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Abstract
We resolve a 10-year-old open question of Loday of describing Koszul operads that act
on the algebra of octonions. In fact, we obtain the answer by solving a more general clas-
sification problem: we find all Koszul operads among those encoding associator dependent
algebras.
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1 Introduction

In the context of nonassociative algebras, many interesting classes of alge-
bras arise when one imposes linear dependency conditions for the associators
(a;,a,,a3) = (a,a,)a; — a,(a,az) of six permutations of the given three elements, that is

Z X5 (A1) Ag(2)> Ao3) = 0
cES;

for certain coefficients x,, o € S;. Various celebrated classes of nonassociative algebras,
such as right-symmetric algebras, alternative algebras, flexible algebras, Lie-admissible
algebras and power-associative algebras, are examples of that sort. In the language of vari-
eties of algebras, these are identities of degree three. However, from the equivalent point
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of view of the operad theory, these identities are guadratic (since the product operation is
used twice), and as such are within the scope of the Koszul duality theory. In this paper,
we classify those of operads of associator dependent algebras that are Koszul, meaning that
they have particularly nice homological properties, and the deformation complexes of alge-
bras over these operads admit simple descriptions. Our original motivation came from a
slightly more narrow classification problem. In [30], Jean-Louis Loday formulated a ques-
tion of finding a “small” Koszul operad that acts on the algebra of octonions. That algebra
is the only nonassociative normed division algebra over the real numbers (by a theorem
of Hurwitz [22], the others, up to isomorphism, are two fields R and C, and the noncom-
mutative algebra of quaternions H). For octonions, the associator is antisymmetric in its
arguments; in other words, they form an alternative algebra. However, Dzhumadildaev and
Zusmanovich established in [15] that the operad of alternative algebras is not Koszul, so
the only immediate candidate is the rather uninteresting and “big” magmatic operad, hence
the question of Loday. Our classification result leads to a complete answer to that question.

Our strategy is to reduce this classification problem to the same problem for the Koszul
dual operads. For each operad of associator dependent algebras, its Koszul dual operad
is a quotient of the associative operad by the operadic ideal generated by several ternary
operations. In a more classical language, those operads describe varieties of associative
Pl-algebras satisfying identities of degree three. Those quotient operads are easy to work
with (in fact, a lot of them describe algebras whose identities include nilpotence of certain
index, so the corresponding operads are supported at a finite number of possible arities),
allowing us to apply various known methods for proving and disproving the Koszul prop-
erty. Most of them are relatively easy to handle, with one notable exception that requires
a really intricate argument, see Proposition 3.13. In that case, an interesting by-product is
the following combinatorial statement that we believe to be extremely hard to establish by
classical methods of varieties of algebras: for each value of the parameter (« : ) € P!, the
multilinear part of the relatively free n-generated algebra in the variety determined by the
identity

Bl(ay,ay,a3) + (ay,a,,a3)) + (a — f)(ay, az, ay) + (a,,a3,a,))
—a((as,ap,a,) + (az,ay,a,)) =0

is of dimension 2 - 5 --- (3n — 4).
The main results of the paper may be summarized as follows.

Theorem (Th. 4.1,Th. 4.4) An operad of associator dependent algebras is Koszul if and
only if it is one of the operads from the following list:

e The associative operad, in which all associators vanish.
e The operad of right pre-Lie algebras, which is the quotient by the ideal generated by

(a1, a5,a3) — (ay,a3,a,),

and the isomorphic operad of left pre-Lie algebras, which is the quotient by the ideal
generated by

(al, a,, 03) —(ay,ay,az),

e The operad of Lie-admissible algebras, which is the quotient by the ideal generated by
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Associator dependent algebras and Koszul duality 1235

(ay,ay,a3) + (ay,a3,ay) + (a3, ay,a,) — (ay, a3, a,) — (ay,a;,a3) — (a3, a5, a;),

e The operad of third power-associative algebras, which is the quotient by the ideal
generated by

(ay,a,5,a3) + (ay,a3,ay) + (a3, ay, ay) + (ay, a3, ay) + (ay, ay, a3) + (a3, ay, ay),

e Each operad in the parametric family of quotients by ideals depending on the param-
eter (a : f) € P! generated by

fl(ay,ay,a3) + (ay,a,,a3)) + (a — f)(ay, a3, a,) + (a,,a3,a,))

—a((az,ay,ay) + (as,ay,ay)),

e The magmatic operad of absolutely free nonassociative algebras; it has no relations.

In this list, the last three entries give an exhaustive list of Koszul operads generated by
one binary operation for which the octonions form an algebra. In particular, the smallest
Koszul operads that act on octonions are the operads of the parametric family.

The classes of algebras arising in our classification are well known. Left pre-Lie
algebras were discovered independently by Vinberg [45] and Koszul [29] in the geo-
metric context, while right pre-Lie algebras were discovered by Gerstenhaber [16] in the
context of deformation theory. The notions of a Lie-admissible algebra and of a third
power associative algebra were extensively studied by Albert [1, 2]. Most of occur-
rences of the parametric family in the existing literature appear when those identities are
combined with the third-power associativity, see, for example, [26, 28]. When a = f,
the corresponding algebras are known as nearly antiflexible, see [42]; other classes cor-
responding to individual values of the parameter do not seem to have been named. The
earliest relevant reference that we came across is the paper [47] by Max Zorn where,
strikingly enough, four different identities from the above classification (the third power
associativity identity, the Lie admissible identity, and the identities from the parametric
family with @« = f and @« = —f) appear on the same footing.

It would be interesting to determine the deformations of octonions in the classes of
algebras listed above. We note that such deformations in some unconventional classes
of algebras have already emerged in the physics literature; the celebrated Okubo algebra
[36, 37] is an instance of that sort. An investigation of this matter will appear elsewhere.
Another interesting direction postponed to a future paper is to advance in understanding
the non-Koszul operads of associator dependent algebras, especially the famous classes
of alternative algebras, flexible algebras, various associator dependent algebras in the
sense of Kleinfeld (necessarily including the third power associativity), etc. Finally, it is
natural to look for a full classification of Koszul operads generated by one binary opera-
tion; we are actively pursuing this question in an ongoing project.

2 Conventions and preliminary results
All vector spaces and chain complexes are considered over a ground field K of zero charac-

teristic. We refer the reader to [31] for general information on algebraic operads and Koszul
duality theory, and to [6] for information on operadic Grobner bases and rewriting systems.
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1236 M. Bremner, V. Dotsenko

As far as the associator dependent algebras are concerned, we shall extend the origi-
nal terminology of Kleinfeld [27] as follows.

Definition 2.1 A vector space V is called an associator dependent algebra if it is equipped
with a binary productV® V — V,a ® b — ab, satisfying an identity

2 %o (12 gy ogz)) = 0. (1)

cES;

The original definition of Kleinfeld requires that, additionally, the algebra V is third
power associative, that is (xx)x = x(xx) for all x € V, the identity first studied by Albert
[2]. Under our assumption char(IK) = 0, this identity is equivalent to the identity

Z (Ag(1)> A2y o(3)) = 0,

0ES;

and in the context of classification of the corresponding operads, there is no particular rea-
son to insist on inclusion of that identity: we shall also consider associator dependencies
that do not imply third power associativity. There are several existing articles that deal with
those general associator dependencies and attempt to classify them according to various
properties of the corresponding algebras, see, e.g. [19, 34].

In this paper, we are concerned with the Koszul property of our operads. Let us
briefly recall what this means, assuming, like above, that our operads are generated by
a single binary operation. To each operad P, one may associate its bar complex, the
cofree cooperad co-generated by the homological shift sP equipped with the differential
arising from the operad structure on P. An operad is said to be Koszul if the homol-
ogy of the bar complex is concentrated on the “diagonal”: for each nontrivial homology
class, its degree is one less than its arity. In particular, this implies that the operad P has
only quadratic relations. For each operad with quadratic relations, the diagonal part of
the bar complex has a cooperad structure which is quite easy to describe directly; that
cooperad is called the Koszul dual cooperad, and is denoted P'). Tensoring the linear
dual operad of P! with the endomorphism operad of the homological shift s™'K of the
ground field, one obtains the classical Koszul dual operad 7' of Ginzburg and Kapranov,
defined as the operad whose relations annihilate the relations of P in the certain sense,
see [17] and [31, Sec. 7.6]. Finally, it is useful to keep in mind that each quadratic
operad P has its associated Koszul complex P oP whose homology is K if and only if
P is Koszul.

In the language of operads, once we choose a particular identity of the form (1), we
may consider the operad controlling all algebras satisfying that identity. Let us make a
simple but crucial observation.

Proposition 2.2 Let O be a quotient of the magmatic operad by the two-sided operadic
ideal generated by some linear combinations of the associators of the magmatic product.
The Koszul dual ©' is a quotient of the associative operad by an ideal generated by certain
ternary operations.

Proof For a quadratic operad generated by binary operations, all defining relations of
the Koszul dual operad are ternary operations, so we only need to prove that the asso-
ciative relations are among them. This follows from the well-known fact that the asso-
ciative operad is Koszul self-dual, so on the dual level, the S;-module generated by the
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Associator dependent algebras and Koszul duality 1237

associativity relation annihilates any linear combination of associators, and the associativ-
ity relations are among the relations of the Koszul dual operad. O

Since an operad and its Koszul dual are either both Koszul or both non-Koszul,
this proposition implies that for the purposes of studying Koszulness, one may switch
freely between operads of associator dependent algebras and quotients of the associative
operad. The advantage of this observation is that quotients of the associative operad by
ideals generated by ternary operations are “small”, and it is possible to explicitly com-
pute, for each arity, the basis, dimension, and even the symmetric group action on the
corresponding component, and to use that data in order to determine whether the cor-
responding operad is Koszul.

The easiest and most general known way to prove the Koszul property uses Grobner
bases. More precisely, Grobner bases for operads with symmetries are impossible to
define, but it is possible to associate to each operad P a “shuffle operad” whose Koszul
property is equivalent to the Koszul property of P; for shuffle operads, a theory of Gro-
bner bases is available [6, Sec. 5.4.3]. For example, if we take the associative operad,
as a symmetric operad it is generated by a single operation a,,a, — a,a, subject to the
single relation (a,a,)a; = a,(a,as). In the universe of shuffle operads, one has to forget
the symmetric groups actions and write linear bases both for generators and for rela-
tions in terms of shuffle tree monomials [6, Sec. 5.3], [31, Sec. 8.2], which of course
gives two generators and six relations in the case of the associative operad. A shuffle
operad that has a quadratic Grobner basis is known to be Koszul [6, Sec. 6.4]. Moreo-
ver, the same argument can be used to show that an operad presented by a convergent
quadratic rewriting system [6, Sec. 2.6] is Koszul. Finding a suitable rewriting system is
sometimes a matter of luck, as it heavily depends on the choice of a presentation by gen-
erators and relations. For operads generated by one binary operation, there is a useful
“polarization trick” [33] allowing sometimes to find a better presentation: it amounts to
considering the generators a, - a, = a,a, + a,a, and [a,,a,] = a,a, — a,a,. In particular,
for the associative operad, the polarized presentation exhibits it as the quotient by the
ideal generated by the elements

(a-ay))-az—ay - (a, - a3) + [[ay, a3], a5 ],
[a, - ay,a3] —[a;,a3] - ay, —ay - [ay, a3].
There are also criteria of (non-)Koszulness using the Poincaré series, that is the exponen-

tial generating functions of the Euler characteristics of components. For an operad P con-
centrated in homological degree zero, the Poincaré series coincides with the Hilbert series

dim O
folt) = Z %'(n)tn'
n>1 :

By a direct inspection, one sees that the Poincaré series of the Koszul complex of a
quadratic operad generated by binary operations of homological degree zero is equal to
—fp (=fp(?)). Since the Euler characteristics of a chain complex and its homology are equal,
this implies that for a Koszul operad P, one has

—fp(=fp®) =1,

so the series fp(¢) and —f(—1) are compositional inverses of one another. This leads to a
useful positivity test of Ginzburg and Kapranov [17].
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1238 M. Bremner, V. Dotsenko

Proposition 2.3 (Positivity test) Let P be a quadratic operad generated by binary opera-
tions of homological degree zero. Denote by a, the coefficient of t" in the compositional
inverse of the Poincaré series of that operad. If the operad P is Koszul, then (=1)""'a, > 0
foralln > 1.

There is also a useful sufficient condition of Koszulness in terms of Poincaré series; an
analogous result for associative algebras is established in [38, Cor. 2.4].

Proposition 2.4 Let P be a quadratic operad generated by binary operations of homologi-
cal degree zero. Suppose that P(n) = 0 for n > 4, and that

~fp(=fp) =1.

Then, the operad P is Koszul.

Proof Because of the condition on the operad P, the Koszul complex of the operad 7' is
concentrated in homological degrees 0, 1, and 2. For any quadratic operad, the homology
of its Koszul complex is isomorphic to KK in homological degree 0 and vanishes in homo-
logical degree 1, so the relationship between the Poincaré series implies that the homology
in degree 2 also vanishes. a

We note that in general neither the correct sign pattern in the coefficients of the compo-
sitional inverse nor the relationship —f (=fp(#)) = ¢ imply the Koszul property, see [9, 12].

3 Koszul quotients of the associative operad
3.1 Classification of relations

The first step in understanding quotients of the associative operad by an ideal generated by
ternary operations is to classify the possible ideals, that is, possible S;-submodules of the
arity three component of the associative operad and their consequences of higher arities.
Such ideals have been studied rather extensively. To the best of our knowledge, the first
classification result (classification of generators with respect to the Ss-action) was given by
Malcev [32]. As far as the higher arity consequences are concerned, the first general study
of that question was undertaken by Klein [25], who came very close to a full description of
all quotients by such ideals. A complete classification was accomplished by Vladimirova
and Drenski in [46] some years later, relying crucially on previous work of Anan’in and
Kemer [3]. Some previous results for particular cases of modules of relations are contained
in works of Dubnov and Ivanov [13], Nagata [35], Higman [21], Regev [40] and James
[23], listed here chronologically.

The arity three component of the associative operad is isomorphic to the regular S,
-module, so it decomposes as the direct sum of a copy of the one-dimensional trivial mod-
ule spanned by the element

a,a,as + ayaza, + a,aza, + a,a,az + asa;a, + asa,ay,

one copy of the one-dimensional sign module spanned by the element
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Associator dependent algebras and Koszul duality 1239

aja,as — a;asd, + a,asay; — aa,ds + asa|a, — asa,a,

and two copies of the two-dimensional irreducible module. Informed by the approach of
Anan’in and Kemer [3] and of Vladimirova and Drenski [46], we choose these two copies
to be

K(la,,a)la; + [ay, aylay, [ay, a3)a, + [ay, azla;), )

K(a,lay, a;]1 + aslay, a1, a,las, a,] + a,[a5, a,]), 3)

where [a,,a,] = a,a, — a,a, is the usual Lie bracket. Moreover, every irreducible two-
dimensional S;-submodule is generated by an element of the form

a(la,,ay]as + [as, ay]a,) + p(alas, a,] + asla,, a,]) 4)

for some (a : f) € PL

3.2 Case-by-case study of quotients of the associative operad

In this section, we study the Koszul property of quotients of the associative operad case
by case. Since the kernel of the quotient map is generated by an S;-submodule of the arity
three component, there are twelve cases to consider: the multiplicity of the trivial module
may be equal to 0 or 1, the multiplicity of the irreducible two-dimensional module may be
equal to 0, 1, or 2, and the multiplicity of the sign module may be equal to O or 1. A lot
of our work rely on the results about dimensions of the corresponding operad obtained in
[46]; these statements were independently verified using the existing software for comput-
ing operadic Grobner bases [10] and the Maple programme applying the representation
theory of symmetric group to the study of polynomial identities [7]. Coefficients of compo-
sitional inverses of power series were computed using PARI /GP [44] and then rechecked
using Magma [4].

Proposition 3.1 (Multiplicities (0, 0, 0)) The quotient of the associative operad by the zero
ideal is Koszul.

Proof This is well known, see, for example, [31, Sec. 9.1] or [6, Sec. 5.6]. O
Proposition 3.2 (Multiplicities (0, 0, 1)) The quotient of the associative operad by the ideal
generated by

a,a,as — a aza, + a,a;a, — a,a,az + aza;a, — aza,a,
is not Koszul.
Proof According to [46, Prop. 3.1], the dimension of the arity n component of this operad

is equal to 9 for n = 4 and to 2n — 1 for n > 5, so the Poincaré series of the corresponding
quotient is given by

2,53,34, 35, 11 4 7
t+P2+ 2P+ 2+ = + —5 + 0.
+ +6 +8 +40 +720 + 0"
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1240 M. Bremner, V. Dotsenko

Its compositional inverse has positive coefﬁment at 1%. By Proposition 2.3, our operad is
not Koszul. O

Proposition 3.3 (Multiplicities (0, 1, 0)) For any (a : f) € P\, the quotient of the associa-
tive operad by the ideal generated by

a(la;, ay]as + [as, ay]a)) + p(a;las, a,] + azlay, a,])

is not Koszul.

Proof For afi(a — p)(a + B) # 0, [46, Prop. 2.1.1] implies that the dimension of the arity
n component of this operad is equal to 1 for n > 4, so the Poincaré series of our operad is
given by

t+2+ t+z

k>4

Its compositional inverse has positive coefﬁment at 1°. By Proposition 2.3, this operad is
not Koszul.

For af = 0, [46, Prop. 2.2.1] implies that the dimension of the arity n component of this
operad is equal to n for n > 4, so the Poincaré series of our operad is given by

t+ £+ t +
;(k—l)’

Its compositional inverse has a negative coefficient —% at 1. By Proposition 2.3, this
operad is not Koszul.

For a = f, [46, Prop. 2.3.1] implies that the dimension of the arity n component of this
operad is equal to 3 for » =4 and to 1 for n > 5, so the Poincaré series of our operad is
given by

2 5
t+2+ 28+ t+z
3 8 k>5k'

Its compositional inverse has negative coefficient — 99 a7 By Proposition 2.3, this

operad is not Koszul. 220

For a = —pf, [46, Prop. 2.3.1] implies that the dimension of the arity n component of
thls operad is equal to 2"~! for n > 2, so its Poincaré series is given by - (ez’ — 1), its inverse
is = log(l + 2¢), and so this operad does not fail the positivity test. To show that it is never-
theless not Koszul, we shall use the polarized presentation, which for this operad is

(a;-ay))-a3=a,-(a,-as),

[[al, az]’ 613] =0,

la, - ay,a3] = [ay,a3] - a, + ay - [a,, a3].
The advantage of this presentation is that it is homogeneous with respect to the weight
grading w(— - —) = 0, w([—, —]) = 1, so our operad inherits that weight grading. It is imme-

diate to check that [a,,a,] - a3, a,] = [a,,a3] - [a,, a,] follows from the defining relations,
and so our operad is spanned by the elements
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Associator dependent algebras and Koszul duality 1241

ail T ai.\- [aJ ]7] ’ [aj2k71 ’ aju

]

with {i}, -, i YU {j,....Jox} = {1, ...,.n}, which, up to a sign, depend only on the subset
{j1>---+Jox } of even cardinality, see [46, Th. 2.4.2]. This means that the space of elements

of O(n) of weight k has dimension . We may now consider the weight-graded version

n
2k
of the Poincare series, associating to an operad an element of Q[u][[¢]] for which the coef-
ficient at — is the dimension of the weight i part of the arity n component. For weight
graded operads with finite-dimensional graded components whose weights in each given
arity are bounded, a version of Proposition 2.3 holds: if a,(u) is the coefficient of the com-
positional inverse of the Poincaré series of the given operad, and that operad is Koszul,
then (—1)""'a, (u) is a polynomial in u with non-negative coefficients for all n > 1. For our
operad, the basis given above implies that the corresponding series is

1+

(14w, 1+3u;+2(1+u)k+(1—u)kﬁ

2 Tt 7% 2 Ik

k>4

A direct calculation shows that the coefficient at #' of the compositional inverse has a neg-

. . 53844181 .
ative coefficient — EEEETT atu’, so our operad is not Koszul. O

Remark 3.4 Note that in the case @« = —f, the polarized relations of the operad suggest that
it is obtained from operads of commutative associative algebras and two-step nilpotent Lie
algebras by a distributive law. This is not the case, as one can check by a direct compu-
tation, see [31, Exercise 8.10.12]. Our result shows that the operad is not Koszul either,
which is not a priori clear.

Proposition 3.5 (Multiplicities (0, 1, 1)) For (a : f) € P!, the quotient of the associative
operad by the ideal generated by

a(la,,aylas + [as, a]a)) + f(alas, a,] + asla;, a,]),

a,a,a3 — a4z, + a,a3a, — a,a,4z + aza,;a, — aza,a,
is not Koszul if af # 0 and is Koszul if aff = 0.

Proof For aff # 0, it follows from [46, Th. 2.1.2, 2.3.2, 2.4.2] that including the sign sub-
module does not bring new higher arity consequences, so the Poincaré series of our operad
is given by

t+12+ t+Z

k>4

802543633 11

Its compositional inverse has negative coefficient — 29916800

operad is not Koszul.

For aff = 0, the corresponding operad is the operad of permutative algebras (associa-
tive algebras satisfying a,a,a; = a,a;a, for « = 0 and a,a,a; = a,a,a; for f = 0); to show
that it is Koszul, one may argue that it is the Koszul dual of the operad of pre-Lie algebras
which is shown to be Koszul in [8]. O

By Proposition 2.3, this

Proposition 3.6 (Multiplicities (0, 2, 0)) The quotient of the associative operad by the ideal
generated by the elements [a,, a,la; + [as, a,]a, and a,[as, a,] + as|a,, a,] is not Koszul.
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1242 M. Bremner, V. Dotsenko

Proof According to [46, Th. 2.1.2], the Poincaré series of our operad is given by

1 t
2,13
AL +k§>4k!.

The first 1000 coefficients of its compositional inverse have “good” signs, making one sus-
pect that this operad may be Koszul. We shall, however, show that it is not Koszul. Like in
Proposition 3.3, we shall the polarized presentation, which for this operad is

(a;-ay)-a3=a,-(a, - as),
[[alyaz]»aﬂ =0,
la, - ay,a3] = [ay - a5,a,] = [ay,a, - a3] =0,

la,a,] - a3 = —[ay,a3] - a, = a; - [a,,a3].

Once again, for the weight grading w(— - —) = 0, w([—, —]) = 1, the relations are homoge-
neous, and so our operad inherits a weight grading. Clearly, the weighted Poincaré series of
this operad is

l+u 14+u *

+ (—2)t2 + Tt3 +2 0
k=4
For the compositional inverse of this power series, the coefficient at #*° has a positive coef-
ficient L42LI38089 5112 50 our operad is not Koszul a
17322439680000 ’ )

Remark 3.7 This operad was considered in [18], but the non-Koszulness claim there is
based on an erroneous calculation of Poincaré series, so the question of its Koszulness
remained open.

Proposition 3.8 (Multiplicities (0, 2, 1)) The quotient of the associative operad by the ideal
generated by

[ay,a)]as + [as, ay]a,, alas, a,] + aslay, a],

a10,03 — Q1030 + A,030) — Q0,03 + A30,0) — A30,0,
is Koszul.

Proof We note that this operad is the quotient of the associative operad by the ideal gener-
ated by the elements

As(1)6(2)%63) — 419243

for each o € S35, and the arity n component of this operad is one-dimensional in each arity
from three onwards. If one considers the polarized presentation of this operad, one finds
that the operation (— - —) is associative, the operation [—, —] is two-step nilpotent, and all
compositions of these operations with one another vanish. This means that we are dealing
with the connected sum of the operad of commutative associative algebras and the operad
of anti-commutative two-step nilpotent algebras. These two operads are well known to be
Koszul, and so their connected sum is Koszul too. (It follows from the fact that the bar
complex of the connected sum is the coproduct of bar complexes.) a
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Remark 3.9 This proof is essentially the Koszul dual of the proof explained in [33], where
it is noticed that the Koszul dual operad of Lie-admissible algebras is the coproduct of the
Lie operad and the commutative magmatic operad, and therefore Koszul.

Proposition 3.10 (Multiplicities (1, 0, 0)) The quotient of the associative operad by the
ideal generated by

a,a,as + ayasa, + a,asa, + a,a,as + aza;a, + asa,a,

is not Koszul.

Proof This operad is the Koszul dual of the operad of alternative algebras, and so the theo-
rem follows from the main result of [15]. O

Proposition 3.11 (Multiplicities (1, 0, 1)) The quotient of the associative operad by the
ideal generated by
a,a,as + aasa, + a,asa, + a,a,a; + asa,a, + asa,a,,

aja,as —a;asd, + a,asay; — aa,as + asa|a, — asa,a,.

is not Koszul.

Proof According to [46, Th. 3.1], the Poincaré serles of this operad is given by ¢ + 1> + = t3
Its compositional inverse has positive coefﬁc1ent 1Bt s, By Proposition 2.3, our operad is
not Koszul. |

Proposition 3.12 (Multiplicities (1, 1, 0)) For any (a : ) € P!, the quotient of the associa-
tive operad by the ideal generated by

a(la, a)]as + [as, a]a)) + f(a;las, a,] + asla;, a,]),

a,a,as + a,asa, + a,asa, + a,a,as + asa,a, + a;a,a,

is not Koszul.

Proof For a # —p, it follows from [46, Th. 2.1.2, Th. 2.2.2, Th. 2.3.2] that the Poincaré
series of our operad is given by ¢ + 1> + %t3. Its compositional inverse has a positive coef-

ficient 7115 at t'9. By Proposition 2.3, this operad is not Koszul.

For a = —p, it follows from [46, Th. 2.4.2] that the Poincaré series of our operad is

given by ¢+ 2 + pyl > 4. Its compositional inverse has positive coefficient 488;35 at 112

By Proposition 2.3, this operad is not Koszul.
Proposition 3.13 (Multiplicities (1, 1, 1)) For any (a : f) € P\, the quotient of the associa-
tive operad by the ideal generated by

a a,as + a,aza, + a,aza, + a,a,az + asa;a, + asa,a,

a 0,43 — a1aza, + a,a3a, — a,a,4z + aza;a, — a;a,ay,

a(la;, aylas + [as, ay]ay) + p(a;las, a,] + asla,, a,])

is Koszul.
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Proof Throughout the proof, we shall denote this operad O p 1t follows from [46,
Th. 2.1.2, Th. 2.2.2, Th. 2.3.2, Th. 2.4.2] that the Poincaré series of the operad O, ; does
not depend on (« : B) and is givenby ¢ + £* + = t3 In the polarized presentation, the genera-
tors of the ideal of relations of our operad are

(a)-ay)- a3 —ay; - (ay - a3) + [[a;, a3], 4],
la, - a,a3]1 = [ay,a3] - a, — a; - [a,, a3],
(a;-ay)-az+(az-a))-a,+(ay-as)-ay,
laj,ay] - a3 +[az,a;]- a; + a; - [ay, a3],
(a = P)(la;, axlas] + [[az, ayla D) + (@ + f)(a, - [as, a,] + as - [ay, a,)).
The proof of the Koszul property depends on (a : f). Suppose first that « = —f. In this
case, the polarized presentation of the operad O, ; may be simplified to
(a; - ay) - a3 =[la;,a;],a3]1 =0
la, - ay,a3]1 = [ay,a3] - a; = [ay, a3] - @y,
a, - lay,a31+a, - las, a1+ a5 - [a;, a,].

The associated shuffle operad may be determined by a convergent quadratic rewriting
system

(al : a2) : a3 d 07 [[a1’a2]’ 613] g 07
(a-a3)-a, =0, [[a;,a3],a,] = O,
ap - (az 'a3) -0, [611, [az’a3]] -0,

[a, - ay,a3] = lay,a3] - a, +a; - [ay,a5],
[a, - a3,a,] = [a}, 4] - a5 — a; - [ay, a5],
laj,a, - a;] = [ay,a;] - a3 + [ay,a3] - a,,

a, - lay,a3] = lay,a3] - a, —lay,a,] - as.

Termination follows from the fact that with each application of the rewriting rule we either
rewrite elements into zero, or put the operation (— - —) closer to the root of the tree, or
increase the associated path sequence. (The number of shuffle tree monomials of the given
arity is finite, so increasing is as good as decreasing.) Confluence follows from the fact that
the ternary normal forms are [a,, as] - a, and [a,, a,] - a3, so there are no normal forms of
higher arities, and we have the expected dimensions of the components of the operad. Con-
sequently, our operad is Koszul.

For other values of the parameter, there is no convergent quadratic rewriting system for
our operad, and the argument will be more intricate: we shall study the Koszul dual operad
and show that Proposition 2.4 is applicable. The Koszul dual operad (9(!1’ 5 describes alge-
bras with the following relation between associators:

fl(ay,ay,a3) + (ay,a,,a3)) + (a = f)(ay, as, ay) + (a,, a3, a,))
—a((as,ap,ay) + (as,ay,a,)) =0

To see that, we first note that, according to Proposition 2.2, the operad O" . is some operad
of associator dependent algebras. Moreover, the annihilator of the four-dimensional
space of relations is two-dimensional, and it is clear that this two-dimensional module is
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irreducible. Every two-dimensional submodule of associator dependencies is generated by
an element of the form

M(ay, ay,a3) + (ay,ay,a3)) — (A + p)(a;, a3, a,) + (ay, a3, a;))
+ pu(az, ay, ay) + (a3, a5, ay)),

for some (4 : ) € PL. Computing the pairing between this element and the defining rela-
tions of O, 5, we get Aa + fu =0,s0 (4 : p) =(=p : ).

For the operad O;q g We shall also make use of the polarized presentation, for which the
ideal of relations of the associated shuffle operad is generated by

(a+ A)la,asl, az] + [ay,[ay, a3]1 — (a, - ay) - a3 +2(ay - a3) - a, — a,(a, - a3))+
(a = P)(—la, - ay,a3] + 2[a, - a3,a,] + [a,, a, - a3] = 3[a,;,a,] - a3 + 3a, - [ay,a3])

and

(a+ P)la,, a3l a1 — [ay, [ay, a3]1 + 2(a, - ay) - ay; —(a, - a3) - a, — a,(a, - a3))+

(a = P)2la, - ay,a3] = la, - a3,a,]1 + [a,,a, - a3] = 3[a;,a3] - a, — 3a, - [a,,a3]).

Suppose first that @ = g, that is (@ : f) = (1 : 1). In this case, the polarized presentation
simplifies, and the ideal of relations of the associated shuffle operad is generated by

(lay, as], a31 + [ay, [ay, a3]] = (a; - ay) - a3 + 2(ay - a3) - a, — ay(a, - a3), %)

[la;,a3],a,]1 = [a;, [ay. a31]1 + 2(a, - a,) - a3 — (a; - a3) - a, — a,(a, - az). (6)

Let us consider the graded path-lexicographic ordering with [—, —] > (= - —). It turns out
that for this ordering, the operad O!l, | has a finite Grobner basis consisting of the above
quadratic elements with the leading terms [[a;, a,], a;] and [[a,, a5], a,] and six cubic ele-
ments whose leading terms are [((a, - a;) - a;, ;] for all possible permutations (i, j, k) of
{2,3,4}. It follows from [11] that our operad has a model (free resolution) whose genera-
tors correspond to overlaps of the leading terms. For each arity n > 4, there are (n — 1)!
such generators that are overlaps of the first two leading terms, and (n — 1)! such genera-
tors that are overlaps involving the other leading terms. These generators have opposite
parities, contributing zero to the Euler characteristics, so the Poincaré series of the space
of generators is equal to 7 — 2 + 1. Since the Poincaré series of the space of generators of
a model of an operad is always equal to the compositional inverse of the Poincaré series of
an operad, Proposition 2.4 means that the operad O ; is Koszul.

Let us now consider the case @ # f. We shall show that the Poincaré series of the operad
(’)‘!1’ is still equal to the compositional inverse of # — 1> + 17, which, combined with Propo-
sition 2.4, will prove the Koszul property. However, the proof is going to be more intricate,
since for most values of parameter, there is no convergent quadratic rewriting system for
the Koszul dual operad, and for some values of parameter, there is no known convergent
rewriting system at all. Thus, we shall show separately that the coefficients of the composi-
tional inverse give an upper and a lower bound for the dimensions of components.

Lower bound. Let us denote s = g Recall that the operad (’)!a’ s is, up to homological
shifts and linear duality, the diagonal part of the bar complex of the operad O, 4, so for the
purposes of estimating the dimensions of components, we may focus on the latter chain
complex. We know that for all values of (& : §), all components of the operad O, 4 starting
from the arity four vanish. Moreover, a direct inspection of the polarized presentation of
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the operad O, ; shows that for « # B, the cosets of the elements [a,, a,] - a; and [a,a5] - a,
form a basis in the component O, 4(3), and the structure constants expressing compositions
of generators as combinations of these elements are polynomials in s. Let us fix an arity
n > 1. What we just said implies that the arity n component of the bar complex of that
operad is a chain complex of flat IK[s}-modules of finite rank, hence the semicontinuity
theorem [20, Sec. III.12] applies, and for each integer k > 0, the k-th homology of this
chain complex is constant for generic s, and may jump up for certain special values of s.
Therefore,

e for generic values of (¢ : f), the homology of first n arities of the bar complex of the
operad O, 4 is concentrated on the diagonal (since the off-diagonal homology groups
vanish for one specialisation s = 0, corresponding to « = —f, and since homology is
semicontinuous),

e for generic values of (a : f), the first n coefficients of the Poincaré series of the
operad O(!x,ﬂ are equal to the first n coefficients of the compositional inverse of

t—1 + %t3 (since the Poincaré series of the bar complex of an operad is always

equal to the compositional inverse of the Poincaré series of that operad, and since
we already know that for generic values, the homology of the first n arities of the bar
complex of the operad O, 4 is concentrated on the diagonal),

e for each value of (a : f), the n-th coefficient of the Poincaré series of the operad O; s

is greater than or equal to the n coefficient of the compositional inverse of # — 12 + %t3

(since homology is semicontinuous),

so the compositional inverse of ¢ — > + %t3 is a lower bound for all possible Poincaré
series.

Upper bound. We shall show that the shuffle tree monomials whose underlying planar
trees are binary, whose vertices are labelled by the polarized operations (— - —) and [—, —],
and whose quadratic divisors do not include [a,,a,] - a5 and [a;, a3] - a, span the Koszul
dual operad. Unfortunately, one can show that there exists no convergent rewriting system
with these monomials as normal forms, so we shall use some sort of rewriting that con-
verges but does not have a direct meaning in terms of operads. Let us prove the spanning
property as follows. Overall, we shall argue by induction on arity. For fixed arity, we shall
argue taking into account the label of the root vertex. Let T be any shuffle tree monomial
of arity n. If the root of T is labelled by [—, —], then, once we use the induction hypothesis
and represent the two trees grafted at the root of T as linear combinations of requested
shuffle tree monomials, this immediately gives such a representation of 7. Suppose that the
root of 7 is labelled by (— - —), so that it may have a left quadratic divisor at the root that
is prohibited. Since a # f, the two prohibited quadratic divisors appear (individually) in
the two defining relations of our operad, and we may replace the arising divisor by a linear
combination of allowed quadratic monomials. In the result, we may forget the monomials
where the root is labelled by [—, —], since we already proved our statement for such mono-
mials. What are the other monomials that may appear? Among them, there are monomials
which have fewer occurrences of [—, —], which we may make another induction param-
eter, and monomials which have the same number of occurrences of [—, —], but the arity
of the left subtree of the root is smaller, which we may make another induction parameter.
This means that it is possible to write T as a linear combination of requested shuffle tree
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monomials. We already know that these monomials form a basis in the Koszul dual operad
for @ = f, so the necessary upper bound is established.

Combining the two bounds that we found, we conclude that the Poincaré series of our
operad is the compositional inverse of t — % + %t3, so according to Proposition 2.4, our
operad is Koszul. \ ]

Remark 3.14 One can adapt the above proof for the case a = f to most cases: for
a® — a + 1 # 0, the polarized presentation of the Koszul dual operad leads to a convergent
rewriting system with quadratic and cubic right-hand sides, for which there is the “correct”
number of normal forms. However, the exceptional case a? — a + 1 =0, which, inciden-
tally, corresponds to the rather elegant identity

2
(ay,a,,a3) + w(a,,as,a,) + 0 (as,a,,a,) =0,

where @ = —a is a primitive third root of unity, does not seem to admit a finite operadic
rewriting system, and so one has to resort to the strategy described above, where an upper
bound is obtained in a different way.

Proposition 3.15 (Multiplicities (1, 2, 0)) The quotient of the associative operad by the
ideal generated by

la), alaz + [a3, aylay,

a,laz, a,] + asla;, a,],

a,a,a3 + a,a5a, + a,aza; + a,a,a; + aza,a, + aza,a,

is Koszul.

Proof We note that this operad is the quotient of the associative operad by the ideal gener-
ated by the elements

As(1)%2)%3) — (=D)?aja,a5

for each o € S;. Thus, each coset of the basis elements of the associative operad may be
taken as a basis element of its ternary component, and all components of arity at least
four vanish. Once again, it is advantageous to use the polarized presentation which for our
operad is

(al : a2) : (,13 = [al : a27a3] = [[a]aaZ]s 03] = 0,

[ay,a,]- a3+ [ay,a3] - a, =0.
If we consider the graded path-lexicographic ordering (for any ordering of generators), the
only normal form of arity 3 is the element a, - [a,, as], so there are no normal forms of

arity four, and the elements listed above form a quadratic Grébner basis. Consequently, our
operad is Koszul. O

Remark 3.16 We note that this operad was considered in [41], where it is erroneously
claimed that it is not Koszul.

Proposition 3.17 (Multiplicities (1, 2, 1)) The quotient of the associative operad by its
arity three component is Koszul.
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Proof This is the operad of nilpotent algebras of index three which is well known to be
Koszul. O

3.3 Classification theorem

The results we obtained in Propositions 3.1-3.17 prove the following result, which is one
of the main classification results of this paper.

Theorem 3.18 Koszul quotients of the associative operad by an ideal generated by ternary
operations are precisely the operads from the following list:

The associative operad, which is the quotient by the zero ideal.
The operad of right permutative algebras, which is the quotient by the ideal generated
by

a,aydz — a,d3ay,
and the isomorphic operad of left permutative algebras, which is the quotient by the
ideal generated by
14,03 — apa,dz,
e The operad of bipermutative algebras, which is the quotient by the ideal generated by
a,aydz — a,d3ay,
a1a,a3 — apa,ds,
e The operad of biantipermutative algebras, which is the quotient by the ideal generated
by
a,a,as +aasa,,
a,a,a; + a,a,a;
e Each operad in the parametric family of quotients by ideals depending on the parameter
(o : p) € P! generated by
a,a,as + a,aza, + aza, a,,
a([ap az]a3 + [a?,s 02]511) + ﬂ(a1 [93, az] + a3[a1, az]),

e The operad of associative algebras that are nilpotent of index three, which is the quo-
tient by the ideal generated by a,a,a;.
Proof Most of the claims of the theorem are proved above. The claim that the ideals in the
parametric family of operads are generated by
a,a,a; + a,aza; + a;a,a,,
a([al, 612]613 + [a3, az]al) + ﬁ(al [03, az] + 03[01, az])

follows from the fact that the submodule generated by a,a,a; + a,asa, + aza,a, is pre-
cisely the sum of the trivial and the sign submodules. a
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3.4 Koszul quotients by binary and ternary operations

If we consider arbitrary Koszul quotients of the associative operad, one must also look at
the case in which the kernel has a non-zero intersection with the two-dimensional regular
S,-module of generators. In such case, there are several possible case. First, the intersection
of the kernel with the module of generators may be equal to the whole module of genera-
tors, in which case the only quotient is the unit operad. Next, the intersection of the kernel
with the module of generators may coincide with the sign module, in which case there
are two quadratic quotients, the operad of commutative associative algebras which is well
known to be Koszul, and the operad of two-step nilpotent commutative associative alge-
bras which is also Koszul. (It is the Koszul dual of a free operad.) Finally, the intersection
of the kernel with the module of generators may coincide with the trivial module, in which
case there are two quadratic quotients, the operad of anti-commutative associative algebras
which is well known to not be Koszul (for it fails the positivity test), and the operad of two-
step nilpotent anti-commutative associative algebras which is also Koszul. (It is the Koszul
dual of a free operad.)

4 Koszul operads of associator dependent algebras
4.1 Main theorem

We are now ready to answer the original question. The following theorem is the main result
of this paper.

Theorem 4.1 An operad of associator dependent algebras is Koszul if and only if it is one
of the operads from the following list:

The associative operad, in which all associators vanish.
The operad of right pre-Lie algebras, which is the quotient by the ideal generated by

(al’az, 03) - (als as, az),

and the isomorphic operad of left pre-Lie algebras, which is the quotient by the ideal
generated by

(a] ) a2a a3) - (aQs a] ’ a3)’

The operad of Lie-admissible algebras, which is the quotient by the ideal generated by

(ay,a,5,a3) + (ay,a3,a)) + (a3, a;, ay) — (ay, a3, ay) — (ay, ay, a3) — (a3, ay, ay),

The operad of third power associative algebras, which is the quotient by the ideal gen-
erated by

(al,az, a3) + (027 113,611) + (a3,a1, az) + (317 03,112) + (02,01533) + (33, a, 111),

Each operad in the parametric family of quotients by ideals depending on the parameter
(o : p) € P! generated by

@ Springer



1250 M. Bremner, V. Dotsenko

pa;,a,,a3) + (ay,ay,a3)) + (a — p)(ay, a3, a,) + (ay,a3,a,))

—a((az, ay,a,) + (a3, a,,a,)),

e The magmatic operad of absolutely free nonassociative algebras.

Proof 1t is well known [8] that the operad of right pre-Lie algebras is the Koszul dual of
the operad of right permutative algebras and same applies to the left versions of those oper-
ads, which control the opposite algebras. It is also known [18, 41] that the Koszul dual of
the operad of Lie admissible algebras is the operad of bipermutative algebras, and that the
Koszul of the operad of third power associative algebras is the operad of biantipermutative
algebras. For the parametric family, the Koszul dual was computed in the proof of Proposi-
tion 3.13. O

Let us use the Koszul property to obtain information on the Poincaré series of operads
of associator dependent algebras. In the case of the operad of pre-Lie algebras, it is well
known [8] that the arity n component is of dimension n"~!. The Koszul property of the
operads belonging to the parametric family implies the following explicit formula, which
it is amusing to compare with the dimension formula 1 - 2 --- n for the arity n component of
the associative operad and the dimension formula 2 - 6 --- (4n — 6) for the magmatic operad.

Corollary 4.2 For each operad in the parametric family of quotients by ideals depending on
the parameter (a : f) € P! generated by
pl(ay, a5, a3) + (ay, a1, a3)) + (a — p)(ay, a3, a,) + (ay, a3, a;))
—a((as, ay,ay) + (a3, a,, ay)),
the dimension of the arity n component is equal to
2-5--Bn-4).

Proof 1t follows from Proposition 3.13 that this operad is Koszul, and that the Poincaré
series of the Koszul dual operad is

f(t)—t+t2+£——l+l(l+t)3
B 3 3°3 '

The compositional inverse of —f(—7) is given by

1-(1-3)"P=1- 2(—31‘)”( 1’{3 ) =

n>0
1 Z 1(=2)-- (1 =3(n— 1))(_0" . Z 2.5 (3n_4)t”,
n! n!
n=0 n>2
completing the proof. O

For the other Koszul operads of associator dependent algebras, there are no closed
formulas for dimensions of components. We record the following consequences of their
Koszulness.

Proposition 4.3
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e The Poincaré series f(t) of the operad of third power associative algebras satisfies the
equation

t.
6

f@—f@*+
e The Poincaré series f(t) of the operad of Lie-admissible algebras satisfies the equa-
tion

2
e L,

We note that in the first case, the same equation is satisfied by the Koszul operad of
anti-Lie-admissible (alia) algebras [14]; this may be explained by observing that the cor-
responding shuffle operads have quadratic Grobner bases [24], and the combinatorics of
leading monomials of the two Grobner bases are the same. The second statement was con-
jectured in [43].

4.2 Application to the question of Loday
From Theorem 4.1, we immediately obtain the following result.

Theorem 4.4 A Koszul operad with one binary generator for which the octonions form an
algebra is one of the following operads:

e the operad of third power associative algebras,
e cach operad in the parametric family of quotients by ideals depending on the parameter
(a : p) € P! generated by

f(ay,ay,a3) + (ay,a,,a3)) + (a — f)(a,, a3, a,) + (ay,a3,a,))

—a((az,ay,ay) + (as, a5, ay)),

e the magmatic operad.

In particular, the smallest Koszul operads that act on octonions are the operads of the para-
metric family.

Proof First, we note that the product of octonions is neither commutative nor anti-commu-
tative, so a binary operad acting on the algebra of octonions is generated by an operation
without any symmetries. Next, we recall that the algebra of octonions is alternative, so the
alternative operad should admit a map from the operad we are interested in. Moreover, the
product of octonions does not satisfy identities of arity less than five that do not follow
from alternativity [39], and a Koszul operad is quadratic, so there are no further conditions.
The S;-module of the alternativity relations is a direct sum of one copy of the trivial mod-
ule and two copies of the two-dimensional irreducible module, so the only condition on our
operad is that its module of relation does not contain the sign module. Examining the clas-
sification result, we see that this rules out the associative, the pre-Lie, and the Lie-admissi-
ble case. The last claim comes from examining the Poincaré series computed above. a
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One can extend the question of Loday as follows. In the chain of algebras R, C, H, and
0O, each one is obtained from the previous one by the so called Cayley-Dickson process.
One may not stop at octonions, obtaining further an algebra of the so-called sedenions and
further algebras that do not seem to have names; these algebras will still be normed, but
they will not be division algebras anymore. The following result classifies Koszul operads
that act on those algebras.

Theorem 4.5 A Koszul operad with one binary generator that acts on all algebras obtained
Jfrom K by the Cayley-Dickson process is one of the following operads:

e the operad of third power associative algebras,
e the operad that is the quotient of the magmatic operad by the ideal generated by

(a1, ay, a3) + (ay, ay, az) — 2(ay, a3, ay) — 2(ay, a3, ay) + (a3, ay, a,) + (as, ay, ay),

e the magmatic operad.

Proof From the results of the first author and Hentzel [5], it follows that all ternary identity
of sedenions follows from the flexible law

(ay,ay,a3) + (a3, ay,a;) =0,

and that each such identity is satisfied by all the algebras obtained from the Cayley-Dick-
son process if and only if it is satisfied by the sedenions. Thus, it remains to determine
which of the operads from the previous theorem map to the operad of flexible algebras.
The S;-module of the flexibility relations is a direct sum of one copy of the trivial module
and the two-dimensional irreducible module, so the possible submodules are the zero mod-
ule, the trivial module, and the two-dimensional irreducible module (one particular choice,
rather than any one from the parametric family). These correspond to the quotients being
the magmatic operad, the third power associative operad, and the particular operad from
the parametric family (corresponding to a = —f). a
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