
Annali di Matematica Pura ed Applicata (1923 -) (2023) 202:1573–1589
https://doi.org/10.1007/s10231-022-01293-9

Amonotone convergence theorem for strong Feller
semigroups

Christian Budde1 · Alexander Dobrick2 · Jochen Glück3 ·Markus Kunze4

Received: 6 April 2022 / Accepted: 25 November 2022 / Published online: 29 December 2022
© The Author(s) 2022

Abstract
For an increasing sequence (Tn) of one-parameter semigroups of sub Markovian kernel
operators over a Polish space, we study the limit semigroup and prove sufficient conditions
for it to be strongly Feller. In particular, we show that the strong Feller property carries over
from the approximating semigroups to the limit semigroup if the resolvent of the latter maps
1 to a continuous function. This is instrumental in the study of elliptic operators on Rd

with unbounded coefficients: our abstract result enables us to assign a semigroup to such
an operator and to show that the semigroup is strongly Feller under very mild regularity
assumptions on the coefficients. We also provide counterexamples to demonstrate that the
assumptions in our main result are close to optimal.
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1 Introduction

Convergence of semigroups

A central aspect in the theory of strongly continuous semigroups is that of convergence of a
sequence of semigroups to a limit semigroup. Indeed, even the Hille–Yosida Theorem (see
[12, Thms. II.3.5 and II.3.8]), which provides the foundation for the entire theory, is usually
proved by an approximation argument (here the famous Yosida approximants appear). More
generally, this topic is the content of the Trotter–Kato Theorem (see [12, Thms. III.4.8 and
III.4.9]) that characterizes strong convergence of semigroups by strong convergence of the
resolvents of their generators.

The situation where one replaces strong convergence with weaker notions of convergence
has also received some attention in the literature. Most results concern replacing norm con-
vergence by weak convergence in the setting of Hilbert spaces, i.e., studying convergence
of operators in the weak operator topology. Possibly the earliest result is due to Simon [28],
who proved strong convergence of semigroups given weak convergence of the resolvents,
provided that the latter aremonotone in the sense of quadratic forms. While some extensions
of Simon’s result beyond the setting of monotone sequences of self-adjoint generators are
known (see [8, 25]), examples show that we cannot have a full generalization of the Trotter–
Kato Theorem to this setting ([11] and [10, Ex. 3.5] based on [18]). However, Chill and
ter Elst [10] could prove a Trotter–Kato Theorem for positive self-adjoint operators without
imposing monotonicity assumptions.

Theoretical contributions

In this article, we leave the Hilbert space setting and instead focus on semigroups on the space
Bb(E) of bounded and measurable functions on a Polish space E . The theory of strongly
continuous semigroups is not appropriate for this setting; instead, we consider semigroups
which satisfy merely a measurability assumption with respect to time, and whose operators
are given by transition kernels. These are natural assumptions for transition semigroups of
Markov processes; see for instance [13] for details.

On Bb(E)wewill study pointwise convergence of a sequence (Tn) of semigroup to a limit
semigroup T ; our main result, Theorem 4.3, gives sufficient conditions for T to have the so-
called strong Feller property, which means that the semigroup operators map Bb(E) into
the space Cb(E) of bounded and continuous functions. The sequence (Tn) (or, equivalently,
the sequence of the Laplace transforms of the Tn) will be assumed to be monotone – not in
the sense of quadratic forms, considered in the above-mentioned Hilbert space setting, but
pointwise.

An application

The aforementioned monotonicity property is, for instance, satisfied in the construction of
semigroups generated by elliptic operators with unbounded drift and diffusion coefficients.
In this case the monotonicity is a consequence of the maximum principle. This construction
was first carried out byMetafune, Pallara andWacker [24] (see also [22] for more examples),
and in fact, the article [24] was a major motivation for the present work. The authors of the
latter article first establish monotone convergence of the resolvents of certain approximating
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operators. In a second step, they also prove (monotone) convergence of these semigroups.
However, this second step is carried out using interior Schauder estimates, which requires
more restrictive regularity assumptions than are necessary for the first step (and as a con-
sequence, the first step is actually not used for the second step). With our abstract results,
in particular Theorems 3.4 and 4.3, convergence of the semigroups and the strong Feller
property of the limit semigroup follow immediately from the results about the resolvent in
[24], without additional regularity assumptions on the coefficients. Therefore, our approach
yields convergence and the strong Feller property under considerably weaker assumptions
than in [24].

Related literature

The idea to consider sequences of semigroups or resolvents which are pointwise (or almost
everywhere) increasing as a means to construct a limit semigroup is very classical. It was
already employed by Kato [17] to prove a generation result for semigroups on the space �1.
This argument was later adapted to much more general settings; see in particular [9, Sect.
13], [7], [29, Thm. 2.1] and [6, Sect. 6]. These articles are set in the realm of C0-semigroups
and the choice of the underlying space ensures that a norm bounded increasing sequence of
operators is always strongly convergent. In contrast, our setting is more subtle and requires
a careful handling of the involved modes of convergence. As a consequence, time regularity
of the limit semigroup is far from clear in our case; see Theorem 4.3 and Example 5.2.

Organization of the article

In Sect. 2, we discuss preliminaries about semigroups of kernel operators and prove a conti-
nuity result for strong Feller semigroups. We take up our main line of study in Sect. 3, where
we analyse monotone convergence of semigroups on the space Bb(E) of bounded and mea-
surable functions. In Sect. 4 we prove that the limit semigroup has the strong Feller property
if (A) every semigroup Tn has the strong Feller property and (B) the (pseudo-)resolvent of the
limit semigroup satisfies the strong Feller property. In Sect. 5 we provide counterexamples
that show that neither condition (A) nor (B) can be omitted. In the concluding Sect. 6 we
apply our results to construct a semigroup generated by the aforementioned elliptic operator
with unbounded coefficients in the setting of [24].

2 Preliminaries on Semigroups of kernel operators

Throughout the article, E denotes a Polish space, i.e. a separable topological space that
is metrizable through a complete metric. We always endow E with its Borel σ -algebra
B(E). We denote the space of bounded and Borel measurable functions on E by Bb(E),
and its subspace of bounded and continuous functions byCb(E). The space of finite (signed)
measures on E is denoted byMb(E) andσ := σ(Bb(E),Mb(E)) refers to theweak topology
on Bb(E) induced by Mb(E). By slight abuse of notation, we will denote the restriction of
this topology to Cb(E) also by σ . Note that if E is additionally compact then Mb(E) is the
(norm-)dual space of Cb(E). In general, however,Mb(E) is a strict subset of Cb(E)∗ so that
the ‘weak’-topology σ is not the classical weak topology from the theory of Banach spaces,
but the weak topology of the dual pair (Cb(E),Mb(E)). Wewrite⇀ to indicate convergence
with respect to σ , whereas → is used to indicate convergence with respect to the supremum
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norm ‖ · ‖∞. If supn∈N‖ fn‖∞ < ∞ and fn(x) → f (x) for all x ∈ E , then fn⇀ f as a
consequence of the dominated convergence theorem. In fact, both statements are equivalent,
as can easily be seen by using the uniform boundedness principle.

A kernel on E is a map k : E × B(E) → R such that

(i) the map x �→ k(x, A) is measurable for all A ∈ B(E);
(ii) k(x, ·) is a signed measure for every x ∈ E ;
(iii) supx∈E |k|(x, E) < ∞, where |k|(x, ·)denotes the total variation of themeasure k(x, ·).
If every measure k(x, ·) is positive (a sub probability measure), then the kernel is called
positive (sub Markovian).

To each kernel k one associates a bounded linear operator T on Bb(E) defined by

[
T f

]
(x) :=

∫

E
f (y)k(x, dy). (2.1)

An operator T of this form is called a kernel operator. The operator T is positive if and only
if k(x, A) ≥ 0 for all x ∈ E and all A ∈ B(E); in this case, we write T ≥ 0 and one has
‖T ‖ = supx∈E k(x, E).

One can prove that a bounded linear operator on Bb(E) is a kernel operator if and only if
it is continuous with respect to the weak topology σ (see e.g. [20, Prop. 3.5]). Alternatively,
a bounded linear operator T on Bb(E) is a kernel operator if and only if its norm adjoint
T ∗ leaves the space Mb(E) invariant (see [20, Prop. 3.1]); we write T ′ := T ∗|M b(E). By
L (Bb(E), σ )wedenote the space of σ -continuous operators on Bb(E), i.e., kernel operators.

We now turn our attention to semigroups. A semigroup of kernel operators is a family of
operators T = (T (t))t>0 in L (Bb(E), σ ) such that

(i) one has T (t + s) = T (t)T (s) for all t, s > 0;
(ii) the map (t, x) �→ (T (t) f )(x) is measurable for every f ∈ Bb(E).

Moreover, a semigroup of kernel of operator (T (t))t>0 is called bounded if there exists a
number M ≥ 0 such that ‖T (t)‖ ≤ M for all t > 0; it is called positive if T (t) ≥ 0 for
all t > 0. We will mainly deal with bounded semigroups throughout the article. Semigroups
which merely satisfy the weaker assumption supt∈(0,1]‖T (t)‖ < ∞ (and are thus only
exponentially bounded) can be treated by a rescaling argument.

If T = (T (t))t>0 is a bounded semigroup of kernel operators, then it is not difficult to see
that for every Re λ > 0 there is an operator R(λ) ∈ L (Bb(E), σ ) such that

〈R(λ) f , μ〉 =
∫ ∞

0
e−λt 〈T (t) f , μ〉 dt .

In the terms of [20, Def. 5.1], this means that T is an integrable semigroup on the norming
dual pair (Bb(E),Mb(E)). Clearly, if the semigroup T is positive, then the operator R(λ) is
positive for every real number λ > 0. By [20, Prop. 5.2], the family (R(λ))Re λ>0 is a pseudo
resolvent, i.e., it satisfies the resolvent identity

R(λ) − R(μ) = (μ − λ)R(λ)R(μ) (Re λ, Reμ > 0).

Therefore, we call the family (R(λ))Re λ>0 the pseudo-resolvent of the semigroup T ; alter-
natively, we also sometimes call it the Laplace transform of T . In general, the operators
R(λ) are not injective and thus do not form the resolvent of a (single-valued) operator. How-
ever, there is a multi-valued operator A such that R(λ) = (λ − A)−1 for all Re λ > 0 (see
[16, Appendix A]). This operator A is sometimes called the full generator of T and it is
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characterized by ( f , g) ∈ A if and only if

T (t) f − f =
∫ t

0
T (s)g ds

for all t > 0, see [20, Prop. 5.7]. Note that this terminology is consistent with that used by
Ethier–Kurtz [13, Sect. 1.5].

Let (T (t))t>0 be a bounded and positive semigroup of kernel operators. There are a number
of additional properties that such a semigroup can have and that are of particular interest for
us. We call (T (t))t>0 a Cb-Feller semigroup if its satisfies T (t)Cb(E) ⊆ Cb(E) for each
t > 0 and, in addition, the restriction of T to Cb(E) is stochastically continuous, meaning
that T (t) f ⇀ f as t → 0 for every f ∈ Cb(E). It is easy to see that if (T (t))t>0 leaves
Cb(E) invariant, then also its Laplace transform R(λ) leaves Cb(E) invariant; Example 5.1
shows that the converse is not true in general. If (T (t))t>0 is a Cb-Feller semigroup, then
R(λ)|Cb(E) is injective (see [19, Thm. 2.10]) and hence the resolvent of a unique operator
ACb . An easy computation shows that ACb is exactly the part of the full generator A inCb(E),
i.e., u ∈ D(ACb ) and ACbu = f if and only if (u, f ) ∈ A∩ (Cb(E)×Cb(E)). By [19, Thm.
2.10], we can alternatively characterize ACb f as σ -derivative of the map t �→ T (t) f in 0
(where we set T (0) = I ).

We say that the bounded and positive semigroup (T (t))t>0 of kernel operators enjoys the
strong Feller property if T (t)Bb(E) ⊆ Cb(E) for all t > 0. Naturally, if (T (t))t>0 enjoys the
strong Feller property, then T (t)Cb(E) ⊆ Cb(E). However, it may happen that restriction
of (T (t))t>0 to Cb(E) is not stochastically continuous. This is the case, for example, in
connection with certain non-local boundary conditions [4, 21]. In these examples, we still
have that R(λ)|Cb(E) is injective. As it turns out, this already implies certain continuity
properties of the semigroup.

Lemma 2.1 Let (T (t))t>0 be a bounded and positive semigroup of kernel operators that
enjoys the strong Feller property and assume that the operators R(λ) of its pseudo-resolvent
(R(λ))Re λ>0 are injective when restricted to Cb(E). Then for every f ∈ Bb(E) the map
(t, x) �→ T (t) f (x) is continuous on (0,∞) × �.

Proof By the semigroup law, every operator T (t) is the product of two strong Feller operators
and thus satisfies the ultra Feller property, i.e., if ( fn)n∈N is a bounded sequence of mea-
surable functions then (T (t) fn)n∈N has a subsequence that converges uniformly on compact
subsets of E to some bounded continuous function, see [26, § 1.5].

Now consider a sequence (tn) in (0,∞) that converges to a time t ∈ (0,∞) and a function
f ∈ Bb(E). As a preliminary step, we prove that T (tn) f → T (t) f uniformly on compact
subsets of E . Note that s := inf{tn : n ∈ N} > 0 and that the sequence (T (tn − s) f ) is
bounded. As T (s) is ultra Feller, passing to a subsequence, we may and shall assume that
T (tn) f = T (s)T (tn − s) f converges uniformly on compact sets to some g ∈ Cb(E). In
particular, T (tn) f ⇀g. Using the σ -continuity of the Laplace transform R(λ) and the fact
that R(λ) commutes with every T (t), we find

R(λ)g = σ - lim
n→∞ R(λ)T (tn) f = σ - lim

n→∞ T (tn)R(λ) f = T (t)R(λ) f = R(λ)T (t) f ;

for the third equalityweused that T is strongly continuous (with respect to ‖ · ‖∞) on the range
of R(λ) (see [19, Rem. 2.5]). As R(λ) is injective on Cb(E), we must have g = T (t) f . Now
a subsequence-subsequence argument yields that T (tn) f → T (t) f uniformly on compact
subsets of E .
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Finally, if (tn, xn) → (t, x), then by what was just done, T (tn) f → T (t) f uniformly on
the compact set {xn : n ∈ N} ∪ {x}. ��

3 Amonotone convergence theorem

The purpose of this section is to prove a convergence theorem for monotone sequences of
semigroups of kernel operators. We start by characterizing domination of semigroups of
kernel operators in terms of their Laplace transforms. To that end, we use the following
lemma.

Lemma 3.1 There exists a countable set F ⊆ Bb(E) such that a measure μ ∈ Mb(E) is
positive if and only if 〈 f , μ〉 ≥ 0 for all f ∈ F .

Proof As E is Polish, its Borel σ -algebra is countably generated; let E be a countable
generator ofB(E). We may assume without loss that E is an algebra, otherwise replacing E
with the algebra generated by it, which is again countable. We claim that the set

F := {1A : A ∈ E } ⊂ Bb(E),

has the desired properties. Indeed, letμ ∈ Mb(E) and assume that 〈 f , μ〉 ≥ 0 for all f ∈ F .
Then

E ⊆ {A ∈ B(E) : μ(A) ≥ 0} =: D .

One can readily check thatD is a monotone class, so it contains the monotone class generated
by E . But by the monotone class theorem, the latter is actuallyB(E), soD = B(E), proving
μ ≥ 0. ��
Theorem 3.2 Let (T1(t))t≥0 and (T2(t))t≥0 be positive and bounded semigroups of kernel
operators, and assume that Tj (t)Cb(E) ⊆ Cb(E) for all t > 0 and j = 1, 2. We denote
their Laplace transforms by (R1(λ))Re λ>0 and (R2(λ))Re λ>0, respectively. The following
are equivalent:

(i) R1(λ) ≤ R2(λ) for all λ > 0;
(ii) T1(t) ≤ T2(t) for all t > 0.

Proof (i) ⇒ (ii). For each f ∈ Bb(E)+ and μ ∈ Mb(E)+, define r f ,μ : (0,∞) → [0,∞)

by setting

r f ,μ(λ) = 〈(R2(λ) − R1(λ)) f , μ〉 =
∫ ∞

0
e−λt 〈(T2(t) − T1(t)) f , μ〉 dt

As (R1(λ))Re λ>0 and (R2(λ))Re λ>0 are pseudo-resolvents, the map r f ,μ is infinitely differ-
entiable with

dn

dλn
r f ,μ(λ) = (−1)nn!〈(Rn+1

2 (λ) − Rn+1
1 (λ)) f , μ〉

for each integer n ≥ 0. Thus, the Post–Widder inversion theorem [2, Thm. 1.7.7] yields the
existence of a null set N ( f , μ) ⊆ (0,∞) such that

〈(T2(t) − T1(t)) f , μ〉 = lim
n→∞(−1)n

1

n!
(
n

t

)n+1 dn

dλn
r f ,μ

(
n

t

)
≥ 0
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for all t ∈ (0,∞) \ N ( f , μ).
Now let F ⊆ Bb(E) denote a countable set with the property stated in Lemma 3.1 and

fix μ ∈ Mb(E)+. Then N (μ) = ⋃
f ∈F N ( f , μ) is a null set and

〈 f , (T ′
2(t) − T ′

1(t))μ〉 = 〈(T2(t) − T1(t)) f , μ〉 ≥ 0.

for all f ∈ F and all t /∈ N (μ). By the choice of F this implies that T ′
1(t)μ ≤ T ′

2(t)μ for
all t /∈ N (μ).

Next consider a sequence (xn)n∈N ⊂ E that is dense in E and put N := ⋃
n∈N N (δxn ),

where δx refers to the Dirac measure in x . Then N is a null set, and for each continuous
function f ≥ 0 we have

(T2(t) − T1(t)) f )(xn) = 〈T2(t) f − T1(t) f , δxn 〉 ≥ 0

for all n ∈ N and all t /∈ N . As T2(t) f − T1(t) f is continuous by assumption, T1(t) f ≤
T2(t) f for all t /∈ N .

Finally, consider the set

M := {t ∈ (0,∞) : T1(t)|Cb(E) ≤ T2(t)|Cb(E)}.
Then (0,∞)\M ⊆ N , so (0,∞)\M is a null set. From the semigroup law, one easily deduces
that M + M ⊆ M . Thus [2, Lem. 3.16.5] implies M = (0,∞). Hence, T1(t) f ≤ T2(t) f for
all t > 0 and f ∈ Cb(E), from which (ii) easily follows.

The converse implication (ii) ⇒ (i) is clear. ��
We now turn to the main topic of this section: convergence of monotone sequences of

semigroups. We begin, however, with single operators instead of semigroups. Within the
ordered vector space L (Bb(E), σ ) we use the following notation: if T is an element and
(Tn) a sequence in this space, we write Tn ↑ T to say that the sequence (Tn) is increasing
(in the sense that Tn ≤ Tn+1 for all n) and that T is the supremum of this sequence in the
sense that for every f ∈ Bb(E)+ and x ∈ E we have (T f )(x) = supn(Tn f )(x). For more
information concerning the order structure of kernel operators, we refer to [15].

Lemma 3.3 Consider an increasing sequence (Tn)n∈N of positive operators inL (Bb(E), σ )

which satisfy ‖Tn‖ ≤ M for a number M ≥ 0 and all n ∈ N. Then:

(i) There exists a positive operator T ∈ L (Bb(E), σ ) of norm ‖T ‖ ≤ M such that
Tn f ⇀T f for each f ∈ Bb(E). In particular, Tn ↑ T .

(ii) If (Sn)n∈N is another norm bounded increasing sequence of positive operators in
L (Bb(E), σ ), whose limit we denote by S, then SnTn ↑ ST .

Corresponding statements hold for decreasing sequences of positive operators.

Proof We only prove the results for increasing sequences, the case of decreasing sequences
is similar.

(i) We denote the kernel associated to Tn by kn and put k(x, A) := supn kn(x, A). It
follows from ‖Tn‖ ≤ M for all n that k(x, E) ≤ M for all x ∈ E . Moreover, k is again
a kernel, cf. [15, Lem. 3.5]. We denote the kernel operator associated with k by T . Then
‖T ‖ ≤ M and it follows from the definition of k that Tn f ⇀T f for all f ∈ Bb(E); hence,
T = supn Tn .

(ii) According to (i), the supremum supn∈N SnTn exists, and we have to show that it is
equal to ST . Clearly, SnTn ≤ ST . On the other hand, for f ∈ Bb(E)+ and m ∈ N, we have

(
sup
n∈N

SnTn
)
f ≥ (

sup
n∈N

SnTm
)
f = σ - lim

n
(SnTm) f = σ - lim

n
Sn(Tm f ) = STm f ,
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where the first and the last equality follow from (i). However, Tm f ⇀T f and thus, by
the σ -continuity of S, STm f converges to ST f , which proves the converse inequality
supn∈N SnTn ≥ ST . ��

It is now easy to show that monotone and uniformly bounded sequences of semigroups
have limit semigroups.

Theorem 3.4 Let (Tn(t))t≥0 be a sequence of bounded and positive semigroups of kernel
operators with Laplace transforms (Rn(λ))Re λ>0, and assume that there exists a number
M ≥ 0 such that ‖Tn(t)‖ ≤ M for all t > 0 and all n. Then the following are equivalent:

(i) For every t > 0 the sequence (Tn(t)) is increasing (decreasing).
(ii) For every λ > 0 the sequence (Rn(λ)) is increasing (decreasing).

If the equivalent assertions (i) and (ii) are satisfied the family of operators (T (t))t≥0, defined
by

T (t) f := σ - lim
n→∞ Tn(t) f

for each f ∈ Bb(E), is a positive and bounded semigroup of kernel operators with the
property ‖T (t)‖ ≤ M for all t > 0. Its pseudo-resolvent (R(λ))Re λ>0 is given by

R(λ) f = σ - lim
n→∞ Rn(λ) f .

for all f ∈ Bb(E) and Re λ > 0.

Proof The equivalence of (i) and (ii) is immediate from Theorem 3.2, so assume now that (i)
and (ii) are satisfied.

It follows from Lemma 3.3(i) that, for each t > 0, the operator T (t) ∈ L (Bb(E), σ ) is
positive and has norm at most M . Lemma 3.3(ii) yields the semigroup law for T . Moreover,
the function

(t, x) �→ (T (t) f )(x) = lim
n→∞

(
Tn(t) f

)
(x)

is clearly measurable for all f ∈ Bb(E). Hence, (T (t))t>0 defines semigroup of kernel
operators.

As explained in Sect. 2, the pseudo-resolvent operators R(λ) ∈ L (Bb(E), σ ) satisfy

〈R(λ) f , μ〉 :=
∫ ∞

0
e−λt 〈T (t) f , μ〉 dt

for all f ∈ Bb(E), μ ∈ Mb(E) and Re λ > 0. Since an analogous formula holds for
〈Rn(λ) f , μ〉 for each n, the convergence of 〈Rn(λ) f , μ〉 to 〈R(λ) f , μ〉 follows from the
dominated convergence theorem. ��

The convergence Rn(λ) f ⇀R(λ) f for all f ∈ Bb(E) in Theorem 3.4 can equivalently
be expressed in terms of the full generators:

Corollary 3.5 Assume that, in the situation of Theorem 3.4, the equivalent assertions (i) and
(ii) are satisfied. Denote the full generator of T by A and, for every n ∈ N, the full generator
of Tn by An . Then we have (u, f ) ∈ A if and only if there is a sequence of pairs (un, fn) ∈ An

with un⇀ f and fn⇀ f .

123



Amonotone convergence theorem for strong Feller semigroups 1581

Proof First assume that (u, f ) ∈ A, which is equivalent to u = R(1)(u − f ). We set
g := u− f and un := Rn(1)g. By assumption un⇀u. Moreover, fn := un −g⇀u−g = f .
As (un, fn) ∈ An , we have found a sequence as claimed.

To see the converse, assume that (un, fn) ∈ An is such that un⇀u and fn⇀ f . Let us set
gn := un− fn and g = u− f . Then Rn(1)gn = un⇀u. On the other hand, Rn(1)gn⇀R(1)g.
Indeed, in the case where Rn(1) ↑ R(1) we have

|Rn(1)gn − R(1)g| ≤ |Rn(1)(gn − g)| + |Rn(1)g − R(1)g|
≤ R(1)|gn − g| + |Rn(1)g − R(1)g| → 0,

as this is true for the second term by assumption and follows for the first term from the
σ -continuity of R(1). In the case where Rn(1) ↓ R(1) one can argue similarly. Alto-
gether, it follows that u = R(1)g = R(1)(u − f ), which is equivalent to (u, f ) ∈
A. ��

4 The strong Feller property for the limit semigroup

Throughout this section, we again consider the situation of Theorem 3.4. We seek to impose
additional assumptions that ensure that the limit semigroup enjoys the strong Feller property
if the same is true for the approximating semigroups Tn . In contrast to the previous section, we
now require the involved semigroups to be sub Markovian. More precisely, we will assume
the following:

Hypothesis 4.1 For each n ∈ N let (Tn(t))t>0 be a semigroup of sub Markovian kernel
operators with pseudo-resolvent (Rn(λ))Re λ>0. Assume moreover that one of the following
conditions is satisfied:

(1) Rn(λ) ≤ Rn+1(λ) for all λ > 0 and n ∈ N or
(2) Rn(λ) ≥ Rn+1(λ) for all λ > 0 and n ∈ N.

In either case, by Theorem 3.4 the sequence if semigroups converges to a sub Markovian
semigroup of kernels operators whichwe denote by (T (t))t>0; we denote its pseudo-resolvent
by (R(λ))Re λ>0. We assume that the following two conditions are satisfied:

(A) For every n ∈ N the semigroup Tn enjoys the strong Feller property.
(B) For some λ > 0, the function R(λ)1 is continuous, i.e., an element of Cb(E).

Here, 1 denotes the constant function on E with value 1.

We will prove in Theorem 4.3 that the additional assumptions in Hypothesis 4.1(A) and
4.1(B) imply that the limit semigroup (T (t))t>0 also enjoys the strong Feller property. As a
preliminary result, we establish some properties of the setJx (t), defined for t ∈ (0,∞) and
x ∈ E by

Jx (t) := { f ∈ Bb(E) : T (t) f is continuous at the point x}. (4.1)

Lemma 4.2 Let the assumptions in Hypothesis 4.1 be satisfied (except for possibly (B), which
is not needed for this lemma). For each t ∈ (0,∞) and each x ∈ E the set Jx (t) defined
in (4.1) has the following properties:

(i) Jx (t) is a vector subspace of Bb(E);
(ii) If f , g ∈ Bb(E) satisfy 0 ≤ f ≤ g and g ∈ Jx (t), then f ∈ Jx (t);
(iii) If 1 ∈ Jx (t), then Jx (t) = Bb(E).
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Proof We give the proof for an increasing sequence of semigroups. In the decreasing case,
the proof is – mutatis mutandis – analogous.

(i) This is obvious.
(ii) Let 0 ≤ f ≤ g ∈ Jx (t). By Hypothesis 4.1(A) the functions Tn(t) f are continuous,

so T (t) f = supn Tn(t) f is lower semicontinuous as pointwise supremum of continuous
functions. Thus, if xn → x then lim infn→∞ T (t) f (xn) ≥ T (t) f (x). As f ≤ g, we have
g − f ≥ 0 and it follows that T (t)(g − f ) = supn Tn(t)(g − f ). Hence also T (t)(g − f ) is
lower semicontinuous. If we again consider a sequence xn → x , then

lim inf
n→∞

[
T (t)(g − f )

]
(xn) ≥ [

T (t)(g − f )
]
(x).

However, as g ∈ Jx (t), we have T (t)g(xn) → T (t)g(x) and lim supn→∞ f (xn) ≤ f (x)
follows. Altogether, f (xn) → f (x) and thus f ∈ Jx (t).

(iii) This is immediate from (i) and (ii). ��

Now we can proceed to our main result.

Theorem 4.3 Let Hypothesis 4.1 be satisfied. Then (T (t))t>0 enjoys the strong Feller prop-
erty.

Proof We only prove the theorem for a monotonically increasing sequence (Tn)n∈N; the
case of a decreasing sequence is similar. Let us begin with some preliminary observations.
As (T (t))t>0 is sub Markovian, the orbit t �→ T (t)1 is monotonically decreasing. This has
two important consequences:

(i) If we have 1 ∈ Jx (t) for some x ∈ E and t > 0 then, by Lemma 4.2, we also have
T (s)1 ∈ Jx (t) for all s > 0; by the semigroup law, this implies 1 ∈ Jx (t + s). Thus, by
contraposition, if 1 /∈ Jx (t), then 1 /∈ Jx (s) for all s ∈ (0, t).

(ii) For fixed x ∈ E the scalar function t �→ T (t)1(x) is also monotonically decreasing,
so it has at most countably many discontinuities.

To prove the theorem, by Lemma 4.2 it suffices to prove that 1 ∈ Jx (t) for all x ∈ E and
t ∈ (0,∞). Aiming for a contradiction, let us assume that1 /∈ Jx0(t0) for a point x0 ∈ E and
a time t0 > 0. It follows from points (i) and (ii) above that, by making t0 smaller if necessary,
we can achieve that t �→ T (t)1(x0) is continuous at t0. As T (t0)1 is the pointwise supremum
of the continuous functions Tn(t0)1, where n runs throughN, it follows that T (t0)1 is lower
semicontinuous. Thus, since 1 /∈ Jx0(t0) we find a number ε > 0 and a sequence xn → x0
with T (t0)1(xn) ≥ T (t0)1(x0) + 2ε for all n ∈ N.

By monotonicity with respect to time, T (s)1(xn) ≥ T (t0)1(xn) ≥ T (t0)1(x0) + 2ε for
all s ∈ (0, t0) and all n ∈ N. Since t �→ T (t)1(x0) is continuous at t0, we can pick δ > 0
such that t0 − δ > 0 and T (t)1(x0) ≤ T (t0)1(x0) + ε for all t ∈ [t0 − δ, t0]. It follows that
T (t)1(xn) ≥ T (t)1(x0) + ε for all t ∈ [t0 − δ, t0] and all n ∈ N. So to sum up we have

lim inf
n→∞ T (t)1(xn) ≥

{
T (t)1(x0) + ε for t ∈ [t0 − δ, t0],
T (t)1(x0) for all other t > 0,

where the inequality in the second case follows from the lower semicontinuity of T (t)1.
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Now consider λ as in Hypothesis 4.1(B). Using Fatou’s Lemma, we find

lim inf
n→∞ R(λ)1(xn) ≥

∫ ∞

0
e−λt lim inf

n→∞ T (t)1(xn) dt

≥
∫ ∞

0
e−λt T (t)1(x0) dt +

∫ t0

t0−δ

e−λtε dt

> R(λ)1(x0).

This contradicts the assumed continuity of R(λ)1. ��

Remark 4.4 Our proof of Theorem 4.3 was inspired by the argument presented for the impli-
cation ‘(vii) ⇒ (ii)’ in [27, Thm. 3.2]. We note, however, that this implication in [27, Thm.
3.2] is not correct in the form stated there; this was kindly confirmed to us by the author of
[27].

Let us briefly provide a counterexample on E = (0,∞). This can easily be transferred
to R (and thus fits into the framework of [27]) via any homeomorphism (0,∞) → R. For
x, t > 0, let

T (t) f (x) =
{
f (x − t) for x > t

0 for x ≤ t .

Then T (t)Cb(E) � Cb(E), while the pseudo-resolvent of T is given by

R(λ) f (x) = e−λx
∫ x

0
eλs f (s) ds

for x,Re λ > 0, and thus leaves Cb(E) invariant. Note that the semigroup T leaves C0(E)

invariant, and thus satisfies all requirements of the semigroups considered in [27].
Note that a closely related semigroup appears as a limit semigroup in our Example 5.1

below.

In the situation of Theorem 4.3, it follows from Lemma 2.1 that for the limit semigroup
T the map (t, x) �→ T (t) f (x) is continuous on (0,∞) × � for every f ∈ Bb(E), whenever
R(λ) acts injectively on Cb(E). We now address the question of continuity at time t = 0. To
this end, we make the following assumption:

Hypothesis 4.5 There exists an increasing sequence (Kn)∈N of compact sets such that
⋃

n∈N
Kn = E

and (t, x) �→ Tn(t) f (x) is continuous on [0, 1]×Kn for every n ∈ N and every f ∈ Cb(E)+.

Our first result concerning continuity at 0 does not require the strong Feller property:

Proposition 4.6 Assume that we are in the situation of Theorem 3.4 for M = 1 (i.e., all
semigroups Tn are sub Markovian) and that the equivalent assertions (i) and (ii) in that
theorem are satisfied for the case of increasing semigroups and pseudo-resolvents. Moreover,
assume Hypothesis 4.5 and assume that the function (t, x) �→ T (t)1(x) is continous on
(0, 1) × E. Then, for all f ∈ Cb(E), we have T (t) f → f uniformly on compact sets as
t → 0.
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Proof We follow the lines of [27, Lem. 3.1]. With similar arguments as in Lemma 4.2 (but
now for functions of t and x), we see that it suffices to prove that T (t)1 → 1 uniformly
on compact sets as t → 0. Actually, by Dini’s theorem, it suffices to establish pointwise
convergence. So fix x ∈ E and ε > 0. By Hypothesis 4.5, we find n0 ∈ N with x ∈ Kn0 .
Moreover, Tn0(t)1(x) → 1 as t → 0, also by Hypothesis 4.5.

Consequently, there is a number δ > 0 with Tn0(t)1(x) ≥ 1 − ε for all t ∈ [0, δ]. It
follows that 1 ≥ T (t)1(x) ≥ Tn0(t)1(x) ≥ 1 − ε for all t ∈ [0, δ], proving that indeed
T (t)1(x) → 1 as t → ∞. ��

We should point out that for decreasing sequences, we cannot expect continuity of the limit
semigroup at 0. Indeed, already for E = {0}, i.e., Bb(E) � Mb(E) � R, the semigroups
Tn given by Tn(t) = e−nt are monotonically decreasing to the zero semigroup 0 on (0,∞),
which does not converge to 1 as t → 0.

In the situation of Proposition 4.6, it is natural to extend the semigroup T which, up to now,
is only defined on (0,∞) to [0,∞) by setting T (0) = I . Then Proposition 4.6 states that
this extended semigroup is σ -continuous at 0. In the following result, we also set Tn(0) = I
for the approximative semigroups Tn . We note that, in general, this is not σ -continuous at 0
(as typically Tn(t) f (x) ≡ 0 for x ∈ E \ Kn).

Corollary 4.7 Assume that Hypothesis 4.1 is satisfied with option (1) and that Hypothesis 4.5
is satisfied. Then T is a Cb-Feller semigroup and for every f ∈ Cb(E)we have Tn(t) f (x) →
T (t) f (x), uniformly for (t, x) in compact subsets of [0,∞)×E.Moreover, the Cb-generator
ACb of T can be characterized in terms of the full generators An of Tn as follows: for all
u, f ∈ Cb(E) we have

u ∈ D(ACb ) and ACbu = f

⇔ ∃(un, fn) ∈ An ∩ Cb(E) × Cb(E) : un⇀u, fn⇀ f .

In the second line, we can equivalently require that the sequences un and fn be uniformly
bounded and converge uniformly on compact sets to u and f , respectively.

Proof By Theorem 4.3, T enjoys the strong Feller property (thus, in particular, Cb(E) is
invariant under T ), and Proposition 4.6 yields stochastic continuity of T , so T is a Cb-
Feller semigroup. In view of [19, Thm. 2.10], the stochastic continuity implies that the
operators in the pseudo-resolvent (R(λ))Re λ>0 are injective on Cb(E). Thus, by Lemma 2.1
and Proposition 4.6, for f ∈ Cb(E) themap (t, x) �→ T (t) f (x) is continuous on [0,∞)×E .
The claimed uniform convergence on compact sets of the semigroups follows for positive
functions from Dini’s theorem. The general case follows by splitting a general function into
positive and negative part.

As An ∩Cb(E)×Cb(E) is the generator of the restricted semigroup Tn |Cb(E), the conver-
gence of the generators can be established as in the proof of Corollary 3.5. For the addendum
we note that, by Dini’s theorem, we actually have Rn(1) f → R(1) f uniformly on compact
sets for every f ∈ Cb(E) (even f ∈ Bb(E)). ��

We close this section with a note on the behaviour of the limit semigroup on the space
C0(E) which denotes, in case that the Polish space E is locally compact, the space of
continuous functions on E that vanish at infinity.

Corollary 4.8 Suppose that the Polish space E is locally compact. Assume that Hypothesis 4.1
is satisfied with option (1), that Hypothesis 4.5 is satisfied and that T (t)C0(E) ⊂ C0(E) for
all t > 0. Then T (t) f → f as t → 0 for every f ∈ C0(E), and we have Tn(t) f → T (t) f
with respect to ‖ · ‖∞, uniformly for t in compact subsets of [0,∞).
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Proof If we set T (0) = I , then the semigroup (T (t)|C0(E))t∈[0,∞) is, by Corollary 4.7,
σ(C0(E),C0(E)∗)-weakly continuous; hence it is strongly continuous (see [12, Thm. I.5.8]).

Next, fix T > 0 and f ∈ C0(E). Given ε > 0, by the strong continuity and the
compactness of [0, T ], we find a compact set K such that |T (t) f (x)| ≤ ε (and thus
|T (t) f (x) − Tn(t) f (x)| ≤ 2ε) for all t ∈ [0, T ], n ∈ N and x ∈ E \ K . By Corollary
4.7, there is n0 with |T (t) f (x) − Tn(t) f (x)| ≤ 2ε for all n ≥ n0, t ∈ [0, T ] and x ∈ K so
that ‖T (t) f − Tn(t) f ‖∞ ≤ 2ε for all n ≥ n0 and t ∈ [0, T ]. ��

5 Counterexamples

Clearly, Hypothesis 4.1(A) cannot be omitted in Theorem 4.3. As a simple counterexample,
one can take E to be the complex unit circle and Tn = T to be the shift semigroup on Bb(E)

for each n. Then the pseudo resolvent of T does not only map 1 to a constant function, it is
even strongly Feller. Still, the semigroup T is not strongly Feller.

The following example shows a slightly more involved phenomenon: here, the pseudo
resolvent of the limit semigroup is also strongly Feller, but the limit semigroup does not even
leave Cb(E) invariant (in contrast to the approximating semigroups).

Example 5.1 Let E = (0, 1] and define for each n ∈ N the semigroup (Tn(t))t>0 on Bb(E)

by setting

Tn(t) f (x) =
⎧
⎨

⎩

(
x−t
x

) 1
n
f (x − t) for x > t

0 for x ≤ t .

It is easy to see that (Tn(t))t>0 is a sub Markovian semigroup of kernel operators. Moreover,
Tn(t)Cb(E) ⊆ Cb(E) (actually, Tn(t)Cb(E) ⊆ C0(E)) but (Tn(t))t>0 does not enjoy the
strong Feller property. Note that for fixed x > t we have (x − t)/x ∈ (0, 1) and hence
n
√

(x − t)/x ↑ 1 as n → ∞. Consequently, the semigroups Tn are monotonically increasing
to the semigroup T given by

T (t) f (x) =
{
f (x − t) for x > t

0 for x ≤ t .

Note that T (t)Cb(E) � Cb(E) even though the pseudo-resolvent (R(λ))Re λ>0 of T is given
by

R(λ) f (x) = e−λx
∫ x

0
eλs f (s) ds,

and thus satisfies R(λ)Cb(E) ⊆ Cb(E) (even R(λ)Bb(E) ⊆ Cb(E)) for all Re λ > 0, which
means that Hypothesis 4.1(B) is satisfied.

We point out that if the limit semigroup T enjoys the strong Feller property (or if merely
T (t)1 is continuous for every t > 0) then Hypothesis 4.1(B) is necessarily satisfied. Our
second example shows that Hypothesis 4.1(B) cannot be dropped in Theorem 4.3.

Example 5.2 Let d ≥ 3 and put�n := Rd \ B(0, 1/n). We let Tn be the semigroup generated
by the Dirichlet Laplacian on �n and Rn = (Rn(λ))Re λ>0 be the Laplace transform of that
semigroup. Here, we consider functions on �n as functions on all ofRd , extending them by
zero outside ofRd . By the Dirichlet boundary conditions and the regularity of �n it follows
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that the semigroup Tn and the pseudo resolvent Rn consist of strong Feller operators. As a
consequence of the maximum principle, the resolvents Rn(λ) (for λ > 0) and the semigroups
Tn are monotonically increasing in n. We write T (t) f = σ - limn Tn(t) f for t > 0 and for
f ∈ Bb(R

d); it follows from Theorem 3.4 that T is a sub Markovian semigroup of kernel
operators on Bb(R

d) and that its pseudo resolvent R satisfies R(λ) f = σ - limn Rn(λ) f
whenever f ∈ Bb(R

d) and Re λ > 0.
Now, fix λ > 0. By [3, Prop. 3.3], Rn(λ) f converges uniformly on compact subsets of

Rd \ {0} to the resolvent of the Dirichlet Laplacian on Rd \ {0} applied to f whenever
f ∈ Bb(R

d). Moreover, as d ≥ 3, singletons have zero capacity whence 	Rd = 	Rd\{0},
cf. [1, Cor. 3.9]. So it follows that R(λ)1(x) = 1/λ for all x ∈ Rd \ {0}.

However, we have Rn(λ)1(0) = 0 for all n, so that R(λ) f (0) = 0. We thus conclude that
R(λ)1 = λ−11Rd\{0} is not continuous in 0, so Hypothesis 4.1(B) is not satisfied.

As for the semigroup T , it is clear that T (t)1(0) = 0 for all t > 0. For points x �= 0, the
uniqueness theorem for Laplace transforms shows that T (t)1(x) = 1 for almost all t > 0.
But since t �→ T (t)1(x) is monotonically decreasing, we must have T (t)1(x) = 1 for all
x �= 0 and t > 0. Altogether T (t)1 = 1Rd\{0} for all t > 0, proving that T does not enjoy
the strong Feller property.

6 Application: elliptic operators with unbounded coefficients

In this section, we prove that a certain realization of an elliptic operator with possibly
unbounded coefficients is the full generator of a subMarkovian semigroup of kernel operators
that enjoys the strong Feller property. Our strategy is similar to that employed in [24]. How-
ever, making use of our theoretical results, we obtain two major benefits compared to [24]:
On the one hand, the proof simplifies significantly as it now suffices to study the resolvent
equation. On the other hand, we do not need to impose additional regularity assumptions on
the coefficients to construct the semigroup.

We will consider differential operators A of the form

A u =
d∑

i, j=1

ai j
∂2

∂xi∂x j
u +

d∑

j=1

b j
∂

∂x j
u. (6.1)

Throughout, we make the following assumptions on the coefficients.

Hypothesis 6.1 For i, j = 1, . . . , d let ai j : Rd → R be continuous and b j : Rd → R be
measurable functions such that the following properties hold:

(1) We have ai j = a ji , and

d∑

i, j=1

ai j (x)ξiξ j ≥ η(x)|ξ |2 for all x, ξ ∈ Rd ,

where η : Rd → (0,∞) is a function that satisfies infK η > 0 for all K � Rd .
(2) The functions b j are locally bounded.

To prove that a certain realization of the operator A generates a semigroup of kernel
operators we use, similar to [24], an approximation argument. To that end, we define the
multivalued operator An on Bb(B(0, n)) by setting

(u, f ) ∈ An ⇔
[
u ∈ C0(B(0, n)) ∩

⋂

1<p<∞
W 2,p(B(0, n)) and A u = f a.e. on �

]
(6.2)

123



Amonotone convergence theorem for strong Feller semigroups 1587

for u, f ∈ Bb(B(0, n)). Note that for u ∈ ⋂
p∈(1,∞) W

2,p(B(0, n)) the function A u is only
well-defined modulo equality almost everywhere. Thus, we can rephrase the above by saying
that (u, f ) ∈ An if and only if f is a version of A u. This makes An indeed a multivalued
operator. Alternatively, we could consider a single-valued operator Ãn on L∞(B(0, n)) by
setting D( Ãn) = C(B̄(0, n)) ∩ ⋂

p∈(1,∞) W
2,p B(0, n) and Ãnu = [A u] where the square

brackets refer to the equivalence class in L∞(B(0, n)).

Lemma 6.2 The operator An is the full generator of a sub Markovian semigroup Tn =
(Tn(t))t>0 of kernel operators on Bb(B(0, n)). Moreover, Tn is a Cb-Feller semigroup that
enjoys the strong Feller property.

Proof That An is a generator follows from [23, Cor. 3.1.21] (cf. also [5] and [4, Thm. 3.5]).
Note that, actually, in these references generation of a semigroup T̃n on the space L∞(B(0, n))

by the operator Ãn introduced above was established. However, if q : Bb(B(0, n)) →
L∞(B(0, n)) is defined by q( f ) = [ f ], it is easy to see that Tn = T̃n ◦ q is a semigroup on
Bb(B(0, n)) with full generator An = {(u, f ) : u ∈ D( Ã), q f = Ãu}. That this semigroup
Tn consists of kernel operators which enjoy the strong Feller property follows from [4, Prop.
5.7] with μ ≡ 0. As for the stochastic continuity, first note that in view of [23, Prop. 2.1.4], it
is a further consequence of [23, Cor. 3.1.21] that Tn(t) f → f with respect to ‖·‖∞ whenever
f ∈ C0(B(0, n)). By [27, Lem. 3.1], it follows that Tn is stochastically continuous. ��
We now turn to the elliptic operator on all ofRd . We set

Dmax(A) :=
{
u ∈ Cb(R

d) ∩
⋂

1<p<∞
W 2,p

loc (Rd) : ∃ f ∈ Bb(R
d) s.t. A u = f a.e.

}
.

Theorem 6.3 There exists a subspace D̂ ⊂ Dmax(A) such that the operator Â := {(u, f ) ∈
D̂ × Bb(R

d) : A u = f a.e.} is the full generator of a sub Markovian semigroup T =
(T (t))t>0 of kernel operators. This semigroup is a Cb-Feller semigroup and enjoys the strong
Feller property.

Proof Given n ∈ N, let An be as in Lemma6.2 and consider the resolvent Rn(λ) := R(λ, An)

and the semigroup Tn , generated by An as operators on all of Rd , extending functions by
zero outside B(0, n). Note that in view of the imposed Dirichlet boundary conditions, this
results in strong Feller operators.

Making use of the maximum principle, see [5, Lem. 3.2] for a version suitable for our
setting, it is easy to see that for 0 ≤ f ∈ Cb(R

d) and λ > 0 the sequence (Rn(λ) f ) is
monotonically increasing. This implies that the same monotonicity remains true when the
operators act on Bb(R

d). Now Theorem 3.4 shows that the semigroups Tn are monotonically
increasing to a semigroup T whose Laplace transform is R(λ) := supn Rn(λ).

To employ Theorem 4.3, we still need to verify Assumption (B) in Hypothesis 4.1. To that
end, put u = R(λ)1 and un = Rn(λ)1. By construction, un converges pointwise to u. Fix a
bounded open set U ⊂ Rd and pick n0 ∈ N so large, that Ū ⊂ B(0, n0). By [4, Lem. 3.4],
there is a constant C = C(U , n0) such that

‖un‖C1(U ) ≤ C‖1‖L∞(B(0,n0))

for all n ≥ n0. By the Arzelà–Ascoli Theorem, un has a subsequence that converges, uni-
formly on Ū , to a continuous function. This proves that u is continuous on Ū and thus, as we
may exhaustRd with bounded open sets, continuous on all ofRd . Now Theorem 4.3 yields
the strong Feller property for T . As Hypothsis 4.5 is satisfied, Corollary 4.7 shows that T is
a Cb-Feller semigroup.
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It remains to identify the generator of T : repeating the arguments in the proof of [24, Thm.
3.4], we see that for 0 ≤ f ∈ Bb(R

d) the sequence un := Rn(λ) f converges, uniformly on
compact sets, to a function u ∈ Dmax(A) that solves the elliptic equation λu −A u = f . As
R(λ) is a pseudoresolvent, it follows that there exists an operator Â as claimed. ��
Remark 6.4 One might ask for the long-term behaviour of the semigroup constructed in
Theorem 6.3. In [14, Sect. 7.1] this was studied under the stronger regularity assumptions
on the coefficients made in [24]. Now that the semigroup can also be obtained under weaker
assumptions, similar methods as in [14, Sect. 7.1] can be applied to this semigroup, too.
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