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Abstract
In this article, we consider positivity issues for the clamped plate equation with high ten-
sion 𝛾 > 0 . This equation is given by Δ2u − �Δu = f  under clamped boundary conditions. 
Here, we show that given a positive f, i.e. upwards pushing, we find a 𝛾

0
> 0 such that for 

all � ≥ �
0
 the bending u is indeed positive. This �

0
 only depends on the domain and the 

ratio of the L1 and L∞ norm of f. In contrast to a recent result by Cassani and Tarsia, our 
approach is valid in all dimensions.
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1 Introduction

The Boggio-Hadamard conjecture states, that for a given convex, open, bounded set 
Ω ⊆ ℝ

n , an f ≥ 0 and outer normal � of Ω , a solution u to

is nonnegative, i.e. u ≥ 0 (cf. [26, 27]). Problem (1.1) models the bending u of a clamped 
plate Ω under a force f. Hence the problem can be restated as:

The conjecture was substantiated by Boggio’s explicit formula [6] (see also [15, Lemma 
2.27] or [28]) for the Greens function of problem (1.1) on the unit disc, because this func-
tion is positive, and furthermore by Almansi’s result to calculate the Greens function for 
certain domains by the Greens function of the unit ball (see [3]).

(1.1)
{

Δ
2u = f in Ω,

u = ��u = 0 on �Ω.

Does upward pushing yield upward bending?
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Several other domains than the disc have been found on which such a positivity preserv-
ing property holds (see the references below). Hadamard himself claimed in [27] that such 
a property for all limaçons is true, which turned out to be wrong in general, though some of 
them still possess this property (see [15, Fig. 1.2]). Remarkable is that such limaçons are not 
convex. In [20], Grunau and Robert showed that positivity preserving is preserved under small 
regular perturbations of the domain in dimensions n ≥ 3.

The conformal invariance of the problem was also successfully used to construct domains 
with a positivity preserving property by, e.g. Dall’Acqua and Sweers in [10] (see also the ref-
erences therein for more information on such domains).

On the other hand, several counterexamples have been found by now. The first one was by 
Duffin on an infinite strip [12] and shortly after Garabedian [14] showed that on an elongated 
ellipse the Greens function changes sign. By now even for uniform forces, i.e. f ≡ 1 , counter-
examples have been found by Grunau and Sweers in [23] and [24]. We refer to [15, Sect. 1.2] 
for a comprehensive historical overview to this problem.

Instead of examining (1.1) for positivity, Cassani and Tarsia in [9] examined positivity 
issues for

with 𝛾 > 0 big enough. The basic motivation is that for � big enough, the influence of Δu 
( −Δu = f  satisfies positivity preserving via the maximum principle) becomes stronger 
than that of Δ2u . In more technical detail Cassani and Tarsia conjectured the existence 
of a �0 = �0(f ,Ω) ≥ 0 , such that u ≥ 0 for all � ≥ �0 and provided a proof for dimensions 
n = 2, 3 , smooth, bounded Ω and positive f ∈ L2(Ω) . In this article we provide a different 
approach, which is valid for all dimensions, see Theorem 1.1.

In dimension n = 1 , this positivity preserving property is true for all 𝛾 > 0 independent of 
f. This was shown by Grunau in [19] Proposition 1.

The parameter � is usually called tension, if it is positive. Several results concerning (1.2) 
have been achieved, which are usually concerned with vibrations of the plate, i.e. eigenvalue 
problems. Bickley gave some explicit calculations for the spectrum in the unit disc in [5] 
already in 1933. Hence the existing literature for these eigenvalue problems is quite vast and is 
still developing, see, e.g. [8, 4] and the references therein.

Other modifications for (1.1) concerning positivity issues are, e.g. changing the boundary 
conditions to so called Steklov conditions. This has been examined by, e.g. Bucur and Gazzola 
in [7].

Different elliptic differential operators of higher order, their respective fundamental solu-
tions and their sign close to a singularity have also been examined by Grunau, Romani and 
Sweers in [22] in a more systematic approach to understand better the loss of positivity 
preserving.

Instead of (1.2), we examine the following boundary value problem for positivity preserv-
ing. This is obviously equivalent, but (1.3) yields the advantage, that the singularity of the 
equation is more prominent and hence yields easier access to necessary estimates.

(1.2)
{

Δ
2u − �Δu = f in Ω,

u = ��u = 0 on �Ω.

(1.3)
{

�2Δ2u� − Δu� = f in Ω,

u� = ��u� = 0 on �Ω.
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Here Ω ⊂⊂ ℝ
n , �Ω ∈ C4 , f ∈ L∞(Ω) and 𝜀 > 0 , and the solution 

u𝜀 ∈ W4,p
(Ω) for all 1 < p < ∞ (see, e.g. [15, Corollary 2.21] and the references therein 

for existence, regularity and uniqueness to (1.3)).

Theorem 1.1 For connected Ω ⊂⊂ ℝ
n , �Ω ∈ C4 , f ∈ L∞(Ω) , 𝜏 > 0, f ≥ 0 with

there exists 𝜀0 = 𝜀0(Ω, 𝜏) > 0 such that

Please note that we do not have any restrictions on the dimension, i.e. n ∈ ℕ arbitrary. Fur-
thermore, our method yields that �0 does not depend on f directly, only on �.

The strategy of the proof is as follows: The limiting problem of (1.3) is

which admits a maximum principle, and establishes positivity of u𝜀 on any Ω� ⊂⊂ Ω for 𝜀 
small.

We proceed by contradiction and assume Theorem 1.1 is false. Hence for every 𝜀 > 0 , we 
find a nonnegative f� ∈ L∞(Ω) satisfying (1.4), such that u� is not positive in Ω.

Then, we examine a blow-up of our solutions u� , which is weighted by the supremum of 
the modulus of the Laplacian at the boundary, i.e. sup�Ω �2|Δu�| . After a careful analysis (see 
Sects. 2 and 3), we can show that this blow-up converges in a suitable sense to a solution 
of Δ2u − Δu = 0 on the half-space with Dirichlet boundary conditions (see Sect. 4). With a 
uniqueness result shown in Appendix A, we explicitly calculate this limit and obtain positivity 
of the Laplacian of u� on the boundary for � small. This is crucial, as in the presence of Dir-
ichlet boundary conditions in (1.3) the Laplacian is the second normal derivative of u� on the 
boundary, and therefore positivity of the Laplacian on the boundary gives positivity of u� close 
to the boundary, see Sect. 4.

Similar strategies of examining a blow-up to the half space and using explicit formulas 
have been employed by Grunau and Robert in [20] and Grunau, Robert and Sweers in [21] to 
show lower bounds for the Greens function of a polyharmonic operator. This method was later 
refined by Pulst in his PhD-thesis [30] to also obtain such estimates, if non-constant lower-
order terms are present. If variable coefficients in the principal part of the operator are given 
by a power of a second-order elliptic linear operator, such estimates were found by the same 
method by Grunau in [18].

Our blow-up strategy needs careful estimates for the singular problem (1.3). Estimates for 
these kinds of problems have a long history, see, e.g. [13, 17, 25] and [29]. We are not aware 
of any specific estimates, which would help in our specific situation. For this reason and for 
the sake of completeness, we derive them here.

(1.4)
�

fdLn
≥ 𝜏 ∥ f ∥L∞(Ω)

> 0,

(1.5)u𝜀 > 0 in Ω for all 0 < 𝜀 ≤ 𝜀0.

{
−Δu = f ≥ 0,≢ 0 in Ω,

u = 0 on �Ω,
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2  Preliminary estimates

We proceed by contradiction and assume we find nonnegative f� ∈ L∞(Ω) for � ↓ 0 sat-
isfying (1.4), such that the solution u� of (1.3) is sign-changing. As (1.3) is homogene-
ous of degree one, we may assume by scaling

By the Banach–Alaoglu Theorem, we get after passing to subsequence and relabelling 
f� → f weakly∗ in L∞(Ω) with

In particular, we have f ≢ 0.
The limiting problem of (1.3) is thought to be the second-order boundary-value 

problem

We also consider

These two problems admit some important estimates:

Proposition 2.1 For u and u0,� in (2.3) rsp. (2.4) we find a constant c0 = c0(Ω, 𝜏) > 0 , such 
that

and

for 𝜀 > 0 small enough.

Proof Both problems admit by standard elliptic theory, see [16] Theorem 9.15, unique solu-
tions u respectively u0,𝜀 ∈ W2,p

(Ω) ↪ C1,𝛼
(Ω) for all 1 < p < ∞ and 1 − (n∕p) > 𝛼 > 0 

with

In particular, the set of all u, u0,� for any f , f� with (2.2) and (2.1) is compact in C1
(Ω) , and 

in particular

and weakly in W2,p
(Ω) for all 1 < p < ∞.

As f , f� ≥ 0, f , f� ≢ 0 and Ω is connected, we get by the strong maximum principle, see 
[16] Theorem 8.19, that

(2.1)0 ≤ f𝜀 ≤ 1 and
�

f𝜀dL
n
≥ 𝜏 > 0.

(2.2)0 ≤ f ≤ 1 and
�

fdLn
≥ 𝜏 > 0.

(2.3)−Δu = f in Ω,

u = 0 on �Ω.

(2.4)
−Δu0,� = f� in Ω,

u0,� = 0 on �Ω.

(2.5)−𝜕𝜈u,−𝜕𝜈u0,𝜀 ≥ c0 > 0 on 𝜕Ω

(2.6)u, u0,� ≥ c0d(., �Ω) on Ω

(2.7)∥ u, u0,𝜀 ∥W2,p(Ω)∩C1,𝛼 (Ω)
≤ C(Ω, p, 𝛼) < ∞ ∀1 < p < ∞, 0 < 𝛼 < 1.

(2.8)u0,𝜀 → u strongly in C1,𝛼
(Ω),∀0 < 𝛼 < 1,
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By Hopf’s maximum principle, see [16] Lemma 3.4, and by compactness of the 
u, u0,� in C

1
(Ω) we find a constant c0 = c0(Ω, 𝜏) > 0 such that (2.5) and (2.6) both hold for 

𝜀 > 0 small enough.

We put v� ∶= u� − u0,� ∈ W2,p
(Ω) ∩ C1,�

(Ω) with v� = 0 on �Ω . Subtracting in (1.3), 
we see

that is �2Δu� − v� is harmonic in Ω.
Equation (2.3) is indeed the limiting problem of (1.3) in the sense of the following 

proposition.

Proposition 2.2 For u�, u, v� = u� − u0,� as in (1.3), (2.1), (2.4), we have

Proof Multiplying (2.10) by v� and integrating by parts, we get

Replacing �2Δ2u� by Δv� in the second term with (2.10), we continue

in particular ∥ ∇v� ∥L2(Ω)≤∥ ∇u0,� ∥L2(Ω)≤ C(Ω) by (2.7), hence

Passing to a subsequence, we get

Multiplying (2.10) by some � ∈ C∞

0
(Ω) and passing to a subsequence, we get

(2.9)u, u0,𝜀 > 0 in Ω.

(2.10)Δ(�
2
Δu� − v�) = 0 in Ω,

(2.11)u� → u, v� → 0 strongly in W
1,2

0
(Ω),

�Δu� → 0 strongly in L2(Ω).

0 =
∫

Ω

Δ(�
2
Δu� − v�)v�dL

n

=
∫

Ω

�
2
(Δ

2u�)u�dL
n
−
∫

Ω

�
2
(Δ

2u�)u0,�dL
n
+
∫

Ω

|∇v�|2dLn.

(2.12)
�

Ω

�
2|Δu�|2dLn

+
�

Ω

|∇v�|2dLn
=
�

Ω

(Δv�)u0,�dL
n

= −
�

Ω

∇v�∇u0,�dL
n
≤∥ ∇v� ∥L2(Ω) ∥ ∇u0,� ∥L2(Ω),

�

Ω

�
2|Δu�|2dLn

+
�

Ω

|∇v�|2dLn
≤
�

Ω

|∇u0,�|2dLn
≤ C(Ω).

v� → v weakly inW
1,2

0
(Ω),

�2Δu� → 0 strongly in L2(Ω).

0 =
∫

Ω

(�
2
Δ

2u� − Δv�)�dL
n
=
∫

Ω

�
2
Δu� ⋅ Δ�dL

n
+
∫

Ω

∇v�∇�dL
n
→

∫

Ω

∇v∇�dLn,



2006 S. Eichmann, R. M. Schätzle 

1 3

and v ∈ W
1,2

0
(Ω) is harmonic in Ω , hence v = 0 and u� → u weakly in W

1,2

0
(Ω) . Returning 

to (2.12), we improve now to

which is (2.11).   ◻

The following proposition shows that the Laplacian cannot be bounded throughout Ω.

Proposition 2.3 For u�, � as in (1.3), (2.1), (2.2), we have for any Ω� ⊂⊂ Ω that

Proof We see for any � ∈ C∞

0
(Ω) with the previous Proposition 2.2

and the homogeneous boundary conditions in (1.3) that

Choosing � ∈ C∞

0
(Ω) with 0 ≤ � ≤ 1 and � ≡ 1 in Ω� , we get

Letting � ↗ �
Ω

 , we get from (2.2) that

and the proposition follows.

3  The Laplacian on the boundary

In this section, we investigate the values of the Laplacian on the boundary and put

With subscripts ±, we denote the positive, respectively, negative part, i.e.

∫

Ω

�
2|Δu�|2dLn

+
∫

Ω

|∇v�|2dLn
= −

∫

Ω

∇v�∇u0,�dL
n
→ 0,

lim inf
𝜀→0 �

Ω⧵Ω�

(Δu𝜀)+dL
n
≥ 𝜏 > 0.

∫
(Δu�)�dL

n
=
∫

u�Δ�dL
n
→

∫
uΔ�dLn

=
∫

(Δu)�dLn
= −

∫
f �dLn

∫
Δu�(1 − �)dL

n
=
∫

Δu�dL
n
−
∫

(Δu�)�dL
n

=
∫

�Ω

��u�darea�Ω −
∫

(Δu�)�dL
n
→

∫
f �dLn.

�

Ω⧵Ω�

(Δu�)+dL
n
≥
�

(Δu�)(1 − �)dL
n
→

�
f �dLn.

�
f 𝜂dLn

→
�

fdLn
≥ 𝜏 > 0,

(3.1)�
−

�
∶= min

�Ω

�
2
Δu� ≤ max

�Ω

�
2
Δu� =∶ �

+

�
.
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Furthermore, we set

The quantity M� will be crucial throughout the exposition. Our goal is to show that it has 
the same asymptotic as � itself, i.e. we find constants c0,C > 0 such that

for 𝜀 > 0 small. A first step in this direction is Proposition 3.3, which will later be improved 
to our desired result in Proposition 4.2 and (4.19).

With the maximum principle, we get the following estimates.

Proposition 3.1 For u�, f�, u0,�, v� = u� − u0,�,�
±

�
 as in (1.3), (2.1), (2.4), (3.1), we have

Proof As v� = u� − u0,� = 0 on �Ω by (1.3) and (2.4), we get (3.4) from (2.10).
Adding (2.4), we see

in particular

Since v� ≥ −�2f� − �
+

� ,+
on �Ω0 , as v� = 0 on �Ω by above, we get from the mean-

value estimate for superharmonic functions or by Alexandroff’s maximum principle, as 
v� ∈ W2,n

(Ω) , see [16] Theorem 9.1, that v� ≥ −�2f� − �
+

� ,+
in Ω0 , hence Ω0 = � , and the 

left estimate in (3.5) follows. The right estimate is obtained by symmetry observing that 
f� ≥ 0.

Next for x ∈ Ω with u�(x) = min
Ω
u� and assuming that this minimum 

is negative, we see x ∈ Ω , as u� = 0 on �Ω by (1.3), hence Δu�(x) ≥ 0 , as 
u𝜀 ∈ W4,p

(Ω) ↪ C2
(Ω) for 2 − (n∕p) > 0 . Then, we get with (3.4) and (2.9) that

which is (3.6).   ◻

Using the fourth-order equation, we get estimates for the Laplacian.

Proposition 3.2 For u�, f�, u0,�, v� = u� − u0,�,�
±

�
 as in (1.3), (2.1), (2.4), (3.1), we have

(3.2)�
±

� ,+
∶= max

(
0,�±

�

)
, �±

� ,−
∶= max

(
0,−�±

�

)
.

(3.3)M� ∶=∥ �
2
Δu� ∥L∞(�Ω)= max(�+

� ,+
,�−

� ,−
).

c0� ≤ M� ≤ C�.

(3.4)�
−

�
≤ �

2
Δu� − v� ≤ �

+

�
in Ω,

(3.5)− �
+

� ,+
− �

2
∥ f� ∥L∞(Ω)

≤ v� ≤ �
−

� ,−
in Ω,

(3.6)u𝜀 > −�
+

𝜀 ,+
in Ω.

�
2
Δv� − v� = −�

2
Δu0,� + �

2
Δu� − v� ≤ �

2f� + �
+

�
in Ω,

𝜀
2
Δv𝜀 < 0 in [v𝜀 < −𝜀

2f𝜀 − �
+

𝜀 ,+
] =∶ Ω0.

−u𝜀(x) ≤ 𝜀
2
Δu𝜀(x) − v𝜀(x) − u0,𝜀(x) < �

+

𝜀
,



2008 S. Eichmann, R. M. Schätzle 

1 3

Proof We have with (1.3) that

and get

Since Δu� ≥ − ∥ f�,+ ∥L∞(Ω)
−�−2�−

� ,−
on �Ω0 , as Δu� ≥ �−2�−

�
≥ −�−2�−

� ,−
on �Ω 

with (3.1), we get from the mean-value estimate for superharmonic functions or by 
Alexandroff’s maximum principle, as Δu� ∈ W2,n

(Ω) , see [16] Theorem  9.1, that 
Δu� ≥ − ∥ f�,+ ∥L∞(Ω)

−�−2�−

� ,−
in Ω0 , hence Ω0 = � , and the left estimate in (3.7) follows. 

The right estimate is obtained by symmetry observing that f� ≥ 0 .   ◻

Here, we can give a preliminary asymptotic estimate for M� . Actually, we will 
improve this asymptotic later in Proposition 4.2 and (4.19). Anyway we present this 
estimate at this stage to get more compact bounds already now.

Proposition 3.3 For u�,M�,�
±

�
 as in (1.3), (2.1), (3.1), (3.3), we have

in particular M𝜀 ≥ �
+

𝜀
= �

+

𝜀 ,+
> 0 for 𝜀 small depending on Ω and �.

Proof Combining Proposition 3.2 (3.7) and Proposition 2.3, we get for any Ω� ⊂⊂ Ω that

hence, as Ln
(Ω ⧵Ω�

) can be made arbitrarily small, that

which yields the assertion.   ◻

With the above asymptotic, we can already bound v� , and we can prove that u is posi-
tive on large parts of Ω.

Proposition 3.4 For u�, u0,�, v� = u� − u0,�,M� as in (1.3), (2.1), (2.2), (2.4), (3.3), we have

Proof Combining Proposition 3.1 (3.5) and Proposition 3.3, we get observing (2.1) that

  ◻

(3.7)−�
−

� ,−
− �

2
∥ f� ∥L∞(Ω)

≤ �
2
Δu� ≤ �

+

� ,+
in Ω.

�
2
Δ

2u� − Δu� = f� in Ω

𝜀
2
Δ(Δu𝜀) < 0 in [Δu𝜀 < − ∥ f𝜀,+ ∥L∞(Ω)

−𝜀
−2
�
−

𝜀 ,−
] =∶ Ω0.

�
−2M� ≥ �

−2
�
+

� ,+
→ ∞.

L
n
(Ω ⧵Ω�

) lim inf
𝜀→0

𝜀
−2
�
+

𝜀 ,+
≥ lim inf

𝜀→0 �

Ω⧵Ω�

(Δu𝜀)+dL
n
≥ 𝜏 > 0,

�
−2
�
+

� ,+
→ ∞,

lim sup
�→0

∥ M�

−1v� ∥L∞(Ω)
≤ 1.

lim sup
�→0

∥ M�

−1v� ∥L∞(Ω)
≤ lim sup

�→0

M�

−1
(M� + �

2
∥ f� ∥L∞(Ω)

) ≤ 1.
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Proposition 3.5 For u�,�±

�
 as in (1.3), (2.1), (3.1), we have

for some C = C(Ω, 𝜏) < ∞ and 𝜀 small depending on Ω and �.

Proof From (2.6), we see for x ∈ Ω with c0d(x, 𝜕Ω) > �
+

𝜀 ,+
+ 𝜀2 ∥ f𝜀 ∥L∞(Ω)

 by (3.5) that

By Proposition 3.3 and (2.1) clearly

for � small, and (3.8) follows for C = 2c−1
0

< ∞ .   ◻

4  Blow‑up

In this section, we consider a blow-up of our solutions u� by translating and rescaling with 
x0,� ∈ ℝ

n . We will have to choose x0,� differently in different steps in the proof of Theo-
rem 1.1. In, e.g. the proof of Claim 1 in the proof of Theorem 1.1, we choose x0,� ∈ �Ω 
such that maxx∈�Ω |�2Δu�(x)| is attained, while in the proof of Claim 2, we choose 
x0,� ∈ �Ω to attain �−

�
 . This will not cause a problem, because the constants yielded by 

these claims do not depend on � . We put

Then

and by (1.3) that

and with (2.1) and Proposition 3.3 that

where o(1) → 0 depending on Ω and � . We extend u𝜀 respectively ũ𝜀 by putting 
0 outside Ω respectively outside Ω̃𝜀 . By the homogeneous boundary conditions in (1.3) 
and (4.3), we see u𝜀, ũ𝜀 ∈ W

2,2

loc
(ℝ

n
).

We also have to stretch ũ𝜀 to get a nontrivial limit, and it turns out that reaching bounded 
values of the Laplacian of ũ𝜀 on the boundary is the right measure for stretching.

Proposition 4.1 For ũ𝜀, f̃𝜀, u𝜀, f𝜀,M𝜀 as in (4.1), (1.3), (2.1), (3.3) and x0,� ∈ �Ω , we get for 
any subsequence with after rotating Ω̃𝜀 such that

(3.8)u𝜀 > 0 in [d(., 𝜕Ω) ≥ C�+

𝜀
] ∩ Ω

u𝜀(x) = v𝜀(x) + u(x) ≥ −�
+

𝜀 ,+
− 𝜀

2
∥ f𝜀 ∥L∞(Ω)

+c0d(x, 𝜕Ω) > 0.

2�+

�
≥ �

+

� ,+
+ �

2
∥ f� ∥L∞(Ω)

(4.1)ũ𝜀(x) ∶= u𝜀(x0,𝜀 + 𝜀x) for x ∈ Ω̃𝜀 ∶= 𝜀
−1
(Ω − x0,𝜀).

(4.2)∇ũ𝜀 = 𝜀∇u𝜀(x0,𝜀 + 𝜀.), Δũ𝜀 = 𝜀
2
Δu𝜀(x0,𝜀 + 𝜀.)

(4.3)
Δ

2ũ𝜀 − Δũ𝜀 = 𝜀2f𝜀(x0,𝜀 + 𝜀.) =∶ f̃𝜀 on Ω̃𝜀,

ũ𝜀, 𝜕𝜈
Ω̃𝜀

ũ𝜀 = 0 on 𝜕Ω̃𝜀

(4.4)∥ f̃𝜀 ∥L∞(Ω̃𝜀)
=∥ f𝜀 ∥L∞(Ω)

𝜀
2
= o(1)M𝜀 for 𝜀 → 0,
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after passing to a subsequence

as � → 0 after flattening the boundary of 𝜕Ω̃𝜀 . Further

Proof We get from Proposition 3.1 (3.6) that

and also outside Ω̃𝜀 , as ũ𝜀 = 0 there. Next by Proposition 3.2 (3.7), Proposition 3.3, (2.1) 
and (4.2) that

Then, ũ𝜀 +M𝜀 ≥ 0 in ℝn , and we can apply the Harnack inequality, see [16] Theorems 
8.17 and 8.18, and get observing that ũ𝜀(0) = 0 , as x0,� ∈ �Ω , that

hence

for � small depending on Ω and �.
Next by Friedrichs’s Theorem in the interior, see [16] Theorem 8.8, [16] Exercise 8.2, 

(4.9) and (4.10) that

for � small depending on Ω and � , which yields the first convergence in (4.6) after passing 
to a subsequence.

Proceeding from (4.3), we get from fourth-order Lp−estimates, see [1, 2] Sect. 10, after 
flattening the boundary of 𝜕Ω̃𝜀 , as �Ω ∈ C4 , with (4.4) and (4.10) that

and � small depending on Ω and � . After passing to a subsequence, we obtain with (4.5) 
the second convergence in (4.6).

Finally (4.7) follows from (4.3), (4.4), (4.8), (4.9), when recalling that ũ𝜀 = 0 in ℝn ⧵Ω𝜀.

(4.5)�
Ω
(x0,�) → −en

(4.6)
M𝜀

−1ũ𝜀 → ũ
∞

weakly in W2,2
(BR(0)) for all R > 0,

M𝜀

−1ũ𝜀 → ũ
∞

weakly in W4,p
(BR(0) ∩ Ω̃𝜀) for all R > 0, 1 < p < ∞

(4.7)

Δ
2ũ

∞
− Δũ

∞
= 0 in ℝn

+
,

ũ
∞
, 𝜕nũ∞ = 0 on ℝn−1

× {0},

ũ
∞
= 0 in ℝ

n ⧵ℝn
+
,

ũ
∞
≥ −1, |Δũ

∞
| ≤ 1 in ℝn.

(4.8)ũ𝜀 ≥ −M𝜀 in Ω̃𝜀

(4.9)∥ Δũ𝜀 ∥L∞(Ω̃𝜀)
=∥ 𝜀

2
Δu𝜀 ∥L∞(Ω)

≤ M𝜀 + 𝜀
2
∥ f𝜀 ∥L∞(Ω)

≤ (1 + o(1))M𝜀.

sup
BR(0)

(ũ𝜀 +M𝜀) ≤ Cn(ũ𝜀 +M𝜀)(0) + Cn,R ∥ Δ(ũ𝜀 +M𝜀) ∥L∞(B2R(0))
≤ Cn,RM𝜀,

(4.10)∥ ũ𝜀 ∥L∞(BR(0))
≤ Cn,RM𝜀

(4.11)∥ ũ𝜀 ∥W2,2(BR(0))
≤ Cn,R

(
∥ Δũ𝜀 ∥L2(B2R(0))

+ ∥ ũ𝜀 ∥L2(B2R(0))

)
≤ Cn,RM𝜀

∥ ũ𝜀 ∥W4,p(BR(0)∩Ω̃𝜀)

≤ Cn,R,p

(
∥ f̃𝜀 ∥L∞(B2R(0)∩Ω̃𝜀)

+ ∥ ũ𝜀 ∥L∞(B2R(0)∩Ω̃𝜀)

)

≤ Cn,R,pM𝜀 ∀R > 0, 1 < p < ∞
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Actually by fourth-order higher-order Lp−estimates, see [1, 2] Sect. 10, we get that the 
blow-up ũ

∞
 is smooth on ℝn

+
.

Now we are able to give a lower bound for M� which improves the asymptotic in Propo-
sition 3.3.

Proposition 4.2 For u�,M� as in (1.3), (2.1), (3.3), we have

for some c0 = c0(Ω, 𝜏) > 0 and 𝜀 small depending on Ω and �.

Proof We see for x� ∈ Ω with |x� − x0,�| = d(x�, �Ω) = � for � small by (2.6), Proposition 
3.4 and by the local boundedness of ũ𝜀 in Proposition 4.1, or more directly by (4.10), for 
x̃𝜀 ∶= (x𝜀 − x0,𝜀)∕𝜀 ∈ B1(0) that

hence

for � small depending on Ω and � .   ◻

The blow-up for u0,� is rather elementary by the strong convergence in C1,�
(Ω) in (2.8). 

As in (4.1), we put

Proposition 4.3 For ũ0,𝜀, u𝜀, u0,𝜀, f𝜀,M𝜀 as in (4.12), (1.3), (2.1), (3.3), and with (4.5), we 
have after passing to a subsequence such that

for some c0 = c0(Ω, 𝜏) > 0 for the linear function ũ0,∞ ∶ (y, t) → 𝛽t that

after flattening the boundary of 𝜕Ω̃𝜀 . Further

in particular ũ
∞
− ũ0,∞ ∈ L∞(ℝn

+
).

Proof From (2.7) and, as u0,� = 0 on �Ω by (2.4), we get by Taylor’s expansion for any 
x ∈ ℝ

n
+
and any 0 < 𝛼 < 1 that

As u0,� = 0 on �Ω by (2.4), we get with (2.8), (4.5) and �Ω ∈ C4 after passing to a subse-
quence with x0,� → x0 ∈ �Ω that

M� ≥ c0�

c0𝜀 ≤ u0,𝜀(x𝜀) = u𝜀(x𝜀) − v𝜀(x𝜀) = ũ𝜀(x̃𝜀) − v𝜀(x𝜀)

≤∥ ũ𝜀 ∥L∞(B1(0))
+ ∥ v𝜀 ∥L∞(Ω)

≤ (Cn,1 + o(1))M𝜀,

M� ≥ c0�

(4.12)ũ0,𝜀(x) ∶= u0,𝜀(x0,𝜀 + 𝜀x) for x ∈ Ω̃𝜀 ∶= 𝜀
−1
(Ω − x0,𝜀).

(4.13)� ← |∇u0,�(x0,�)|�∕M� ≥ c0�∕M� ≥ 0

M𝜀

−1ũ0,𝜀 → ũ0,∞ uniformly in BR(0) ∩ Ω̃𝜀 for all R > 0

(4.14)|ũ
∞
− ũ0,∞| ≤ 1 in ℝ

n
+
,

(4.15)
M𝜀

−1ũ0,𝜀(x) = M𝜀

−1u0,𝜀(x0,𝜀 + 𝜀x) = M𝜀

−1
𝜀∇u0,𝜀(x0,𝜀) ⋅ x +M𝜀

−1O𝛼(𝜀
1+𝛼|x|1+𝛼).
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in particular with (2.5) that

and ∇u0,�(x0,�)∕|∇u0,�(x0,�)| → en . By Proposition 4.2 we extract a subsequence, such that 
�∕M� converges for � ↓ 0 . Then, (2.5) yields

which is (4.13). Furthermore, Proposition 4.2 yields

Together, we get

and the proposed convergence follows from the Taylor expansion (4.15).
Further we get with Proposition 3.4 that

which is (4.14).

By our investigation of half space solutions in Appendix A, Proposition A.3 applied 
to ũ

∞
and ũ0,∞ with Proposition 4.1 (4.7) and Proposition 4.3 (4.14) determines 

ũ
∞

 uniquely as the one-dimensional solution and immediately yields the following 
Proposition.

Proposition 4.4 For ũ
∞

 as in Proposition 4.1 and � as in Proposition 4.3, we have

and

  ◻

Now we are able to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1 We consider u�, f�, u0,�,�±

�
,M� as in (1.3), (2.1), (2.4), (3.1), (3.3) and 

ũ𝜀, f̃𝜀, ũ0,𝜀 as in (4.1), (4.12) with their blow-ups ũ
∞
, ũ0,∞ and 𝛽 obtained in the Propositions 

4.1 and 4.3. We prove various claims.

Claim 1 
hence with Proposition 4.2 that

∇u0,�(x0,�) = ��
Ω

u0,�(x0,�)�Ω(x0,�) → −��
Ω

u(x0)en,

|∇u0,𝜀(x0,𝜀)| → −𝜕𝜈
Ω

u(x0) > 0

� ∶=← |∇u0,�(x0,�)|�∕M� ≥ c0�∕M� ≥ 0,

�
1+�

∕M� → 0.

M�

−1
�∇u0,�(x0,�) → �en,

|ũ
∞
− ũ0,∞| ← |M𝜀

−1ũ𝜀 −M𝜀

−1ũ0,𝜀| ≤ lim sup
𝜀→0

∥ M𝜀

−1v𝜀 ∥L∞(Ω)
≤ 1,

(4.16)ũ
∞
≡ 0, if 𝛽 = 0,

(4.17)Δũ
∞
≡ 𝛽 ≥ 0 in ℝ

n−1
× {0}

(4.18)ũ
∞
> 0 in ℝn

+
, if 𝛽 > 0.

lim inf
𝜀→0

𝜀∕M𝜀 > 0,
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for some c0 = c0(Ω, 𝜏) > 0,C = C(Ω, 𝜏) < ∞ and 𝜀 small depending on Ω and �.

Proof If on contrary �∕M� → 0 for a subsequence � → 0 , then we get from Proposition 4.3 
and (2.7) that � = 0 , hence with Proposition 4.4 (4.16) after passing to this subsequence we 
have that ũ

∞
≡ 0.

On the other hand, choosing x0,� ∈ �Ω in such a way that

we get from the convergence in Proposition 4.1 (4.6) that

hence Δũ
∞
(0) ≠ 0 and ũ

∞
≢ 0 . This is a contradiction, and the claim follows.

Claim 2

for some c1 = c1(Ω, 𝜏) > 0 and 𝜀 small depending on Ω and � and

Proof (4.19) implies with Proposition 4.3 (4.13) that

which immediately gives (4.23) by Proposition 4.4 (4.18).
Next we choose x0,� ∈ �Ω in such a way that

and get as in (4.20) from the convergence in Proposition 4.1 (4.6) and Proposition 4.4 
(4.17) that

and (4.21) follows. Clearly (4.21) implies with (3.1) that

for some c1 > 0 and 𝜀 small, which is (4.22).

Further (4.21) implies that �+

𝜀
≥ �

−

𝜀
> 0 and �

−

𝜀 ,−
= 0 for � small, hence with (3.3) that

for � small depending on Ω and �.

(4.19)c0 ≤ M�∕� ≤ C

|�2Δu�(x0,�)| =∥ �
2
Δu� ∥L∞(�Ω)= M�,

(4.20)1 = M𝜀

−1|𝜀2Δu𝜀(x0,𝜀)| = |M𝜀

−1
Δũ𝜀(0)| → |Δũ

∞
(0)|,

(4.21)lim inf
𝜀→0

M𝜀

−1
�
−

𝜀
> 0,

(4.22)M𝜀

−1
Δũ𝜀 ≥ c1 > 0 on 𝜕Ω̃𝜀

(4.23)ũ
∞
> 0 in ℝn

+
.

𝛽 ≥ c0 lim inf
𝜀→0

𝜀∕M𝜀 > 0,

�
2
Δu�(x0,�) = min

�Ω

�
2
Δu� = �

−

�

M𝜀

−1
�
−

𝜀
= M𝜀

−1
𝜀
2
Δu𝜀(x0,𝜀) = M𝜀

−1
Δũ𝜀(0) → Δũ

∞
(0) = 𝛽 > 0,

M𝜀

−1 inf
𝜕Ω̃𝜀

Δũ𝜀 = M𝜀

−1 inf
𝜕Ω

𝜀
2
Δu𝜀 = M𝜀

−1
�
−

𝜀
≥ c1 > 0

(4.24)M� = max(�+

� ,+
,�−

� ,−
) = �

+

�
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Claim 3

for some C = C(Ω, 𝜏) < ∞ and 𝜀 small depending on Ω and �.

This follows directly from Proposition 3.5, (4.19) and (4.24).

Claim 4

for some c2 = c2(Ω, 𝜏) > 0 and 𝜀 small depending on Ω and �.

By the homogeneous boundary conditions in (1.3), we have Δu�(x0,�) = ���u�(x0,�) , hence 
with (4.22), Proposition 4.1 (4.6) and the embedding W4,p ↪ C3 for 1 − (n∕p) > 0 that

for 0 < t < c1∕(2Cn) < 1 and 𝜀 small. As x0,� ∈ �Ω can be chosen arbitrarily, we get for 
c2 = c1∕(4Cn) that

and the claim follows by rescaling in (4.1).

Claim 5

for � small depending on Ω and �.

Here for any x� ∈ Ω with c2� ≤ d(x�, �Ω) ≤ C� for � small, we select 
x0,� ∈ �Ω with d(x�, �Ω) = |x� − x0,�| and get for x̃𝜀 ∶= 𝜀−1(x𝜀 − x0,𝜀) ∈ Ω̃𝜀 that

Passing to subsequence, we get x̃𝜀 → x̃ with x̃ ∈ ℝ
n
+

 and

hence x̃ ∈ ℝ
n
+
 . Then by Proposition 4.1 (4.6) and (4.23) that

and we conclude that u𝜀(x𝜀) > 0 for 𝜀 small, and the claim follows.
Combining (4.25), (4.26) and (4.27), we get

for � small depending on Ω and � , which proves Theorem 1.1.

(4.25)u𝜀 > 0 in [d(., 𝜕Ω) ≥ C𝜀] ∩ Ω

(4.26)u𝜀 > 0 in [0 < d(., 𝜕Ω) ≤ c2𝜀] ∩ Ω

ũ𝜀(−t𝜈Ω̃𝜀
(0)) ≥

1

2
t2Δũ𝜀(0) − CnM𝜀t

3
≥

1

2
t2M𝜀(c1 − 2Cnt) > 0

ũ𝜀 > 0 in [0 < d(., 𝜕Ω̃𝜀) ≤ c2] ∩ Ω̃𝜀,

(4.27)u𝜀 > 0 in [c2𝜀 ≤ d(., 𝜕Ω) ≤ C𝜀] ∩ Ω

c2 ≤ d(x̃𝜀, 𝜕Ω̃𝜀) = |x̃𝜀| ≤ C.

d(x̃,ℝn−1
× {0}) ≥ c2 > 0,

M𝜀

−1u𝜀(x𝜀) = M𝜀

−1ũ𝜀(x̃𝜀) → ũ
∞
(x̃) > 0,

u𝜀 > 0 in Ω
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Appendix

Uniqueness of a bi‑Laplace equation on the half space

In this section, we show the following uniqueness theorem.

Theorem A.1 Let v ∶ ℝ
n
+
→ ℝ be a smooth solution to

Then, v = 0.

The proof is based on an energy type estimate and on the one-dimensional case. We 
start with the one-dimensional case and show the following lemma:

Lemma A.1 Let v ∈ C4
loc
([0,∞[) satisfy

Then, v = 0.

Proof Since the differential equation is ordinary and linear, the solution space of the equa-
tion itself is of dimension 4. By inserting the following functions, we see that they consti-
tute a basis of the solution space

The following functions are therefore a basis of the solution space including the initial con-
ditions at t = 0:

Hence v has to be of the form

Inserting the exponential function for cosh and sinh yields

Since the solution is bounded, we have A = −B . Again the boundedness then yields B = 0 , 
to rule out linear growth. Hence v = 0.

⎧⎪⎨⎪⎩

Δ
2v − Δv = 0 on ℝ

n
+
,

v = �nv = 0 on ℝ
n−1

× {0},

v ∈ L∞(ℝn
+
).

d4v

dt4
−

d2v

dt2
= 0 on ]0,∞[,

v(0) =
dv

dt
(0) = 0,

v ∈ L∞(]0,∞[).

t ↦ cosh(t), sinh(t), 1, t.

v1(t) = cosh(t) − 1, v2(t) = sinh(t) − t.

v(t) = Av1(t) + Bv2(t) = A(cosh(t) − 1) + B(sinh(t) − t).

v(t) =A

(
et + e−t

2
− 1

)
+ B

(
et − e−t

2
− t

)

=
1

2
(A + B)et +

1

2
(A − B)e−t − A − Bt.
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For our next step, we introduce a bit of notation for half spaces

Next we show an energy type estimate.

Lemma A.2 Let v satisfy

Then, there exists a constant C = C(n) > 0 , such that for all R > 1 we have

Proof Let � ∈ C∞

0
(B2R(0)) with 0 ≤ � ≤ 1 , � = 1 on BR(0) and for any k ≥ 1

i.e. � is a cut-off function for the ball BR(0) . Then, v�4 and its first derivative are zero on 
�B+

2R
 . Therefore, partial integration and the differential equation itself yield

By the previous identity and Young’s inequality with an 𝜀 > 0 we get

Now choosing � small enough, we can absorb the terms with � as a prefactor into the left 
hand side

B+

R
∶= BR(0) ∩ℝ

n
+
⊆ ℝ

n, R > 0.

{
Δ

2v − Δv = 0 on ℝ
n
+
,

v = �nv = 0 on ℝ
n−1

× {0}.

�B+

R

(|Δv|2 + |∇v|2) dLn
≤

C

R2 �B+

2R

(|∇v|2 + v2
)
dLn.

(A.1)|Dk
�| ≤ Ck

Rk
�B2R(0)⧵BR(0)

,

0 =
∫B+

2R

v�4(Δv − Δ
2v) dLn

= −
∫B+

2R

Δ(v�4)Δv dLn
−
∫B+

2R

∇(v�4)∇v dLn

= −
∫B+

2R

(|Δv|2�4 + |∇v|2�4) dLn

−
∫B+

2R

2
(
∇v∇(�4)Δv + vΔ(�4)Δv + v∇v∇(�4)

)
dLn

= −
∫B+

2R

(|Δv|2�4 + |∇v|2�4) dLn

−
∫B+

2R

(
8∇v∇��3Δv + 4vΔvΔ��3 + 12vΔv|∇�|2�2 + 4v∇v∇��3

)
dL

n.

�B+

2R

(|Δv|2�4 + |∇v|2�4) dLn

≤
�B+

2R

(
�|Δv|2�4 + C�|∇v|2|∇�|2�2

+ �|Δv|2�4 + C�v
2|Δ�|2�2

+ �|Δv|2�4 + C�v
2|∇�|4

+ �|∇v|2�4 + C�v
2|∇�|2�2) dLn.
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Together with 0 ≤ � ≤ 1 , the estimates on the derivatives of the cut-off function (A.1) yield

Since we have chosen R > 1 , we obtain

Now we can show our main result Theorem A.1, by iterating Lemma A.2:

Proof of Theorem A.1 Since v is bounded and the differential equation is linear and elliptic, 
we can employ Schauder-type estimates (see [1, Thm. 6.2] and [11, Sect. 4]) to obtain

Let x = (y, t) ∈ ℝ
n
+

 , such that y ∈ ℝ
n−1 and t ≥ 0 . By �k

y
v , we denote any partial deriva-

tive of v of order k only after horizontal directions, i.e. indices in {1,… , n − 1} . Then, for 
every k ∈ ℕ the function �k

y
v ∶ ℝ

n
+
→ ℝ still solves the differential equation, satisfies the 

Dirichlet boundary conditions and by (A.2) is again bounded. Now we can iteratively apply 
Lemma A.2 for k ≥ � ∈ ℕ and obtain

By choosing k = � , (A.2) yields

If k > 2n , this yields for R → ∞:

1

2 �B+

2R

(|Δv|2�4 + |∇v|2�4) dLn

≤ C
�B+

2R

(|∇v|2|∇�|2�2 + v2|Δ�|2�2 + v2|∇�|4 + v2|∇�|2�2) dLn.

�B+

R

(|Δv|2 + |∇v|2) dLn
≤ C

�B+

2R

(
|∇v|2 1

R2
+ v2

1

R4
+ v2

1

R4
+ v2

1

R2

)
dLn.

�B+

R

(|Δv|2 + |∇v|2) dLn
≤

C

R2 �B+

2R

(|∇v|2 + v2
)
dLn.

(A.2)‖v‖
Ck(ℝ

n
+
)
≤ Ck‖v‖L∞(ℝ

n
+
)
< ∞.

�B+

R

|�k
y
v|2 dLn

≤
�B+

R

|∇�k−1
y

v|2 dLn

≤
C

R2 �B+

2R

(
|∇�k−1

y
v|2 + |�k−1

y
v|2

)
dL

n

≤
C

R2 �B+

2R

(
|∇�k−1

y
v|2 + |∇�k−2

y
v|2

)
dL

n

≤
C

R4 �B+

4R

(
|∇�k−1

y
v|2 + |�k−1

y
v|2 + |∇�k−2

y
v|2 + |�k−2

y
v|2

)
dL

n

≤ ⋯ ≤
C
𝓁,k

R2𝓁

𝓁∑
j=1

�B+

2𝓁R

(
|∇�k−j

y
v|2 + |�k−j

y
v|2

)
dL

n.

�B+

R

|�k
y
v|2 dLn

≤
Ck

R2k
L
n
(
B+

2kR

)
≤ CkR

n−2k.
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Hence �k
y
v = 0 . This implies

Therefore �k−1
y

v(y, t) is independent of y ∈ ℝ
n−1 and t ↦ �k−1

y
v(y, t) satisfies the assump-

tions of Lemma A.1. Hence, we also have

Especially we have

for all i = 1,… , n − 1 . Hence again �k−2
y

v(y, t) is independent of y and therefore again satis-
fies the assumptions of Lemma A.1. Iterating this final process yields

which is the desired conclusion.   ◻

Remark: The proof above works, because both Δ2 and −Δ are monotone operators 
which are added correctly. If we would destroy this monotonicity by, e.g. examining 
Δ

2
+ Δ , Theorem A.1 is not true anymore. For example, a bounded nontrivial solution 

to Δ2v + Δv = 0 , is (y, t) ↦ 1 − cos t .   ◻

Proposition A.3 Let u ∶ ℝ
n
+
→ ℝ be a smooth solution of the fourth-order boundary-value 

problem

Furthermore, let u for some � ∈ ℝ and the corresponding linear function u0 ∶ (y, t) ↦ �t 
satisfy

Then, u is one dimensional, that is

in particular

and

Proof We put

∫
ℝ

n
+

|�k
y
v|2 dLn

= 0.

�yi
�
k−1
y

v = 0, for i = 1,… , i − 1.

�
k−1
y

v = 0.

�yi
�
k−2
y

v = 0.

v = 0,

(A.3)
Δ

2u − Δu = 0 in ℝ
n
+
,

u, �nu = 0 on ℝ
n−1

× {0}.

u − u0 ∈ L∞(ℝn
+
).

(A.4)u(y, t) = �(e−t − 1 + t) for y ∈ ℝ
n−1, t ≥ 0,

(A.5)Δu ≡ � in ℝn−1
× {0}

(A.6)u > 0 in ℝn
+
, if 𝛽 > 0.
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and see v ∈ C∞

loc
(ℝ

n
+
) and

Then, the uniqueness in Proposition A.1 gives v ≡ 0 , which is (A.4), and by direct 
calculation

which is (A.5). For 𝛽 > 0 , we get by the strict convexity of the exponential function

which is (A.6).
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