp(34ﬁ) < &y, then

|AS @, Q)N Q1] < c(ns™ +579), (2.0.2)
where € (0, 1) depends only on n, A, A, p, and ¢ > 1 depends further on ¥, k and q.

Proof Fix s > 1 and n > 0. Let § > 0 be a constant to be determined later. Since the
hypothesis of Lemma 3.2 is met, we can find a constant 5 € (0, 1), corresponding to §, and a
function u € C(B3 ) such that F(D?i1) = 0in B3 s in the viscosity sense, ||L_l||L00(B3ﬁ) <

1 and ||u® — L_l||L°°(B3ﬁ) < §. By the assumption (2.0.4) on F, D% e BM Oy (Bzﬁ) and

/ |D%it| dx + [Dzﬁ]BMow(Bzﬁ) <ec. (2.0.3)
BZﬁ

Due to the John—Nirenberg inequality, we have || D2ii|| Li(B, ;) < €, SO by the strong (¢, q)-
type inequality, |M (D3 |X32ﬁ) lLarm)y < c, which ensures that

UM (D% %y i) > s} < es™%. (2.0.4)

In addition, by [21, Lemma 2.5], we also have ||© (i, Bzﬁ)||Lq(Bzﬁ) < c||D2ﬁ||Lq(Bzﬁ) <c
(see Definition 2.2 for the definition of ®), whence it follows from the relation {® (i, B, ﬁ) >
s} = Az (u, B, /) that

|As(it, By ji)| < cs™1. (2.0.5)

Let p; € (0, %) be a constant to be determined later. Our idea is to subdivide Q; into
two groups, say F and G, of dyadic cubes with side-length in between p; and 2, such that
QeFif|oNn {M(|D212|X32ﬁ) <2}/ >0,and Q € Gif Q ¢ F; here ¢ > 1 is a constant
to be determined by n, A, A, k, ¥ and g. Thanks to (2.0.4) and (2.0.5) (as well as an obvious
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fact that AS(g, E) C As(g, E) forany g € C(E)) yields that
|AS(®, By ) N Q)
< YIS By N QI+ Y10

Qer Qeg

< Y AW — i, By ) N Q| + | A (it By ) N Q1| +es ™ (2.0.6)
QeF

=< Z |AS(u® — i, By ) N Q| +cs77.
QeF

Note that we can replace the domain B, ; in the leftmost side to €2 by utilizing the assumption

that |u® (x)| < |x|? forall x € Q\B, ;- Thus, it will be enough to prove that with &5 , > 0
sufficiently small and & < &; 5,

|ASW® —it, By i) N Q| < cns™"[Ql, 2.0.7)

for all Q € F, where u > 0 is a constant depending only on n, A and A.

To prove (2.0.7), let us fix a cube Q € F. By definition, there is some xop € O N
{M(|D2L_t|)(32ﬁ) < %} # Pand Q C B, sa(x0) C B, s To simplify the exposition, let
us write by B the ball B2psﬁ(x0)’ by rp the radius of B, i.e., rg = 2ps4/n, and by P the
matrix (D%it)p, i.e., P = ﬁ [ D%ii dx. Then by the choice of xo, | P| < £, and by (2.0.3)
along with the John—Nirenberg inequality,

1

ﬁ/ |D%ii — P|"dx < cuk™ Y (rg)", (2.0.8)
B

where ¢, > 0 is a constant depending only on 7.
Consider an auxiliary function w : R” — R satisfying

F(D}w+ P,y) = F(P) inR",
w(y+k)=w(y) forally e R", k € Z", 2.0.9)
w(0) =0,

in the viscosity sense. According to [13, Lemma 3.1], such a periodic viscosity solution exists
(in C%%(R"), with & € (0, 1) universal) and unique, and due to (2.0.1) as well as(2.0.3), it
satisfies

cos
lwllcoemny < col Pl < - (2.0.10)

for some constant cp > 0 depending only on n, A and A.
Consider auxiliary functions ¢¢, g : B — R defined by

1 . r2
o = (ug—ﬁ—sz 7) . g=—B (f4eD%i—P)). (20.11)
U (rp) () ¢ wom

Clearly, € C(B) and g € L"(B). By |[u® — ’2||L°°(B3ﬁ) < § and (2.0.10) (as well as
¢ € (0, &,y) and B C B3 fp),
8+ coc Lse?

0f "o (2.0.12)

Ky (rp)

lp® 1l ooy <
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In addition, by ||f||Lp(34ﬁ) < &, and (2.0.8),

1 1/n e
*/ lgl"dx )  <curg | —2—+1 (2.0.13)
Bl JB ”BK‘/’("B)

We claim that ¢ is an L?-viscosity solution to
max{P_(D*¢), —P.(D*$)} < |g| in B. (2.0.14)

Suppose for the moment that the claim is true. With sufficiently small § and & ;,, whose
smallness condition depending only on g, «, ¥ (rg), co and ¢, we can deduce from (2.0.12)
and (2.0.13) that [|¢®||z(p) < 1 and respectively || gllzn(p) < cnrp. Then we can apply (a
rescaled form of) [6, Lemma 7.51' to ¢¢ and deduce that for any ¢ > 0,

|A: (9%, B) N Q] < cot™"|Ql, (2.0.15)

where 1 > 0 depends only on n, A and Aj; here we also used that dist (Q, 0B) > rB, which

is apparent from the choice of Q and B. Thus, setting f = 57— l//(rB) , we obtain |Ai W —u—
2

szw(é)), B))NQ| < colkyr(rp))*s—*|Q]. Utilizing (2.0.10) (as well as a simple observation

that Ae+1)s(fi — f2. E) C Ag(f1, E) forany fi, f» € C(E) with || fall o) < £e?), we
deduce that

Al 1y, =i B) N Q) < cok™ Y (rp)"s™H Q. (2.0.16)

for any s > 0. Since ||u® — ﬁ||Loo(33ﬁ) < § with § being small depending on rp, one can

also replace B above with B, S At this point, we select ¢ > 2¢g, and py = € (0, 4) as

2f
a small constant such that ki (rg) < nl/ #. so that we arrive at (2.0.7), as desired.

Thus, we are only left with proving that (2.0.14) holds in the L?-viscosity sense. Let ¢
be a quadratic polynomial such that D?¢ = P. For the moment, let us denote by W¢ the
function &2 (¢ + w)(3). Clearly, F(D*We, )= F(P), as well as F(D?u?, )= f,inBin
the viscosity sense, so it follows from Lemma 3.1 that

P_(D*(u® — W) < f — F(P) inB,

in the viscosity sense. Now since u® — it — szw(é) =u® - W — (u— Sz(p(é)), and
u— ezgo(é) € W2%P(B), one can deduce, along with F(D%i) = 0in B in the LP-strong
sense, that

P_(D*¢*) < (P_(D*u® — W) — P_(D*i — P))
Klﬂ(r )
F(P)—P_(D*i— P
= Kw( )(f (P) —P( ))
_ M2y D (P25
= Kw(rB)(f P_(P — D*ii) — P — (D*ii — P))
< gl

in B in the LP-viscosity sense. Similarly, we obtain P, (D?¢°) > —|g| in B in the LP-
viscosity sense. This finishes the proof. O

1 Although this lemma is written for C-viscosity solutions and continuous right-hand side whose L"-norm is
under control, it works equally well for L"-viscosity solutions and measurable right-hand side.
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We are ready to use the by-now standard cube decomposition argument to obtain a geo-
metric decay of |A$ (1f, ) N Q1]. The idea is the same with [9] in the sense that we split the
set Ay = A ok (u®, Q) N Q1 into two parts, say Dy and Ey, where Dy is the part of Ay inter-
sected by its Calderon -Zygmund cube covering whose side-length is at least (these cubes
are said to be of high frequency), whereas Ex = Ay \ Dy, i.e., the part of Ak 1ntersected by
the cubes of low frequency. As for Dy, we can deduce a geometric decay via Lemma5.5, and
this part is almost the same with the argument for standard problem, e.g., [6, Lemma 7.13].
As for Ej, the above lemma is no longer applicable, but at the same time we cannot argue
as in [9] because we do not assume any structure condition on F' so as to ensure sufficient
regularity of u® in small scales. Here we control Ej directly from the fact that the set Ay (or
more exactly Q1 \ Ax) allows error of order &2 for quadratic polynomials to touch u®.

Lemma5.6 Letn > 0and p € (po, 00) be given. Assume that 0 < & < &y, ||f||Lp(B4ﬁ) <
&y, and ||M€||L00(B4ﬁ) < 1. Let A, and By denote the sets Afnk(ug, By m) N Q1 and

respectively {M(|f|pXB4ﬁ) > ngpk}. Then one has, for each k > ky,

[Akt1] < (n+em™)|Ag U Be| + | Bi—x, |, (2.0.17)

where m > 1 depends at most on n, A, A, ¥, k, p and q, while &, > 0 and k, > 1 may
depend further on n.

Proof As briefly mentioned in the discussion before the statement of this lemma, the set D
is the part of Ay intersected by its Calderén-Zygmund covering whose side-length is no less
than £ . More exactly, we choose M > 1 sufficiently large such that |[A1| <n+cm™1 < 1
due t0 Lemma 5.5. We shall fix &, as the constant e, o from Lemma5.5, with ¢g > 1 to
be determined later. As Ay C Ax C ---Aj for each 1ntegerk > 1, Akl < n+cm™4,
whence there exists a Calderén—Zygmund covering, denoted by 7 |, of Ag1 corresponding
to the level n + cm 4. Define

di
Di 41 :U{Ak"‘]mQ:QE}—Ierlv M>i}

v &y

Let us claim that Q C A; U By for any cube Q € F; whose side-length is no less than
£, where Q is the predecessor of Q. Once this is proved, from the fact that Q belongs to the
Calderén-Zygmund covering of Ay it follows immediately that

| D] < (7 +em™ )| Ag U By|. (2.0.18)

The proof for the above claim mostly follows the argument for standard problems, e.g.,
[6, Lemma 7.12], except for the following two points: (i) we need to verify the hypothesis
(2.0.4) for the effective functional at each iteration step, (ii) the set Ay involves error of order
&2 and may vary along with different scalings in the domain.

Denote by x¢ and s¢ the center and respectively the side-length of Q. Since Q € F,
[Ak+1 N Q| > (n + cm™9)|Q|. Assume, by way of contradiction, that Q\(Ak U By) # 0.
Set Qp = sél (=xg + By ), the image of By /; via the above rescaling. Then due to the

assumption Q\(Ak U By) # @, the functions uggQ € C(R2¢), defined by
w® —£)(xg + sgx) &

)
Uy (x)= , &0 = —, 2.0.19
o @ C()mkSZQ Q 50 ( )
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for certain linear polynomial ¢, satisfy that ||u£QQ L@ =< 1 |u6QQ x)| < |x|* for all
x € Q\B,_;, provided that we choose ¢o > 1 to be large (depending only on n). Now as
F(D%u®, ;)= fin B4ﬁ in the viscosity sense, we have

Fp (DQI/thQ, 8Q> = fo in By, (2.0.20)

in the viscosity sense, where Fo (P, y) = F(comk P, —|— y)and fo(x) = p 111" fxo+

50X). Clearly, Fp € C(S" xR") satisfies (2 O 1), (2 O 2) and (2.0.3). Noting that its effective
functional F : " — Ris given by Fo(P) = , H satisfies

(2.0.4) (with the same modulus of continuity W and constant  as F does). Moreover, with

co > 1, it follows from the choice of Q\Bk # () that ||fQ||L°°(B4ﬁ) < c;pe,, < &.

Therefore, due to the choice of eg = séle <&y =g, we can apply Lemma5.5 to MEQQ
0

and deduce that

m,n’

AR Wg. Qo) N 01| <n+em.
)

Rescaling back, we arrive at |A1 N Q| < (n+cm™9)|Q], a contradiction to Q € F;. This
finishes the proof for (2.0.18).
Next, we prove that

Ak+1\ Di41 C Bi—k» (2.0.21)

with k, = —log, e,. Let O € F; be a dyadic cube with side-length less than é Then
[ONAg+1] > (n+cm™1)|Q], so |QﬂA1ifk7,| > (n+cm~9)|Q|. We claim that Q\Aifkn C
Bj—i,» from which (2.0.21) follows immediately. Suppose, by way of contradiction, that
Q\(A,i_kn U B/f—kn) # . As we have chosen k, = —log, &, that Q\Ai_kn # () implies
Q N Ag+1 = 0. This is again a contradiction to the fact that Q C Q and |Q N Ag4+1]| >

(n + cm™1)|Q|. Therefore, Q \ Ak—k, C Bk, as desired, and the inclusion in (2.0.21)
follows. O

We are now ready to prove the large-scale interior W>”-estimates.

Proof of Theorem 5.4 Fix p € (po, 00). With suitable rescaling of the problem, it is sufficient
to prove the assertions for the case where 2 = By s Q' = 01, ||u5||LoO(B4ﬁ) < 1and
||f||Lp(34ﬁ) < gy, with &, to be determined.

Choose ¢ = 2p and p' = %. Let M > 1 be as in Lemma5.6 with p replaced by p’.
We can assume that cM P74 < }T by taking M larger, depending on the choice of p. Then we
select > 0 as a small constant satisfying M7n < le' Then

1
MP(n+cm™) < 5
Now let ¢;, > 0 and k;, > 1 be as in Lemma 5.6 corresponding to the specific choice of 7.
Note that all the constants , M, ¢, &, and k, involved in the statement of Lemma 5.6 now
depend only on n, A, A, ¥, k and p (as g depending solely on p, and y solely on n, A, A and
D)
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With (2.0.17) at hand, we deduce that

Zm Pop <c+c Z m*P By,
k=ky
with ak |A| and By = |Bk| where Aj and By, are as in the statement of Lemma 5.6. Since
|||f|p o on = ||f||Lp(34f) < 85 , we have Zk lmkP,Bk < ¢, as well. The proof can

now be finished, as in [6, Proposition 7.2], and we omit the detail. O

To prove the second assertion of Theorem 5.4, we shall modify some of the argument for
the proof of Lemmas 5.5 and5.6 in such a way that we estimate the measure of Ag(u?, -)
instead of A% (u®, -). In what follows, we intend to highlight those changes, which are not so
trivial, and then omit the detail for the argument that might repeat what is already written so
far.

6 Estimates near boundary layers
1,2 .
6.1 W’ n-P-estimates

. 1,2 .
Let us now turn to uniform W’ »-r -estimates near boundary layers.

Theorem 6.1 Let F € C(S™ x R") be a functional satisfying (2.0.1)~(2.0.3), Q C R" be a
domain, U C R" be an open neighborhood of a point of 92 such that 9Q N U zs (8 R)-

Reifenberg flat, for some § > 0 and some R € (0,1], f €e LP(QNU)and g € wh= /’(U)
for some p € (po, n). Let u®* € C(Q NU) be a viscosity solution to

2.6 -\ _ H
iF(D W, =f inQNU, 2oh

ut =g ondQNU.

np

Then Gy (uf) € L) " (Qe NU), and for any U' € U,

loc

GGy @I

flue]l Lo (mU)
<C|———— D
L% .0 ( +||f||LP(QﬂU)+|| 8l e, > )

dist (U’, 8U)

where § > 0 depends only on n, A, A and p, and C > 1 may depend further on R and
diam (U).

The above estimate is optimal as the power of integrability reaches the critical Sobolev
exponent. This estimate is even new in the setting of the standard problems. To the best
of the author’s knowledge, the boundary estimate is proved up to the subcritical Sobolev
exponent, i.e., Whe with ¢ < n"f in [30]. Following the spirit of [29], the proof in [30]

relies heavily on pointwise Cl*“—apprommatlon, and hence the estimate could not reach the
critical exponent.

We shall set the starting point of our analysis, however, at a sub-optimal estimate below.
We shall provide some motivations and remarks after the statement.

Proposition 6.2 Let F € C(S" x R") be a functional satisfying (2.0.1)-(2.0.3), @ Cc R"
be a domain, U C R" be an open neighborhood of a point of 92 such that 92 N U is
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(8, R)-Reifenberg flat from exterior,zfor some § > 0 and some R € (0,1] f € LP(QNU)

and g € Co’z_?(Q NU), for some p € (pg, n). Let u® € C(Q N U) be a viscosity solution
to

F(D*uf,2)=f inQNU,
azg ()nanU

Then GQnU(u‘s)u S LIOC(QE NU) forany q € [1, 22, and for any U' € U,

’np

1GGAy U La@.nury <C< lu® | Loe (ne)

+ I fllzr@nu) + (8] o2-
dist (U, aU)' 7 * dist (U', aU)* "7 7 (92nv)

where § > 0 depends only on n, A, A and p, and C > 1 may depend further on q, R and
diam (U).

We shall provide this estimate, mainly because of its independent interests. Of course,
we will use this proposition in our subsequent analysis to ensure a better regularity for
the approximating solutions. Still, this step could be conveniently replaced by the uniform
boundary C!®-estimates [18], as the approximating solutions solve a “clean” version of the
homogenization problems (i.e., f = 0 and g = a, with a a constant).

np_ _n .
In view of the compact embedding of W=7 to C%* ¥, the above estimate seems to be

_n . . . . .
the best one can expect with a c%* » -regular boundary data. The estimate is quite interesting
in the sense that a Holder regular function may not be (weakly) dlfferentlable a.e., thatis, one

cannot expect "7 -regular boundary data to be extended to a wha = -regular function in
aneighborhood of the boundary layer. In particular, one cannot deduce the above sub-optimal
estimate from the former optimal estimate (Theorem 6.1). Hence, the above proposition shows
certain regularizing effect arising from the presence of boundary layers.

Let us also remark that the sub-optimal estimate above improves the one in [30], in terms
of the regularity of the boundary data, as the latter estimate requires C 1-¢-regularity.

We shall first present a complete proof for Proposition 6.2 and then move onto that of
Theorem 6.1. The proof for the former is based on a boundary C 02= _estimate for any
viscosity solution belonging to the Pucci class, up to an L”-regular, with p > po, right
hand side. In particular, the functional may not oscillate under certain pattern in small scales,
whence it has nothing to do with homogenization.

Proof of Proposition 6.2 Let us prove the first part of the assertion, and then mention the
changes in the argument for the second part, as the latter is almost the same with the former.

After some standard rescaling procedure, one may prove the assertion for the case where
0€9Q,U = B1,U" = B2, lu¢lle=<@ne) < L | fllLr@ns,) < land[g] 25 aanm) <
1. Applying the boundary Holder regularity [22, Theorem 1.1] to u® around each point
Xo € 02 N By 2, we deduce that

€ (x) — g(x0)| < clx — xo* 7, 2.02)

for all x € Q N By; let us remark that although the statement of [22, Theorem 1.1] involves
sup,~o 7 2|1 f | Ln(@nB, (xy)) ON the right-hand side, one can easily replace this norm with
| fllLr@nB,) by taking e =2 — %, as the modification in the proof there is straightforward.

2 Thatis, 32 N By (xg) C {x € Br(xg) : (x —xg) - v > —ér}forany r € (0, R) and any xg € 9Q N U.

@ Springer



Uniform integrability in periodic homogenization of fully... 2611

Let B C N By, be a ball for which 9(2B) N a2 N Byz # ¥. Let xp and pp denote
the center and respectively the radius of B. Also let xp o be a point of intersection between
0(2B) and €2 N By 2. Consider the rescaling

u®(xp + ppx) — g(xp,0)
-z ’
Pp b

M%B x) =

of u®, where ¢ = pgls. As By, (xp) C By, one may observe that
Fp <D2“%B, *) = fp in By,
EB

in the viscosity sense, where we wrote Fp(P,y) = pg/pF(pE”/pP, y) and fp(x) =

,og/ ? f(xp + ppx). Clearly, Fp is a continuous functional on §" x R" satisfying (2.0.1)—
(2.0.3), and fp € LP(By) N C(By) with

I fBllLrBy) < I fllLr@nB,, (xp) =<9

Thanks to (2.0.2), we also have ||u%3 oo (By) < c. Therefore, we can apply Theorem 5.1 (i) to

—1
observe that || GEBBM%B llLe¢s,) < c,foreachq € [1, n"fp), where Qp = pp (—xp+QNBy).
The latter estimate can be translated in term of u® as

n n

1Gns, W) ILas,, ey < cpp - (2.0.3)

To this end, consider a covering F of .M B} 2 by balls B for which d(2B)NdQN By 2 # ¥;
i.e., F C {Budist (x,00NB12)(X) 1 x € QN By /2}. Thanks to the Besicovitch covering theorem,

one can find a finite subcovering G C F such that #{é €G:BNB # P} <c,forall B € G,
where ¢, > 0 depends only on n. One can split G into a union of Gi, withk = 1,2, --- , kg,
suchthat B € G if 275! < pp < 27% wherek, isa large positive integer of order — log, ¢.
Then

ke
f Gy, @)1 dx <303 / (G, (4 dx
Q:NB12 B

k=1 BeGy

ng

ke _ng
chZpi’?q ’ (2.0.4)

k=1 BeGy

ke »
k=1

<c

=0

where the last inequality is ensured from the fact that ¢ < n’?p. This finishes the proof, for
the first part of the assertion of the theorem.

As for the second part of the assertion, one may have already noticed that under the
additional assumption, one can invoke Theorem 5.1 (ii) in place of (i) above, such that
one can replace D.u® with Du? first in (2.0.3), and then in (2.0.4), leaving everything else
untouched. Thus, the conclusion follows. We leave out the detail to the reader. O

With Proposition 6.2 at hand, we may now proceed with the proof for Theorem6.1. The
idea is basically the same with the interior case (Lemma 5.2), but the presence of Reifenberg
flat boundaries yields some additional technical difficulties.
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As in the analysis in the interior case, we shall confine ourselves to the case U = B
and U’ = By, as the analysis here is of local character around a boundary point. Unless
specified otherwise, we shall always assume, from now on, that F € C(S" x R") verifies

(2.0.1)-(2.03), f e C(QN B) NLP(2N By), g € Wl'%(Bz), 2 is a bounded domain
containing the origin, and u® is a viscosity solution to (2.0.1) with U replaced by Bj.

Lemma 6.3 Assume that 0Q N By is (8,2)-Reifenberg flat, ||fllrrns)y =< n

||Dg||Lﬂ(B ) < n for some n > 0, and that |u® — a||L~@np,) < 1and [u®(x) —al| < |x|
n=p (B,

Jor all x € Q\Bj for some constant a € R. Then for any s > N,
|LE@®, 2) N Qe N By| < c(8% + s,

where a € (0,1), u > 0and N > 1 depend only on n, . and A, while § > 0 and ¢ > 1
N > 1 may depend further on p.

Proof Let a denote the integral average of g over B;. By the Poincaré inequality, we have

—a n < D n < , where ¢ depends only on n and p. By the
llg allwl,njp(Bz)_COII gIILan(BZ)_con co dep yonn p- By

Sobolev embedding theorem, g € C 0.2-% (B,) and

g = allzoe(sy) + 18] 02-2 ) = con, (2.0.5)
by taking cq larger.

Denote by S the slab S>5(v) for some unit vector v such that 32 N B, C S; such a unit
vector exists owing to the Reifenberg flatness of 02 N B,. Also let E be the half-space E,
sothat QN By C E.

Since u® = gondQ2N By and [u®| < 10on Q2 N By, it follows from (2.0.5) that ||g[| oo (p,) <
14+ con < 2. Extend u? by g outside 2. It readily follows that u® € C(B,) and |u® — g| < 2
in By. Consider a Dirichlet boundary value problem,

F(D?*h?,2) =0 in E N B3,

he=u®—g on d(E N B3)3).
This problem admits a unique viscosity solution 2° € C(E N B3») because F and u® — g are
continuous, and d(E N B3 2) satisfies a uniform exterior sphere condition. Since |2°| < 2 on
9(E N B3y) and h®* = 0 on d E N B3, we can deduce from Lemma 3.4, the Krylov theory [6,
Corollary 5.7], as well as the fact that 0 E N B3 is flat, that for each xo € 9 EN By, there exists
alinear polynomial £5 for which | D€5 | < co and [(h® —£5))(x)| < co(|x — x|t 4 lt®)
for all x € E N B3, with both ¢g > 1 and @ € (0, 1) depending only on 7, A and A. In
particular,

Lio(hg, E.N B3/2) N By =0, (2.0.6)

by taking co larger if necessary, with E; = {x € E : dist (x, 0E) > 0}.

In what follows, we shall denote by cg a constant which may depend at most on n, A, A
and p, and we shall allow it to vary at each occurrence.

As 92N By is (8, 2)-Reifenberg flat, one may invoke [21, Theorem 1.1] to deduce, along
with ||u®]| L= @ns,) < L, I fllLr@nB,) < 1 and [g] < con thatif § < §,, with §,
depending only on n, A, A and p, then

n
" P (By)

o_n
|u®(x) — g(x0)| < colx —xol” 7,
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for all x € Q N By, for each xo € 92 N B3 ;2. Combining this inequality with [12, Lemma
2], we deduce that

("] cow @rs ;) =< Co- (2.0.7)

With (2.0.7) at hand, we may now estimate the global Holder norm of #°. As #* = 0 on
0E N B3y, h® = u® — gon EN0B3p and [u® — g]co.a(EﬁaB3/2) < ¢, we may apply a
variant of [6, Proposition 4.13] to derive that

&€
Consider another auxiliary function w® = 7, Y(uf —a—h*), with 7o to be determined later.
This function is well-defined on €2 N Bj3 7, since £ N B3, C E N B3z. Due to Lemma3.1,

we may compute that

P_(D?w®) < L <PL(D*w®) inQN By,
w5=% on 2N 0dB3),

c __ g—a—h
wF_T on 92 N B3 2,

Thanks to (2.0.8), * = 0 on E N B33 and 92 N B3j» C Hs(—v) N E, we may deduce that
|h?| < co82 on 92 N B 2. This together with (2.0.5) yields that with 79 = co max{§?2, n}
and ¢p > 1,

C()B% + con <1
u -

With such a choice of 1o, we also have || f|lLr@ngs;,) < 10, whence it follows from the
general maximum principle that || w®|| 7o (B, ) < co.
Now we can apply Proposition4.1 to obtain that for any ¢ > 0,

lwll Lo @@nBs)0) <

L, (w®, QN Bya) N By| < ct ™™, 2.0.9)

where ;1 > 0 depends only on 7, X, A and p; this is another step that determines how small
the Reifenberg flatness constant § should be. Since the set L, (w?, -) is invariant under vertical
translation of given function w?, the conclusion follows immediately from (2.0.6), (2.0.9),
the choice of 7o and the assumption that |u®(x)| < |x| forall x € @\ Bj. ]

The following lemma is the boundary analogue of Lemma 5.3.

Lemma 6.4 Suppose that 0Q N By is (8,2)-Reifenberg flat, || fllir@ney =< n

IDgll = ne_ <, forsome p € (po, n) andfor somen € (0, 1), and ||u®|| L=~ @nB,) < 1.
L—p (B4ﬁ)
Let L{, By and Cy denote the sets L;k @®, 2N B2) N Qe N By, {1, f1?” xonB,) > nPmkr}
and respectively {M(|Dg|x,) > nﬁMk"Tpﬂ}. Then
ILg 4| < (8% + n)*|L§ U B U Gl
for any integer k > 1, where @ € (0,1),8 >0, u > 0, c > 1 and m > 1 depend at most on

n, A, A and p.

Proof The proof resembles with that of Lemma4.6. A key difference here is that now we
need to be careful of the changes made in boundary data, when rescaling the problem; note
that we did not encounter this issue in the proof of Lemma 4.6, since we did not need to
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see the boundary value at all. Henceforth, we shall proceed with the proof focusing on this
issue, and try to skip any argument that only requires a minor modification of what is already
shown so far.

Fix an integer k > 1. Arguing as in the proof of Lemma 5.3, one may use Lemma 6.3, in
place of Lemma35.2, to deduce that |L}_ ;| < no|B1l, with o = co(87 + )", where ¢y > 1
and m > 1 are to be chosen later.

Let B C B be any ball with center in QN B, and rad (B) < 1. Suppose that |Li_H NB| >
no|B|. As in the proof of Lemma4.6, we assert that 2 N B C (Li U By U Cy). If the claim
is true, then | Ly ;| < cumo|Ly U By U Ci| as desired, by Lemma2.7.

Assume by way of contradiction that & N B\ (Lj U By U Cy) # . For the same reason as
in the proof of Lemma5.2, we have 2rp > ¢, by taking m > 1 large, depending only on n.
Choose a point xp € 92N By such that 2B C By, (xp). Selectany xp € 2N B\(Li U B, U
Cy). Since Xp ¢ N Bz (xp)\L{ and 2rp > &, one can find some constant a for which

lug(x) —al < m*@rg + |x — xg|), (2.0.10)

for all x € Q N B;. Moreover, it follows from Xg € € N By, (xp)\(Bx U Ci), one may
deduce as in the proof of Lemma5.3 that

_ oy np_
f FI7 dx < et Py, / Dgl™5 dx < e . (2.0.11)
QﬂBer(xB) BZrB(XB)

Consider the following rescaled versions of #®, f and g,

. u(xp +2rgx) —a £
Up (x) = , E€B =,
2cmkry 2rp
_ 8(xp+2rpx) —a

2]‘3
gB(x) , fpx) = Wf(xB + 2rpx),

2emkrg

where ¢ > 1 is a constant to be determined later. In view of (2.0.1), we may compute that
FB (DZMZB,S) :fB in QBQBQ,
u? = g3 on 92z N By,

in the viscosity sense, where Qp = ﬁ(—xlg + QN By)and Fp(P,y) = 2r—"’F(”mk P,y+

cmk 2r
%B). Note that Fg € C(S" x R") and it satisfies (2.0.1)—(2.0.3) for an ObViOllSB reason.
Selecting a large ¢ > 1, we observe from (2.0.10) and (2.0.11) that u g, fp and gp verify the
hypothesis of Lemma 6.3. Due to the scaling invariance of the Reifenberg flatness, 02 N B,
is also (8, 2)-Reifenberg flat. Hence, all the hypotheses of Lemma 6.3 are verified, from which
it follows that

ILEB uP, Q) N Qp ey N Bi| < (87 + ks,

for any s > N, for some N > 1 depending only on n, A and A. To this end, we may follow
the argument at the end of the proof of Lemma5.3 to arrive at |Lz4+1 N B| < no|B|, with
suitable choice of 79, a contradiction. This finishes the proof. O

p
The uniform boundary W' 7=7 -estimates can now be proved as follows.

Proof of Theorem 6.1 One may argue exactly as in the proof of Theorem 5.1, by substituting
Lemma5.3 with Lemma 6.4. The additional term, namely the measure of Cy in the notation

of the latter lemma, is controlled by the wh = -regularity of the boundary data g, as well as
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the strong (g, ¢)-type inequality, with ¢ > 1, for the maximal function. We omit the detail
to avoid repeating arguments. O

6.2 W2-P-estimates

Let us now move on to the uniform W2 ?-estimates around boundary points. As always, we
use 2, to denote the set {x € Q : dist (x, 9Q) > &}.

Theorem 6.5 Let F € C(S" x R") be a functional satisfying (2.0.1)-(2.0.4), @ c R”
be a domain, U C R" be an open neighborhood of a point of 02 such that 02 N U is
a Cl-graph, f € LP(QNU) and g € W2P(Q N U), for some p € (pgy, 00). Suppose
that there is a diffeomorphism ® € CY(U; V) for which ®(Q N U) = H(e,) NV and
DOQLNU) =0H(e,) NV such that

(i) ® e W2"(U; V) ifpo < p <n;

(i) ® € W2t (U; V) for some o > 0if p = n;
(iii)y ® € W>P(U, V), ifp > n.

Let u® € C(Q N U) be a viscosity solution to

28; — .
{F(D W, ) =f inQNU, 2oh

ut =g ondQNU.
Then Héqy (uf) € LY (Qs NU), provided that and for any U' € U,

loc

lu® || Lo (@nu
I H g W) o unory §C< @) 11+ 1D gl e | »

dist (U’, aU)* "7
where C > 0 depends at most on n, A, A\, ¥, «, p, o and diam (U).

Let us begin with a sub-optimal estimate, namely a uniform boundary W?9-estimates,
with ¢ < p, provided that f € LP(QNU) and g € C1’17%(8§2 N U). Note that g €
cr (dQ N U) is a more relaxed assumption than g € W>?(2 N U). The proposition
below will be used later in our approximation lemma (Lemma 6.7 for the boundary estimate.

Proposition 6.6 Ler F € C(S" x R") be a functional satisfying (2.0.1)-(2.0.4), @ C R”
be a domain, U C R" be an open neighborhood of a point of 02 such that 02 N U is
(8, R)-Reifenberg flat, g € CO*(@QNU) for somea € (0,1], f € C(QNU)NLP(QNU)
for some p > po, and u® € C(Q2 N U) be a viscosity solution to

(2.0.2)

F(D*uf,2)=f inQNU,
ut =g ondQNU.

(@) If po < p <n, Hyny (u®) € L;’Uc(ﬁE NU) forall g € (po, min{p, ﬁ}), and for any
subdomain U’ € U,

lu®l Lo (@nu
1y @) 1 Ls@un < C | =200 4 [ flle@nv) + 18l cowons | -
dist (U’,0U)" ¢

where C > 0 depends only on n, A, A, ¥, «, g, a and diam (U).

@ Springer



2616 S.Kim

(i) If p > n, assume that 32 N U is a CY hypersurface, and g € CH*(3Q N U). Then
Héyf) € L (Q NU) for all ¢ € (po, min{p, =1, and for any subdomain
U eUl,

&€
| Hy ) Lo < C (”””“"’“Z”ZU) 1 f ooy + ||g||c1»a(amU)> -
dist (U’,dU)" ¢

Proof The proof is essentially the same with that of Proposition 6.2. After a suitable rescaling
argument, it may suffice to prove the case where U = By, U’ = By, |lu®|@nB,) < 1
I fllLr@ns) < 1 and lIgllcoeponp) < 1if p < n and |gllcrepang) < 1if p > n.
Let p, = min{p, 52} if p < n, p, = min{p, =} if p > n, and p, = y for some
y € (%, min{n, ﬁ}). By [22, Theorem 1] if p < n or Lemma3.4 if p > n, one can find,
for each xo € 92 N By /3, a linear polynomial £y, (in case p < n the linear polynomial £,
is taken by the constant u°(xp)) such that

U — L) ()] < c(lx — xo* 7 + &7 ), (2.0.3)

for all x € QN Bj, where ¢ > 0 depends only on n, A, A, x and p,,.
Now foreachball B C Q. N By, withd(2B)NILN By /2 # ¥, we can make the following
rescaling,

(u® — Lyy o) (xB + pBX)
— ’
IOB pPn

uy (x) =

of u®, where xp is the center of B, pp its radius and xp o the point of intersection between
0(2B) and 02N By /2. Then we may repeat the proof of Proposition 6.2, utilizing Theorem 5.4
in place of Theorem 5.1, to deduce that ||H5’; WP)llLap,) < cforany ¢ < p, with Qp =

pgl(—xB + Q2N By), whence

n n

| Honp, @) lLas) < cpg ™.

Fix any ¢ < p,. Then we can consider the same Besicovitch covering G, as in the proof of
Proposition 6.2, of 2. N By by balls B, such that the summation of the right-hand side of
over all B € G is bounded by a constant c. This finishes the proof. O

As for the proof of Theorem 6.5, it suffices to consider the case where f € L” and g = 0,
since one may always substitute #® with u® — g and f with f + c|D? g|.

Since our analysis will be of local nature around a boundary point, and will be invariant
under translation, we shall work from now on with domains  with 0 € 02, U = B»
and U’ = Bj. Unless specified otherwise, from now on, F € C(S" x R") satisfies (2.0.1)—
(2.0.4), QN By is a C ! -hypersurface containing the origin, and that there is a diffeomorphism
® e Cl(By; V), withV c R" a neighborhood of the origin, such that ®(0) = 0, (2 N
By) = Hp(ey) NV and ® (02 N By) = dHp(e,) N V. We shall call ® boundary flattening
map (of d€2) around the origin. Moreover, f € C(2N By) N LP (2N By) for some p > po,
and u® € C(Q N By) is a viscosity solution to (2.0.1) with U = B, and g = —£, with £ a
linear polynomial; we shall discuss later in detail the reason for the involvement of a linear
polynomial in the boundary condition.

The difficulty of our analysis arises from the fact that homogenization problems are unfa-
vorable towards boundary flattening argument, as one loses the oscillating pattern by the
transformation. In one way or another, one will resort to the fact that the original problem in
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small scales is homogenized to a “nice” effective problem to improve the regularity, whence
the level of difficulty remains the same.

For this reason, we shall study our problem (2.0.1) without flattening the boundary. This
readily implies some notable changes in the approximation lemma below for the measure of
the set of large “Hessian”, compared to the interior case (Lemma 5.5) as well as those for
standard problems in the setting of flat boundaries (e.g., [30, Lemma 2.14]).

Lemma 6.7 Let e, 6, o, p, p and q be constants with) < e < 1,0 <6 <8y, 0 < < 1,
p > 0and py < p < q < 00 be given. Suppose that |E' D®(0) — 1| < § forany & € 9By,
oscg, D® <8, || fllLr@nsy <8 lufllLo@ns,) < 1, [uf(x)| < |x|? for all x € Q\By, and
u® = —~£ on 92 N By, for some linear polynomial £. Assume either of the following:

1
M D4 <, ID>®||La(By) < 8p and q < n;

o’

1
(ii) |De| < s ID?*®||a(,) < 8p, andn < q < 2,

(i) |De| < I D>® ||y < 8p and g > n.

p]—ot’
Then for any s > 0,
A, Q) N Qe N Byl < c(87s ™ +579),

where i > 0 depends only on n, A and A, §o > 0 and 0 < y < 1 depend in addition to q
and respectively o, and ¢ > 1 may depend further on k and . Nevertheless, none of |, 8o,
y and c depends on p or ¢.

Proof SetT = ﬁ f B D®dx,andlet L7 : R" — R” be the linear transformation induced
by T;i.e., L7(0) = 0 and DLt = T. In what follows, we shall denote by cg a constant
depending at most on n and ¢, and we shall allow it to vary from one line to another.

Case1 |D¢| < p~ !, |D>®||La(py) < 8p and g < n.

By the Poincaré inequality, together with || D2®|| L4(By) < 6p,
/ |ID® —T|?dx < cpd"p". (2.0.4)
B

Let L7 : R" — R” be the linear transformation such that DLy = T. Then by the Sobolev
embedding theorem, one can infer that

[®— LT]Co.zfg(Bz) < codp. (2.0.5)

Now by the assumption that ® (02 N By) C dHp(e,), ie., e, - ® = 0 on Q2 N By,
(2.0.5) yields that |e,, - T(x — y)| < codp|x — y|275 for any x, y € 92 N B;. Recall that
T = @ [, D®dx. By the assumption on @, [§'T¢ — 1| < 28 forall § € 3 B), and hence

|Te,| = eﬁl Te, >1-26 > %,provided that§ < %.Setv = éi:‘.Then the latter observation
implies that
o_n
v+ (x = ) < 2codplx — y[*74, (2.0.6)

forany x, y € 02 N Bs.
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Let us now turn to the regularity of the linear polynomial £, for which u® = —€ on 42N B;.
Since |u®| < 1in QN By, |[€] < 1 on 92 N B;. Now we may deduce from | D] < o,
(2.0.6) and 0 € 02 that with § = Sp¢y50 (V),

45
sup €] < 14+ 2 <2, 2.0.7)
SNBy 1Y

Therefore, denoting by P, (e) the orthogonal projection of a vector e in direction v, one can
compute that

|P,(D£)| < oscsnp,t < 4. (2.0.8)

Putting (2.0.8) together with (2.0.6), we also derive that for each o € (0, 1), we can take §
small, depending at most on n and 8, such that
a1
(€102 o, < 20 1P/(DO] + codpl Dyt] <9, (209)
where the last inequality holds for any small §, whose smallness condition depends only on

nand q.
Let ¥ € C(2 N By) be a viscosity solution to

F(D%*h¢,:)=0 inQNB
{ (D%*,3) n 2 (2.0.10)

h® = uf on (2N By).
The existence of such a viscosity solution is ensured by [27, Theorem 1], since 92 N By is

a Cl—hypersurface, and that F € C(S" x R") and u® € C(3(2 N By)). By the maximum
principle, we have

1A% Lo @nBy) < 1. (2.0.11)

By the assumption on ®, dQ N B is a C'-hypersurface whose Lipschitz norm is less than
cod. Thus, by taking 6 smaller if necessary, depending now on n, A, A and g, we can deduce
from Proposition 6.6 (witha =2 — ;), (2.0.9) and (2.0.11) that Hmez (h®) € L1(Q: N By)
and

|HE (RS, QN Bo)llLa(@.nBy) < ¢, (2.0.12)

for some constant ¢ > 0 depending only onn, A, A, k, ¥ and g. In particular, by the definition
A% (h®, E) = {Hp(h®) > s}, we obtain

[AS(h®, QN B)NQ NBy| <ecs79, (2.0.13)

for any s > 0.
In comparison of (2.0.10) with (2.0.1) (with g = —¢), Lemma3.1 ensures that w® =
7w —h¥)isa viscosity solution to

_(D*w®) < L <P (D*w®) inQNB
{P( w) < & <PL(D*w) mQN By, o

wé =0 on d(2N By),

Owing to | fllLr(@nB,) < &, the generalized maximum principle ensures that

lw® lL(@nBs,,) < c¢. Then by Proposition 4.8, we obtain

[A;(w®, 2N B3p)| < cot™, (2.0.15)
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for any + > 1, where u € (0, 1) depends only on n, A and A. Combining (2.0.15) with
(2.0.13), we arrive at

[A;W®, QN B) N QN By <c@@*s™+579).

We can then replace 2 N B, above with 2 by invoking the inequality |u® (x)| < |x|? for all
x € Q\Bj.
Case2 |D¢| < p~ !, |ID>*®||La(p,) < Spandn < g < 2.

l—a

As for this case, by the Sobolev embedding theorem,

[DqD]CO'l_g(Bz) < codp. (2.0.16)

Especially, since |e, - D®| > e/, Dde, > 1 — 25 > % on B;, denoting by v, the unit vector
en-P(x)

Ten- DO’ we obtain that

s — vyl < 2eo8plx — yI' 77, (2.0.17)

for any x, y € 32 N B,. Moreover, one can also deduce from (2.0.16) that |®(y) — ®(x) —
D®(x) - (y —x)| < codply — x|2_5, for any x, y € B,. Utilizing e;, - ® = 0 on a2 N By,
we also obtain that

ue - (v — )| < 2co8ply — x> 74, (2.0.18)

and In other words, 92 N By is a C ]’l_g-hypersurface whose C!%-norm is bounded by
2605,0.

For the rest of the proof, we shall denote by ¢, a positive constant depending at most
on n and «, and it may vary at each occurrence. With (2.0.18) at hand, we claim that £ €

"7 (32 N By) and

Ilﬁllcl.l-g(amBz) = co. (2.0.19)
Note that the hypothesis of Case 2 is stronger than that of Case 1, whence (2.0.7) and (2.0.8)
continue to hold, with the bounds possibly replaced by cg. Thus, (2.0.8) together with (2.0.18)
(with xg = 0) and |D£| < p~! implies that

[Llcoraanay) < [Pv(DO]+ codp|Dye| < co.

Moreover, we may also compute, via (2.0.17) and |D{| < p~ !, that

vy — Vy|
sup ————— = co,

[Det] o ;
Xx,y€0QNBy |x — y| q

n < |D{|
4 (3Q2NBy)
where Dy is the tangential gradient to 92 N B,. Combining the last two displays altogether
with (2.0.7), we verify the claim (2.0.19).

Now let 4° be the viscosity solution to (2.0.10), as in Case 1. The inequality in (2.0.11)
continues to hold here. However, now with (2.0.18) and (2.0.19) at hand, Proposition 6.6

ensures that (2.0.12), hence (2.0.13) as well, holds for ¢ < ﬁ The rest of the proof repeats
that of Case 1 verbatim, so it is omitted.

Case3 |D¢| < p*~ 1, ||D2d>||Ln(B2) <é8pandq > n.
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In the above cases, the auxiliary Dirichlet problem for the approximating function ¢ was
imposed on the same domain Q N B;. Thus, the integrability of HS B (h®) cannot exceed
the exponent determined by the regularity of the boundary layer. On contrast, this last case
asks for g to go over the threshold. To achieve this goal, we shall consider another Dirichlet
problem, whose boundary layer is much smoother (in fact, a hyperplane). However, the choice
of such an auxiliary problem cannot be arbitrary, since the newly obtained approximating
function should also be sufficiently close to the original solution on the boundary layer, so
that their difference satisfies (2.0.15). To meet the latter requirement, we need ¢ to be coe.
regular for some o > 0, not only on 2N By (as in (2.0.9)), but also over a slab S N By, with
S = S¢ysp (v), that contains 02 N B;. This is where a stronger assumption, |D{| < p% L is
used.

Let us explain this in more detail. In what follows, let E denote the half-space H_¢s,(v);
note that & N B, C E. We shall keep writing by § the slab S5, (v); recall from (2.0.6) that
dQN By CS.

With o being the exponent for which |D€| < p®~!, we may compute, by using (2.0.8),
that

_ [v-(x—y)l
[£]0.« <2! “\P,(DO)| + |Dyt| sup —————
CH(SNB2) Y ! X, yESNB, lx — y|*

<8+ sup v —y) (2.0.20)
x,yeSNBy

<9,

where the last inequality again follows by choosing § small, depending only on # and «.

Let us remark that u® € C(Q N By), P_(D*uf) < f < ’P+(D2u5) in 2 N Bj in the
viscosity sense, [|u°||Lo@nBy) < 1, | fllLr@nB,) < & and u® = —£ on 92 N B,. Moreover,
QN B; satisfies a uniform exterior cone condition, where the size of the cone is bounded by an
absolute constant, because of the assumption on the boundary flattening map . Therefore,
one may employ [27, Theorem 2], along with (2.0.20) (in fact, (2.0.9) works equally well
here) to deduce that u¢ € C%2¥(Q N B32), and

(4] o2y @B = © (2.0.21)

for some y € (0, ¥]and ¢ > 0 depending at most on 7, A, A, p and a.
Now let ¢® € C(E N B3/2) be a viscosity solution to
F(D*¢%,2) =0 in EN B3,

¢f = uf on 2N 833/2, (2.0.22)
¢f = —¢ on d(E N B3;») \ 2.

Note that ¢* € C(d(E N By)), since u® = —£ on 42N By, and that E N B, satisfies a uniform
exterior sphere condition with radius 1. Hence, the existence of a viscosity solution to the
above problem is obvious. Also by (2.0.20) and (2.0.21), ¢¢ € C%2’ (3(EN B3/2)), and thus,
it follows from e.g., [6, Proposition 4.13, 4.14], that

(61 cor ERB ) =€ (2.0.23)

On the other hand, by the maximum principle, ||u®|[z~@np,) < 1 and (2.0.7), we have
| lLoo(EnBs)n) < 2. Moreover, as d E is an hyperplane orthogonal to v, |[D.£| = | P,(D¥)|
and |D$£| = 0 on dE, with D, being the tangential gradient on d E. Therefore, it follows
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from (2.0.7) and (2.0.8) that

I|£”CI'1(8EQB3/2) f 6 (2024)

By (2.0.24) (as well as [|¢® || Lo (EnB,) < 2, Proposition6.6 (now with f =0,g = —{,p =¢q
and o = 1 there) yields that ngws/z (h®) € L1(E. N By), with the chosen g € (n, 00) and
E. = {x € E : dist(x,dE) > ¢}, and hence arguing as in the derivation of (2.0.12), we
similarly obtain that

|A%(¢°, EN B3j2) N Ee N By| < s, (2.0.25)

where ¢ may now depend at moston n, A, A, ¥, k and q.

Ut —h¢

Set v® = Cay‘f’ , with a possibly different ¢ > 1 to that in the last display, yet depending
on the same quantities. Then again by Lemma 3.1, we may compare (2.0.1) (with g = —¢)
with (2.0.22) and compute that

P_(D*v) < L, < PL(D*®) in QN Bsp,
¥ =0 on Q2N 333/2, (2.0.26)

_i—gf
v = c87¢ on 92 N B3 .

Asc > 1land0 < 6,y < 1, it follows from the assumption that || f||.»@ns,) < cé”. This
implies, by the general maximum principle, that

¢ lo° + ¢l
0"l @nBs)0) < co+ aszsrlmlzlé);/z s

Therefore, once the rightmost term is proved to be bounded by an absolute constant (by
choosing ¢ > 1 large), we may repeat the final part of the proof for Case 1, and derive the
desired decay estimate. Since the latter implication is already shown above, let us finish the
proof by justifying that [¢® 4 £] < ¢6Y on dQ N B3 5.

To this end, let x € Q2N B3, be any, and find xg € 3 E N B3, such that [x — xp| < codp.
Such a point x( always exists because 92 N By C S with S being a slab with width codp.
Then by (2.0.20) and (2.0.23),

% (x) + £(x)| < | (x) + £(x0)| + [€(x) — £(x0)]
< c((6p)” + (60)™")
<8,

where the last inequality is ensured by y < %, 8 < land p < 1. This completes the proof. O

Our next step is to design a suitable iteration argument for the boundary estimate.

Lemma 6.8 Let ¢, §, o, p, p and q be constants with) < e < 1,0 <8 <), 0 < < 1,
o> 0and py < p < q < 00 be given. Suppose that |E'D®(0) — 1| < § forany & € 9By,
0scp, DD < 8, [ D>®@|l1n(py) < 8 I fllLr@nsy) < 8 lufllLo@ns,) < 1, and u® = 0 on
0Q N By. Set Ay = Afnk(ua, QN By) N Qe N By and By = {M(|f1? xanBs,)) > 8Pmkry.
Assume either of the following:

. kpq
i) Cr = Lfnk(l—p/n)(ugv QN B) NN B3y, Dy = {M(|D2<D|qXBz) > 89m ), and
p<qg<mn
(i) Cp = L, (u®, Q2N By) N Qe N By, D = (M(ID*®|9xp,) > 89m*" 1=} and
(I-an=p<n<q<qis;
(iii) |D*®||Lr By <8, Ck =0, Dx = {M(ID*®|P xp,) > dm*P} andn < p < q.
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Then for each integer

L. forcase (i),
log e . P
1 <k <-—cn, p)@, with c(n, p) = T for case (ii),
2. for case (iii),

one has
[Ags1l < c("*m™ +m™7)|Ax U By U Cx U Dy,

where u > 0 depends only on n, A and A, & € (0, 41) and y € (0, 1] depends at most on q
and a, while ¢ > 0 and m > 1 may depend further on { and .

Proof Since u® = 0on d2N B,, we may apply Lemma 6.7 (with £ = 0 and p = 1) to deduce
that |A{| < c(§¥*m™™ 4+ m™1) < ng|By|. Let us remark that this initial step applies to all
three cases considered in the statement. Fix an integer k > 1. Since Ay C Ay C --- C Ay,
we readily obtain |Ax1| < no|Bi|.

Next, let B C B be a ball whose center lies in 2, N By and rad (B) < 1. Assume that
|Ak+1 N B| > no|B|. Our goal is to show that 2, N B C (Ay U By U Cy U Dy). Thus, by
Lemma?2.7 (which applies to Q. N By, since 32 N By is (cod, 2)-Reifenberg flat, which can
be easily inferred from the C!-character of 3Q N By), |Ak+1] < cnolAx U By U Ci U Dy|.

To the rest of the proof, we shall assume 2, N B\ (Ax U By U C U D) # ¥, and attempt
to derive a contradiction against |Ax4+1 N B| > no|B|. Arguing as in Lemma 5.3, we observe
that

& < 2rp, (2.0.27)

by selecting m > 1 large, yet depending only on 7.

Choose any xp € Q¢ N B\(Ax U By U Cr U Dy). We shall only consider the case
By, (XB)\2 # 0, as the other case can be treated as the interior case. Under this setting, we
can find xg € 92 N B; such that ¢ < |xp — Xg| = dist (X, Q) < 2rp.

For the rest of the proof, we shall denote by ¢ > 1 a constant depending at most on n, A,
A, k, ¥, p, q and o, and we allow it to vary at each occurrence.

Case 1. Cy, = L* k(l—ﬂ)(ug’ QN By) N Qe N B3jp, Dy = {M(|D2(D|n)(32) > (Smkp}, and
p<g<n. me

By Xp € B\Dy and By (xg) C Bary(XB),

/ |D2<1>|q dx < (4r3)"(8mk7p)q. (2.0.28)
Boyp (xB)

Moreover, thanks to Xp ¢ Ay, there exists a linear polynomial £ such that for all x € 2N By,

k
| — 0)(x)| < m7<|x — g2+ &Y, (2.0.29)

for all x € N By. Also observe from ¥5 ¢ C that |u®(x) — a| < mF1=D) (|Jx — 5| + &)
for all x € 2 N B, for some constant @ € R. Putting this observation together with (2.0.29),

k
m e < 1and B, (i) C 2, we obtain |£(x) — a| < m¥e? + 2mk =g < 3m* (1= for
all x € B.(Xp). In particular, we arrive at

|De| < 6m*1=1), (2.0.30)
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In addition, from Xp ¢ By and By, (xg) C Bar,(Xp), we also have
/ | f1P dx < (4rp)"(5m")P. (2.031)
QNBarp (xB)
Denote by Qp the rescaled domain ﬁ(—xg + QN By), and define ®p by

1
Pp(x) = %(CD(XB + 2rgx) — ®(xp)). (2.0.32)

Since oscp, (xyD® < ér forany x € Q2N By and any r € (0, 1), we have oscp, D®p < 6.
Moreover, since [§'D®(0) — 1| < & for all £ € 3B and oscp, DP < 4, it follows that
|E'D®p(0)é—1| < 28forallé € 3 By.Furthermore, according to (2.0.28), ||D2<I>B||Lq(32) <

48mk7{)r3.
Consider the following rescaled versions of u®, £ and f,
. u® — &) (xp + 2rpx) €
up (x) = £ , ep=—
G s (2.0.33)
l(xp + 2rpx) f(xp +2rpx) o
tpx) = — L TP ppey = LB TEY
emkry cm

with ¢ > 1 to be determined later. By (2.0.29), we have |uZB (x)| < 1forallx € QpN B,
and |u%3 (x)] < |x|? for all x € Q\By, and by (2.0.31), | fBllLr(@pnBy) < 8, while (2.0.30)

k
ensures |D{p| < (mpTrB)_l, provided that we take ¢ > 1 larger if necessary. In view of
(2.0.1) and u®* = 0 on 92 N By, one may also compute that

[FB (DzusBB, 5) = fp inQpN By,

en (2.0.34)
Ug = —4{p on 02 N By,

in the viscosity sense, where Fp(P,y) = ﬁF(cmkP, v+ XS—B). Obviously, Fp € C(S" x
R"™) and it verifies (2.0.1)—(2.0.3). One may also check (2.0.4) for Fg, for the same reason
shown in the proof of Lemma5.6. Besides, ep < 1 because of (2.0.27).

Summing up all the observations above, ¢g, Fp, u?, Lp,0Qp N By, Pp and fp verify all

k,
the hypotheses for the first case of Lemma6.7 (with p = m w rp and ¢$ in place of § there).
Therefore, we obtain that for any s > 0,

|AS (s QB) N Qp ey N Bi| < c(B's™" +579),

where Qp ., denotes the set {x € Qp : dist (x, 9Q2p) > ep}. Rephrasing the inequality in
terms of u®, we obtain |A .,k (u®, QN B2) N Qe N Boyy (xp)| < c(8%s™H +579)ry < nolB|.
Evaluating this inequality at s = ¢~ m and using B C By, (xp), we arrive at |[Ag41 N B| <
no|B|, a contradiction. This finishes the proof for Case 1.

Case2.Cy = LF ,,(u, QN B2) N Qe N Byja, Dy = {M(|D*®|9 xp,) > §9m*"(1=*} and
(l-an=p<n<qg<qi4.

Let us remark that Cy in Case 2 is the same with Case 1 by taking p = (1 — «)n, while
Dy in Case 2 replaces n and p in that of Case 1 with ;- and respectively n. Keeping this in
mind, we follow the lines of the proof for Case 1. Then one may observe that under the new
hypothesis in Case 2, (2.0.28) is replaced by fBer ) |ID2®|% dx < (4rp)"stmkn—e)q

(2.0.29) remains the same, (2.0.30) is replaced by |D¢| < 6m*® (here we also need k <

ﬁ log,, é, which is ensured from the statement of this lemma) and (2.0.31) is replaced
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BY Jang,, (g |17 dx < (4rp)"(@m*)" 1= Thus, with @5, w3, e, Lp, fp, Fp as in
(2.0.32), (2.0.33) and (2.0.34), one can verify that hypotheses for the second case of Lemma
6.7 is satisfied (with p = m*1=0pp and ¢§ in place of § there). The rest of the proof is the
same. Let us skip the detail in order to avoid redundant argument.

Case 3. | D*®||1r(py) < 8, Cx =B, DR {M(ID*®|" xp,) > 8"m*"}andn < p < q.

Unlike the first two case, we need to treat the last case differently. By the additional
assumption || D*® || Lp(B,) < 6 and p > n, the Sobolev embedding theorem implies that
[D®]co1-n/p(p,y < ¢8. As @ is the boundary flattening map of 92 N By, it follows that

9Q N By is a C11="/P_hypersurface, whose norm is bounded by ¢8; since this implication
is already rigorously justified in the proof of Lemma6.7, we shall not repeat it here. Since
P_ (Dzu‘g) <f< ’P+(D2ug) in QN B, inthe viscosity sense, and u® = 0 on 32N By, one can
find a linear polynomial £, according to [23, Theorem 1.6] together with [|u®|| 2o (@nB,) <1
and || flLr(@nB,) <4, that

| — €yy) ()| < clx — xp|' T, (2.0.35)

forall x € 2N By, wherec > land o € (0,1 — %) depend at most on 1, A, A and p.

Next, since F(Dz(ug—ZxB), :) = fin By, (xp), withdp = dist (Xp, 92) = |xp—Xp|,in
the viscosity sense, we may apply Lemma 3.3 to u® (with 2 = By, (Xp) and xo = Xp there),

1
and deduce from (2.0.35), as well as an obvious inequality (/(1—g), (| f1” xonB,)(XB))? <
cllf Lr(Bay gy < €9, that

| = £5,)@)] < e(lx — Fp|' @ 41+, (2.0.36)

for any x € By, (Xp), for some other linear polynomial £3,,. Since dp = |xp — Xp| > &, we
may compare this with (2.0.29) in B, (Xg) C By, (Xp) and utilize mke? < gl+® (which is
ensured by the choice k < £1log,, ¢ anda <1 — %) to deduce that |(£ — €5,)(x)| < ce!t®
for all x € B.(xp). Especially,

|DC — De;,| < cm*®e”. (2.0.37)

On the other hand, we may also derive from Xp ¢ Dy and |xp — Xp| < 2rp that

/ |D>®|dx < 4"8Prim*?, (2.0.38)
B2rB (XB)

Now we define &3, uZB, ep, fp and Fp asin (2.0.32), (2.0.33) and (2.0.34), but redefine ¢ g
by

(£ —Lz,)(xp +2rpx)
cmkry '

lp(x) =

By the obvious identity, u® — £ = u® — £z, — (£ — £3,), we have uSBB = —{pondQg N By.
Moreover, due to (2.0.37) and (2.0.27), |D€p| < cm*@=Dr%=! In addition, by (2.0.38),
we have ||D2d>B lLr(By) =< 48m*rp. The other properties concerning M%B, fB, Fp and ®p
remain the same as in the proof of Case 1. Thus, ¢p, u%‘*, fB, B, ®p and Fp altogether now
verify the hypotheses of the last case of Lemma 6.7 (with p = m*rp and o as above). The
rest of the argument is the same with that of Case 1, whence it is left out to the reader. O

We are ready to prove the uniform W2 7-estimates around boundary points.
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Proof of Theorem 6.5 Fix any (finite) exponent p > pg. Consider the case 0 € 92, U = B,
U’ = By, lu®llr~@ngy < L I fllLrens,) <8, ¢ = 0on By, ®(0) =0, oscg,DP < §
and |E'D®(0)é — 1| < & for all & € dB;. Also assume that ||D2<I>||Ln(32) <dif p <n,
| D?>®|| 1o (py) < 8if p=n,and | D*®||1r(p, < §if p > n.

Throughout this proof, ¢ will denote a positive constant depending at most on n, A, A, «,
Y, pando.

Choose p’ < pby p’' = po;r” if p <n, p’ = ;2= if p = n, with o as in the statement
of the theorem, and p’ = ”erp if p > n. Let ag, Bk, yx and §; be the measure of Ay, By, Cy.
and respectively Dy as in Lemma 6.8 with p’ in place of p, and o = nig there. Since u?, f,
F and @ verify the hypotheses of Lemma 6.8, depending on the value of p’, we obtain, after

iteration, that

k
ar <0 Y 0 B+ Vi + 8i),
i=1
with n = c(8"*m* +m™9).

Fixanyg > psuchthatg <nifp <n,g <n+oif p=nandqg =2pifp > n.
We may choose m larger in Lemma 6.8, but still depending on the quantities specified in the
statement of the lemma, such that cm?~9 < %. Then we take § sufficiently small such that
c8"HFmt < }1, which ensures that m”n < %

With such a choice of m and §, one can derive, by following computations in the proof of
Theorem 5.1, that

—c(p',n)log,, & 00
S mMap <cte Y m* (B + v+ 0. (2.0.39)
k=1 k=1

for some ¢ > 0, depending only on n, A, A, k, ¥, p and o (only for the case p = n). Hence,
it suffices to prove a uniform bound of the rightmost term in the above display.

By the strong (%, %)—type inequality for the maximal function and the assumption that
| fllzr@nB,) < 8, one can immediately prove that

o0
kapﬂk <c.
=1

As for the summability of m*?y;, we only need to take care of the case p < n, since for
the other case, p > n, Lemma 6.8 (iii) assumes Cy = , i.e., yx = 0. For the case p < n,
it follows from Theorem 6.1 (along with [|u®||z~@nB,) < 1, I fllLr@nBy) < 8,8 =0
on 92N B, and 92 N By is a C!-hypersurface whose Lipschitz norm is less than ¢§) that
Gynp, W) € L"/=P)(Q. N B3p) (note p' < n when p < n) and

_np_
/ (G?mBz(ue))"*P’ dx <c.
Q:NBy

Thus, writing by ¢ the function Ggqp (u®)"~7, the above display implies that
stnBZ @? dx < c. By the relation between the function G% (v) and the set L*(v, E) (see

Definition 2.2), {¢ > m*} = {G{yp, (") > mk=") = 1 , 2N By), so

& &
mk(l*p’/n) (l/t

oo o0
k k k
Y m Py =" m*|{p > mk}| < c.
k=1 k=1
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Finally, let us verify the summability of mXP 8. As for the case p > n (hence p’ > n), it
follows from the strong (%, %)—type inequality for the maximal function and the assumption

that ||D26D||Lp(32) < §. As for the case p < n, henceeither p < g <norp=n<gq <
n + o, we invoke strong (%, g)-type inequality, with N = nif p <nor N =n+o if

p = n, for the maximal function. Then from the assumption | D2 LV(By) =< &, we have

N
Jpn M(ID*®|% x,) ¢ dx < 6 and thus,

o0
pg kN Pq
> mfPs = (V)T [{M(ID*®|9xp,) > 81 (m V)| <c.
k=1 k=1

In all, we have proved that the rightmost term of (2.0.39) is bounded by c, uniformly in
¢. This finishes the proof, for the special case. By a standard rescaling argument, one may
recover the case for general 92, U, U’, u®, f yet g = 0. Now for non-trivial g € W2'P(U),
we observe that w® = u® — g satisfies the special case, with f replaced by f + co|D? gl,
with cg depending only on n, A and A; for more detail, see the proof of [30, Theorem 4.5]. O
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