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Abstract
In this paper, we first establish several theorems about the estimation of distance func-
tion on real and strongly convex complex Finsler manifolds and then obtain a Schwarz 
lemma from a strongly convex weakly Kähler-Finsler manifold into a strongly pseudocon-
vex complex Finsler manifold. As applications, we prove that a holomorphic mapping from 
a strongly convex weakly Kähler-Finsler manifold into a strongly pseudoconvex complex 
Finsler manifold is necessary constant under an extra condition. In particular, we prove that 
a holomorphic mapping from a complex Minkowski space into a strongly pseudoconvex 
complex Finsler manifold such that its holomorphic sectional curvature is bounded from 
above by a negative constant is necessary constant.

Keywords Schwarz lemma · Weakly Kähler-Finsler manifold · Flag curvature · 
Holomorphic sectional curvature
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1  Introduction and main results

In complex analysis, the classical Schwarz-Pick lemma [32] states that any holomorphic 
mapping from the unit disk into itself decreases the Poincaré metric. There are various 
kinds of generalizations of the Schwarz-Pick lemma among which the most influential one 
was given by Ahlfors [2], where he generalized the Schwarz lemma to holomorphic map-
pings from the unit disk D into a Riemann surface S endowed with a Riemannian metric 
ds2 with Gauss curvature K ≤ −1 , and proved that the hyperbolic length of any curve in 
D is at least equal to the length of its image. Indeed, Ahlfors revealed a fundamental fact 
that the Schwarz lemma is closely related to the metric geometry of the domain and target 
manifolds, thus opened the door of generalizing Schwarz lemma from the view point of 
differential geometry. The key idea used by Ahlfors in his proof is to compare the pull-back 

 * Chunping Zhong 
 zcp@xmu.edu.cn

 Jun Nie 
 jniemath@126.com

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

http://orcid.org/0000-0002-4374-8604
http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-021-01184-5&domain=pdf


1936 J. Nie, C. Zhong 

1 3

metric under the conformal map with the original hyperbolic metric on the unit disk, and 
then use the fact that the Laplacian of a real function must be nonnegative at the point 
where it attains a local minimum.

Ahlfors’ Schwarz lemma was later generalized by many mathematicians. In 1957-1958, 
Look [29, 30] gave a systematic study of Schwarz lemma and analytic invariants on the 
classic domains, from the viewpoints of both function theoretic and differential geometric. 
The Schwarz lemma has become a powerful tool in geometry and analysis ever since Yau’s 
seminal paper [45] which pushed this classic result in complex analysis to manifolds. The 
general theme of the lemma goes something like this: given a holomorphic map f from a 
complete complex manifold M into a target complex manifold N, assume that M has lower 
curvature bound K1 and N has upper curvature bound by a negative constant K2 < 0 . Then, 
the pull-back via f of the metric of N is dominated by a multiple (which is typically in the 
form K1

K2

 ) of the metric of M, with the multiple given by the curvature bounds. This type of 
results immediately imply Liouville type rigidity results when the multiple becomes zero.

In Yau’s original result [45], M is assumed to be a complete  Kähler  manifold and N is 
another Hermitian manifold, where M has Ricci curvature bounded from below by a constant 
and N has holomorphic bisectional curvature bounded from above by a negative constant K2. 
Shortly after, Rodyden [33] realized that the curvature assumption on the domain could be 
reduced to holomorphic sectional utilizing the symmetry of curvature tensor of Kähler metrics. 
Since then, various generalizations were made to Hermitian and almost Hermitian cases, we 
refer to Chen-Cheng-Lu [7], Greene-Wu [13], Lu-Sun [26], Liu [21], Zuo [50], Tosatti [38], 
Wu-Yau [40], Yang-Zheng [47], Ni [27, 28] and many others. We also refer to Kim and Lee 
[14] and references therein. Note that recently the study of the Schwarz lemma at the boundary 
of various type of domains in ℂn also attracts lots of interests, we refer to Burns-Krantz [4], Liu-
Tang [22–25], Tang-Liu-Lu [36], Tang-Liu-Zhang [37], Wang-Liu-Tang [39], etc.

In [7], Chen, Cheng and Lu established the following Schwarz lemma.

Theorem 1.1 ([7]) Suppose that M is a complete Kähler manifold such that its holomor-
phic sectional curvature is bounded from below by K1 and that its sectional curvature is 
also bounded from below. Suppose that N is a Hermitian manifold whose holomorphic 
sectional curvature is bounded from above by a negative constant K2 . Let f ∶ M → N be 
any holomorphic mapping. Then,

Note that both the metrics ds2
M

 and ds2
N

 in Theorem 1.1 are Hermitian quadratic metrics. 
According to S. S. Chern [9], Finsler geometry is just Riemannian geometry without quad-
ratic restrictions [9]. Thus, complex Finsler geometry is just Hermitian geometry without 
Hermitian quadratic restrictions which contains Hermitian geometry as special case. It is 
known that on any complex manifold, there are natural intrinsic pseudo-metric, i.e., the 
Kobayashi pseudo-metric [15] and the Carathéodory pseudo-metric [5]. In general, how-
ever, they are only complex Finsler metrics in nature and in some special cases these met-
rics are even strongly pseudoconvex complex Finsler metrics in the strict sense of Abate 
and Patrizio [1].

There are three notions of Kählerian in complex Finsler setting [1], that is, strongly 
Kähler-Finsler metric, Kähler-Finsler metric and weakly Kähler-Finsler metric. 
It is proved by Chen and Shen [6] that a Kähler-Finsler metric is actually a strongly 
Kähler-Finsler metric, thus leaving two notions of Käherian in complex Finsler setting. 

(1.1)f ∗ds2
N
≤ K1

K2

ds2
M
.
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There are, however, lots of nontrivial Kähler-Finsler metrics (that is, they are neither 
complex Minkowski metrics nor Kähler metrics). Indeed, let ���2(�) = a

ij
(z)�i�j and 

���2(�) = b
ij
(w)�i�j be two Hermitian metrics on complex manifolds M1 and M2 , respec-

tively. In [44], Xia and Zhong proved that the following Szabó metric

is actually a strongly convex complex Berwald metric on the product manifold 
M = M1 ×M2 for any k ≥ 2 . Moreover, they proved that F� is a strongly convex Kähler-
Finsler metric on M = M1 ×M2 if and only if both (M1,���) and (M2,���) are Kähler mani-
folds. Note that the metrics F� defined by (1.2) are non-Hermitian quadratic for any 
� ∈ (0,+∞) and integer k ≥ 2.

For weakly Kähler-Finsler metrics, we need to mention the fundamental theorem of 
Lempert [19], which states that on any bounded strongly convex domain D ⊂⊂ ℂn with 
smooth boundary, the Kobayashi pseudo-metric and the Carathéodory pseudo-metric 
coincide, and they are strongly pseudoconvex complex Finsler metrics in the sense of 
Abate and Patrizio [1], namely, they are smooth outside of the zero section of the holo-
morphic tangent bundle T1,0D . Moreover, they are weakly Kähler-Finsler metric with 
constant holomorphic sectional curvature −4 . In general, however, these metrics do not 
have explicit formulas on strongly convex domains with smooth boundaries in ℂn . It is 
still open whether the Kobayashi metrics on such domains are Kähler-Finsler metrics, or 
more specifically, Kähler-Berwald metrics?

To construct strongly pseudoconvex complex Finsler metrics with specific prop-
erties, Zhong [49] initiated the study of U(n)-invariant complex Finsler metrics 
F(z, v) =

√
r�(t, s) on U(n)-invariant domains D ⊆ ℂn , here

and proved that a U(n)-invariant complex Finsler metric F =
√
r�(t, s) is a Kähler-Fin-

sler metric if and only if �(t, s) = f (t) + f �(t)s for some positive function f(t) satisfying 
f (t) + tf �(t) > 0 . It was also proved in [49] that a strongly pseudoconvex U(n)-invariant 
complex Finsler metric F =

√
r�(t, s) is a weakly Kähler-Finsler metric if and only if 

�(t, s) satisfies

Very recently, Cui, Guo and Zhou [11] obtained a special solution of (1.3) which are U(n)-
invariant complex Rander metric. They also gave a classification of weakly Kähler-Finsler 
metrics which are U(n)-invariant complex Randers metric and have constant holomorphic 
sectional curvatures.

All of these progress in complex Finsler geometry provide us with nontrivial exam-
ples of strongly pseudoconvex (even strongly convex) Kähler-Finsler metrics and weakly 
Kähler-Finsler metrics (they are nontrivial in the sense that they are non-Hermitian 
quadratic metrics), some of which even enjoy a very nice curvature property. Recently, 
there are several important progress investigating related problem in complex Finsler 
geometry with the assumption that the complex Finsler metric is a strongly pseudoc-
onvex (or strongly convex) Kähler-Finsler metric or weakly Kähler-Finsler metric, we 
refer to [8, 20, 48] for more details.

(1.2)F� =

√
���2(�) + ���2(�) + �(���2k(�) + ���2k(�))

1

k , � ∈ (0,+∞)

r = ‖v‖2, t = ‖z‖2, s =
�⟨z, v⟩�2

r
, ∀(z, v) ∈ T1,0D,

(1.3)
(� − s�s)[� + (t − s)�s][�s − �t + s(�st + �ss)] + s(t − s)�ss[�(�s − �t) + s�s(�t + �s)] = 0.
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Therefore, a very natural and interesting question in complex Finsler geometry one may 
ask is whether it is possible to generalize Theorem 1.1 to more general complex metric 
spaces, i.e., to establish Schwarz lemmas between two strongly pseudoconvex complex 
Finsler manifolds. Especially when the domain manifold is endowed with a strongly pseu-
doconvex Kähler-Finsler metric or weakly Kähler-Finsler metric and the target manifold is 
endowed with a general strongly pseudoconvex complex Finsler metric.

In [34], Shen and Shen obtained a Schwarz lemma from a compact complex Finsler 
manifold with holomorphic sectional curvature bounded from below by a negative con-
stant into another complex Finsler manifold with holomorphic sectional curvature bounded 
above by a negative constant. In the case that the domain manifold is non-compact, Wan 
[41] obtained a Schwarz lemma from a complete Riemann surface with curvature bounded 
from below by a constant into a complex Finsler manifold with holomorphic sectional cur-
vature bounded from above by a negative constant. The general case, i.e., when the domain 
manifold is a complete non-compact complex manifold endowed with a strongly pseudo-
convex complex Finsler manifold, however, is still open. It seems that the method used in 
[41] does not work when the domain manifold has complex dimension ≥ 2.

As a first step toward the above question, Nie and Zhong [31] considered the case that 
the domain manifold is a Kähler manifold and the target manifold is a strongly pseudocon-
vex complex Finsler manifold and obtained the following Schwarz lemma (cf. Theorem 1.1 
in [31]).

Theorem  1.2 ([31]) Suppose that (M, ds2
M
) is a complete Kähler manifold such that its 

holomorphic sectional curvature is bounded from below by a constant K1 and its radial 
sectional curvature is also bounded from below. Suppose that (N, H) is a strongly pseudoc-
onvex complex Finsler manifold whose holomorphic sectional curvature is bounded above 
by a negative constant K2 . Let f ∶ M → N be a holomorphic mapping. Then,

In this paper, we go a further step toward this question, and we generalize Theorem 1.2 
to the case that the domain manifold M is a complete strongly convex weakly Kähler-Fin-
sler manifold. We first establish the following theorem which relates the real Hessian of the 
distance function �(x) of a real Finsler metric G on a smooth manifold M with the radial 
flag curvature of G.

Theorem 1.3 (cf. Theorem 3.1) Suppose that (M, G) is a real Finsler manifold with a pole 
p such that its radial flag curvature is bounded from below by a negative constant −K2 . 
Suppose that � ∶ [0, r] → M is a normal geodesic with �(0) = p such that �(r) = x ≠ p . 
Denote the distance function from p to x by �(x) . Then, the Hessian of � satisfies

where u = ui
�

�xi
∈ TxM is a unit vector.

Using Theorem 1.3, we obtain the following corollary.

Corollary 1.1 (cf. Corollary 3.2) Suppose that (M, G) is a real Finsler manifold with a pole 
p such that its radial flag curvature is bounded from below by a negative constant −K2 . 

(1.4)(f ∗H)(z;dz) ≤ K1

K2

ds2
M
.

H(�)(u, u)(x) ≤ 1

�
+ K,
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Suppose that � ∶ [0, r] → M is a normal geodesic with �(0) = p such that �(r) = x ≠ p . 
Denote the distance function from p to x by �(x) . Then with respect to the normal coordi-
nates at the point x,

If M is a complex manifold endowed with a strongly convex complex Finsler metric 
G, that is, G is simultaneously a real Finsler metric on M when one ignores its complex 
structure, then by Lemma  4.1and  4.2, we are able to establish the following theorem 
which gives an estimation of the Levi-form of the distance function �(z) in terms of the 
radial flag curvature of a strongly convex weakly Kähler-Finsler metric. The following 
theorem plays an important role in the proof of the main theorem in this paper.

Theorem 1.4 (cf. Theorem 4.1) Suppose that (M, G) is a strongly convex weakly Kähler-
Finsler manifold with a pole p such that its radial flag curvature is bounded from below by 
a negative constant −K2 . Suppose that � ∶ [0, r] → M is a geodesic with G(�̇�) ≡ 1 such that 
�(0) = p and �(r) = z ≠ p . Denote the distance function from p to z by �(z) . Then

where v = v�
�

�z�
=

1

2
(u −

√
−1Ju) ∈ T1,0

z
M is a unit vector and u = ui

�

�xi
∈ TxM.

Using Theorem  1.4, we are able to establish the main theorem in this paper as 
follows.

Theorem 1.5 (cf. Theorem 6.2) Suppose that (M, G) is a complete strongly convex weakly 
Kähler-Finsler manifold such that its radial flag curvature is bounded from below and its 
holomorphic sectional curvature KG is bounded from below by a constant K1 ≤ 0 . Suppose 
that (N, H) is a strongly pseudoconvex complex Finsler manifold such that its holomorphic 
sectional curvature KH is bounded from above by a constant K2 < 0 . Let f ∶ M → N be a 
holomorphic mapping. Then

Remark 1.1 If (M,  G) come from Kähler manifolds, then Theorem  1.5 is exactly Theo-
rem 1.1 in [31].

As an immediate application of Theorem 1.5, if the complex Finsler metric H on N 
comes from a Hermitian metric, then we obtain a Schwarz lemma from a strongly con-
vex weakly Kähler-Finsler manifold into a Hermitian manifold.

Corollary 1.2 (cf. Corollary 7.3) Suppose that (M, G) is a complete strongly convex weakly 
Kähler-Finsler manifold such that its radial flag curvature is bounded from below and its 
holomorphic sectional curvature KG is bounded from below by a constant K1 ≤ 0 . Suppose 
that (N, ds2

N
) is a Hermitian manifold such that its holomorphic sectional curvature KH is 

bounded from above by a constant K2 < 0 . Let f ∶ M → N be a holomorphic mapping. 
Then,

�2�2

�xi�xj
uiuj ≤ 2(2 + �K).

𝜕2𝜌2

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 ≤ (2 + 𝜌K),

(f ∗H)(z;dz) ≤ K1

K2

G(z;dz).
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As a simple application of Theorem  1.5, we obtain the following corollaries about the 
existence of non-constant holomorphic mapping between two complex Finsler manifolds.

Corollary 1.3 (cf. Corollary 7.1) Suppose that (M, G) is a complete strongly complete con-
vex weakly Kähler-Finsler manifold such that its radial flag curvature is bounded from 
below and its holomorphic sectional curvature is non-negative. Suppose that (N, H) is a 
strongly pseudoconvex complex Finsler manifold such that its holomorphic sectional cur-
vature KH is bounded from above by a constant K2 < 0 . Then, any holomorphic mapping f 
from M into N is a constant.

To illustrate Corollary 1.3, we give a concrete example as follows.

Example 1.1 (cf. Corollary 7.2) Suppose that (ℂn,G) is a complex Minkowski space. Sup-
pose that (N, H) is a strongly pseudoconvex complex Finsler manifold such that its holo-
morphic sectional curvature is bounded from above by a negative constant K2 . Then, any 
holomorphic mapping f from ℂn into N is a constant.

Remark 1.2 If (N, H) is a Hermitian manifold, it follows immediately that a holomorphic 
mapping from a complex Minkowski space into a Hermitian manifold with holomorphic 
sectional curvature bounded from above a negative constant is necessary a constant.

2  Preliminaries for Finsler geometry

In this section, we shall recall some basic definitions and facts on real and complex Finsler 
geometry. We refer to [1, 3] for more details.

2.1  Real Finsler geometry

Let M be a smooth manifold of real dimension n, and � ∶ TM → M be the tangent bundle of 
M. Let x = (x1,⋯ , xn) be a local coordinate system on an open set U ⊂ M , then a tangent vec-
tor u at the point x ∈ M can be written as

where the Einstein’s sum convention is used throughout this paper. So that we can use 
(x;u) = (x1,⋯ , xn;u1,⋯ , un) as local coordinate system on U = 𝜋−1(U) ⊂ TM . We denote 
by M̃ ∶= TM ⧵ {o} the complement of the zero section in TM. Then

gives a local frame field of the tangent bundle TM̃ over U.

f ∗ds2
N
≤ K1

K2

G(z;dz).

u = ui
�

�xi
∈ TxM,

{
𝜕i ∶=

𝜕

𝜕xi
, �̇�i ∶=

𝜕

𝜕ui

}n

i=1
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Definition 2.1 ([1]) A (real) Finsler metric on M is a continuous function 
G ∶ TM → [0,+∞) satisfying the following properties: 

 (i) G is smooth on M̃;
 (ii) G(x; u) ≥ 0 for all u ∈ TxM and x ∈ M , and G(x; u) = 0 if and only if u = 0;
 (iii) G(x;�u) = |�|2G(x;u) for all u ∈ TxM and � ∈ ℝ;
 (iv) The fundamental tensor matrix (gij) , where 

 is positive definite on M̃.

A manifold M endowed with a (real) Finsler metric G is called a (real) Finsler manifold. 
Note that by definition the smoothness of G is only asked on M̃ . In fact, a real Finsler met-
ric G is smooth on the whole TM if and only if it comes from a Riemannian metric [1].

Using the projection � ∶ TM → M , one can define the vertical bundle as

It is clear that {�̇�1,… , �̇�n} is a local frame for V . The horizontal bundle is a subbundle 
H ⊂ TM̃ such that

A local frame field for H is given by {�1,… , �n} , where

Here in (2.1), we have denoted

By Definition 2.1, one can introduce a Riemannian structure ⟨⋅�…⟩ on V by setting

Let D ∶ X(V) → X(T∗M̃ ⊗ V) be the Cartan connection associated to G. Its connection 
1-forms are given by

where

and �k = duk + Γk
;l
dxl . Let �u ∶ T�(u)M → Hu be the horizontal lift of a vector locally 

defined by �u(�i|�(u)) = �i|u . Then, the radial horizontal vector field � ∶ TM → H is 
defined by �(u) = �u(u).

Using the horizontal map Θ ∶ V → H which is locally defined by Θ(�̇�i) = 𝛿i , one can 
transfer the Riemannian structure ⟨⋅�⋅⟩ from V to H just by setting

gij ∶=
1

2
Gij =

1

2

�2G

�ui�uj

V = kerd𝜋 ⊂ M̃.

TM̃ = H⊕ V.

(2.1)�i = �i − Γ
j

;i
�j, i = 1,… , n.

(2.2)Γ
j

∶i
=
1

2
Gjk[Gki;bu

b + Gk;i − Gi;k] − Γ
j

i;k
Gkl[Gl;bu

b − G;l].

∀V ,W ∈ Vu, ⟨V�W⟩u =
1

2
Gij(u)V

iWj.

�
j

i
= Γ

j

i;k
dxk + Γ

j

ik
�k,

Γ
j

i;k
=

1

2
Gjl[�k(Gil) + �i(Glk) − �l(Gik)], Γ

j

ik
=

1

2
GjlGikl
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Thus, one can then define a Riemannian metric, still denoted by ⟨⋅�⋅⟩ on the whole TM̃ , just 
by asking for H to be orthogonal to V . Using Θ , one can introduce a linear connection (still 
denoted by D) on H by setting

Thus, one can extend and obtain a good linear connection on V to a linear connection on 
TM̃ . It is then easy to check that

for all X, Y , Z ∈ X(TM̃).
Let ∇ ∶ X(TM̃) × X(TM̃) → X(TM̃) be the covariant differentiation that associated to 

the Cartan connection D. Its curvature Ω is given by

for all X, Y , Z ∈ X(TM̃).
Now we are in a position to introduce the flag curvature in real Finsler geometry. It 

is a natural generalization of the sectional curvature in Riemannian geometry. Given 
x ∈ M , a flag in the tangent space TxM is a pair (P, u), where P is a two-dimensional 
subspace (tangent plane) of TxM such that 0 ≠ u ∈ P and P = span {u,X} . The flag cur-
vature KG(P, u) is given by

where XH is the horizontal lifting of X ∈ TxM and ⟨⋅�⋅⟩u is the Riemannian metric on Hu 
induced by the fundamental metric tensor (gij) of G.

Let � ∶ [0, r] → M be a regular curve, and � a vector field along � . We say that � 
is parallel along � if ∇TH�H = 0 , where T = �̇� . The length of the regular curve � with 
respect to the Finsler metric is given by

If Σ(s, t) ∶ (−�, �) × [0, r] → M is a regular variation of � , we can define the function 
lΣ ∶ (−�, �) → [0,+∞) by lΣ(s) = L(�s) , where �s(t) = Σ(s, t) . By Corollary 1.5.2 in [1], we 
know that � is a geodesic if dlΣ

ds
(0) = 0 , that is ∇THTH=0, where T = �̇�.

Theorem  2.1 ([1]) Let G ∶ TM → [0,+∞) be a Finsler metric on a manifold M. Take a 
geodesic �0 ∶ [0, r] → M , with G(�̇�0) ≡ 1 , and let Σ ∶ (−�, �) × [0, r] → M be a regular 
variation of �0 . Then

∀H,K ∈ H, ⟨H�K⟩ = ⟨Θ−1(H)�Θ−1(K)⟩.

∀H ∈ X(H), DH = Θ(D(Θ−1(H))).

X⟨Y�Z⟩ = ⟨DXY�Z⟩ + ⟨Y�DXZ⟩

Ω(X, Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z

KG(P, u) = KG(u,X) =
⟨Ω(XH ,�(u))�(u)�XH⟩u

⟨�(u)��(u)⟩u⟨XH�XH⟩u − ⟨�(u)�XH⟩2
u

=
⟨Ω(�(u),XH)XH��(u)⟩u

⟨�(u)��(u)⟩u⟨XH�XH⟩u − ⟨�(u)�XH⟩2
u

,

L(𝛾) = ∫
r

0

(G(�̇�(t)))
1

2 dt.
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where ‖H‖2 = ⟨H�H⟩u for all u ∈ M̃ , H ∈ Hu and T = �̇� ,U = Σ∗(
𝜕

𝜕s
)|s=0 . In particular, if 

the variation Σ is fixed we have

Remark 2.1 By Lemma 4.1.1 in [10] and the linearly parallel translations are the same with 
the parallel translations for a real Finsler manifold, ⟨UH�TH⟩�̇�0 = g�̇�0 (U, T) is a constant. 
Therefore, we have

A vector field J along � is called a Jacobi field if it satisfies the following equation:

where T = �̇� , TH(�̇�) = 𝜒(�̇�) and JH(t) = 𝜒�̇� (J(t)) . The set of all Jacobi fields along � will be 
denoted by J(�) . A proper Jacobi field is a J ∈ J(�) such that

Denote by J0(�) the set of all proper Jacobi fields along �.
Let � ∶ [0, r] → M be a normal geodesic in a real Finsler manifold (M, G); we shall 

denote by X[0, r] the space of all piecewise smooth vector fields � along � such that

where T = �̇� . Moreover, we shall denote by X0[0, r] the subspace of all � ∈ X[0, r] such 
that �(0) = �(r) = 0.

Definition 2.2 ([1]) The Morse index form I = Ir
0
∶ X[0, r] × X[0, r] → ℝ of the normal 

geodesic � ∶ [0, r] → M is the symmetric bilinear form

for all �, � ∈ X[0, r] , where T = �̇�.

Remark 2.2 Note that, if ⟨∇UHUH(0)�TH(0)⟩ = ⟨∇UHUH(r)�TH(r)⟩ = 0 and U ∈ X[0, r] is 
the transversal vector of a regular variation Σ of � , then by Theorem 2.1 we have

d2lΣ

ds2
(0) = ⟨∇UHU

H�TH⟩�̇�0 �
r
0

+ ∫
r

0

�
‖∇THU

H‖2
�̇�0
− ⟨Ω(TH ,UH)UH�TH⟩�̇�0 −

���
𝜕

𝜕t
⟨UH�TH⟩�̇�0

���
2�
dt,

d2lΣ

ds2
(0) = ∫

r

0

�
‖∇THU

H‖2
�̇�0
− ⟨Ω(TH ,UH)UH�TH⟩�̇�0 −

���
𝜕

𝜕t
⟨UH�TH⟩�̇�0

���
2�
dt.

d2lΣ

ds2
(0) = ∫

r

0

[‖∇THU
H‖2

�̇�0
− ⟨Ω(TH ,UH)UH�TH⟩�̇�0 ]dt.

∇TH∇TH J
H − Ω(TH ,UH)TH ≡ 0,

⟨JH�TH⟩T ≡ 0.

⟨�H�TH⟩T ≡ 0,

I(�, �) = ∫
r

0

[⟨∇TH�
H�∇TH�

H⟩T − ⟨Ω(TH , �H)�H�TH⟩T ]dt

I(U,U) =
d2lΣ

ds2
(0).
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2.2  Complex Finsler geometry

Let M be a complex manifold of complex dimension n. Let {z1,⋯ , zn} be a set of local 
complex coordinates, and let { �

�z�
}1≤�≤n be the corresponding natural frame of T1,0M . So 

that any nonzero element in M̃ = T1,0M ⧵ {zero section} can be written as

where we also use the Einstein’s sum convention. In this way, one gets a local coordinate 
system on the complex manifold M̃:

In this paper, we still denote a complex Finsler metric by G, depending on the actual 
situation.

Definition 2.3 ([1, 16]) A complex Finsler metric G on a complex manifold M is a con-
tinuous function G ∶ T1,0M → [0,+∞) satisfying 

 (i) G is smooth on M̃ ∶= T1,0M ⧵ { zero section };
 (ii) G(z;v) ≥ 0 for all v ∈ T1,0

z
M with z ∈ M , and G(z;v) = 0 if and only if v = 0;

 (iii) G(z;�v) = |� |2G(z;v) for all v ∈ T1,0
z

M and � ∈ ℂ.

Definition 2.4 ([1, 16]) A complex Finsler metric G is called strongly pseudoconvex if the 
Levi matrix

is positive definite on M̃.

Remark 2.3 ([1]) Any C∞ Hermitian metric on a complex manifold M is naturally a 
strongly pseudoconvex complex Finsler metric. Conversely, if a complex Finsler metric G 
on a complex manifold M is C∞ over the whole holomorphic tangent bundle T1,0M , then it 
is necessary a C∞ Hermitian metric. That is, for any (z; v) ∈ T1,0M

for a C∞ Hermitian tensor g
��

 on M. For this reason, in general, the non-trivial (non-Her-
mitian quadratic) examples of complex Finsler metrics are only required to be smooth over 
the slit holomorphic tangent bundle M̃.

In the following, we follow the notions in Abate and Patrizio [1]. We shall denote by 
indexes like �, � and so on the derivatives with respect to the v-coordinates; for instance,

On the other hand, the derivatives with respect to the z-coordinates will be denoted by 
indexes after a semicolon; for instance,

v = v𝛼
𝜕

𝜕z𝛼
∈ M̃,

(z;v) = (z1,⋯ , zn;v1,⋯ , vn).

(G
��
) =

(
�2G

�v��v
�

)

G(z; v) = g
��
(z)v�v

�

G
��

=
�2G

�v��v
�
.
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Let G ∶ T1,0M → [0,+∞) be a complex Finsler metric on a complex manifold M. To G, we 
may associate a function G◦ ∶ TM → [0,+∞) just by setting

where ◦ ∶ TM → T1,0M is an ℝ-isomorphism given by

where J is the canonical complex structure on M.
Correspondingly, the inverse ◦ ∶ T1,0M → TM is given by

where v̄ denotes the complex conjugation of v.

Definition 2.5 ([1]) A complex Finsler metric G is called strongly convex if G◦ is a real 
Finsler metric on M (considered as a smooth manifold of real dimension 2n).

Using the projective map � ∶ T1,0M → M , which is a holomorphic mapping, one can 
define the holomorphic vertical bundle

It is obvious that { �

�v1
,⋯ ,

�

�vn
} is a local frame for V1,0.

The complex horizontal bundle of type (1, 0) is a complex subbundle H1,0 ⊂ T1,0M̃ 
such that

Note that {�1,⋯ , �n} is a local frame for H1,0 , where

Here and in the following, we write �� ∶=
�

�z�
 and �̇�𝛽 ∶=

𝜕

𝜕v𝛽
.

For a holomorphic vector bundle whose fiber metric is a Hermitian metric, there 
is naturally associated a unique complex linear connection (the Chern connection or 
Hermitian connection) with respect to which the metric tensor is parallel. Since each 
strongly pseudoconvex complex Finsler metric G on a complex manifold M naturally 
induces a Hermitian metric on the holomorphic vertical bundle V1,0 . It follows that there 
exists a unique good complex vertical connection D ∶ X(V1,0) → X(T∗

ℂ
M̃ ⊗ V

1,0) com-
patible with the Hermitian structure in V1,0 . This connection is called the Chern-Finsler 
connection (see [1]). The connection 1-form are given by

where

G;�� =
�2G

�z��z
� or G�; � =

�2G

�z
�
�v�

.

G◦(u) = G(u◦), ∀u ∈ TM,

u◦ =
1

2
(u − iJu), ∀u ∈ TM,

v◦ = v + v̄, ∀v ∈ T1,0M,

V
1,0 ∶= ker d𝜋 ⊂ T1,0M̃.

T1,0M̃ = H
1,0 ⊕ V

1,0.

𝛿𝛼 = 𝜕𝛼 − Γ𝛽
;𝛼
�̇�𝛽 , Γ𝛽

;𝛼
∶= G𝛽𝛾G𝛾;𝛼 .

��
�
∶= G���G�� = Γ�

�;�
dz� + Γ�

��
�� ,
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Let

be the local expression of the (2, 0)-torsion � = ���� for the Chern-Finsler connection.

Definition 2.6 ([1]) In local coordinates, a complex Finsler metric G is called strongly 
Kähler if Γ�

�;�
= Γ�

�;�
 ; it is called Kähler if [Γ�

�;�
− Γ�

�;�
]v� = 0 ; it is called weakly Kähler if 

G�[Γ
�
�;�

− Γ�
�;�

]v� = 0.

Remark 2.4 In [6], Chen and Shen proved that a complex Finsler metric G is a Kähler-Fin-
sler metric if and only if it is a strongly Kähler-Finsler metric, thus leaving two notions of 
Kählerian in complex Finsler setting. We also point it out here that the notions of Kähler-
Finsler metric and weakly Kähler-Finsler metric are not equivalent since there are indeed 
examples which are weakly Kähler-Finsler metrics but not Kähler-Finsler metrics [11].

In this paper, we only consider strongly pseudoconvex complex Finsler metrics on 
a complex manifold M. The curvature form of the Chern-Finsler connection can be 
expressed as

where

Definition 2.7 ([1]) Let 𝜇 = gd𝜁 ⊗ d𝜁 be a Hermitian metric defined in a neighborhood of 
the origin in ℂ . Then, the Gaussian curvature K(�)(0) of � at the origin is given by

where Δ denotes the usual Laplacian

For a strongly pseudoconvex complex Finsler metric G on M, one can also introduce 
the notion of holomorphic sectional curvature.

Γ�
�;�

= G����(G�� ), Γ�
��

= G��G��� , �� = dv� + Γ�
;�
dz�.

�� =
1

2
[Γ�

�;�
− Γ�

�;�
]dz� ∧ dz� + Γ�

��
�� ∧ dz�

Ω�
�
∶= R�

�;��
dz� ∧ dz

�
+ R�

��;�
�� ∧ dz

�
+ R�

��;�
dz� ∧ �� + R�

���
�� ∧ �� ,

R𝛼

𝛽;𝜇𝜈
= − 𝛿𝜈(Γ

𝛼
𝛽;𝜇

) − Γ𝛼
𝛽𝜎
𝛿𝜈(Γ

𝜎
;𝜇
),

R𝛼

𝛽𝛿;𝜈
= − 𝛿𝜈(Γ

𝛼
𝛽𝛿
),

R𝛼

𝛽𝛾;𝜇
= − �̇�𝛾 (Γ

𝛼
𝛽;𝜇

) − Γ𝛼
𝛽𝜎
Γ𝜎

𝛾;𝜇
,

R𝛼

𝛽𝛿𝛾
= − �̇�𝛾 (Γ

𝛼
𝛽𝛿
).

K(�)(0) = −
1

2g(0)
(Δ log g)(0),

Δu = 4
𝜕2u

𝜕𝜁𝜕𝜁
.
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Definition 2.8 ([1]) Let(M, G) be a strongly pseudoconvex complex Finsler metric on a 
complex manifold M, and take v ∈ M̃ . Then, the holomorphic sectional curvature KG(v) of 
G along v is given by

where � = v��� is the complex radial horizontal vector field and Ω is the curvature tensor 
of the Chern-Finsler connection associated to (M, G).

In complex Finsler geometry, Abate and Patrizio [1] (see also Wong and Wu [42]) 
proved that the holomorphic sectional curvature of G at a point z ∈ M along a tangent 
direction v ∈ T1,0

z
M is the maximum of the Gaussian curvatures of the induced Hermitian 

metrics among all complex curves in M which pass through z and tangent at z in the direc-
tion v.

Lemma 2.1 ([1, 42]) Let (M, G) be a complex Finsler manifold, v ∈ T1,0
z

M be a nonzero 
tangent vector tangent at a point z ∈ M . Let C be the set of complex curves in M passing 
through z which are tangent to v at z. Then, the holomorphic sectional curvature KG(v) of 
G satisfies the condition

where K(S) is the Gaussian curvature of the complex curve S with the induced metric.

3  The estimation of the distance function on real Finsler manifolds

In this section, we follow the notations in [1, 35]. We first introduce the definition of Hes-
sian in real Finsler geometry. Then, we obtain an estimation of the distance function �(x) 
of a real Finsler metric G and an equality which establishes a relationship between the 
Hessian of the distance function associated to G and the Morse index form on a real Finsler 
manifold (M, G), see Proposition 3.1. Basing on this, we obtain an inequality which relates 
the real Hessian of the distance function �(x) and the radial flag curvature of the real Fin-
sler metric G, see Theorem 3.1.

Now, we introduce the definition of Hessian in real Finsler geometry. The main ideas 
come from Shen (see [35]) and the corresponding definition in Riemannian case. Let 
(M, G) be a real Finsler manifold and let f be a smooth function on M. The Legendre trans-
form � ∶ TM → T∗M is defined by

Then, the gradient of f is defined by ∇̂f = �−1(df ) (see [35]). Therefore we have

By the properties of the Legendre transform � , it is easy to check that

KG(v) = KG(𝜒(v)) =
2

G(v)2
⟨Ω(𝜒 , �̄�)𝜒 ,𝜒⟩v,

KG(v) = max
S∈C

K(S)(z),

𝓁(Y) =

�
⟨YH� ⋅H⟩Y , if Y ≠ 0;

0, if Y = 0.

df (X) = ⟨(∇̂f )H�XH⟩∇̂f .
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In local coordinates, ∇̂f  can be expressed by

Then, in Mf ∶= {x ∈ M|df (x) ≠ 0} , the Hessian of f is defined as (see [43]):

where D is the Cartan connection of G. It is easy to see that H(f) is symmetric, and it can 
be written as

Definition 3.1 ([1, 20]) (M, G) is called a real Finsler manifold with a pole p if the expo-
nential map expp ∶ TpM → M is an E-diffeomorphism at p.

Remark 3.1 If (M,  G) is a real Berwald manifold, we know that expp ∶ TpM → M is a 
smooth map (see [3]). Therefore we say (M, G) is a real Berwald manifold with a pole p if 
the exponential map expp ∶ TpM → M is an diffeomorphism at p.

Given a real Finsler manifold M with a pole p, the radial vector field is the unit vector 
field T defined on M − {p} , such that for any x ∈ M − {p} , T(x) is the unit vector tangent 
to the unique geodesic joining p to x and pointing away from p. A plane � in TxM is called 
a radial plane if � contains T(x). By the radial flag curvature of a real Finsler manifold 
(M, G), we mean the restriction of the flag curvature function to all the radial planes, we 
refer to [20] for more details. Note that if M possess a pole p, then it is complete. In this 
case, we denote the distance function from p to x by �(x) . By Proposition 6.4.2 in [3], we 
know that that �2(x) is smooth on M − {p} . The following proposition was actually out-
lined and used in Li and Qiu [20]. We single it out and give a brief proof here since we 
need it to prove Theorem 3.1.

Proposition 3.1 Let (M, G) be a real Finsler manifold with a pole p. Let � ∶ [0, r] → M be 
a normal geodesic with �(0) = p such that �(r) = x(≠ p) . Then

where J is a Jacobi field along the geodesic � such that J(0) = 0 , J(r) = X , T = �̇�.

Proof Let T(x) be the unit vector tangent to the unique geodesic joint p to x and pointing 
away from p. Consider the local gT-orthogonal decomposition near x (see pp. 186 in [43]),

where

∇̂𝜌2 = �−1(d𝜌2) = �−1(2𝜌d𝜌) = 2𝜌�−1(d𝜌) = 2𝜌∇̂𝜌.

∇̂f = gij(∇̂f )
𝜕f

𝜕xj
𝜕

𝜕xi
.

H(f )(X, Y) = D2f (X, Y) = X(Yf ) − (∇XHY
H)f |∇̂f ,∀X, Y ∈ TM|Mf

,

H(f )(X,Y) = ⟨∇XH (∇̂f )H�YH⟩�∇̂f .

H(�)(X,X) = ∫
r

0

[⟨∇TH J
H�∇TH J

H⟩ − ⟨Ω(TH , JH)JH�TH⟩]Tdt = I(J, J),

TxM = span{T(x)⊕ T⊥(x)},

T⊥(x) = {X ∈ TxM�⟨TH(x)�XH⟩ = 0}.
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We assert that there are also orthogonal decompositions relative to H(�) , in the sense that

To show this, let X ∈ T⊥(x) , then

Since ∇̂𝜌 = T  and T(𝜌) = F(∇̂𝜌) = 1 , this implies

By the definition of Hessian, it is clear that

Let X ∈ T⊥(x) and � ∶ (−�, �) → M be a normal geodesics such that � (0) = x and �̇� (0) = X . 
Let �s ∶ [0, r] → M be a variation of � such that �s is the unique geodesic joining p to � (s) . 
Note that: 

 (i) the transversal vector field J =
d

ds
(�s(t))|s=0 of �s along � is a Jacobi field;

 (ii) J(0) = 0 and J(r) = X.
 (iii) ⟨JH��̇�H⟩�̇� = 0 (see Corollary 1.7.5 in [1]).

Therefore by Definition 2.2 and Theorem 2.1, we have

  ◻

Remark 3.2 If (M, G) is a complete real Finsler manifold and there are no cut points on M, 
then the assumption of a pole p is not need.

Proposition 3.2 ([1]) Let � ∶ [0, r] → M be a normal geodesic on a Finsler manifold 
(M,  G) which contains no conjugate points. Let � ∈ X[0, r] , and let J be a Jacobi field 
along � such that J(0) = �(0) and J(r) = �(r) . Then

H(𝜌)(T(x),T⊥(x)) = 0.

H(𝜌)(T(x),X) = H(𝜌)(X, T(x)) = XT(𝜌)(x) − ∇XHT
H𝜌|∇̂𝜌(x).

H(𝜌)(T(x),X) = − ∇XHT
H𝜌�∇̂𝜌(x)

= − ⟨(∇̂𝜌)H ,∇XHT
H⟩∇̂𝜌

= − ⟨TH ,∇XHT
H⟩∇̂𝜌

= −
1

2
XH⟨TH�TH⟩

= 0.

H(�)(T(x),T(x)) = 0.

H(𝜌)(X,X) = X(X(𝜌)) − ∇XHX
H(𝜌)�∇̂𝜌(x)

= X(�̇� (𝜌))�s=0 − ∇XH �̇�
H(𝜌)

���∇̂𝜌(x)
= �̇� (�̇�(𝜌))�s=0 − ⟨∇�̇�H �̇�

H�(∇̂𝜌)H⟩∇̂𝜌(x)

=
d2lΣ

ds2
(0) − ⟨∇�̇�H �̇�

H�(∇̂𝜌)H⟩∇̂𝜌(x)
= I(J, J).

I(J, J) ≤ I(�, �),
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with equality holds if � ≡ J.

The following theorem gives an estimation of the Hessian of the distance function �(x) 
in terms of the upper bound of the radial flag curvature of a real Finsler manifold (M, G).

Theorem 3.1 Suppose that (M, G) is a real Finsler manifold with a pole p such that its 
radial flag curvature is bounded from below by a negative constant −K2 . Suppose that 
� ∶ [0, r] → M is a normal geodesic with �(0) = p such that �(r) = x(≠ p) . Then,

where u = ui
�

�xi
∈ TxM is a unit vector.

Proof Firstly, let u ∈ TxM be a unit vector. By Proposition 3.1, we have

where J is a Jacobi field along the geodesic � such that J(0) = 0 and J(r) = u.
Let �(t) be a unit vector field along � such that �(r) = u and ∇TH (�(t))H = 0 . Set 

�(t) = (
t

r
)��(t) and 𝛼 > 1 , then it is clear that �(0) = J(0) = 0 and �(r) = J(r) = u . By Prop-

osition 3.2 and Definition 2.2, we have

where in the second inequality we used the condition that −K2 is the lower bound of the 
radial flag curvature.

We can take a suitable � , such that

Therefore, we obtain

where in the last step we used the fact that 𝛼 > 1.
By(3.2), (3.3) and the equality � = r , we get

H(�)(u, u)(x) ≤ 1

�
+ K,

(3.1)H(�)(u, u) = ∫
r

0

[⟨∇TH J
H�∇TH J

H⟩T − ⟨Ω(TH , JH)JH�TH⟩T ]dt = I(J, J),

(3.2)

I(J, J) ≤ �
r

0

[⟨∇TH�
H�∇TH�

H⟩T − ⟨Ω(TH , �H)�H�TH⟩T ]dt

≤ �
r

0

��
�

�
t

r

��−1

�H
����
�
t

r

��−1

�H
�

T
+ K2⟨TH�TH⟩T⟨�H��H⟩T

�
dt

= �
r

0

�
�2
�
t

r

�2(�−1)

+ K2
�
t

r

�2��
dt

≤ 1

r
+

(� − 1)2

2� − 1

1

r
+

K2r

(2� + 1)
,

(� − 1)2

2� − 1

1

r
=

K2r

(2� + 1)
.

(3.3)
(� − 1)2

2� − 1

1

r
+

K2r

(2� + 1)
= 2

√
K2(� − 1)2

(4�2 − 1)
=

√
K2(4�2 − 8� + 4)

(4�2 − 1)
≤ K,

(3.4)I(J, J) ≤ 1

�
+ K
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Plugging (3.4) into (3.1), we obtain

This completes the proof of Theorem 3.1.   ◻

As a simple application of Theorem 3.1, we obtain the following result.

Corollary 3.1 Suppose that (M, G) is a real Finsler manifold with a pole p such that its 
radial flag curvature is bounded from below by a negative constant −K2 . Suppose that 
� ∶ [0, r] → M is a normal geodesic with �(0) = p such that �(r) = x ≠ p . Then with 
respect to the normal coordinates at the point x,

where �ij is the Kronecker symbol.

Proof For any given point (x0, (∇̂𝜌)(x0)) ∈ M̃ , there exists a local coordinate system 
(x1,… , xn, u1,… , un) in a neighborhood of (x0, (∇̂𝜌)(x0)) such that Gij(x0, (∇̂𝜌)(x0)) = 𝛿ij 
and Γk

i;j
(x0, (∇̂𝜌)(x0)) = 0 for i, j, k = 1,… , n . By the definition of Hessian, we have

Thus at the point (x0, (∇̂𝜌)(x0)) , we have

By Theorem 3.1, we have

where �ij is the Kronecker symbol.   ◻

By Theorem 3.1 and Corollary 3.1, we obtain the following corollary.

Corollary 3.2 Suppose that (M, G) is a real Finsler manifold with a pole p such that its 
radial flag curvature is bounded from below by a negative constant −K2 . Suppose that 
� ∶ [0, r] → M is a normal geodesic with �(0) = p such that �(r) = x(≠ p) . Then with 
respect to the normal coordinates at the point x,

where u = ui
�

�xi
∈ TxM is a unit vector.

H(�)(u, u)(x) ≤ 1

�
+ K.

�2�

�xi�xj
(x) ≤ (

1

�
+ K

)
�ij

H(𝜌)
(
ui

𝜕

𝜕xi
, uj

𝜕

𝜕xj

)
= uiujH(𝜌)

(
𝜕

𝜕xi
,
𝜕

𝜕xj

)

= uiuj
[

𝜕2𝜌

𝜕xi𝜕xj
+ Γk

i;j
(x0;∇̂𝜌(x0))

𝜕𝜌

𝜕xk

]
,

H(�)
(
ui

�

�xi
, uj

�

�xj

)
(x0) =

(
uiuj

�2�

�xi�xj

)
(x0).

�2�

�xi�xj
(x0) ≤

(
1

�
+ K

)
�ij,

�2�2

�xi�xj
uiuj ≤ 2(2 + �K),
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Proof Note that ∇̂𝜌2 = 2𝜌∇̂𝜌 and

Thus we have

Let E1(t),⋯ ,En−1(t),T = �̇� be the orthogonal vector fields, i.e.,

along � . If we write

we get

For any given point (x0, (∇̂𝜌)(x0)) ∈ M̃ , there exists a local coordinate system 
(x1,⋯ , xn, u1,… , un) in a neighborhood of (x0, (∇̂𝜌)(x0)) such that Gij(x0, (∇̂𝜌)(x0)) = 𝛿ij 
and Γk

i;j
(x0;(∇̂𝜌)(x0)) = 0 . By (3.5), (3.6) and Corollary 3.1, at the point x0 , we have

  ◻

In Riemannian geometry, the classical Gauss lemma is of particular importance. In real 
Finsler geometry, there is a similar result (i.e. a Finsler version of the classical Gauss lemma). 
Now, we recall this theorem. By Theorem 1.6.2 in [1], we know that expp is a local E-diffeo-
morphism at the origin. We denote the injectivity radius of M at p by ir (p) . Setting

Theorem  3.2 ([1]) Let G ∶ TM → [0,+∞) be a real Finsler metric, fix p ∈ M and 
x ∈ Sp(r) . Then, u ∈ TxM belongs to Tx(Sp(r)) if

Let (M, G) be a real Finsler manifold with a pole p. Fix p ∈ M and u ∈ TxM , we denote the 
distance function from p to x by �(x) . By Proposition 6.4.2 in [3], we know that �2(x) is only a 
C1 function on M. By the classical Hopf-Rinow theorem for a real Finsler metric, there exists a 
minimizing geodesic �u connecting p to x such that

Let t → T(�u(t)) be the unit tangent vector to the geodesic �u . Then, we know that the gra-
dient of �2(x) is equal to 2𝜌∇̂𝜌 . By Theorem 3.2 and the fact that T(x) = ∇̂𝜌 , it follows that 
∇̂𝜌 ⟂ Tx(Sp(𝜌)) . So that we have

Γk
i;j
(x;∇̂𝜌2) = Γk

i;j
(x;2𝜌∇̂𝜌) = Γk

i;j
(x;∇̂𝜌).

(3.5)H(�2)(u, u) = 2(d�(u))2 + 2�H(�)(u, u).

⟨EH
i
(t),EH

j
(t)⟩�̇� = 𝛿ij, 1 ≤ i, j ≤ n

u =

n∑

i=1

(u�)iEi =

n−1∑

i=1

(u�)iEi + (u�)nEn,

(3.6)d�(u)… d�(u) = ((u�)n)2 ≤ G(u) = 1.

H(�2)(u, u)(x0) = 2 + 2�
�2�

�xi�xj
uiuj ≤ 2(2 + �K).

Bp(r) = {x ∈ M|d(p, x) < r}, Sp(r) = {x ∈ M|d(p, x) = r}.

⟨uH�TH⟩T(x) = 0.

�(x) = d(p, x) = L(�u).
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where the last step we used the fact that ⟨TH�TH⟩T(x) = 1.
We have proved the following theorem.

Theorem  3.3 Suppose that (M,  G) is a real Finsler manifold with a pole p. Let 
� ∶ [0, r] → M be a normal geodesic. Then

where T = �̇�.

4  The estimation of the distance on complex Finsler manifolds

In this section, we obtain the estimations of the distance function on a complex Finsler 
manifold. We first give a lemma which establishes a relationship between a strongly con-
vex complex Finsler metric G on a complex manifold M of complex dimension n and its 
associated real Finsler metric G◦ on M (considered as a smooth manifold of dimension 2n).

Lemma 4.1 ([1]) Let G ∶ T1,0M → [0,+∞) be a strongly convex complex Finsler metric on 
a complex manifold M. Then,

That is

where ≪ H,K ≫v= G𝛼𝛽(v)H
𝛼K𝛽 ,∀H,K ∈ H

1,0
v

.

It follows immediately from Lemma 4.1 that for a strongly convex complex Finsler met-
ric G on a complex manifold M, we have

for any u = ui
�

�xi
 and v = v�

�

�z�
= u◦ =

1

2
(u − iJu) ∈ T1,0

z
M since G��v

�v� = 0.

Lemma 4.2 ([20]) Let f be a smooth real-valued function on a strongly convex weakly 
Kähler-Finsler manifold (M,  G) and let X◦ =

1

2
(X −

√
−1JX) be a vector of type (1,  0). 

Then for every p ∈ M and for every X ∈ TpM , we have

where D2f (X, Y) = X(Yf ) − (DXY)f  for all real vector fields X, Y on (M, G), D is the Car-
tan connection of G, and J is the canonical complex structure on M.

Remark 4.1 Note that in [8], Chen and Yan proved the above lemma under the assumption 
that (M, G) is a strongly convex Kähler-Berwald manifold.

⟨(∇̂𝜌2)H�TH⟩T(x) = ⟨2𝜌TH�TH⟩T(x) = 2𝜌(x),

⟨(∇̂𝜌2)H�TH⟩T(x) = 2𝜌(x),

G◦
ab
Ua

1
Ub

2
= 2 Re [G𝛼𝛽V

𝛼
1
V
𝛽

2
+ G𝛼𝛽V

𝛼
1
V
𝛽

2
],Vj ∈ V

1,0
v
,Uj = V◦

j
∈ Vu, for j = 1, 2.

∀V ,W ∈ V
1,0
v
, ⟨V◦�W◦⟩ = Re [⟨V ,W⟩+ ≪ V ,W ≫],

1

2
G◦

ab
uaub = G◦(u) = G(v) = G

��
v�v�

Lf (X◦,X◦) = D2f (X,X) + D2f (JX, JX),
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Theorem  4.1 Suppose that (M,  G) is a strongly convex weakly Kähler-Finsler manifold 
with a pole p such that its radial flag curvature is bounded from below by a negative con-
stant −K2 . Suppose that � ∶ [0, r] → M is a geodesic with G(�̇�) ≡ 1 such that �(0) = p , 
�(r) = z ≠ p . Denote the distance function from p to z by �(z) . Then

where v = v�
�

�z�
=

1

2
(u −

√
−1Ju) ∈ T1,0

z
M is a unit vector.

Proof By Lemma 4.2, we have

Using Corollary 3.2 and Lemma 4.1, we find that

where the last step we used the fact G◦(u) = G◦(Ju) = G(v) = 1 .   ◻

Remark 4.2 If (M, G) is a Kähler manifold, the condition that �(r) = z ≠ p is not neces-
sary. And its radial flag curvature reduces to the radial Riemannian sectional curvature on 
(M, G). For more details, we refer to [31].

Remark 4.3 If △ is the unit disk in ℂ endowed with the Poincaré metric P whose Gaussian 
curvature is −4 , and we denote �(� ) the distance function from 0 to � ∈ △ . Then by Theo-
rem 4.1 or Lemma 5.3 in [31], we have

Theorem 4.2 Suppose that (M, G) is a strongly convex complex Finsler manifold with a 
pole p. Suppose that � ∶ [0, r] → M is a geodesic with G(�̇�) = 1 such that �(0) = p and 
�(r) = z . Then,

where T(z) = �̇� and G((T(z))) = 1.

Proof By Proposition 6.4.2 in [3] and the fact that p is a pole, we know that �(z) is equal to 
the length of minimizing geodesic connecting p and z. Furthermore, �2(z) is a C1 function 
on M. By Theorem 3.3 and the fact G◦((T(z))◦) = G(T(z)) = 1 , we have

𝜕2𝜌2

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 ≤ (2 + 𝜌K),

4
𝜕2𝜌

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 = L𝜌2(v, v)

= D2𝜌2(u, u) + D2𝜌2(Ju, Ju).

𝜕2𝜌2

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 =

1

4
{D2𝜌2(u, u) + D2𝜌2(Ju, Ju)}

≤ 1

4
{2(2 + 𝜌K)G◦(u) + 2(2 + 𝜌K)G◦(Ju)}

= (2 + 𝜌K),

(4.1)
�2�2(� )

����
≤ 2[1 + 2�(� )], ∀� ∈ △.

𝜌(z) =
1

2
⟨((∇̂𝜌2(z))◦)H , (T(z))H⟩T(z),
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Therefore, we know

By Lemma 4.1, we have

where the last step we used the fact that ⟨((∇̂𝜌2(z))◦)H , (T(z))H⟩T(z) is a real number.   ◻

Remark 4.4 If △ is the unit disk in ℂ endowed with the Poincaré metric P whose Gaussian 
curvature is −4 , and �(� ) is the distance function from 0 to � ∈ △ . Then by Theorem 4.2 
or Lemma 5.3 in [31],

5  Some lemmas

Note that the square of distance function on a strongly convex weakly Kähler-Finsler mani-
fold with a pole p is not necessary smooth. Thus in order to prove the Theorem 1.5, we 
need to overcome this difficulty. We denote by �(z) the distance function from p to z in a 
strongly convex weakly Kähler-Finsler manifold with a pole. By Proposition 6.4.2 in [3], 
we know that �2(z) is not smooth at p. If p is a pole of M, we know that �2(z) is only smooth 
outside p. To overcome this inconvenience, we need the following lemma.

Lemma 5.1 Suppose that (M,  G) is a strongly convex weakly Kähler-Finsler manifold 
with a pole p such that its radial flag curvature is bounded from below by a negative con-
stant −K2 . Then for any sufficiently small 𝜀 > 0 , there exists a smooth function � on M 
such that � ≡ �2 on {z ∈ M|f (z) ≥ �}, and its derivatives of any order vanish at p, and on 
{z ∈ M|f (z) < 𝜀},

where C1,C2 are constants and independent on �.

On the other hand, on {z ∈ M|f (z) ≥ �},

where v = v�
�

�x�
=

1

2
(u −

√
−1Ju) ∈ T1,0

z
M is a unit vector and T = �̇�.

𝜌(z) =
1

2
⟨((∇̂𝜌2(z))◦)H�((T(z))◦)H⟩(T(z))◦ .

∇̂𝜌2(z) = 2𝜌∇̂𝜌 = 2𝜌(z)(T(z) + T(z)).

𝜌(z) =
1

2
⟨((∇̂𝜌2(z))◦)H�((T(z))◦)H⟩(T(z))◦

=
1

2
Re [⟨((∇̂𝜌2(z))◦)H , (T(z))H⟩T(z)]

=
1

2
⟨((∇̂𝜌2(z))◦)H , (T(z))H⟩T(z),

(4.2)2𝜚(𝜁 ) = ⟨(∇̂𝜚2(𝜁 ))◦,T(𝜁 )⟩.

𝜕2𝜙

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 ≤ C1 and

1

2
⟨((∇̂𝜙(z))◦)H , (T(z))H⟩T(z) =

���
𝜕𝜙

𝜕z𝛼
v𝛼
���
2 ≤ C2,

𝜕2𝜙

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 ≤ (2 + 𝜌K) and 𝜌(z) =

1

2
⟨((∇̂𝜙(z))◦)H , (T(z))H⟩T(z),
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Proof We use the ideas in [8] to prove the above lemma. For any small � such that 
0 < 𝜀 < 1 , one can define a smooth function g1(t) on ℝ1 as follows:

Let H1(t) = ∫ t

−∞
g1(s)ds∕ ∫ +∞

−∞
g1(s)ds . Then, H1(t) is still a smooth function on ℝ1 and 

equals 0 if t ≤ −3� and equals 1 if t ≥ �. By Proposition 6.4.2 in [3] and the fact that p is a 
pole of M, f ∶= �2(z) is a continuous function on M, and it reaches its minimum value 0 at 
p. Define f1(z) = H1(f (z))(f (z) − �) + �. Then, f1 satisfies the following properties:

i) f1 is continuous on M and smooth outside p, and f1 = f  if f ≥ �.
ii) For any 0 < f (z) < 𝜀, (f1)z and (f1)z̄ have the same sign with fz and fz̄ , respectively, 

which means f1 also reaches its minimum value at z = 0 . In fact,

and if t ∈ (0, �) , we have H1 >
3

4
 and (H1)f (𝜀 − t) <

1

2
 . It clear holds t ≥ � since f1 = f  in 

this case.
iii) For any 0 < f (z) < 𝜀, we have

where M0 is the maximum value of the continuous function |[(H1)f (f − �) + H1]| on 
{f ∶ 0 ≤ f ≤ 1} ⊃ {f ∶ 0 < f < 𝜀} and M0 is independent on � and the last step we used 
the Theorem 4.2.

iv) For any 0 < f (z) < 𝜀, we have

where M1,M2,M3,M4 are the maximum value of the continuous functions 
(H1)ff (f − �), (H1)f (f − �), 2(H1)f ,H1 on {f ∶ 0 ≤ f ≤ 1} ⊃ {f ∶ 0 < f < 𝜀} , respectively 
and M1,M2,M3,M4 are independent on � and the last step we used Theorem 4.1 and 4.2.

Now we define f2 from f1 . Let �1 = f1
(
z1
)
 for any z1 satisfying f

(
z1
)
=

�

2
 . Let

g1(t) =

{
e

1

(t−�)(t+3�) if t ∈ (−3�, �)

0 otherwise

(f1)z = [(H1)f (f − �) + H1]fz,

1

2
⟨((∇̂f1(z))◦)H , (T(z))H⟩T(z) =

���
𝜕f1

𝜕z𝛼
v𝛼
���

=
���[(H1)f (f − 𝜀) + H1]

𝜕f

𝜕z𝛼
v𝛼
���

≤ M0
���
𝜕f

𝜕z𝛼
v𝛼
���

≤ M0 = C1,

𝜕2f1

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 = (H1)ff (f − 𝜀)

|||
𝜕f

𝜕z𝛼
v𝛼
|||
2

+ (H1)f (f − 𝜀)
𝜕2f

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽

+ 2(H1)f
|||
𝜕f

𝜕z𝛼
v𝛼
|||
2

+ H1

𝜕2f

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽

≤ (M1 +M3)
|||
𝜕f

𝜕z𝛼
v𝛼
|||
2

+ (M2 +M4)
𝜕2f

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽

≤ (M1 +M3) + (M2 +M4)(2 + K) = C2,

g2(t) =

{
e

1

(t−�1)(t+3�1) if t ∈
(
−3�1, �1

)

0 otherwise
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Define H2(t) = ∫ t

−∞
g2(s)ds∕ ∫ +∞

−∞
g2(s)ds . Then, H2(t) is still a smooth function on ℝ1 and 

equals 0 if t ≤ −3�1 and equals 1 if t ≥ �1 . Define f2(z) = H2

(
f1(z)

)(
f1(z) − �1

)
+ �1 . Then, 

f2 have similar properties i)-iv). By induction, we can define fn+1 from fn . Let �n = fn
(
zn
)
 

for any zn satisfying f
(
zn
)
=

�

2n
 . Let

Define Hn+1(t) = ∫ t

−∞
gn+1(s)ds∕ ∫ +∞

−∞
gn+1(s)ds . Then, Hn+1(t) is still a smooth func-

tion on R1 . It equals to 0 if t ≤ −3�n and equals to 1 if t ≥ �n. Define fn+1(z) = 
Hn+1

(
fn(z)

)(
fn(z) − �n

)
+ �n. Then, fn+1 have similar properties i)-iv).

Now define �(z) ≐ limn→∞ fn(z). It is easy to check that � is well-defined and it is the 
desired function we want.

By Theorem 4.1 and 4.2, on {z ∈ M|f (z) ≥ �}, we have,

  ◻

For the convenience of proving Theorem 1.5, we rewrite the lemma 5.1 into the fol-
lowing lemma.

Lemma 5.2 Suppose that (M, G) is a strongly convex weakly Kähler-Finsler manifold with 
a pole p such that its radial flag curvature is bounded from below by a negative constant 
−K2 . Then for any sufficiently small 𝜀 > 0 , there exists a smooth function � on M such that 
� ≡ �2 on {z ∈ M|f (z) ≥ �}, and on M,

where C1,C2 are constants and independent on � and v = v�
�

�x�
=

1

2
(u −

√
−1Ju) ∈ T1,0

z
M 

is a unit vector and T = �̇�.

6  The proof of Theorem 1.5 and Theorem 1.3

In this section, we prove the following main theorem (i.e., Theorem 1.5) of this paper. 
Firstly, we prove the following Theorem 6.1.

Theorem  6.1 Suppose that (M,  G) is a strongly convex weakly K ̈ahler-Finsler manifold 
with a pole p such that its radial flag curvature is bounded from below and its holomorphic 
sectional curvature KG is bounded from below by a constant K1 ≤ 0 . Suppose that (N, H) 
is a strongly pseudoconvex complex Finsler manifold with holomorphic sectional curvature 
KH bounded from above by a constant K2 < 0 . Let f ∶ M → N be a holomorphic mapping. 
Then,

gn+1(t) =

{
e

1

(t−�n)(t+3�n) if t ∈
(
−3�n, �n

)

0 otherwise

𝜕2𝜙

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 ≤ (2 + 𝜌K) and 𝜌(z) =

1

2
⟨((∇̂𝜙(z))◦)H , (T(z))H⟩T(z).

𝜕2𝜙

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 ≤ max{C1, 2 + 𝜌K} and

1

2
⟨((∇̂𝜙(z))◦)H , (T(z))H⟩T(z) ≤ max{C2, 𝜌},
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Proof The key point of the proof is the construction of the auxiliary function (6.2) and then 
using maximum principle. This is essentially different from the case when G is a Hermitian 
quadratic metric (e.g. Kähler metric or Hermitian metric) on M since the square of distance 
function �2(z) associated to G is smooth over the whole M if G is a Hermitian metric while 
�2(z) is only smooth over M − {p} if G is a non-Hermitian quadratic metric and p is a pole 
of M (see Proposition 6.4.2 in [3]). In the non-Hermitian quadratic case, we need the func-
tion � in Lemma 5.2 to overcome this inconvenience.

Let Ba(p) be a closed geodesic ball in (M,  G) with its center at p and radius of 
a ∈ (0,+∞) . Let Δ be a unit disk with Poincaré metric P. And let Bb be a closed geodesic 
ball in (Δ,P) with its center at 0 and radius of b ∈ (0,+∞) . We denote the distance func-
tion from 0 to � on Δ by �(� ) , and the distance function from p to z on M by �(z) . Suppose 
that � is any holomorphic mapping from Δ into M such that 𝜑(Bb) ⊂ Ba(p) and �(0) = p.

The pull-back metric on Δ of G on M by the holomorphic mapping � ∶ Δ → M is given 
by

Here, we have denoted

Note that since G(��(� )) ≡ 1 , we have ��(� ) ≠ 0 . Thus 𝜆(𝜁 ) > 0 . Now let

be the pull-back metric on Δ of H on N by the holomorphic mapping f◦� ∶ Δ → N . Here, 
we have denoted

i) If (f◦�)�(� ) = 0 , then (6.10) holds obviously with �(0) = 0.
ii) Suppose that (f◦�)�(� ) ≠ 0.
We define the following auxiliary function:

where � is defined in Lemma 5.2 for a function �2 . It is clear that Φ(� ) ≥ 0 for any � ∈ Bb.
From Lemma 5.2, it follows that �(z) is a smooth function on M. Thus the function Φ(� ) 

defined by (6.2) is smooth for � ∈ Bb . Moreover, Φ(� ) attains its maximum at some interior 
point � = �0 ∈ Bb since Φ(� ) → 0 as �(� ) → b , or equivalently � tends to the boundary �Bb 
of Bb . Thus, it suffice for us to seek an upper bound of Φ(�0) for an arbitrary �(� ) satisfying 
(f◦�)�(� ) ≠ 0 . We want to use the maximum principle.

In the following, in order to abbreviate expression of formulas, we denote 
�(� ) = z = (z1,⋯ , zn),�(�0) = z0 = (z1

0
,… , zn

0
) , ��(� ) = v = (v1,… , vn) and 

��(�0) = v0 = (v1
0
,… , vn

0
).

Since Φ(� ) is smooth for � ∈ Bb and attains its maximum at the interior point �0 ∈ Bb , it 
necessary that at the point � = �0:

(6.1)(f ∗H)(z; dz) ≤ K1

K2

G(z; dz).

(𝜑∗G)(𝜁 ) = 𝜆2(𝜁 )d𝜁d𝜁 .

�2(� ) ∶= G(�(� );��(� )).

(f◦𝜑)∗H(𝜁 ) = 𝜎2(𝜁 )d𝜁d𝜁

�2(� ) ∶= H((f◦�)(� );(f◦�)�(� )).

(6.2)Φ(� ) ∶= [a2 − �(�(� ))]2[b2 − �2(� )]2
�2(� )

�2(� )
,
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Substituting (6.2) in the second inequality in (6.3), we have

By Lemma 2.1 and the curvature assumptions of G and H in Theorem 6.1, we have

By Lemma 5.2, we have

where in the last step we used the inequality �(z) ≤ a.
By the Remark 4.3, at � = �0 , we have

since �(�0) ≤ b.
In order to estimate the first-order term of �(z) and �2(� ) in (6.4), we use normal coordi-

nates. Since M is a strongly convex weakly Kähler-Finsler manifold, we can choose coordi-
nates around (z0, v0) such that at the point (z0, v0) , we have

Thus by Lemma 5.2, at � = �0 , we have

where the last step we used the fact that �(z0) ≤ a.
For the same reasons as (6.8), at � = �0 , that is Remark 4.4, we have

Substituting (6.5), (6.6), (6.7), (6.8), (6.9) into (6.4), we have (at � = �0),

(6.3)0 =
𝜕

𝜕𝜁
logΦ(𝜁 ) and 0 ≥ 𝜕2

𝜕𝜁𝜕𝜁
logΦ(𝜁 ).

(6.4)

0 ≥2 𝜕2

𝜕𝜁𝜕𝜁
log[a2 − 𝜙(z)] +

𝜕2

𝜕𝜁𝜕𝜁
log 𝜎2(𝜁 ) −

𝜕2

𝜕𝜁𝜕𝜁
log 𝜆2(𝜁 ) + 2

𝜕2

𝜕𝜁𝜕𝜁
log[b2 − 𝜚2(𝜁 )]

= − 2[a2 − 𝜙(z)]−1
𝜕2𝜙(z)

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 − 2[a2 − 𝜙(z)]−2

|||
𝜕𝜙(z)

𝜕z𝛼
v𝛼
|||
2

+
𝜕2

𝜕𝜁𝜕𝜁
log 𝜎2(𝜁 ) −

𝜕2

𝜕𝜁𝜕𝜁
log 𝜆2(𝜁 )

− 2[b2 − 𝜚2(𝜁 )]−1
𝜕2𝜚2(𝜁 )

𝜕𝜁𝜕𝜁
− 2[b2 − 𝜚2(𝜁 )]−2

|||
𝜕𝜚2(𝜁 )

𝜕𝜁

|||
2

.

(6.5)
𝜕2

𝜕𝜁𝜕𝜁
log 𝜎2(𝜁 ) ≥ −2K2𝜎

2(𝜁 ),
𝜕2

𝜕𝜁𝜕𝜁
log 𝜆2(𝜁 ) ≤ −2K1𝜆

2(𝜁 ).

(6.6)
𝜕2𝜙(z)

𝜕z𝛼𝜕z̄𝛽
v𝛼 v̄𝛽 ≤ max{(2 + 𝜌K),C1} ≤ max{(2 + aK),C1} ∶= A,

(6.7)
𝜕2𝜚2(𝜁 )

𝜕𝜁𝜕𝜁
≤ 2[1 + 2𝜚(𝜁0)] ≤ 2(1 + 2b),

G𝛼𝛽(z0, v0) = 𝛿𝛼𝛽 , 1 ≤ 𝛼, 𝛽 ≤ n.

(6.8)

���
𝜕𝜙(z0)

𝜕z𝛼
v𝛼
0

��� ≤ �⟨(∇̂(a2 − 𝜙(z0)))◦, T(z0)⟩�

= �⟨(∇̂(𝜙(z0)))◦, T(z0)⟩� = max{2𝜌(z0),C2}

≤ max{2a,C2} ∶= B,

(6.9)|||
��2(� )

��

||| ≤ 2b.
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Rearranging terms, we get

for any � ∈ Bb . Now divided by a4b4 on both side of the above inequality and then letting 
a → +∞ and b → +∞ , respectively, we obtain

for any holomorphic mapping � from Δ into M satisfying (f◦�)�(� ) ≠ 0.
This completes the proof.   ◻

Theorem  6.2 Suppose that (M,  G) is a strongly complete convex weakly K ̈ahler-Finsler 
manifold such that its radial flag curvature is bounded from below and its holomorphic 
sectional curvature KG is bounded from below by a constant K1 ≤ 0 . Suppose that (N, H) 
is a strongly pseudoconvex complex Finsler manifold with holomorphic sectional curvature 
KH bounded from above by a constant K2 < 0 . Let f ∶ M → N be a holomorphic mapping. 
Then,

Proof If (M, G) is a strongly complete weakly Kähler-Finsler manifold without cut points, 
then the Lemma 5.2 previously used in the proof of Theorem 1.5 still hold.

If (M, G) is a strongly complete weakly Kähler-Finsler manifold with cut points. The 
proof essentially goes the same lines as in Chen-Cheng-Lu [7]. With the notations of Theo-
rem 6.1 and its proof, we use the notations in Theorem 6.1 and its proof. Let p be an arbitrary 
point which is not a cut point and z0 ∈ M at which Φ(� ) attains its maximum value. That is, 
�
(
�0
)
= z0 . Since 

(
M, ds2

M

)
 is complete, thus Hopf-Rinow theorem for the Finsler metric, 

there exists a minimizing geodesic � ∶ [0, 1] → M joining p and z0 such that �(0) = p and 
�(1) = z0. If there is a t0 ∈ (0, 1) such that �

(
t0
)
= p1 is first cut point to the point z0 along 

the inversely directed geodesic �1 = �(1 − t) for all t ∈ [0, 1]. Let 𝜀 > 0 be a given suffi-
ciently small number such that t0 + 𝜀 < 1 , then it clear that z0 is not a cut point of �

(
t0 + �

)
 

with respect to the geodesic �1 . Define �̃�(p, z) ∶= 𝜌
(
p, 𝛾

(
t0 + 𝜀

))
+ 𝜌

(
𝛾
(
t0 + 𝜀

)
, z
)
 . Then 

using the triangle inequality, we have

0 ≥ −K2�
2(�0) + K1�

2(�0) −
A

2(a2 − �(z0))
−

B2

[a2 − �(z0)]
2
−

2(1 + 2b)

b2 − �2(�0)
−

4b2

[b2 − �2(�0)]
2
.

1

�2(�0)

{
A[a2 − �(z0)][b

2 − �2(�0)]
2 + B2[b2 − �2(�0)]

2

+ 2(1 + 2b)[b2 − �2(�0)][a
2 − �(z0)]

2 + 4b2[a2 − �(z0)]
2
}

− K1[a
2 − �(z0)]

2[b2 − �2(�0)]
2

≥ −K2

�2(�0)

�2(�0)
[a2 − �(z0)]

2[b2 − �2(�0)]
2 = −K2Φ(�0)

≥ −K2Φ(� ) = −K2[a
2 − �(�(� ))]2[b2 − �2(� )]2

�2(� )

�2(� )

�2(� )

�2(� )
≤ K1

K2

(6.10)(f ∗H)(z;dz) ≤ K1

K2

G(z;dz).

𝜌(p, z) ⩽ �̃�(p, z) and 𝜌
(
p, z0

)
= �̃�

(
p, z0

)
.
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So that

is smooth at the point �0 and we have

and

where �1 is defined in Lemma 5.1 for a function �̃�2 near z0 . Now by passing the discussion 
of �̃�(p, z) to �

(
�
(
t0 + �

)
, z
)
 , the remaining proof goes the same lines as Theorem 6.1. This 

completes the proof.   ◻

7  Applications of Theorem 1.5

In this section, we give some applications of Theorem 1.5. In [17, 18], Kobayashi intro-
duced lots of results about holomorphic mappings between complex manifolds, including 
various types of Schwarz lemmas. By Theorem 1.5, we obtain the following theorem.

Corollary 7.1 Suppose (M,  G) is a strongly convex weakly Kähler-Finsler manifold with 
a pole p such that its holomorphic sectional curvature is non-negative and its radial flag 
curvature is bounded from below. Suppose that (N, H) is a strongly pseudoconvex complex 
Finsler manifold such that its holomorphic sectional curvature is bounded from above by a 
constant K2 < 0 . Then, any holomorphic mapping f from M into N is a constant.

Now we recall the concept of a complex Minkowski space.

Definition 7.1 ([1]) A complex Minkowski space is ℂn endowed with a complex Finsler 
metric G ∶ ℂn × ℂn ≅ T1,0ℂn

→ [0,+∞) given by

where ‖ ⋅ ‖ ∶ ℂn
→ [0,+∞) is a complex norm (with strongly convex unit ball) on ℂn.

Remark 7.1 If ‖ ⋅ ‖ is not the norm associated to a Hermitian inner product, then F does not 
come from a Hermitian metric.

Let (ℂn,G) be a complex Minkowski space, then

Φ1(� ) =
[
a2 − �1(�(� ))

]2[
b2 − �2(� )

]2 �2(� )

�2(� )

Φ1(� ) =
[
a2 − �1(�(� ))

]2[
b2 − �2(� )

]2 �2(� )

�2(� )
⩽ Φ(� )

Φ1(�0) =
[
a2 − �1

(
�
(
�0
))]2[

b2 − �2
(
�0
)]2 �2

(
�0
)

�2
(
�0
) = Φ

(
�0
)
,

∀p ∈ ℂ
n, ∀v ∈ T1,0

ℂ
n ≅ ℂ

n, G(p;v) = ||v||2,

Γ�
�;�

= 0.
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Thus, a complex Minkowski space is necessary a Kähler-Finsler manifold. It is obvious 
that a complex Minkowski space is also a real Minkowski space so that its horizontal flag 
curvature vanishes identically. By the definition of holomorphic sectional curvature, it fol-
lows that the holomorphic sectional curvature of a complex Minkowski space vanishes 
identically. In the following, we prove that expp is an E-diffeomorphism at the origin. Now 
we introduce the Cartan-Hadamard theorem in a real Finsler manifold.

Theorem 7.1 ([1]) Let (M, G) be a complete real Finsler manifold, and fix p ∈ M . Assume 
that the Morse index form Ir

0
 is positive definite on X0[0, r] for all r > 0 and along every 

radial normal geodesic issuing from p (e.g., assume that the horizontal flag curvature is 
non-positive.) Then, expp ∶ TpM → M is a covering map, smooth outside the origin. In 
particular, if (M, G) is simply connected then expp is an E-diffeomorphism at the origin.

Theorem 7.2 Suppose that (ℝn,G) is a real Minkowski space, and fix p ∈ M . Then, expp is 
an E-diffeomorphism at the origin.

Proof By the Hopf-Rinow theorem for a real Finsler metric (see Theorem  1.6.9 in [1]), 
(ℝn,G) is compete. Since the horizontal flag curvature of (ℝn,G) vanishes identically. This 
together with Theorem 7.1 and the fact that ℝn is simply connected yields that expp is an 
E-diffeomorphism at the origin.   ◻

By Corollary 7.1 and Theorem 7.2, we have the following corollary.

Corollary 7.2 Suppose that (ℂn,G) is a complex Minkowski space. Suppose that (N, H) is a 
strongly pseudoconvex complex Finsler manifold such that its holomorphic sectional cur-
vature is bounded from above by a negative constant K2 . Then, any holomorphic mapping f 
from ℂn into N is a constant.

Remark 7.2 If H comes from a Hermitian metric on N, then the above corollary is obvi-
ously true.

Now we consider that (N, H) is a Hermitian manifold. By Theorem 6.2, we obtain the 
following corollary.

Corollary 7.3 Suppose that (M,  G) is a complete strongly convex weakly Kähler-Finsler 
manifold such that its radial flag curvature is bounded from below and its holomorphic 
sectional curvature KG is bounded from below by a constant K1 ≤ 0 . Suppose that (N, ds2

N
) 

is a Hermitian manifold such that its holomorphic sectional curvature KH is bounded from 
above by a constant K2 < 0 . Then for any holomorphic mapping f from M into N,

In particular, K1 ≥ 0 , then any holomorphic mapping f from M into N is a constant.

Remark 7.3 In [12], we know that every compact Riemann surface X of genus ≥ 2 carries a 
Hermitian metric ds2

X
 with holomorphic sectional curvature K ≤ −1 . Therefore, there exist 

many Hermitian manifolds which satisfy the conditions of Corollary 7.3.

f ∗ds2
N
≤ K1

K2

G(z;dz).
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The following corollary is an application of Corollary 7.3.

Corollary 7.4 Suppose that (ℂn,G) is a complex Minkowski space. Suppose that (N, H) is a 
Hermitian manifold such that its holomorphic sectional curvature is bounded from above 
by a negative constant K2 . Then, any holomorphic mapping f from ℂn into N is a constant.
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