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Abstract
The Quillen connection on L ⟶ Mg , where L∗ is the Hodge line bundle over the moduli 
stack of smooth complex projective curves curves Mg , g ≥ 5 , is uniquely determined by 
the condition that its curvature is the Weil–Petersson form on Mg . The bundle of holo-
morphic connections on L has a unique holomorphic isomorphism with the bundle on Mg 
given by the moduli stack of projective structures. This isomorphism takes the C∞ sec-
tion of the first bundle given by the Quillen connection on L to the C∞ section of the sec-
ond bundle given by the uniformization theorem. Therefore, any one of these two sections 
determines the other uniquely.
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1 Introduction

A holomorphic Ω1

Z
–torsor over a complex manifold Z is a holomorphic fiber bundle E over 

Z on which the holomorphic cotangent bundle Ω1

Z
 , considered as a bundle of groups over Z, 

acts satisfying the condition that the map
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constructed using the action map E ×Z Ω
1

Z
⟶ E and the identity map of E , is a biho-

lomorphism. This notion of a holomorphic torsor  extends to smooth Deligne–Mumford 
stacks.

Here we investigate two different natural holomorphic Ω1

Mg

–torsors over the moduli 
stack Mg of irreducible smooth complex projective curves of genus g (throughout we 
assume that g ≥ 5 ). The first Ω1

Mg

–torsor is given by the moduli stack Pg of genus g 
compact connected Riemann  surfaces equipped with a projective structure. We recall 
that the projective structures on a Riemann surface X is an affine space modeled on the 
complex vector space H0

(X, K⊗2

X
) = (Ω

1

Mg

)X . The second Ω1

Mg

–torsor is given by the 
sheaf of holomorphic connections Conn(L) on the dual L of the Hodge line bundle 
on the moduli space  Mg . We recall that the space of holomorphic connections on L||U , 
where U ⊂ Mg is an affine open subset, is an affine space modeled on the complex vec-
tor space H0

(U, Ω1

U
).

The uniformization theorem gives a C∞ section

On the other hand, the holomorphic line bundle L has a complex connection associated 
to the Quillen metric on it. The Quillen metric is constructed using the eigenvalues of 
the Laplacian acting on the functions on Riemann surfaces.  This Quillen connection is 
uniquely determined, among all complex connections on L , by the property that its curva-
ture is

where �WP is the Weil–Petersson form on Mg (see Corollary 2.2). We recall that the Weil-
Petersson form on the moduli space is constructed using the uniformization of the Rie-
mann surfaces.

We construct from Conn(L) a new holomorphic Ω1

Mg

–torsor simply by scaling the 
action of Ω1

Mg

 . More precisely, if

is the action of Ω1

Mg

 on Conn(L) , then define the following new holomorphic action of Ω1

Mg

 
on the same holomorphic fiber bundle Conn(L):

The resulting holomorphic Ω1

Mg

–torsor (Conn(L), At
) will be denoted by Connt(L).

Let

be the C∞ section given by the Quillen connection on L.
We prove the following (see Theorem 3.1):

E ×Z Ω
1

Z
⟶ E ×Z E,

Ψ ∶ Mg ⟶ Pg .

√
−1

6�
�WP ,

A ∶ Conn(L) ×Mg
Ω

1

Mg
⟶ Conn(L)

At
∶ Conn(L) ×Mg

Ω
1

Mg
⟶ Conn(L) , (z, v) ⟼ A

�

z,

√
−1

6�
⋅ v

�

.

Φ ∶ Mg ⟶ Conn
t
(L) = Conn(L)
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Theorem 1.1 

1 There is exactly one holomorphic isomorphism between the Ω1

Mg

–torsors Connt(L) and Pg.
2 The holomorphic isomorphism between the Ω1

Mg

–torsors Connt(L) and Pg takes the 
above section Φ of Connt(L) to the section Ψ of Pg given by the uniformization theorem.

We note that from Theorem 1.1 it follows that each of the sections Φ and Ψ determines 
the other uniquely.

2  Quillen metric on a line bundle

For g ≥ 5 , let Mg denote the moduli stack of smooth complex projective curves of genus 
g. It is an irreducible smooth complex quasiprojective orbifold of dimension 3(g − 1) [7]. 
Moreover, Mg has a natural Kähler structure

which is known as the Weil–Petersson form.
A torsor over Mg for the holomorphic cotangent bundle Ω1

Mg

 is a fiber bundle

together with a morphism

such that

• �X is an action of the vector space (Ω1

Mg

)X on the fiber EX for every X ∈ Mg , and
• the map of fiber products 

 is an isomorphism.
Let

be the universal curve. The line bundle on Mg

is a generator of Pic(Mg) = ℤ [1, p. 154, Theorem 1].
Let Conn(L) ⟶ Mg be the holomorphic fiber bundle given by the sheaf of holomor-

phic connections on L . We will briefly recall the construction of Conn(L) . Consider the 
Atiyah exact sequence

(2.1)�WP ∈ C∞

(Mg, Ω
1,1

Mg

)

E ⟶ Mg

� ∶ E ×Mg
Ω

1

Mg
⟶ E

E ×Mg
Ω

1

Mg
⟶ E ×Mg

E, (e, v) ⟼ (e, �(e, v))

(2.2)� ∶ Cg ⟶ Mg

L ∶= detR1�
∗
OCg

=

⋀g
R1�

∗
OCg

(2.3)0 ⟶ OMg
= Diff

0
(L, L) ⟶ At(L) ∶= Diff

1
(L, L)

p0
⟶TMg ⟶ 0 ,
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where Diff i(L, L) is the holomorphic vector bundle over Mg corresponding to the sheaf 
of holomorphic differential operators of order i from L to itself, TMg is the holomorphic 
tangent bundle of Mg , and p0 is the symbol map. For any open subset U ⊂ Mg , giving 
a holomorphic connection on L||U is equivalent to giving a holomorphic splitting of (2.3) 
over U [2]. Let

be the dual of the sequence in (2.3). Let �Mg
∶ Mg ⟶ OMg

 denote the section given by 
the constant function 1 on Mg . Then

where � is the projection in (2.4). From (2.4) it follows immediately that Conn(L) is a holo-
morphic torsor over Mg for the holomorphic cotangent bundle Ω1

Mg

 . In particular, for any 
X ∈ Mg the complex vector space (Ω1

Mg

)X acts freely transitively on the fiber of Conn(L) 
over X. Let

be the holomorphic map giving the torsor structure. For any C∞ (1, 0)-form � on Mg , let

be the C∞ automorphism of Conn(L) over Mg , where � and A are the maps in (2.5) and 
(2.6) respectively.

A complex connection on L is a C∞ connection ∇ on L such that the (0, 1)-component 
∇

0,1 of ∇ coincides with the Dolbeault operator on L that defines the holomorphic structure 
of L . The space of complex connections on L is in a natural bijection with the space of C∞ 
sections Mg ⟶ Conn(L) of the projection � in (2.5). There is a tautological holomor-
phic connection D0 on the line bundle �∗L , whose curvature Θ = Curv(D0

) is a holomor-
phic symplectic form on Conn(L) (see [4, p. 372, Proposition 3.3]). Any complex connec-
tion ∇ on L satisfies the equation

where f
∇

∶ Mg ⟶ Conn(L) is the C∞ section corresponding to ∇ . Consequently, the 
curvature Curv(∇) of ∇ satisfies the equation

We also have

where A� is the map in (2.7).
Given a Hermitian structure h1 on L , there is a unique complex connection on L that 

preserves h1 [12, p. 11, Proposition 4.9]; it is known as the Chern connection.
Equip the family of Riemann surfaces Cg in (2.2) with the relative Poincaré metric. Also, 

equip OCg
 with the trivial (constant) Hermitian structure; the pointwise norm of the constant 

(2.4)0 ⟶ Ω
1

Mg
⟶ At(L)

∗
�

⟶OMg
⟶ 0

(2.5)At(L)
∗ ⊃ 𝛽−1(�Mg

(Mg)) =∶ Conn(L)
𝜙

⟶Mg

(2.6)A ∶ Conn(L) ×Mg
Ω

1

Mg
⟶ Conn(L)

(2.7)A� ∶ Conn(L) ⟶ Conn(L), z ⟼ A(z, �(�(z)))

∇ = f ∗
∇
D0 ,

(2.8)Curv(∇) = f ∗
∇
Θ .

(2.9)A∗

�
Θ = Θ + d�,
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section with value c is the constant |c|. These two together produce a Hermitian structure hQ on 
L , which is known as the Quillen metric [3, 14]. Let

be the curvature of the Chern connection ∇Q on L for the Hermitian structure hQ ; this ∇Q is 
known as the Quillen connection. Then

where �WP is the Kähler form in (2.1) [15, p. 184, Theorem 2]; a much more general result 
is proved in [3, p. 51, Theorem 0.1] from which (2.10) follows immediately. Let

be the C∞ section of the projection � in (2.5) given by the above Quillen connection ∇Q.

Lemma 2.1 There is exactly one complex connection ∇ on L such that the curvature 
Curv(∇) of ∇ satisfies the equation

Proof From (2.10) we know that the Quillen connection ∇Q satisfies this equation. Let 
∇ be another connection on L satisfying this condition. Consider the C∞ (1, 0)-form 
�
0
= ∇

Q
− ∇ on Mg . From (2.9) and (2.8) it follows that d�0 = Curv(∇

Q
) − Curv(∇) = 0

.
It is known that Mg does not admit any nonzero closed (1, 0)-form (see [13, p.  228, 

Theorem  2], [10, Lemma 1.1]). In fact, Mg does not admit any nonzero holomorphic 
1-form [8, Theorem 3.1]; recall that g ≥ 5 . So we have �0 = 0 , and hence ∇Q

= ∇ .   ◻

Lemma 2.1 has the following immediate consequence:

Corollary 2.2 The curvature equation (2.10) uniquely determines the Quillen connection 
∇

Q among the space of all complex connections on L.

2.1  Projective structures and uniformization

Take any smooth complex projective curve X. A holomorphic coordinate chart on X is a pair 
of the form (U, f ) , where U ⊂ X is an analytic open subset and f ∶ U ⟶ ℂℙ

1 is a holo-
morphic embedding. A holomorphic coordinate atlas on X is a collection of coordinate charts 
{(Ui, fi)}i∈I such that

A projective structure on X is given by a holomorphic coordinate atlas {(Ui, fi)}i∈I sat-
isfying the condition that for every i, j ∈ I × I with Ui

⋂
Uj ≠ ∅ , and every connected 

Curv(∇
Q
) ∈ C∞

(Mg, Ω
1,1

Mg

)

(2.10)Curv(∇
Q
) =

√
−1

6�
�WP ,

(2.11)Φ ∶ Mg ⟶ Conn(L)

Curv(∇) = =

√
−1

6�
�WP .

X =

⋃

i∈I

Ui .
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component Vc ⊂ Ui

⋂
Uj , there is an element Ac

j,i
∈ Aut(ℂℙ1

) = PGL(2,ℂ) such that 
the map (fj◦f −1i

)
||fi(Vc)

 is the restriction of the automorphism Ac
j,i

 of ℂℙ1 to the open sub-
set fi(Vc) . Two holomorphic coordinate atlases {(Ui, fi)}i∈I and {(Ui, fi)}i∈I� satisfying the 
above condition are called equivalent if their union {(Ui, fi)}i∈I∪I� also satisfies the above 
condition. A projective structure on X is an equivalence class of holomorphic coordinate 
atlases satisfying the above condition (see [9]).

Take the extension E

corresponding to 1 ∈ H1
(X, KX) = ℂ . Note that there is exactly one nontrivial extension 

of TX by OX up to the scalings of OX . Giving a projective structure on X is equivalent to 
giving a holomorphic connection on the projective bundle ℙ(E) . More precisely, projective 
structures on X are identified with the quotient of the space of all holomorphic connections 
on ℙ(E) by the group of all holomorphic automorphisms of ℙ(E) [5, 9]. From this it follows 
that the space of all projective structures on X is an affine space modeled on 
H0

(X, K⊗2

X
) = (Ω

1

Mg

)X ; see [9, 5]. Let Pg denote the space of all pairs (X, �) , where 
X ∈ Mg and � is a projective structure on X. From the above description of projective 
structures on X in terms of the holomorphic connections on ℙ(E) it follows that Pg has a 
natural structure of a Deligne–Mumford stack. Let

be the natural projection. We note that Pg is a holomorphic torsor over Mg for the cotan-
gent bundle Ω1

Mg

.
Every Riemann surface admits a projective structure. In fact, the uniformization theo-

rem produces a projective structure, because the automorphism groups of ℂ , ℂℙ1 and the 
upper-half plane ℍ are all contained in PGL(2,ℂ) . Consequently, the uniformization theo-
rem produces a C∞ section

of the projection � in (2.12). (See [6] for another canonical section of Pg.)

3  Holomorphic isomorphism of torsors

We will construct a new holomorphic Ω1

Mg

–torsor from Conn(L) in (2.5) by simply scaling 
the action of Ω1

Mg

 , while keeping the holomorphic fiber bundle unchanged. Define

where A is the map in (2.6); the map At is holomorphic because A is so. The resulting holo-
morphic Ω1

Mg

–torsor (Conn(L), At
) will be denoted by Connt(L) . This Connt(L) can be 

interpreted as the bundle of connections on the (nonexistent) line bundle L⊗

√
−1

6𝜋 .
The C∞ section of Connt(L) given by the section Φ (in (2.11)) of Conn(L) will also be 

denoted by Φ . Since the two holomorphic fiber bundles Connt(L) and Conn(L) coincide, 

0 ⟶ OX ⟶ E ⟶ TX ⟶ 0

(2.12)� ∶ Pg ⟶ Mg

(2.13)Ψ ∶ Mg ⟶ Pg

(3.1)At
∶ Conn(L) ×Mg

Ω
1

Mg
⟶ Conn(L) , (z, v) ⟼ A

�

z,

√
−1

6�
⋅ v

�

,
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this should not cause any confusion. For the same reason the projection of Connt(L) to Mg 
will be denoted by � (as in (2.5)).

A C∞ isomorphism between the Ω1

Mg

–torsors Connt(L) and Pg (constructed in (2.12)) 
is a diffeomorphism

such that 

1 �◦F = � , where � is the projection in (2.12), and
2 F(c + w) = F(c) + w , for all c ∈ Conn

t
(L)X , w ∈ (Ω

1

Mg

)X and X ∈ Mg.

A holomorphic isomorphism between the Ω1

Mg

–torsors Connt(L) and Pg is a C∞ isomor-
phism F as above satisfying the condition that F is a biholomorphism.

Theorem 3.1 

1 There is exactly one holomorphic isomorphism between the Ω1

Mg

–torsors Connt(L) and 
Pg.

2 The holomorphic isomorphism between the Ω1

Mg

–torsors Connt(L) and Pg takes the 
section Φ in (2.11) to the section Ψ in (2.13).

Proof We will first prove that there is at most one holomorphic isomorphism between the 
two Ω1

Mg

–torsors Connt(L) and Pg . To prove this, for i = 1, 2 , let

be a holomorphic isomorphism. Consider the difference

defined using the Ω1

Mg

–torsor structure on Pg . Since Fi(c + w) = Fi(c) + w for all 
c ∈ Conn

t
(L)X , w ∈ (Ω

1

Mg

)X and X ∈ Mg , we conclude that

Consequently, F1 − F2 descends to a holomorphic 1-form on Mg . But there is no nonzero 
holomorphic 1-form on Mg [8, Theorem  3.1]; recall that g ≥ 5 . This implies that 
F1 = F2 . In other words, there is at most one holomorphic isomorphism between the two 
Ω

1

Mg

–torsors Connt(L) and Pg.
We will now construct a C∞ isomorphism �  between the two Ω1

Mg

–torsors Connt(L) and 
Pg . Take any X ∈ Mg and any c ∈ 𝜙−1

(X) ⊂ Conn
t
(L) = Conn(L) , where � as before 

is the projection of Connt(L) to Mg . So c = Φ(X) + w , where Φ is the section in (2.11) 
and w ∈ (Ω

1

Mg

)X . Now define

where Ψ is the section in (2.13). This produces a map

F ∶ Conn
t
(L) ⟶ Pg

Fi ∶ Conn
t
(L) ⟶ Pg

F1 − F2 ∶ Conn
t
(L) ⟶ Ω

1

Mg
, c ⟼ F1(c) − F2(c)

(F1 − F2)(c + w) = (F1 − F2)(c) .

� (c) = Ψ(X) + w ,
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It is straightforward to check that this map �  is a C∞ isomorphism between the two Ω1

Mg

–
torsors Connt(L) and Pg.

It is evident that � (Φ(Mg)) = Ψ(Mg).
To complete the proof we need to show that �  is a biholomorphism.
The real tangent bundles of Connt(L) and Pg will be denoted by Tℝ

Conn
t
(L) and TℝPg 

respectively. Let

be the differential of the map �  in (3.2). Let JC (respectively, JP ) be the almost complex 
structure on Connt(L) (respectively, Pg ). Since �  is a diffeomorphism, to prove that �  is a 
biholomorphism it is enough to show that

as maps from Tℝ
Conn

t
(L) to 𝔽 ∗TℝPg ; the automorphism of 𝔽 ∗TℝPg given by the automor-

phism JP of TℝPg is denoted by � ∗JP.
Take any point X ∈ Mg . The restriction of �  to 𝜙−1

(X) ⊂ Conn
t
(L) is a biholomor-

phism with �−1
(X) , where � is the map in (2.12). More precisely, this restriction is an iso-

morphism of affine spaces modeled on the vector space (Ω1

Mg

)X . Therefore, the equation in 
(3.3) holds for the subbundle of Tℝ

Conn
t
(L) given by the relative tangent bundle for the 

projection � to Mg.
For convenience, the image in Connt(L) of the map Φ (see (2.11)) will be denoted by Y. 

Let

be the inclusion map. Since Φ is just a C∞ section, this Y does not inherit any complex 
structure from Connt(L) . Note that Y can be given a complex structure, because the restric-
tion of the projection � (see (2.5)) to Y is a diffeomorphism of Y with Mg , so the complex 
structure on Mg produces a complex structure on Y. It should be clarified that for this com-
plex structure on Y the inclusion map � in (3.4) is not holomorphic, because the section Φ 
is not holomorphic.

Using the differential d� ∶ TℝY ⟶ �∗Tℝ
Conn

t
(L) of the embedding � in (3.4) the tan-

gent bundle TℝY  is realized as a C∞ subbundle of �∗Tℝ
Conn

t
(L) . So we have

To prove (3.3), take any point � ∈ Conn
t
(L) , and any tangent vector

at � . We noted earlier that (3.3) holds for the relative tangent bundle for the projection � to 
Mg . So we assume that v is not vertical for the projection �.

Denote �(�) ∈ Mg by z, and also denote Φ(z) ∈ Conn
t
(L) by � . So we have

(3.2)� ∶ Conn
t
(L) ⟶ Pg .

d𝔽 ∶ Tℝ
Conn

t
(L) ⟶ 𝔽

∗Tℝ
Pg

(3.3)d�◦JC = (�
∗JP)◦(d� )

(3.4)� ∶ Y ↪ Conn
t
(L)

(3.5)TℝY ⊂ 𝜄∗Tℝ
Conn

t
(L) ⊂ Tℝ

Conn(L) .

(3.6)v ∈ Tℝ

�
Conn

t
(L)

(3.7)w0 ∶= � − � ∈ (Ω
1

Mg
)z
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using the Ω1

Mg

–torsor structure of Connt(L) (see (3.1)). Let ṽ ∈ Tℝ

z
Mg be the image of v 

in (3.6) by the differential d� of � . Let

be the image of ṽ by the differential dΦ of Φ.
Take a holomorphic 1-form w defined on some analytic neighborhood U of z ∈ Mg . 

Then w defines a biholomorphism

here the Ω1

Mg

–torsor structure of Connt(L) is used. Now choose the 1-form w such that

• w(z) = w0 ; see (3.7) (this condition is clearly equivalent to the condition that 
Tw(�) = � ), and

• the differential dTw of Tw takes u in (3.8) to v (see (3.6)).

Note that since v is not vertical for the projection � , such a 1-form w exists. We have the 
following biholomorphism of 𝜓−1

(U) ⊂ Pg , where � is the projection in (2.12):

From the construction of �  in (3.2) it follows immediately that

as maps from 𝜙−1
(U) ⊂ Conn

t
(L) to 𝜓−1

(U) ⊂ Pg.
Since Tw (respectively, T1

w
 ) is a biholomorphism, its differential dTw (respectively, dT1

w
 ) 

preserves the almost complex structure JC (respectively, JP ) on �−1
(U) (respectively, 

�−1
(U) ). Therefore, from (3.10) we conclude the following:

Take any point 𝜇 ∈ 𝜙−1
(U) ⊂ Conn

t
(L) . Then (3.3) holds for all vectors in the 

tangent space Tℝ

�
Conn

t
(L) if and only if (3.3) holds for all vectors in the tangent space 

Tℝ

�+w(�(�))
Conn

t
(L) , where w is the above holomorphic 1-form. More precisely, (3.3) holds 

for a tangent vector v0 ∈ Tℝ

�
Conn

t
(L) if and only if (3.3) holds for

where dTw ∶ Tℝ�−1
(U) ⟶ Tℝ�−1

(U) is the differential of the map Tw in (3.9).
Setting � = � and v0 = u (see (3.7) and (3.8)) in the above statement we obtain that 

(3.3) holds for u ∈ Tℝ

𝛿
Y ⊂ T𝛿Conn

t
(L) if and only if (3.3) holds for v ∈ T�Conn

t
(L) in 

(3.6).
Consequently, to prove (3.3) it suffices to establish it for all tangent vectors in the sub-

space TℝY  in (3.5).
Let q ∶ V ⟶ Mg be a holomorphic Ω1

Mg

–torsor on Mg , and let S ∶ Mg ⟶ V be a 
C∞ section of V . From these we will construct a C∞ (1, 1)-form on Mg . The almost com-
plex structures on V and Mg will be denoted by JV and JM respectively. Let

be the differential of the map S. Take any X ∈ Mg and any v ∈ Tℝ

X
Mg . Define

(3.8)u ∈ Tℝ

�
Y

(3.9)Tw ∶ �−1
(U) ⟶ �−1

(U) , � ⟼ � + w(�(�)) ;

T
1

w
∶ �−1

(U) ⟶ �−1
(U) , � ⟼ � + w(�(�)).

(3.10)�◦Tw = T
1

w
◦�

(dTw)(v0) ∈ Tℝ

�+w(�(�))
Conn

t
(L) ,

dS ∶ Tℝ
Mg ⟶ Tℝ

V
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Since q is holomorphic, and q◦S = IdMg
 , it can be shown that the tangent vector S̃(v) is 

vertical for the projection q. Indeed, we have

So S̃(v) is vertical for the projection q. On the other hand, using the Ω1

Mg

–torsor structure of 
V , the vertical tangent space at S(X) ∈ V is identified with (Ω1

Mg

)X . Also, Tℝ

X
Mg is identi-

fied with the real vector space underlying (Ω0,1

Mg

)X = (Ω

1

Mg
)X . Using these we have

[11]. Note that S is a holomorphic section if and only if S̃ = 0 . This form S̃ is called the 
obstruction for S to be holomorphic (see [11]).

The obstruction for the section Ψ in (2.13) to be holomorphic is the Weil–Petersson 
form �WP in (2.1) [11, p. 214, Theorem 1.7], [16]. On the other hand, the obstruction for 
the section Φ of Conn(L) in (2.11) to be holomorphic is the (1, 1)-component of the curva-
ture of the connection on L corresponding to Φ . From (2.10) we know that this curvature 
itself is of type (1, 1) and it is 

√
−1

6�
�WP . Now from (3.1) we conclude that the the obstruc-

tion for the section Φ of Connt(L) to be holomorphic is the Weil–Petersson form �WP . 
Comparing the obstructions for the sections Φ and Ψ we conclude that (3.3) holds for all 
tangent vectors in the subspace TℝY  in (3.5), because the two obstructions coincide. This 
completes the proof.   ◻
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