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Abstract
Wederive and subsequently analyze an exact solution of the geophysical fluid dynamics equa-
tionswhich describes equatorial flows (in spherical coordinates) and has a discontinuous fluid
stratification that varies with both depth and latitude. More precisely, this solution represents
a steady, purely–azimuthal equatorial two-layer flow with an associated free-surface and a
discontinuous distribution of the density which gives rise to an interface separating the two
fluid regions. While the velocity field and the pressure are given by means of explicit for-
mulas, the shape of the free surface and of the interface are given in implicit form: indeed
we demonstrate that there is a well-defined relationship between the imposed pressure at the
free-surface and the resulting distortion of the surface’s shape. Moreover, imposing the con-
tinuity of the pressure along the interface generates an equation that describes (implicitly) the
shape of the interface. We also provide a regularity result for the interface defining function
under certain assumptions on the velocity field.

Keywords Azimuthal flows · Discontinuous density · Spherical coordinates · Coriolis
force · Implicit function theorem

Mathematics Subject Classification 35Q31 · 35Q35 · 35Q86 · 35R35 · 76E20

1 Introduction

Flow stratification represents a pronounced feature of geophysical ocean flows that partic-
ularly applies to large scale ocean movements [17, 29]. To exemplify the previous aspect
we point out the existence of a band of 150 km on each side of the Equator, stretching out
longitudinally over about 16.000 km throughout the extent of the Pacific Ocean, where the
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3 Academy of Romanian Scientists, Bucharest, Romania

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-022-01214-w&domain=pdf
http://orcid.org/0000-0002-5800-9265


2678 C. Martin , A. Petruşel

stratification gives rise to a sharp interface (called pycnocline of thermocline) [16]. The ther-
mocline separates a shallow near-surface layer of relatively warm water from a deep layer of
colder and denser water.

Another important aspect that one needs to consider in the investigation of geophysical
ocean flows refers to the effects generated by the presence of Coriolis forces–created by the
Earth’s rotation. Indeed, together with the prevailing westward wind pattern, Coriolis forces
generate an underlying current field that presents flow-reversal [2, 12]: in a band of about
2◦ latitude around the Pacific Equator the current field shifts from a westward flow near the
surface to an eastward flowing jet called the Equatorial Undercurrent (EUC) whose core
resides approximately on the thermocline.

The interaction of currents and (surface and internal) waves which also takes into account
the density stratification is a recent avenue of research [5–7, 11, 27] performed within the
setting of nonlinear geophysical governing equations. We find important to mention that the
issue of stratification was considered from a rigorous analytical perspective only (relatively)
recently: a selective list of works dealing with two-dimensional gravity water flows (without
Coriolis effects) consists of [13, 14, 18, 20, 35–37].

Rigorous mathematical analyses of the aspects mentioned earlier were started by Con-
stantin andConstantin& Johnsonwho constructed exact solutions exhibiting various features
shared by geophysical ocean flows, like three-dimensionality [4, 10, 26], equatorially-trapped
waves [3], presence of underlying currents [19], or a preferred propagation direction, cf. [8,
9], where an approach that takes into account the spherical shape of the Earth was initiated.
The latter approach (by means of spherical coordinates) was extended by Henry & Martin
[21–24] to construct exact azimuthal equatorial flows allowing for continuous stratification
(depending on depth and latitude) and by Martin & Quirchmair [30] to devise exact contin-
uously stratified solutions concerning the Antarctic Circumpolar Current (ACC). Moreover,
exact azimuthal solutions with a discontinuous density stratification, giving rise to internal
waves and pertaining to EUC and ACC were presented recently by Martin [31] and Martin
& Quirchmair [32], respectively.

In this paper we broaden the choice for the density function from [31] to the case of a
discontinuous density that varies with both depth and latitude. The relevance of this choice
stems from the existenceof a zonal tiltingof the thermocline, as noted inConstantin&Johnson
[10].With these aspects inmindwe proceed to construct a family of exact solutions, presented
in a rotating framework (by means of spherical coordinates), that represent incompressible
azimuthal equatorial water flows with a free surface and a free interface. We also want to
emphasize that the solutions we provide possess a depth-dependent velocity field. For studies
concerning stratification, as well as the presence of an interface, in the equatorial scenario we
refer the reader to [5, 11, 15, 27, 31, 34]. Concerning recent progress toward the understanding
of several intricate features underlying the dynamics of coupled surface and internal waves
we point out the excellent work by Henry & Villari [25].

The layout of this paper is as follows: after introducing the physical problem in Sect. 2 we
derive in Sect. 3.1 formulas for the velocity field and the pressure in the two domains separated
by the interface arising as a result of jump in the density. An implicit formula for the interface
(which plays the role of an internal wave) is obtained in Sect. 3.2 by utilizing the balance
of forces along it. Moreover, the dynamic boundary condition allows us to find a relation
between the enforced pressure on the surface and the deviation of the surface from a surface
following the Earth’s curvature. While the two implicit relations defining the free surface and
the interface are quite involved they can be studied bymeans of the implicit function theorem.
We conclude the paper with Sect. 4 where reasonable and expected physical properties of
the exact solutions are presented. Indeed, it is proved that a growth in the pressure along the
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Fig. 1 The spherical coordinate
system as presented in Sect. 2.
The variable r represents the
distance from the origin, θ is the
polar angle (π/2 − θ being the
angle of latitude), and ϕ is the
angle of longitude (azimuthal
angle)

surface causes a decrease in the free surface height. Moreover, a regularity result concerning
the interface defining function is also presented.

2 Preliminaries

This section is concerned with the statement of the governing equations (together with their
boundary conditions) for geophysical fluid dynamics (GFD). These are formulated in a spher-
ical coordinate system which is fixed at a point on the Earth’s surface as will be detailed
shortly. As a result the fine features of the Earth’s spherical geometry are reflected in the
structure of our solutions. The latter are assumed to have a jet-like structure, capturing the
observed azimuthal character of some equatorial flows. In the formulation of the governing
equations we take into account the observation by Maslowe [33] that the Reynolds number
is, in general, extremely large for the type of flows described above.

The right-handed coordinate system we will be using is denoted with (r , θ, ϕ), where r
is the distance from the centre of the earth, θ (with 0 ≤ θ ≤ π) is the polar angle, and
ϕ (with 0 ≤ ϕ < 2π) is the azimuthal angle, see Fig. 1. The location of the North and
South poles are at θ = 0, π , respectively, while the Equator is situated at θ = π

2 . The unit
vectors in this (r , θ, ϕ) system are (er , eθ , eϕ), respectively, and the corresponding velocity
components are (w, v, u); eϕ points from West to East, and eθ points from North to South.
More precisely, er = (sin θ cosϕ, sin θ sin ϕ, cos θ), eθ = (cos θ cosϕ, cos θ sin ϕ,− sin θ),
eϕ = (− sin ϕ, cosϕ, 0).

A noteworthy aspect is that the fluid domain is stratified where the stratification is brought
about by the changes in the (discontinuous) density. To be more specific, denoting with
R ≈ 6378 km the Earth’s radius and with r0 > 0, r1 > 0 some constants, we assume that
the flow consists of a upper layer

D1 := {(r , θ, ϕ) : R1 + h(θ, ϕ) ≤ r ≤ R0 + k(θ, ϕ)},
of density ρ1(r , θ) that lies above a bottom layer

D2 := {(r , θ, ϕ) : R + d(θ, ϕ) ≤ r ≤ R1 + h(θ, ϕ)},
of density ρ2(r , θ), with R0 := R + r0 and R1 := R + r1. While above θ �→ d(θ) is a given
function, h(θ, ϕ) and k(θ, ϕ) are unknowns of the problem and denote the interface and the
free surface defining functions, respectively.
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Remark 2.1 Based on data collected on physical grounds, it is appropriate to assume the
relation ρ2 = ρ1(1+ σ) where τ �→ σ(τ) is a positive function with the additional property
that σ = O(10−3).

Denoting by u = uer + veθ + weϕ the velocity field we have that the governing equations
in the rotating (r , θ, ϕ) coordinate system are the Euler’s equations,

ui,t + uui,r + v

r
ui,θ + w

r sin θ
ui,ϕ − 1

r
(v2i + w2

i ) − 2�wi sin θ − r�2 sin2 θ

= − 1

ρ
pr + Fr

vi,t + uvi,r + v

r
vi,θ + w

r sin θ
vi,ϕ + 1

r
(uivi − w2 cos θ) − 2�wi cos θ − r�2 sin θ cos θ

= − 1

ρ

1

r
pθ + Fθ

wi,t + uwi,r + v

r
wθ + w

r sin θ
wi,ϕ + 1

r
(uiwi + viwi cot θ) + 2�(ui sin θ + vi cos θ)

= − 1

ρ

1

r sin θ
pϕ + Fϕ, (1a)

where p(r , θ, ϕ) is denotes the pressure in the fluid and (Fr , Fθ , Fϕ) is the body-force vector,
and the equation of mass conservation

1

r2
∂

∂r
(ρr2ui ) + 1

r sin θ

∂

∂θ
(ρvi sin θ) + 1

r sin θ

∂(ρwi )

∂ϕ
= 0. (1b)

The description of the water wave problem is completed by the specification of the asso-
ciated boundary conditions. These are as follows. At the free-surface r = R0 + k(θ, ϕ) we
require the dynamic condition involving the surface pressure

p1 = P1(θ, ϕ), (2a)

(for some given function P1(θ, ϕ)) and the kinematic condition

w1 = v1

r

∂k

∂θ
+ u1

r sin θ

∂k

∂ϕ
, (2b)

to hold.
At the interface, r = R1 + h(θ, ϕ), we ask that the normal components of the velocity

fields from the upper and lower layer, respectively, are the same. The latter is equivalent with
the condition

(w1er + v1eθ + u1eϕ) ·
(
er − hθ

r
eθ − hϕ

r sin θ
eϕ

)

= (w2er + v2eθ + u2eϕ) ·
(
er − hθ

r
eθ − hϕ

r sin θ
eϕ

)
.

(2c)

Moreover, to ensure the balance of forces at the interface, we also require that the pressure
from the upper layer coincides with the pressure from the bottom layer, that is,

p1(R + h(θ, ϕ), θ, ϕ) = p2(R + h(θ, ϕ), θ, ϕ). (2d)
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At the bottom of the ocean, which is an impermeable, solid boundary described by the
equation r = d(θ, ϕ), the associated kinematic condition is

w2 = v2

r

∂d

∂θ
+ u2

r sin θ

∂d

∂ϕ
. (2e)

3 Explicit solutions

We aim at finding solutions of the Eqs. (1a), (1b) and (2) that represent purely-azimuthal
steady flows with no variation in the azimuthal direction. That is to say that the velocity
field satisfies u1 = v1 = u2 = v2 = 0 and w1 = w1(r , θ), w2 = w2(r , θ). Moreover,
the other unknows of the problem are characterized by the properties p1 = p1(r , θ), p2 =
p2(r , θ), h = h(θ), k = k(θ). Throughout the section the range for the θ variable will be the
interval

[
π
2 , π

2 + ε
]
where ε = 0.016 determines a strip of about 100 km about the Equator.

3.1 The velocity and the pressure

We notice that a flow with the previous features automatically satisfies the boundary and
interface conditions (2) as well as the equation of mass conservation (1b). Assuming that
the only body-force is due to gravity alone, that is the body-force vector is −ger , the Euler
equations are written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−w2
i
r − 2Ωwi sin θ − rΩ2 sin2 θ = − 1

ρi
pi,r − g

−w2
i
r cot θ − 2Ωwi cos θ − rΩ2 sin θ cos θ = − 1

ρi r
pi,θ

0 = − 1
ρi

1
r sin θ

pi,ϕ

, (3)

in the domain Di for i = 1, 2. In the first step we simplify the system above by eliminating
the pressue. So we obtain that the azimuthal components of the velocity field wi satisfy

∂θ

(
ρ(r)(wi (r , θ) + �r sin θ)2

r

)
− ∂r

(
ρ(r)(wi (r , θ) + �r sin θ)2 cot θ

) = 0, (4)

for i = 1, 2. Utilizing the method of characteristics and adapting the approach from [23] we
obtain that the azimuthal velocities wi (i = 1, 2) are expressed in terms of the formulas

wi (r , θ) = −�r sin θ +
√

F2
i (r sin θ) + gr sin θ

∫ f (θ)

0

[
ρi,θ (r(s), θ(s))

]
ds

ρi (r , θ)
, (5)

where x → Fi (x), i = 1, 2, are some real-valued functions, while

f (θ) = ln

(√
1 − cos θ

1 + cos θ

)
,

r(s) = r sin θ cosh(s),

θ(s) = arccos(− sinh(s)).

(6)
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Toward deriving the formula for the pressure we first infer from (3) that the pressure gradient
is given as

pi,r = F2
i (r sin θ) + gr sin θ

∫ f (θ)

0

[
ρi,θ (r(s), θ(s))

]
ds

r
− gρi (7)

and

pi,θ = cot θ

[
F2
i (r sin θ) + r sin θ

∫ f (θ)

0

[
gρi,θ (r(s), θ(s))

]
ds

]
(8)

for i = 1, 2. An integration with respect to r yields that for all r ∈ [R + d(θ), R1 + h(θ)]
we have

p2(r , θ) =
∫ r sin θ

(R+d(θ)) sin θ

(
F2
2 (y)

y
+ F2(y, θ)

)
dy − g

∫ r

R+d(θ)

ρ2(r̃ , θ)dr̃ + C2(θ), (9)

where

F2(y, θ) := g
∫ f (θ)

0
ρ2,θ

(
y · cosh(s), θ(s)

)
ds,

and θ → C2(θ) is a function such that

C ′
2(θ) = F2

2 ((R + d(θ)) sin θ)

((R + d(θ)) sin θ)
· d

dθ
((R + d(θ)) sin θ)

+ F((R + d(θ)) sin θ)
d

dθ
((R + d(θ)) sin θ) − gρ2(R + d(θ), θ)d ′(θ).

(10)

We proceed now with the determination of the pressure in the upper layer D1. We recall that
the interface (which is the lower boundary of D1) is given as r = R1 + h(θ). An integration
with respect to r in formula (7) yields that for all θ and all r ∈ [R1 + h(θ), R0 + k(θ)] it
holds

p1(r , θ) =
∫ r sin θ

(R1+h(θ)) sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy − g

∫ r

R1+h(θ)

ρ1(r̃ , θ)dr̃ + C1(h, θ),

(11)

where

F1(y, θ) := g
∫ f (θ)

0
ρ1,θ

(
y · cosh(s), θ(s)

)
ds, (12)

and

C1(h, θ) =
∫ θ

π/2
F2
1

(
(R1 + h(θ̃)) sin θ̃

) [
cot θ̃ + h′(θ̃)

R1 + h(θ̃)

]
d θ̃

+
∫ θ

π/2
F1

(
(R1 + h(θ̃)) sin θ̃ , θ̃

) [
h′(θ̃) sin θ̃ + (R1 + h(θ̃)) cos θ̃

]
d θ̃

− g
∫ θ

π/2
ρ1(R1 + h(θ̃), θ̃ )h′(θ̃) d θ̃ .

(13)
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3.2 The interface and the free surface

Having the velocity and the pressure determined we pass now to the (implicit) determination
of the two interface defining functions h and k. To this end we first exploit the balance of
forces at the interface (2d), written now (in the context of azimuthal flows) as

p1(R1 + h(θ), θ) = p2(R1 + h(θ), θ), (14)

which can be detailed as

C1(h, θ) =
∫ (R1+h(θ)) sin θ

(R+d(θ)) sin θ

(
F2
2 (y)

y
+ F2(y, θ)

)
dy − g

∫ R1+h(θ)

R+d(θ)

ρ2(r̃ , θ)dr̃ + C2(θ).

(15)

We provide now a functional analytic setting for our problem by nondimensionalizing the
interface defining function. That is, we set

h(θ) := h(θ)

R1

and so write (14) as

G2(h) = 0

where the operator G2 acts from the Banach space C1
([

π
2 , π

2 + ε
])

into itself and is given
as

G2(h) = 1

Patm

(∫ (1+h(θ))R1 sin θ

(R+d(θ)) sin θ

(
F2
2 (y)

y
+ F2(y, θ)

)
dy − g

∫ (1+h(θ))R1

R+d(θ)

ρ2(r̃ , θ)dr̃

)

−C1(h, θ) + C2(θ)

Patm
.

(16)

To recover the shape of the free surface (at least in an implicite form) we use the dynamic
boundary condition (2a) and so obtain that a prescribed pressure at the surface P1(θ) has to
satisfy the equation

P1(θ) =
∫ (R0+k(θ)) sin θ

(R1+h(θ)) sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy − g

∫ R0+k(θ)

R1+h(θ)

ρ1(r̃ , θ)dr̃ + C1(h, θ),

(17)

called the Bernoulli relation which establishes a connection between the pressure applied on
the free surface on one hand and, on the othe hand, the shape of the free surface and the shape
of the interface, where the latter is determined by Eq. (15). Setting

k(θ) := k(θ)

R0
, P1(θ) := P1(θ)

Patm

we recast the previous equation in nondimensional form as the abstract operatorial equation

G1(k, h,P1) = 0, (18)
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where G1 is an operator from the Banach space C
([

π
2 , π

2 + ε
]) × C1

([
π
2 , π

2 + ε
]) ×

C
([

π
2 , π

2 + ε
])

into itself and is given through

G1(k, h,P1)(θ) = 1

Patm

(∫ (1+k(θ))R0 sin θ

(1+h(θ))R1 sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy

−g
∫ (1+k(θ))R0

(1+h(θ))R1

ρ1(r̃ , θ)dr̃ + C1(h, θ)

)
,−P1(θ).

(19)

The problem of finding (k, h) that satisfy (15) and (17) can be written now as

(G1(k, h,P1),G2(h)) = 0. (20)

In order to prove the existence of nontrivial solutions h, k to (20) we are going to utilize
the Implicit Function Theorem, cf. [1]. In order to do so, we need first to identify trivial
solutions (k0, h0) of (20). The natural candidate for a trivial solution is the flow having an
undisturbed free surface and an undisturbed interface following the Earth’s curvature. That
is, we set k = h = 0 in (20) and find that G1(0, 0,P0

1 ) = G2(0) = 0 if and only if

P0
1 = 1

Patm

(∫ R0 sin θ

R1 sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy − g

∫ R0

R1

ρ1(r̃ , θ) dr̃

)

+ 1

Patm

(∫ θ

π/2
F2
1 (R1 sin θ̃ ) cot θ̃ d θ̃ +

∫ θ

π/2
F1(R1 sin θ̃ , θ̃ )R1 cos θ̃ d θ̃

) (21)

and

1

Patm

∫ R1 sin θ

(R+d(θ)) sin θ

(
F2
2 (y)

y
+ F2(y, θ)

)
dy − g

∫ R1

R+d(θ)

ρ2(r̃ , θ)dr̃ + C2(θ)

− 1

Patm

(∫ θ

π/2
F2
1 (R1 sin θ̃ ) cot θ̃ d θ̃ +

∫ θ

π/2
F1(R1 sin θ̃ , θ̃ )R1 cos θ̃ d θ̃

)
= 0.

(22)

We evaluate

lim
s→0

C1(sh, θ) − C1(0, θ)

s
. (23)

To begin with we compute

lim
s→0

1

s

∫ θ

π/2
F1

(
R1 + sh(θ̃)) sin θ̃ , θ̃

) [
sh′(θ̃) sin θ̃ + sh(θ̃) cos θ̃

]
d θ̃

+ lim
s→0

∫ θ

π/2

F1

(
R1 + sh(θ̃)) sin θ̃ , θ̃

)
− F1

(
R1 sin θ̃ , θ̃

)
s

R1 cos θ̃d θ̃

=
∫ θ

π/2
F1(R1 sin θ̃ , θ̃ )

d

d θ̃
(h(θ̃) sin θ̃ )d θ̃ +

∫ θ

π/2
F1,y(R1 sin θ̃ , θ̃ )R1h(θ̃) sin θ̃ cos θ̃d θ̃

= F1(R1 sin θ, θ)h(θ) sin θ) −
∫ θ

π/2
F1,θ (R1 sin θ̃ , θ̃ )(h(θ̃ ) sin θ̃ )d θ̃

= F1(R1 sin θ, θ)h(θ) sin θ − g
∫ θ

π/2
ρ1,θ (R1, θ̃ )h(θ̃)d θ̃

(24)
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Moreover,

lim
s→0

∫ θ

π/2
F2
1

(
(R1 + sh(θ̃)) sin θ̃

) h′(θ̃ )d θ̃

R1 + sh(θ̃)

lim
s→0

∫ θ

π/2

F2
1

(
(R1 + sh(θ̃)) sin θ̃

)
− F2

1

(
R1 sin θ̃

)
s

cot θ̃d θ̃

= F2
1 (R1 sin θ)

h(θ)

R1
−

∫ θ

π/2
(F2

1 )′(R1 sin θ̃ )R1 cos θ̃
h(θ̃)

R1
d θ̃

+ lim
s→0

∫ θ

π/2

sh(θ̃) sin θ̃

s
(F2

1 )′(R1 sin θ̃ ) cot θ̃d θ̃

= F2
1 (R1 sin θ)

h(θ)

R1

(25)

and

lim
s→0

∫ θ

π/2

ρ1

(
R1 + sh(θ̃), θ̃

)
sh′(θ̃)

s
d θ̃

=
∫ θ

π/2
ρ1(R1, θ̃ )h′(θ̃)d θ̃ = ρ1(R1, θ)h(θ) −

∫ θ

π/2
ρ1,θ (R1, θ̃ )h(θ̃)d θ̃ .

(26)

Collecting now (24),(25) and (26) and recalling formula (13) we have

lim
s→0

C1(sh, θ) − C1(0, θ)

s
=F1(R1 sin θ, θ)h(θ) sin θ + F2

1 (R1 sin θ)
h(θ)

R1

− gρ1(R1, θ)h(θ).

(27)

Moreover

∫ (1+k(θ))R0 sin θ

(1+sh(θ))R1 sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy −

∫ (1+k(θ))R0 sin θ

R1 sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy

=
∫ R1 sin θ

(1+sh(θ))R1 sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy

(28)

Appealing to the mean value theorem for integrals we obtain

lim
s→0

1

s

∫ R1 sin θ

(1+sh(θ))R1 sin θ

(
F2
1 (y)

y
+ F1(y, θ)

)
dy

= −F1(R1 sin θ, θ)h(θ) sin θ − F2
1 (R1 sin θ)

h(θ)

R1

(29)

and

lim
s→0

1

s

(∫ (1+k(θ))R0

(1+sh(θ))R1

ρ1(r̃ , θ)dr̃ −
∫ (1+k(θ))R0

R1

ρ1(r̃ , θ)dr̃

)

= lim
s→0

1

s

∫ R1

(1+sh(θ))R1

ρ1(r̃ , θ)dr̃ = ρ1(R1, θ)R1h(θ) = ρ1(R1, θ)h(θ)

(30)
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Therefore, taking into account formulas (27),(29),(30) as well as the definition of the operator
G1 in (19) we obtain

G1h(0, 0,P
0
1 )h = lim

s→0

G1(0, sh,P0
1 ) − G1(0, 0,P0

1 )

s
= 0 (31)

Similarly, we compute

(
G1k(0, 0,P

0
1 )k

)
(θ) = lim

s→0

G1(sk, 0,P0
1 )(θ) − G1(0, 0,P0

1 )(θ)

s

= (F2
1 (R0 sin θ) + F1(R0 sin θ, θ)R0 sin θ − gR0ρ1(R0, θ))k(θ)

Patm

= ρ1(R0, θ)

Patm
[w(R0, θ) + �R0 sin θ)2 − gR0]k(θ).

(32)

Performing calculations analogous to (29) we infer that

(G2h(0)h) (θ)

= lim
s→0

G2(sh)(θ) − G2(0)(θ)

s

=
(
F2
2 (R1 sin θ) + F2(R1 sin θ, θ)R1 sin θ

)
h(θ)

Patm

−
(
F2
1 (R1 sin θ) + F1(R1 sin θ, θ)R1 sin θ

)
h(θ)

Patm

− gR1(ρ2(R1, θ) − ρ1(R1, θ))h(θ)

Patm

= (w2(R1, θ) + �R1 sin θ)2ρ2(R1, θ) − (w1(R1, θ) + �R1 sin θ)2ρ1(R1, θ))

Patm
h(θ)

− gR1(ρ2(R1, θ) − ρ1(R1, θ))

Patm
h(θ).

(33)

If we are to consider G2 as an operator of k, h and P then clearly, G2k(0, 0,P0
1 )k = 0 for

all k. Therefore,

(G1,G2)k,h(0, 0,P0
1 ) =

(
G1k(0, 0,P0

1 ) G1h(0, 0,P0
1 )

G2k(0, 0,P0
1 ) G2h(0, 0,P0

1 )

)
=

(
G1k(0, 0,P0

1 ) 0
0 G2h(0, 0,P0

1 )

)

(34)

as a linear operator from C
([π/2, π/2 + ε]) × C1

([π/2, π/2 + ε]) into itself.

Theorem 3.1 Any sufficiently small perturbationP ofP0
1 gives rise to a unique tuple (k, h) ∈

C
([π/2, π/2+ε])×C1

([π/2, π/2+ε])which satisfies the equation (G1(k, h,P1),G2(h)) =
0.
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Proof To begin with we note that, due to Remark 2.1, we can write

(w2(R1, θ) + �R1 sin θ)2ρ2(R1, θ) − (w1(R1, θ) + �R1 sin θ)2ρ1(R1, θ))

= ρ1(R1, θ)(w2
2 − w2

1 + 2�R1(w2 − w1) sin θ) + ρ1σ(w2(R1, θ) + �R1 sin θ)2

< ρ1(R1, θ)
(
w2(R1, θ)[w2(R1, θ) + 2�R1 sin θ ] + σ(w2(R1, θ) + �R1 sin θ)2

)
< R1 kg · m−2 · s−2.

(35)

On the other hand

gR1(ρ2(R1, θ) − ρ1(R1, θ)) = gR1ρ1σ > 4.9R1 kg · m−2 · s−2 (36)

From (33), (35) and (36) we conclude that there is a negative constant a such that
(G2h(0, 0,P0

1 )h)(θ) ≤ a for all θ ∈ [0, π ]. Consequently, the map

C1([π/2, π/2 + ε]) → C1([π/2, π/2 + ε]),
h �→ G2h(0, 0,P

0
1 )h

(37)

is a linear homeomorphism. On the other hand, since the typical values for velocity in the
ocean do not exceed 4 m·s−1 we see that

(
w(R0, θ) + �R0 sin θ)

)2 is much smaller than
gR0. Hence, we can conclude that there exists b < 0 such that (G1k(0, 0,P0

1 )k)(θ) ≤ b for
all θ ∈ [0, π]. Thus, the map

C
([π/2, π/2 + ε]) → C

([π/2, π/2 + ε]),
k �→ G1k(0, 0,P

0
1 )k

(38)

is a linear homeomorphism. In view of (34), (37) and (38) we can now conclude that
(G1,G2)k,h(0, 0,P0

1 ) is homeomorphism from C
([π/2, π/2 + ε]) × C1

([π/2, π/2 + ε])
into itself. Resorting now to the implicit function theorem [1] delivers the assertion made in
the statement of the theorem. 	


4 Properties of the exact solutions

This section is devoted to the analysis of the exact solutions found in Sect. 3.2. The first result
indicates that our solutions in spherical coordinates present expected physical properties:
while a growth in pressure on the surface leads to a decrease in the free surface height, the
increase in the latter brings about a attenuation of the former.

Remark 4.1 For the next result we will assume that the given pressureP1 on the free surface
is a differentiable function of θ . Then an iterative bootstrapping procedure, cf. [1], ensures
the differentiability of the surface defining function k.

Theorem 4.2 Denoting, as before, with k the function defining the free surface and with P1

the pressure on the latter, we have that

P′
1(θ) < 0 if k′(θ) ≥ 0, (39)

and

k′(θ) < 0 if P′
1(θ) ≥ 0, (40)

for all θ ∈ (
π
2 , π

2 + ε
)
.
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Proof We differentiate with respect to θ in equation (18) and obtain

PatmP
′
1(θ)

=
[
F2
1

(
(1 + k(θ))R0 sin θ

)
1 + k(θ)

+ (R0 sin θ)F1
(
(1 + k(θ))R0 sin θ, θ

)]
k

′
(θ)

− gρ1
(
(1 + k(θ))R0, θ

)
R0k

′
(θ)

+ [
F2
1

(
(1 + k(θ))R0 sin θ

) + (
1 + k(θ))R0 sin θF1

(
(1 + k(θ))R0 sin θ, θ

)]
cot θ

=
[(

w1(R0(1 + k(θ)), θ) + (
�R0(1 + k(θ)) sin θ

)2
1 + k(θ)

− gR0

]
ρ1(R0(1 + k(θ)), θ)k

′
(θ)

+
(
w1(R0(1 + k(θ)), θ) + (

�R0(1 + k(θ)) sin θ
)2

ρ1(R0(1 + k(θ)), θ) cot θ

(41)

where the last equality follows via (5) and (12). The conclusion in the statement of the
theorem emerges now by noticing that

(
w1(R0(1 + k(θ)), θ) + (

�R0(1 + k(θ)) sin θ
)2

1 + k(θ)
− gR0 < 0

for values of w1 that bear relevance on physical grounds. 	


Theorem 4.3 Let us assume that between the two densities ρ1 and ρ2 we have the relation

ρ2 = ρ1(1 + σ), (42)

where τ �→ σ(τ) is a positive function so that σ = O(10−3), cf. [28]. Then the interface
defining function θ �→ h(θ) has one degree of smoothness more than the velocity field. That
is, if F1 and F2 are k-times differentiable, then h ∈ Ck+1

[
π
2 , π

2 + ε
]
. Moreover, if F1 and

F2 are infinitely many times differentiable, then h ∈ C∞ [
π
2 , π

2 + ε
]
.

Proof Differentiating with respect to θ in (14) we obtain the equation

A(θ)h
′
(θ) + B(θ) = 0, (43)

where

A(θ) =
(
w2(R1 + R1h, θ) + �R1(1 + h) sin θ)

)2
1 + h

ρ2(R1 + R1h)

−
(
w1(R1 + R1h, θ) + �R1(1 + h) sin θ)

)2
1 + h

ρ1(R1 + R1h)

− gR1
(
ρ2(R1 + R1h, θ) − ρ1(R1 + R1h, θ)

)
(44)

and

B(θ) = [
F2
2

(
(1 + h)R1 sin θ

) + (1 + h)R1 sin θF2
(
(1 + h)R1 sin θ

)]
cot θ

− [
F2
1

(
(1 + h)R1 sin θ

) + (1 + h)R1 sin θF1
(
(1 + h)R1 sin θ

)]
cot θ.

(45)
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The last part of the proof consists in showing that A(θ) < 0 for all θ ∈ [
π
2 , π

2 + ε
]
. To this

end, we note that assumption (42) yields

A(θ) <
ρ1

1 + h

(
w2
2 + 2�R1(1 + h)w2 sin θ + σ(w2 + �R1(1 + h) sin θ)2

)
− gR1ρ1(R1 + R1h, θ)σ

<R1

[
ρ1

R1

[
w2
2 + 2�R1(1 + h)w2 sin θ + σ(w2 + �R1(1 + h) sin θ)2

] − g

2

] (46)

The expression in the bracket above is negative as we can deduce by taking into account the
size of the physical quantities involved. Hence A(θ) is negative for all θ ∈ [

π
2 , π

2 + ε
]
. An

iterative argument shows now the asserted differentiability of h. 	
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