
Vol.:(0123456789)

Annali di Matematica Pura ed Applicata (1923 -) (2023) 202:293–306
https://doi.org/10.1007/s10231-022-01242-6

1 3

On symmetries of a sub‑Riemannian structure with growth 
vector (4, 7)

Jaroslav Hrdina1 · Aleš Návrat1 · Lenka Zalabová2,3 

Received: 19 March 2022 / Accepted: 27 June 2022 / Published online: 17 July 2022 
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer 
Nature 2022

Abstract
We study symmetries of specific left-invariant sub-Riemannian structure with filtration 
(4,  7) and their impact on sub-Riemannian geodesics of corresponding control problem. 
We show that there are two very different types of geodesics, they either do not intersect 
the fixed point set of symmetries or are contained in this set for all times. We use the sym-
metry reduction to study properties of geodesics.
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1  Introduction

Symmetries of geometric structures play an important role in differential geometry and 
geometric control theory. Indeed, the existence of big amount symmetries or the existence 
of a special symmetry of the geometric structure often induces restrictions on its proper-
ties like the curvature, etc. In particular, if the symmetry group acts transitively, the space 
is homogeneous and one can read off many properties just by restricting to one point [4, 
12]. Moreover, in geometric control theory, symmetries of control systems and their fixed 
points can be used for finding of distinguished points of geodesics like cut or cusp points 
[9–11]. In this paper, we focus on the role of symmetries and their fixed points for specific 
filtration with the growth vector (4, 7) and their impact on special geodesics of the corre-
sponding sub-Riemannian structure.

The motivation from applications comes from [6] where the first and third authors study 
local control of a planar mechanism with 7-dimensional configuration space. The robot in 
question consists of a root block in the shape of an equilateral triangle together with three 
branches that have passive wheels at their ends, where each of the branches is connected 
to one vertex of the root block via prismatic joint and one of the joints is simultaneously 
revolute joint, see Fig. 1.

Under the assumption that the robot moves with no slipping nor sliding, one derives 
three non-holonomic condition of the motion, one for each branch, and these determine 
4-dimensional distribution of admissible directions given (locally) on the configuration 
space. The choice of a sub-Riemannian metric allows to study (local) optimal control; how-
ever, corresponding control problem is highly nonlinear and hard to solve. Nevertheless, it 
is sufficient (locally) to swap to its nilpotent approximation N [3, 7].

Denoting by N0,N1,N2,N3 generators of the 4-distribution N  on N, it turns out that 
the only non-trivial Lie brackets are the brackets N01 ∶= [N0,N1] , N02 ∶= [N0,N2] and 
N03 ∶= [N0,N3] , so we get a nilpotent Lie algebra � . In particular, these brackets do not 
belong to N  and (N,N) is a Carnot group with filtration (4,  7). Altogether, we get the 
flat distribution (N,N) of constant type � . Moreover, the choice of generators allows us to 
consider the decomposition E + V = ⟨N0⟩ + ⟨N1,N2,N3⟩ of N  into one-dimensional and 
three-dimensional involutive distributions and compatible sub-Riemannian metric g by 
declaring the vectors Ni, i = 0, 1, 2, 3 orthonormal. In fact, (N,N,E + V) can be viewed as 
a flat model of so-called generalized path geometry [4]. Alongside, it turns out that the 

Fig. 1   Robot motion in the configuration space with local coordinates (x,�1,�2,�3, y, �,�)
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sub-Riemannian structure (N,N, g) is a flat structure of constant type (�, ��(3,ℝ)) [12], i.e. 
the metric g is invariant with respect to the action of suitable SO(3,ℝ) . We describe these 
structures and their symmetries in detail in Sect. 2.

In Sect.  3, we study control problem corresponding to the sub-Riemannian structure 
in question. We apply Hamiltonian concepts to approach this control problem [1]. In par-
ticular, we describe control functions and normal geodesics of the problem in detail (and 
strictly abnormal geodesics cannot appear for 1-step filtrations, so we speak just about geo-
desics). Let us remind that the set of points where geodesics intersect each other and the 
corresponding geodesic segments have equal length is called the Maxwell set. Conjugate 
points are defined as critical points of the exponential map. It is proved that the normal 
extremal trajectory that does not contain pieces of abnormal geodesics loses its optimality 
in the conjugate point or in the Maxwell point [1].

In many cases, Maxwell set contains sets of fixed points of symmetries. Indeed, if a 
geodesic meets a fixed point of a symmetry, then the action of the symmetry can give such 
set of geodesics [8, 9, 11]. We show in Sect. 4 that this is not the case of our filtration. 
In particular, we study relations of geodesics and fixed-point set of symmetries. We show 
in Theorem  1 that each geodesic starting at the origin either do not intersect the fixed-
point set or is contained in this set for all times. Thus, geodesics are of two very different 
types. We use the symmetry reduction to study geodesics contained in the fixed-point set. 
In particular, we relate these geodesics to geodesics in the Heisenberg group to find their 
cut–time in Theorem 2.

2 � Model Carnot group equipped with filtration (4, 7)

Let us consider coordinates (x,�1,�2,�3, y1, y2, y3) of vector space ℝ7 ≅ ℝ
4 ⊕ℝ

3 and 
model vector fields

where the symbol � stands for partial derivative. Let us note that these fields are precisely 
symmetric model vector fields introduced in [1, Section 7.5.1]. The only non-trivial Lie 
brackets are

The fields (1) and (2) then determine a 2-step nilpotent Lie algebra �.

Remark 1  Let us remark that each triple N0,Nh ∈ ⟨N1,N2,N3⟩ and [N0,Nh] form a 
3-dimensional Heisenberg subalgebra in the Lie algebra � . Thus, � can be naively viewed 
as a ‘bunch’ of Heisenberg algebras.

The Lie algebra � corresponds to a Carnot group N such that the fields N0, 
N1, N2, N3, N01, N02, N03 are left-invariant for the corresponding group structure. 
We can compute this group structure just by taking the flows. Under identifica-
tion of a point g1 = (x,�1,�2,�3, y1, y2, y3) ∈ N with image of the exponential map 
g1 = exp(xN0 + �1N1 + �1N2 + �1N3 + y1N01 + y2N02 + y03N03)(o) the product is given by

(1)
N0 = �x −

�1

2
�y1 −

�2

2
�y2 −

�3

2
�y3 ,

N1 = �
�1
+

x

2
�y1 , N2 = �

�2
+

x

2
�y2 , N3 = �

�3
+

x

2
�y3 ,

(2)N01 = [N0,N1] = �y1 , N02 = [N0,N2] = �y2 , N03 = [N0,N3] = �y3 .
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evaluated in t = 1 . Using the Lie algebra structure (2) the group structure on N = ℝ
4 ⊕ℝ

3 
reads as follows:

In particular, N = ⟨N0,N1,N2,N3⟩ forms a 4-dimensional left-invariant distribution 
on N. Moreover, our choice allows us to consider the decomposition

of N  into 1-dimensional distribution and 3-dimensional involutive distribution, both 
left-invariant. Then by declaring N0 , N1 , N2 , N3 orthonormal, we define compatible sub-
Riemannian metric g on N  . Altogether, we get left-invariant sub-Riemannian structure 
(N,N, g) which is related to the left-invariant optimal control problem written in coordi-
nates (x,�1,�2,�3, y1, y2, y3) as

for t > 0 and q in N and the control u = (u0, u1, u2, u3) ∈ ℝ
4 with the boundary condition 

q(0) = q1, q(T) = q2 for fixed points q1, q2 ∈ N , where we minimize

Symmetries of the left-invariant sub-Riemannian structure (N,N, g) , i.e. symmetries of the 
control system (5,6), are automorphisms of N preserving the distribution N  and sub-Rie-
mannian metric g. They form a finite-dimensional Lie group and we can describe its Lie 
algebra of infinitesimal symmetries using Cartan–Tanaka theory since we deal with flat 
distribution [2, 12].

Let us view � = �−1 ⊕ �−2 as an abstract Lie algebra with �−1 spanned by ei = Ni(o) , 
i = 0, .., 3 and �−2 spanned by ei+4 = N0i(o) , i = 1, .., 3 . Here, o denotes the origin, i.e. 
identity element. Then, the distribution N  corresponds to the subspace �−1 ⊂ � and 
g corresponds to a 2–tensor g(o) defined on �−1 . We define �0 ⊂ ��(�−1) to be the 
Lie algebra of the Lie group of all automorphisms of the graded nilpotent algebra � 

g1g2 = exp(t(xN0 + �1N1 + �1N2 + �1N3 + y1N01 + y2N02 + y03N03))(g2)

(3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

𝓁1

𝓁2

𝓁3

y1

y2

y3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x̃

𝓁1

𝓁2

𝓁3

ỹ1

ỹ2

ỹ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x + x̃

𝓁1 + 𝓁1

𝓁2 + 𝓁2

𝓁3 + 𝓁3

y1 + ỹ1 +
1

2
(x𝓁1 − x̃𝓁1)

y2 + ỹ2 +
1

2
(x𝓁2 − x̃𝓁2)

y3 + ỹ3 +
1

2
(x𝓁3 − x̃𝓁3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)N = ⟨N0⟩⊕ ⟨N1,N2,N3⟩

(5)q̇(t) = u0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

−
�1

2

−
�2

2

−
�3

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ u1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0
x

2

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+ u2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0
x

2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+ u3

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

0

0
x

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(6)1

2 ∫
T

0

(u2
0
+ u2

1
+ u2

2
+ u2

3
)dt.



297On symmetries of a sub‑Riemannian structure with growth vector…

1 3

preserving the metric g(o) on �−1 , i.e. the algebra of certain derivations of � . Here, the 
action of automorphisms of �0 on �−1 is exactly the adjoint action. Let us discuss explic-
itly the action and corresponding reduction.

Lemma 1  The algebra �0 of metric preserving derivations of � equals to ��(3,ℝ).

Proof  The algebra ��(�−1) ≃ ��(4,ℝ) is spanned by 6 elements eij , i, j = 0, 1, 2, 3 , i < j , 
each of which generates ��(2,ℝ) , so the action of eij on generators of �−1 takes form 
[eij, ei] = ej and [eij, ej] = −ei . Let us now discuss the compatibility of this action with 
the Lie bracket on the whole � . The only non-vanishing Lie brackets are [e0, ei] = ei+4 , 
i = 1, 2, 3 , and thus [ej, ek] = 0 for j, k = 1, 2, 3 . With the help of Jacobi identity, we 
compute

for i, j, k = 1, 2, 3 . Then for i = j , we get

which is a contradiction. Thus, elements e0i , i = 1, 2, 3 , cannot appear and �0 ≃ ��(3,ℝ) 
spanned by eij , i, j = 1, 2, 3 . 	� ◻

The computation from the proof of Lemma 1. particularly implies that generators of 
��(3,ℝ) acts on �−2 as follows:

The description of infinitesimal symmetries then follows.

Proposition 1  The Lie algebra of infinitesimal symmetries of (N,N, r) consists of right-
invariant vector fields corresponding to ei , i = 1, ..7 that generate all transvections on N 
together with isotropy subalgebra isomorphic to ��(3,ℝ).

Proof  The fact that all right-invariant vector fields determine infinitesimal symmetries fol-
lows from the fact that we deal with Lie group. Flows of right-invariant vector fields act as 
left translations and each right-invariant vector field is then an infinitesimal symmetry of 
any left-invariant object [4]. The previous Lemma shows that the isotropy subalgebra of 
infinitesimal symmetries coincides with ��(3,ℝ) . Since the structure is of first order, the 
prolongation stops for �0 and there cannot be symmetries of higher order [12]. 	�  ◻

Remark 2  In particular, the action given by ��(3,ℝ) acts on Heisenberg subalgebras 
of � from Remark  1, i.e. maps each such Heisenberg subalgebra to another Heisenberg 
subalgebra.

Let us note that above observations also imply that symmetries of the sub-Riemann-
ian structure (N,N, r) preserve the decomposition E + V ∶= ⟨N0⟩⊕ ⟨N1,N2,N3⟩ . One 
can easily see that the decomposition satisfies 

(1)	 E ∩ V = 0,
(2)	 the Lie bracket of two sections of V is a section of E⊕ V  , and

0 = [e0i, [ej, ek]] = [[e0i, ej], ek] + [ej, [e0i, ek]]

0 = [[e0i, ei], ek] + [ei, [e0i, ek]] = [−e0, ek] = −e4+k

[eij, e4+i] = [eij, [e0, ei]] = [[eij, e0], ei] + [e0, [eij, ei]] = [e0, ej] = e4+j.
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(3)	 for sections � ∈ Γ(E) , � ∈ Γ(V) and a point q ∈ N  , the equation [𝜉, 𝜈](q) ∈ Eq ⊕ Vq 
implies �(q) = 0 or �(q) = 0.

Geometric structures satisfying these three conditions are known as generalized path 
geometries [4, Section 4.4.3], and correspond to parabolic geometries of type (G, P) for 
� = ��(n,ℝ) and � = �1,2 is the infinitesimal stabilizer of the flag of a line in a plane for 
the standard action. In particular, they always have finite-dimensional Lie algebras of 
infinitesimal symmetries and maximum occurs for geometries that are locally equivalent 
to generalized flag manifold G/P and equals to dim(�).

It is not difficult to verify (e.g. by prolongation methods) that the Carnot group N 
carries a maximally symmetric generalized path geometry with � = ��(5,ℝ) that par-
ticularly contains our ��(3,ℝ) in �1,2 . This suggests us a way how to realize our situation 
using block (1, 1, 3)–matrices [4, Section 4.4.3]. The algebra ��(5,ℝ) carries a |2|–grad-
ing that inherits �⊕ ��(3,ℝ) as follows:

and thus � can be viewed as a choice of the complement of the stabilizer, i.e. a representa-
tive of the associated grading.

Having these matrices at hand, we can particularly view them as representatives of suit-
able exponential coordinates around the origin. Indeed, identifying coordinates of points 
around the origin with matrices

we recover the group structure (3) as

This allows us to describe explicitly the action of isotropy symmetries in coordinates.

Proposition 2  The action of isotropy symmetry R ∈ SO(3,ℝ) on 
(x,�, y) ∈ ℝ

7 ≃ ℝ⊕ℝ
3 ⊕ℝ

3 takes form

where we denote � = (�1,�2,�3)
t and y = (y1, y2, y3)

t.

Proof  Identifying TeN with � , the tangent action ToR reads as X ↦ AdR(X) for X ∈ � . We 
see from (7) that each element of ��(3,ℝ) exponentiates to a matrix of the form

(7)
⎛⎜⎜⎝

�0 �1 �2
�E
−1

�0 �1
�−2 �V

−1
�0

⎞⎟⎟⎠
⊃

⎛⎜⎜⎝

0 0 0

�E
−1

0 0

�−2 �V
−1

�0

⎞⎟⎟⎠
,

⎛⎜⎜⎝

0 0 0

x 0 0

−yi �i 0

⎞⎟⎟⎠

log

⎛
⎜⎜⎝
exp

⎛
⎜⎜⎝

0 0 0

x 0 0

−y
i

�
i

0

⎞
⎟⎟⎠
exp

⎛
⎜⎜⎝

0 0 0

x̃ 0 0

−ỹ
i

�̃
i

0

⎞
⎟⎟⎠

⎞
⎟⎟⎠
= log

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1 0 0

x 1 0

−y
i
+

1

2
�
i
x �

i
1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

x̃ 1 0

−ỹ
i
+

1

2
�̃
i
x̃ �̃

i
1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

= log

⎛
⎜⎜⎜⎝

1 0 0

x + x̃ 1 0

−y
i
− ỹ

i
+

1

2
(�

i
x + �

i
x̃ + �̃

i
x̃) �

i
+ �̃

i
1

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

0 0 0

x + x̃ 0 0

−(y
i
+ ỹ

i
+

1

2
(�̃

i
x − �

i
x̃)) �

i
+ �̃

i
0

⎞
⎟⎟⎟⎠
.

(8)(x,�, y) ↦ (x,R�,Ry),
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Then, we compute in coordinates

and the formula follows. 	�  ◻

One can see from (8) that the action of the of SO(3,ℝ) is given by simultaneous rota-
tions on �i and yi , i = 1, 2, 3 , while the coordinate x is invariant. Since all invariants of 
each rotation in ℝ3 are multiples of its axis, the fixed points of the symmetry with the axis 
(a1, a2, a3) form the set

Finally, there is the following consequence of Proposition 2.

Corollary 1  Set of points that are fixed by some isotropy symmetry is the union of sets (9) 
over all axes (a1, a2, a3)

Let us emphasize that C� is invariant with respect to the action of SO(3,ℝ) on N. More-
over, for any fixed � ∈ ℝ

3 , the set {(x, y�, t�) ∶ (x, y, t) ∈ ℝ
3} is a subgroup.

3 � Local control and geodesics

Let us now focus on the control system (5,6) related to the sub-Riemannian struc-
ture (N,N, g) . We use Hamiltonian concepts and we follow here [1, Sections  7 and 13] 
to find local control for the system. Left-invariant vector fields N0 , N1 , N2 , N3 , N01 , N02 , 
N03 form a basis of TN and determine left-invariant coordinates on N. The correspond-
ing left-invariant coordinates h0, hi and wi , i = 1, 2, 3 on fibers of T∗N are given by 
h0(�) = �(N0), hi(�) = �(Ni) , wi(�) = �(N0i) for arbitrary 1-form � on N. Thus, we can 
use (x,�i, yi, h0, hi,wi) as global coordinates on T∗N . Then in these coordinates, the cor-
responding Pontryagin’s maximum principle system is as follows. Let us emphasize that 
geodesics, i.e. admissible curves parametrized by constant speed whose sufficiently small 
arcs are length minimizers, are exactly projections on N of solutions of this system [1].

Firstly, we get ẇi = 0 and thus wi are constant for i = 1, 2, 3 , i.e. we have

for suitable constants Ki . Then for h = (h0, h1, h2, h3)
t , we get ḣ = −Ωh for

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 R

⎞
⎟⎟⎠
.

log

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 R

⎞
⎟⎟⎠
exp

⎛
⎜⎜⎝

0 0 0

x 0 0

−y � 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 R−1

⎞
⎟⎟⎠

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

0 0 0

x 0 0

−Ry R� 0

⎞
⎟⎟⎠

(9){(x, ka1, ka2, ka3, la1, la2, la3) ∶ x, k, l ∈ ℝ}.

(10)C� = {(x,�, y) ∈ ℝ ×ℝ
3 ×ℝ

3 ∶ � and y are linearly dependent}.

(11)w1 = K1, w2 = K2, w3 = K3
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Solution of the system is given by h(t) = e−tΩh(0) , where h(0) is the initial value of the vec-
tor h in the origin. If K1 = K2 = K3 = 0 , then h(t) = h(0) is constant and the geodesic 
(x(t),�i(t), yi(t)) is a line in N such that yi(t) = 0 . In next, we assume that the vector 
(K1,K2,K3) is nonzero and we denote by K =

√
K2
1
+ K2

2
+ K2

3
 its length.

Proposition 3  The general solutions of ḣ = Ωh satisfying (11) for nonzero K take form

where C1,C2,C3,C4 are real constants.

Proof  The solution of the system is given by exponential of the matrix Ω from (12). 
We need to analyze its eigenvalues and eigenvectors. It follows that there are (complex 
conjugated) imaginary eigenvalues ±iK both of multiplicity one and the eigenvalue 0 of 
multiplicity two. The corresponding eigenspace of iK is generated by complex eigenvec-
tor v that decomposes into real and complex component as ℜ(v) =

(
0,K1,K2,K3

)t and 
ℑ(v) = (K, 0, 0, 0)t. In the basis formed by these two vectors together with any basis of the 
two-dimensional eigenspace corresponding to the eigenvalue 0, the matrix Ω has zeros at 
all positions except positions (Ω)12 = −(Ω)21 = K . Then, we get in this eigenvector basis

For the choice of the basis of the eigenspace corresponding to the eigenvalue 0 given as (
0,−K3, 0,K1

)t and 
(
0,−K2,K1, 0

)t
, the solution can be written as the combination

with coefficients C1,C2,C3,C4 . Then, the formula (13) follows. 	�  ◻

(12)Ω =

⎛
⎜⎜⎜⎝

0 K1 K2 K3

−K1 0 0 0

−K2 0 0 0

−K3 0 0 0

⎞
⎟⎟⎟⎠
.

(13)

h0 = K(−C1 sin(Kt) + C2 cos(Kt)),

⎛⎜⎜⎝

h1
h2
h3

⎞
⎟⎟⎠
= (C1 cos(Kt) + C2 sin(Kt))

⎛
⎜⎜⎝

K1

K2

K3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

−C3K3 − C4K2

C4K1

C3K1

⎞⎟⎟⎠

(14)e−tΩ =

⎛
⎜⎜⎜⎝

cos(Kt) sin(Kt) 0 0

− sin(Kt) cos(Kt) 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠
.

⎛⎜⎜⎜⎝

h0
h1
h2
h3

⎞
⎟⎟⎟⎠
= (C1 cos(Kt) + C2 sin(Kt))

⎛
⎜⎜⎜⎝

0

K1

K2

K3

⎞
⎟⎟⎟⎠
+ (−C1 sin(Kt) + C2 cos(Kt))

⎛
⎜⎜⎜⎝

K

0

0

0

⎞
⎟⎟⎟⎠

+ C3

⎛⎜⎜⎜⎝

0

−K3

0

K1

⎞⎟⎟⎟⎠
+ C4

⎛⎜⎜⎜⎝

0

−K2

K1

0

⎞⎟⎟⎟⎠



301On symmetries of a sub‑Riemannian structure with growth vector…

1 3

Let us emphasize that the choice C1 = C2 = 0 gives constant solutions that are not rel-
evant as control functions. Thus, we assume that at least one of the constants C1,C2 is 
nonzero.

The base system for x, y,� then takes the explicit form

We are interested in solutions emanating from the origin, i.e. we impose the initial con-
dition x(0) = 0,�i(0) = 0, yi(0) = 0 , i = 1, 2, 3 . Indeed, we can find geodesics starting at 
different point of N using the action of suitable transvection, see Proposition 2.

Proposition 4  Arc–length sub-Riemannian geodesics on Carnot group N satisfying the 
initial condition x(0) = 0,�i(0) = 0, yi(0) = 0 , i = 1, 2, 3 are either lines of the form

parametrized by constants C1,C2,C3,C4 satisfying C2
1
+ C2

2
+ C2

3
+ C2

4
= 1 , or they are 

curves given by equations

parameterized by constants C1,C2,C3,C4 and K1,K2,K3 satisfying

Proof  Let us firstly remind that parametrization of geodesics is encoded in level sets of the 
Hamiltonian of the system (5,6) that is H =

1

2
(h2

0
+ h2

1
+ h2

2
+ h2

3
) and arc length parametri-

zation correspond to H =
1

2
 [1].

The line (16) corresponds to K = 0 and thus h(t) = h(0) is constant and defines the vec-
tor of constants (C1,C2,C3,C4) . The length of this vector is equal to one on the level set 1

2
 . 

If K ≠ 0 , we obtain x,�1,�2,�3 by direct integration of the first part of (15) and involving 
the initial condition, where h(t) is given by (13). Substituting the results into the second 
part of (15) we get y1, y2, y3 by integration. The solutions define family of curves starting 
at the origin such that the Hamiltonian H is constant along them. Unit–speed geodesics are 
contained in the level set h2

0
+ h2

1
+ h2

2
+ h2

3
= 1 . According to Proposition 3, this restriction 

reads as (20). 	�  ◻

(15)
ẋ = h0, �̇1 = h1, �̇2 = h2, �̇3 = h3,

ẏ1 =
1

2
(xh1 − h0�1), ẏ2 =

1

2
(xh2 − h0�2), ẏ3 =

1

2
(xh3 − h0�3).

(16)(x,�1,�2,�3, y1, y2, y3)
t = (C1t,C2t,C3t,C4t, 0, 0, 0)

t

(17)x = C1 cos(Kt) + C2 sin(Kt) − C1,

(18)
⎛⎜⎜⎝

�1

�2

�3

⎞⎟⎟⎠
=

1

K
(C1 sin(Kt) − C2 cos(Kt) + C2)

⎛⎜⎜⎝

K1

K2

K3

⎞⎟⎟⎠
+ t

⎛⎜⎜⎝

−C3K3 − C4K2

C4K1

C3K1

⎞⎟⎟⎠
,

(19)

⎛⎜⎜⎝

y1
y2
y3

⎞
⎟⎟⎠
=

1

2K
(C2

1
+ C2

2
)(tK − sin(Kt))

⎛
⎜⎜⎝

K1

K2

K3

⎞
⎟⎟⎠
+

1

2K
((2C1 − C2Kt) sin(Kt)

− (C1Kt + 2C2) cos(Kt) + 2C2 − tC1K)

⎛⎜⎜⎝

−C3K3 − C4K2

C4K1

C3K1

⎞⎟⎟⎠
,

(20)K2(C2
1
+ C2

2
) + (C3K3 + C4K2)

2 + C2
4
K2
1
+ C2

3
K2
1
= 1
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4 � Moduli space and geodesics

Each choice of coefficients C1,C2,C3,C4 ∈ ℝ and K1,K2,K3 ∈ ℝ that satisfy (20) gives 
a geodesic (x(t),�(t), y(t)) as described in the Proposition 4. According to (15) and (19), 
�(t) and y(t) are linear combinations of the vectors

for any t > 0 . The vectors z1 and z2 are orthogonal with respect to the Euclidean metric on 
ℝ

3 by definition. We know from Proposition 2 that for each R ∈ SO(3,ℝ) the map

maps geodesics starting at the origin to geodesics starting at the origin.
Altogether, there always is an orthogonal matrix R ∈ SO(3,ℝ) that aligns vectors z1 

and z2 with the suitable multiples of the first two vectors of the standard basis of ℝ3 . 
Thus, we get

where K = |z1| is the length of z1 and we denote C = |z2| the length of z2 . This matrix 
defines a representative of the geodesic class

The equations for this representative geodesics simplify remarkably. Namely

where � = Kt and C̄3 = C∕K . The level set equation (20) reads as

and determines K > 0 uniquely.
The moduli space N∕SO(3,ℝ) defined by the action (8) of SO(3,ℝ) on N ≅ ℝ

7 is 
determined by natural invariants x, (�,�), (�, y), (y, y), where ( , ) stands for the Euclid-
ean scalar product on ℝ3.

z1 =

⎛
⎜⎜⎝

K1

K2

K3

⎞
⎟⎟⎠
, z2 =

⎛
⎜⎜⎝

−C3K3 − C4K2

C4K1

C3K1

⎞
⎟⎟⎠

(x,�, y) ↦ (x,R�,Ry)

z1 = R

⎛⎜⎜⎝

K

0

0

⎞⎟⎟⎠
, z2 = R

⎛⎜⎜⎝

0

C

0

⎞⎟⎟⎠
,

(x(t), �̄(t), ȳ(t)) = (x(t),Rt
�(t),Rty(t)).

(21)

x(𝜏) = C1(cos 𝜏 − 1) + C2 sin 𝜏,

�̄1(𝜏) = C1 sin 𝜏 + C2(1 − cos 𝜏),

�̄2(𝜏) = C̄3𝜏,

�̄3(𝜏) = 0,

ȳ1(𝜏) =
1

2
(C2

1
+ C2

2
)(𝜏 − sin 𝜏),

ȳ2(𝜏) =
1

2
C̄3

[
C1(2 sin 𝜏 − 𝜏 cos 𝜏 − 𝜏) + C2(2 − 2 cos 𝜏 − 𝜏 sin 𝜏)

]
,

ȳ3(𝜏) = 0,

(22)K2(C2
1
+ C2

2
+ C̄2

3
) = 1
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Proposition 5  Each geodesic starting at the origin defines a curve in the moduli space 
N∕SO(3,ℝ) given by a curve in invariants

Proof  Follows directly from (21). 	�  ◻

Let us recall that the subgroup C� , defined by (10), consists of points in N that are sta-
bilized by some non-trivial R ∈ SO(3,ℝ) for the action (8). Note the similarity of C� to the 
set P3 from nilpotent (3, 6) sub-Riemannian problem which is known to be the set where 
geodesics starting at the origin lose optimality [9]. For any point of P3 , there exists a one-
parameter family of geodesics of equal length intersecting at this point. However, the situa-
tion in our nilpotent (4, 7) problem is very different.

Theorem 1  Sub-Riemannian geodesics starting at the origin either do not intersect C� or 
they lie in C� for all times.

Proof  Suppose there is an intersection of the set C� with a sub-Riemannian geodesic 
(x(t),�(t), y(t)) emanating from the origin. So there is a point of intersection (x, �̄, ȳ) of the 
set C� with a sub-Riemannian geodesic (x(t), �̄(t), ȳ(t)) since C� is invariant with respect 
to the action (8) of SO(3, R). At this intersection (x, �̄, ȳ) , the collinearity of �̄  and ȳ is 
described by vanishing of the determinant

The geodesics are given by equations (21) and the determinant can be written explicitly 
as 1

2
–multiple of

where

We show that the function in the bracket of (24) is never zero (unless C1 = C2 = 0 , 
which is irrelevant) by showing that its discriminant d of this quadratic equation is nega-
tive for all positive times. This implies that the colinearity condition (24) is equivalent to 
C̄3 = 0 . Then, �̄2(𝜏) = ȳ2(𝜏) = 0 by (21) and thus geodesic (x(𝜏), �̄(𝜏), ȳ(𝜏)) belongs to C� 
for all 𝜏 > 0.

To show that the discriminant d is negative for all positive times, we compute

(23)

x = C1(cos 𝜏 − 1) + C2 sin 𝜏,

(�,�) = (C1 sin 𝜏 + C2(1 − cos 𝜏))2 + (C̄3𝜏)
2,

(�, y) =
1

2
[(C2

1
+ C2

2
)(C1 sin 𝜏 + C2(1 − cos 𝜏))(𝜏 − cos 𝜏)

+ C̄2

3
𝜏[C1(2 sin 𝜏 − 𝜏 cos 𝜏 − 𝜏) + C2(2 − 2 cos 𝜏 − 𝜏 sin 𝜏)]],

(y, y) =
1

4
[(C2

1
+ C2

2
)2(𝜏 − cos 𝜏)2 + C̄2

3
[C1(2 sin 𝜏 − 𝜏 cos 𝜏 − 𝜏)

+ C2(2 − 2 cos 𝜏 − 𝜏 sin 𝜏)]2].

�̄1ȳ2 − �̄2ȳ1 = 0.

(24)C̄3(d11C
2
1
+ 2d12C1C2 + d22C

2
2
),

d11 = −�2 − � sin � cos � − 2 cos2 � + 2,

d12 = −2 sin �(2 cos � − 2 + � sin �),

d22 = 2 cos2 � + � cos � sin � − 4 cos � − �2 + 2.
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hence it is sufficient to prove

for all positive times � . This can be done by combining "local" and "global" estimations 
of this function. The local estimation is obtained by the estimation of goniometric func-
tions sin �, cos � by Taylor series. By evaluating the Taylor series of f in zero, we see we 
need to use the Taylor polynomial of degree seven and six, respectively. Then, we get the 
estimation

that guarantees positivity of the function f on the interval (0,
√
14) . On the other hand, the 

inequalities sin �, cos � ≥ −1 yield a global estimation

that guarantees positivity of the function f on the interval ( 1+
√
33

2
,∞) . The two intervals 

overlap and thus f is positive for all 𝜏 > 0 . 	�  ◻

In Fig. 2, we present both local and global estimation of f (�).

Remark 3  The positivity of function f (�) from the proof above can be shown alternatively 
by proving the positivity of its derivative. The alternative proof can be found in Lemma 
3.1. for � = 2� of [8], where authors discuss free 2-step Carnot group of filtration (3, 6).

d = −4�(� − sin �)(�2 + � sin � + 4 cos � − 4),

f (𝜏) = 𝜏2 + 𝜏 sin 𝜏 + 4 cos 𝜏 − 4 > 0

f (𝜏) > −
𝜏6(𝜏2 − 14)

5040

f (𝜏) > 𝜏2 − 𝜏 − 8

Fig. 2   Estimation of f (�)
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Let us finally study properties of geodesics contained in C� . According to (24), this hap-
pens if and only if C̄3 = 0 . Then, the nonzero parts of geodesics (21) are

and level set condition (20) reads as

We show that these geodesics are preimages of geodesics in Heisenberg geometry and their 
optimality is well known [1, 5, 10]. Thus, we get the following statement.

Theorem 2  The vertical set {(0, 0, y) ∈ C� ∶ y ∈ ℝ
3} is the set where the geodesics in C� 

starting at the origin lose their optimality. These points are Maxwell points and for geodes-
ics defined by parameters C1 and C2 the cut time is

Proof  Since �̄1 =
√
(�,�) and ȳ1 =

√
(y, y) are invariants, see (23), the expression (25) 

defines a curve in the factor space C�∕SO(3,ℝ) . For the choice of polar coordinates in 
the plane ⟨C1,C2⟩ , we get the standard description of geodesics on three-dimensional 
Heisenberg group ℍ3 . Indeed, the tangent space to the subgroup C� is generated by pushout 
vectors

that are standard generators of Heisenberg Lie algebra. The group law (3) on the subgroup 
C� defines an isomorphism C�∕SO(3,ℝ) ≅ ℍ3 . The cut locus of the Heisenberg group con-
sists of the set of points

Namely, any geodesic from the origin loses its optimality at the point where it meets the 
vertical axis (0, 0, ȳ) for the first time. These points are Maxwell points and the correspond-
ing time equals to tcut =

2�

K
 . Sub-Riemannian geodesics in C� going from the origin to the 

point (x,�, ��) form a preimage of the Heisenberg geodesic in C�∕SO(3,ℝ) going from the 
origin to the point (x, |�|, �|�|) , where |�|2 = (�,�) . These geodesics have the same length 
and they lose their optimality at the same time. 	�  ◻

Since the geodesics contained in C� are preimages of Heisenberg geodesics under the 
SO(3,ℝ)–action, we can visualize them in the same way. On the left hand side of Fig. 3, 
there is so-called Heisenberg sub-Riemannian sphere. On the right side of the same figure, 
there is a half-sphere with a family of geodesics from origin to the sphere.

(25)

x(t) = C1(cos(Kt) − 1) + C2 sin(Kt),

�̄1(t) = C1 sin(Kt) + C2(1 − cos(Kt)),

ȳ1(t) = (C2
1
+ C2

2
)((Kt) − sin(Kt)),

K2(C2
1
+ C2

2
) = 1.

tcut = 2�

√
C2
1
+ C2

2
.

N̄0 = 𝜕x −
�̄1

2
𝜕ȳ1 , N̄1 = 𝜕

�̄1
+

x

2
𝜕ȳ1

{(0, y) ∈ ℝ
2 ⊕ ∧2

ℝ
2 ∶ y ≠ 0}.
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