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Abstract

We establish a local boundedness estimate for weak subsolutions to a doubly nonlinear par-
abolic fractional p-Laplace equation. Our argument relies on energy estimates and a para-
bolic nonlocal version of De Giorgi’s method. Furthermore, by means of a new algebraic
inequality, we show that positive weak supersolutions satisfy a reverse Holder inequality.
Finally, we also prove a logarithmic decay estimate for positive supersolutions.
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1 Introduction

This work studies the local behavior of subsolutions and supersolutions to the doubly non-
linear parabolic nonlocal problem

0, N+ Lu=0inQx(0,T), p>2, (1.1)

where Q C R” is a bounded smooth domain, 7 > 0 and the operator L is defined by

n

Lu(x,t) =P.V. / lu(x, 1) — u(y, t)|p_2(u(x, 1) —u(y,)K(x,y, 1) dy,
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and where P.V. stands for the principal value. We assume that K is a symmetric kernel with
respect to x and y satisfying

A A
oy = KO0 S (1.2)
uniformly in ¢ € (0, T) for some A > 1and s € (0,1). If K(x,y,t) = |x — y|~"*P), then L
becomes the fractional p-Laplace operator (—A,)*, which further reduces to the fractional
Laplacian (—A)* for p = 2.
The partial differential equation in (1.1) constitutes a nonlocal counterpart of the doubly
nonlinear equation,

0,(’™) — div(| VulP~2Vu) = 0. (1.3)

We refer the reader to [1-7] and the references therein. To the best of our knowledge, there
is no literature available concerning the corresponding nonlocal equation. This paper is a
first step toward a regularity theory where we prove a local boundedness estimate for weak
subsolutions to (1.1) when p > 2. To this end, we establish an energy estimate (Lemma
3.1) and apply De Giorgi’s method to obtain our main result (Theorem 2.15). We also
prove a reverse Holder inequality for strictly positive weak supersolutions (Theorem 2.17)
by means of a new algebraic inequality (Lemma 2.9) and a logarithmic decay estimate
(Lemma 5.3). In particular, Lemma 2.9 generalizes an inequality due to Felsinger and
Kassmann for p = 2, see Lemma 3.3 in [8]. Finally, we note that in the local case as for
(1.3), such a reverse Holder property as well as the logarithmic estimate constitute some
of the key ingredients in the proof of weak Harnack inequality, see for instance [4]. To the
best of our knowledge, weak Harnack inequality seems to be an open question in the non-
local case for the doubly nonlinear equation (1.1) and therefore we believe that our results
will be important in investigating such question along with further qualitative and quantita-
tive properties of weak solutions to (1.1).

Fractional Laplace equations have been a topic of considerable attention recently. We
refer to the survey [9] by Di Nezza, Palatucci and Valdinoci for an elementary introduction
to the theory of the fractional Sobolev spaces and fractional Laplace equations. For glob-
ally nonnegative solutions of the elliptic fractional Laplace equation (—A)*u = 0, Landkof
[10] obtained scale-invariant Harnack inequality, which fails for sign-changing solutions as
shown by Kassman [11]. Indeed, an additional tail term appears in the Harnack estimate.
Di Castro, Kuusi and Palatucci studied local boundedness and Holder continuity results for
the equation (—A,,)’u = 0 with p > 1in [12]. They also obtained Harnack inequality with a
tail dealing with sign-changing solutions in [13]. The nonhomogeneous case (—A,)'u = f
has been settled for local and global boundedness along with a discussion of eigenvalue
problem by Brasco and Parini [14]. Moreover in this case, Brasco, Lindgren and Schikorra
established higher and optimal regularity results in [15]. See also [16, 17] and the refer-
ences therein.

In the parabolic setting, for the fractional heat equation, d,u + (—=A)’u = 0, weak Har-
nack inequality has been established by Felsinger and Kassman in [8], see also [18, 19] for
related results. Caffarelli, Chan and Vasseur established boundedness and Holder continu-
ity results in [20] for different type of kernels. For regularity results up to the boundary,
see [21]. Bonforte, Sire and Vazquez established optimal existence and uniqueness results
in [22], along with a scale-invariant Harnack inequality for globally positive solutions. For
sign-changing solutions, Stromqvist proved Harnack inequality with a tail in [23], see [24]
for a different approach.
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In the nonlinear framework, we mention the work of Vazquez [25] where global bound-
edness results for the equation

ou+ (—Ap)su =0

have been obtained. See also [26]. For such an equation, local boundedness result with
a tail term has been investigated by Stromgqyvist in [27]. More recently, Holder continuity
results have been established for the same equation by Brasco, Lindgren and Stromqvist
in [28]. In the doubly nonlinear case, Hynd and Lindgren [29] addressed the question of
pointwise behavior of viscosity solutions for the following doubly nonlinear equation

0,ul”?0u + (=A,)'u=0

See also [30, 31] for related results in the local case.

This paper is organized as follows: In Sect. 2, we introduce some basic notations, gather
some preliminary results that are relevant to our work and then state our main results. In
Sect. 3-5, we prove our main results. Finally, in Sect. 6, appendix, we give a proof of the
algebraic inequality in Lemma 2.9 which is applied in the proof of Theorem 2.17.

2 Preliminaries and main results

We first present some facts about fractional Sobolev spaces. For more details we refer the
reader to [9].

Definition 2.1 Let1 < p < oo and 0 < s < 1 and assume that Q C R" is an open and con-
nected subset of R”. The fractional Sobolev space W*?(Q) is defined by

|u(x) — u(y)l

Wﬁm:{ueymy
Ix—yl

eymxm}

and endowed with the norm

ux) = u@)l ;
oy = </Q|u(x)|”dx+/g/gﬁdxdy> .

The fractional Sobolev space with zero boundary values is defined by
WiP(Q) = {ue WPR" : u=00onR"\ Q}.

Both W*”(Q) and Wg’p () are reflexive Banach spaces, see [9]. The parabolic Sobolev
space LP(0, T;W*P(L2)) is the set of measurable functions u on Q X (0, T), T > 0, such that

P
b = ([ 101y gat)" < o0

The spaces W,”(Q) and LY (0,T:W;”(Q)) are defined analogously. Next we discuss
Sobolev embedding theorems, see [9]. We write by C to denote a positive constant which
may vary from line to line or even in the same line depending on the situation. If C depends

onry,ry, ..., 1, we write C = C(ry, 1y, ..., 1p).
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Theorem 2.2 Let 1 <p<oo and 0<s<1 with sp<n and x* =
u € WS (R"), we have

. For every

n—sp
(o) - u)P
Wl g0y < C / 1) = W)V gy,
B T

for some positive constant C = C(n, p, s). If Q is a bounded extension domain for W and
u € W (Q), then for any x € [1,k™],

”””Lm(g) < C”””Wx,p(g),

for some positive constant C(n,p, s, Q). If sp = n, then the second inequality hold for any
kK € [1, 00) and for sp > n, the second inequality holds for any k € [1, o] respectively.

The following Sobolev type inequality follows by arguing similarly as in the proof
of [27, Lemma 2.1]. We give a brief sketch of the proof below. For x, € R" and r > 0,
B.(xy) = {x € R" . |x —x,| < r} denotes the ball in R” of radius r and center x,. The
barred integral sign denotes the corresponding integral average.

Lemma 2.3 Let 1 <p < oo and 0 <s < 1. Assume that u € W*P(B,), where B, = B,(xy),
and let k* = ﬁ, if sp <n, and x* =2, if sp > n. There exists a constant C = C(n, p, s)

such that for every k € [1, k*], we have

1

(f |u(x)|’“’dx>; SCrfP—"/ / dedy+€f |u(o)? dx.
B, B Jp |lx—yl"¥ B,

Proof Let 0 < s < 1 and x* be as given by the hypothesis. Suppose u € W*”(B,(0)), then
by choosing € = B,(0) in Theorem 2.2, for every k € [1, k*], we have

(/ o ) < o / / ) — u)©? dxdy+/ Ul dx ),
B,(0) 50 Jno =y B,(0)
@2.1)

for some positive constant C = C(n, p, s). Using change of variable in (2.1) the result fol-
lows. O

Next, we state and prove the parabolic Sobolev inequality, whose proof is similar to
the proof of [27, Lemma 2.2].

Lemma 2.4 Let p, s and k* be as in Lemma 2.3. Assume that u € LP(t,,t,;W*'(B,)). There
exists a constant C = C(n, p, ) such that for every k € [1, k*], we have

p
/ flu(x DI dxdr < C YP"/ / lute, ) = uGs OF gy i
|)C y|n+sp
+/f Iu(x,t)lpdxdt>~
/K(Kl —
(sup f e, ] )
1, <1<ty
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Proof Let 0 < s < 1 and x* be as given by the hypothesis. Using Hoélder’s inequality with
exponents x* and ﬁ for every x € [1, k*], we obtain

15}
/ /Iu(x,t)|Kpdxdt
n JB,
153
= / / |uaCx, D)7 |uCx, )| *~P dxdt
n JB,
ty L j
< lu(x, <P dx )" |u(x, t)| S dx dt
A )7 (), )"

n lz " o K e
—r”_T*/ (/ |u(x,z)|"”dx sup f [u(x, t)| = dx) .
f B, 1 <t<t,

We now bound the following term in (2.2),

t, L*
/ (/ |u(x,t)|’(*pdx>K d,
1 B,

using Lemma 2.3 and consequently we obtain,

. u(x, 1) — u(y, P
/ flu(x t)Ila’xdt<C / // ! . y|n+):p | dxdydt
+ / f |u(x,t)|dedt)
swp £ e 0I5 L) 7
tl<t<t,

for some positive constant C = C(n, p, s). This completes the proof. O

(2.2)

\—x

%

We now state the following weighted Poincaré inequality in fractional Sobolev
spaces, see [32, Corollary 6].

Lemma 2.5 Let 1 <p < oo, 0<sy<s<1 Assume that ¢(x)=D(|x|) is a radially
decreasing function on B, = B,(0). Then there exists a constant C = C(p, n, sy, ¢) such that

forall f € LP(B)),

_ p
[ re-growasca-s [ [ T minigeo, g0 aas
B] Bl Bl

= y[r
where
o Jo OB dx
B [y ¢0dx

Using change of variables in Lemma 2.5, we obtain the following weighted Poincaré
inequality which will be useful in establishing a logarithmic estimate for weak superso-
lutions ( see Lemma 5.3).
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Lemma 2.6 Let 1 <p < o0, 0 <s <1 and y(x) =¥Y(|x —xy|) be a radially decreasing
function on B, = B,.(x;). Then there exists a constant C = C(n,p, s) such that for every
fEeLrB,),

[vo-grewaser [ [T mingy .o aas
B, 8, JB

|)C — y|n+sp

where

, Jp foW () dx
B /Brw(x)dx '

We also need the following real analysis lemmas. For the proof of Lemma 2.7, see [33,
Lemma 4.1].

Lemma 2.7 Let (Yj);io be a sequence of positive reallnurr]zbers satisfying Y, < cobe/].1+ﬂ,

Jor some constants ¢y > 1,b > land p > 0. If Y, < c;”b_ﬁ, thenlim;_ . Y; = 0.

The next inequality is as in [12, Lemma 3.1].

Lemma 2.8 Let p > land e € (0, 1]. Then for every a,b € R", we have
lal? < |bIP + C(p)e|bl? + (1 + C(p)e)el_pla —blP,
where C(p) = (p — DI'(max{1,p —2}) and I denotes the gamma function.

The following elementary inequality will play a crucial role in the proof of reverse Ho6
Ider inequality for supersolutions as in Theorem 2.17. A proof for Lemma 2.9 is given in
appendix. This generalizes an inequality of Felsinger and Kassmann [8] to the p-case.

Lemma 2.9 Let a,b >0, 7,7, >0. Then for any p > 1, there exists a constant
C = C(p) > 1large enough such that

p—e—1 —e—1
lb=al b - o =) > £ |eb T |
| (p (2.3)
4 —e—1 —e—1
- (C(e)+ 1+ @)hz—rli (Pt o,
where 0 <e<p—1 and {(e)= e(p_’e’_l)P. If O<p—e—-1<1, we may choose
Cle) = ,,_E':i - in (2.3).

For v, k > 0, the auxiliary function defined by

-1

Hv—h),) = / (n77 — k), dn=(p—1) / (n = k)P dn, 2.4)
kP k

would be very useful to deduce the energy estimate below. Indeed, from [2, Lemma 2.2],
we have the following result.

Lemma 2.10 There exists a constant A = A(p) > O such that for all v,k > 0, we have
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SRR - KR SEO =R, < A0+ R — B2,

For more applications of such functions in the doubly nonlinear context, we refer to
(2,3, 6]
For t, € (r?,T — r¥), we consider the space-time cylinders

U™(r) = U (xy, 1y, 1) = B,(xg) X (tg — ', 1)
and
Ut (r) = U (xy, 1y, 1) = B,(xy) X (1, 1y + 1P).
We denote the positive and negative parts of u by
u,(x, 1) = max{u(x,1),0} and wu_(x,1) = max{—u(x,1),0},

respectively. For any a,b € R, we have |a, — b, | < |a — b| which implies u, € W*P(Q)
when u € W5P(Q). Analogously, we have u_ € W*?(Q). Throughout the paper, we denote
by

Au(x, y, 1)) = |u(x, 1) — u(y, HIP 2 (u(x, 1) — u(y,t)) and du = K(x,y,t)dxdy.

It is well known that a tail term appears in nonlocal problems. If u is a measurable function
inR"x(0,T)and x, € R", 7 > 0,0 < t; <1, <T, the parabolic tail of u with respect to x,,
r, t; and t, is defined by

. u(x, )P =
Tail , (usxg, 7, 1y, ) =(rs” sup / ute, 0l dx)" ' (2.5)
n<i<t, JRI\B, (xp) X = X"+
Next we define the notion of weak sub- and supersolution.

Definition 2.11 A function u € L®(0, T;L®(R")), with u > 0 in R" x (0, T), is a weak subsolution
(or supersolution) of the equation (1.1) in Q X (0, T) if u € €, (0, T:% (@) n L? (0, ;" () and for

Toc

every Q' x (1,1,) € Q x (0, T), and nonnegative test function ¢ e w”’(o TP(@)) NI (0, Ty (@)
one has

/ u(x, 6, plx, 1,) dx — / ux, t, Y p(x, ;) dx
/ [ oy togonaar . ee
+ / / Au(x, y, D)@, 1) — (v, 0)dudt <0 (or > 0)
n R/w

respectively.
Remark 2.12 The assumption u € L*®(0, T;L®(R")) ensures that the last term in the left-

hand side of (2.6) and Tail _ (u;x,, 7, ¢, ,) defined by (2.5) are finite for every x, € R" and
every0 <t <t, <T.

@ Springer



1724 A.Banerjee etal.

Remark 2.13 Moreover, we would like to emphasize that the global boundedness assump-
tion u € L*(0, T;L*®(R™)) in Definition 2.11 can be replaced with the local boundedness
assumption u € Lf:C(O, T;LI"(‘)’C(R")) together with the boundedness of Tail (u;x,, 7, 1,,1,)
defined by (2.5), for every x, € R" and every 0 < t; < t, < T. Furthermore, the hypothesis
¢, € L, (0,T;LP(L')) in Definition 2.11 can be replaced with ¢, € L} (0, T:L'(Q")).
Remark 2.14 To establish energy estimates for weak subsolutions or supersolutions of
(1.1), we choose test functions ¢ that depend on the weak subsolution or supersolution
itself and thus ¢, may not exist as a L” function as opposed to what Definition 2.11 requires.
This aspect can, however, be rectified by using the following mollification in time,

fnn =1 / e f(x,5)ds, Q@.7)
h Jo

combined with a limiting argument, i.e., by eventually letting 7 — 0. See for instance the
proof of Lemma 3.1. For more details on such a mollification, we refer to [2, 34].

2.1 Statement of the main results

Below, we state our main results. Our first main result is following local boundedness
estimate for subsolutions.

Theorem 2.15 Let p > 2, x, € R", r > 0 andty € (r,T). Assume that ,; ¢ [*(0, T;L>(R"))
NCy,. (0, T;LfnC(Q)) N LfOC(O, T;WI‘ZZ(.Q)) is a weak subsolution of (1.1) in Q X (0, T) such that

U= (r) = U (xy, 1, 1) = B,(xp) X (tg — r'P, 1,) € QX (0,T) with u>0in R" X (1, — 1", t,).
Then there exists a positive constant C = C(n, p, s, \) such that for any 6 € (0, 1), we have

1
_ b M .
sup  ux,f) < C§ reh ( f u(x, 1y’ dxdt)’ + 6 Tail (U, = tg — 17, 1),
(xneU-(%) U-) 2

n+sp
n

where Kk =

,ifsp<n,and1(=%,ifsp2n.

Remark 2.16 One should note that even when Q = R”, Theorem 2.15 will remain valid
and the global boundedness assumption on u € L*(0, T;L*(R")) can be replaced by the
local boundedness assumption u € L (0, T;L° (R")) together with the boundedness of
Tail  (usxy, 7, ¢, t,) defined by (2.5), for every x, € R"and every 0 < ¢, <1, < T.

Our second main result constitutes the following reverse Holder inequality for posi-
tive supersolutions.

Theorem 217 Let p>2, x,€R", r>0 and t,€(0,T—r"?). Suppose that
u € L0, T:L®(R") N Cpo (0, T5L ()N LY (0, T;WP(Q)) is a weak supersolution
of (1.1) in QX (0,T) such that U*(r) = Ut (xy, ty, 1) = B,(xy) X (ty, 1y + ") € QX (0, T)
withu > p > 0 in R" X (#y, t, + 7). Then for any 6 € [%, 1) there exists positive constants

u = u(x,p)and C = C(n,p,q,s,\) > 1such that
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q : ¢ f 7 :
( fU R dxdr)" < ((1 o D dxdt) , 2.8)

n+sp

orall 0 < g < g < qywhere g, = k(p — 1) withk = ifs <nandK=§,is >n.
g<qg<gq 90 P 2> Ysp

s
n

Remark 2.18 We would like to emphasize that the constant C in the reverse Holder inequal-
ity (2.8) is independent of g as § — 0 and this is precisely where the algebraic lemma 2.9
plays a crucial role. It is well known that such a stable behavior of the constant C is needed
in order to establish the Harnack inequality for local equations using the approach of Bom-
bieri as in [35] (see also [4] for an adaptation of such an idea in the case of (1.3)). We
therefore believe that such a reverse Holder inequality will have similar future applications
in the nonlocal case.

3 Energy estimate
To prove Theorem 2.15, we need the following Caccioppoli type estimate for subsolutions.

Lemma 3.1 Let p>2, x,€R", 0<7, <71, and >0 with B, =B,.(x,) €Q and
0<7 —1<7) <T.Assume that u € L*(0, T;L*(R") N Cio(0, T5L;, ()N LY (0, ;W7 () is a

loc loc

weak subsolution of (1.1) in Q X (0, T) withu > 0in R" X (r; — [, 7,). Let k > 0 and denote
w(x, 1) = (u — k) (x, ). Then there exists a positive constant C = C(n, p, s, \) such that

/ ' / / (. Dy () — Wy, D) Pty dpdr
7,—-lJB, JB,

+ C sup / w(x, Py (x) dx
B,

7,<1<7,

< / 2 / / I, D () — wi, WOty dy di
7,—-lJB, JB,

+ C sup /é(w)(x,t)y/(x)"dx
BV

7, <I<T,

SC</2//max{w(x’t)’w(y’t)}ph»”(x)_V/(Y)|p'7(l)”d,udt
-l JB, JB,

—1 7,
+ ( sup / w(y—t):rw dy) / / w(x, Dy (X’ n()’ dx dt
I -1 JB,

XEsuppy, 7, —I<t<t, JR"\B, |x -y

+/2/f(W)lI/(X)pﬁ,n(t)"dxdt>,
7,—l JB,

Jor all nonnegative y € C°(B,) and nonnegative n € C*(R) such that n(t) =0 for
t <7 —landn(t) = 1fort > 7, where ¢ is as in (2.4) defined as follows,

ur=!

w) = / (m%1 —k),dn=(p- 1)/ (n— k) "> dn.
kp=1 k

Proof Since p > 2, we observe that the first inequality, i.e.,
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1726 A.Banerjee etal.

/2//|w(x,t)y/(x)—w(y,t)q/(y)|pn(t)pd/4dt+C sup /w(x,t)”y/(x)”dx
7,—-lJB, JB,

7,<1<1, J B,

< / 2 / / (e, DY () — (o Dy )Pt dp
7,—l JB,

+ C sup /é(w)(x Hy (x)P dx

7, <t<1,

follows directly from Lemma 2.10. Therefore, it is enough to prove the second inequality.
Lett, =7, —landt, = 7, and for fixed ¢, <[, <1, < t, and € > 0 small enough, follow-
ing [2] we define the function {, € W' ((1,,1,),[0, 1]) by

0 fort, <t<lI —e,
1+’lI forl, —e<t<l,
() :i=41, forl, <t <1,
_T forl, <t <1, +e,
0, forl, +e<t<t,,

and we choose
$(x, 1) = wx, Dy () C (D)

as a test function in (2.6). Recalling the definition of (-), from (2.7), we denote by
vph_1 = @™, and Wux,y,0) = Au(x,y,))K(x,y, ).

Then following [2, 34], we observe that the subsolution u« of (1.1) satisfies the following
mollified inequality

11_1}1(1) }11_1)1(1)(Ih,€ +J,) 20, 3.1
where

Iy = / ’ /B OV (x, 1) dxdr = / ) /B OV Wik, Dy (P E (DNt dx .
and , '
B /, ’z / , / (Ve y. 1)) (x.0) = bl 1) ddy dr
- / ’2 / ; / . (Vux,y,1)),, (wlx, Dy (XY = w(y, Dw Y ) (On () dx dy d.

Estimate of , .: Proceeding similarly as in the proof of [2, Proposition 3.1], we have

limlim 7, / EW)(x, Lw (xYn(ly)" dx — / EW)Cx, L (x)’ (1) dx

(3.2)
_/ /«f(w)(x, Dy (x)yo,n@) dxdr.
i, JB,
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Estimate of J; .: First, we claim that lim;,_4 J;, . = J,., where
)
J.= / / / Wu(x, y, 0) (wx, Oy (xf — w(y, Dw (Y )& (0n@) dxdydt.
’ o o

Indeed, we can write

Jh,s - JE = Lh,s + Nh,s’ (33)

Ly, = / / / ((Vutx,y, 1)), = Vu(x, y, 0)) (W, Dp ey = w(y, w Y ) E(on(@) dxdy dt,
1 B, JB,

1

and
Nipe=2 / 2 / / . (Vutx, y,1)), = Vu(x, y, 0))wix, O @ & (On(@) dxdy dt.
t, JB, JR"\B,

Estimate of L, .: We can rewrite L, , as

L= / : / / ((Vutx, y,1)), = Vulx, y, 1))
1 B, JB,
(W, DY XY = w(y, DY) S (On@P 0

(n+sp) n+sp

x—yl 7 x=ylr

dy dt,

and using Holder’s inequality with exponents p’ = p’%l and p, we obtain

L, < </t/3 /B |((V(u(x,y,z)))h_v(u(x,y,,)))u_yﬁ

( /,2 / / [ (wix, Dy (xy = w(y, Dw V) S (Dn@)P|” dxd dt),%.
y, JB, JB,

=1

/ L
" dxdy dt)”' .

34

Now using the property (1.2), we observe that

|M(X, t) - u(}’, t)lp_l

ntsp

lx =yl

=yl Mux,y.0l < A €I’ ((t.t) X B, X B,),

From [34, Lemma 2.9], we have
(Ve y, 1)), = Ve, y,0)) lx =yl 7 = 0in I ((t1,1) X B, X B,),

and therefore from (3.4), it follows that lim,_, L, . = 0.

Estimate of N, .: We note that given the pointwise convergence of mollified functions
together with the fact that u € L*((t,,1,);L*(R")), we can therefore apply the Lebesgue
dominated convergence theorem to conclude that lim;,_y N, . = 0.
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Estimate of J.: We can rewrite J, = J! + J2, where
= / ) /B /B A, 3, D)0 D — w0, DO Oy dp i,
and
=2/ ) [ [ Awcsomeovereony dud
y Jrns JB

Estimate of Jelz To estimate the integral Jel, we mainly adapt an idea from the proof of [12,
Theorem 1.4]. By symmetry we may assume u(x, r) > u(y, t). In this case, for every fixed ¢,
we observe that

[uCx, 1) = u(y, DIP2(ulx, 1) — uly, 1) (e, D (X = w(y, Dy )Y ) ey’
= (u(x, 1) — u(y, )’ (W, Dy ) — w(y, Dy Y ) (@)’

w(x, 1) = w(y, 0P~ (wlx, Dy (P = w(y, D O ) n@)P, if u(x, ), u(y, 1) > k,
=4 (u(x, 1) — u(y, )P~ wx, Dy P n@y, if uCx, 1) > k, u(y, 1) <k,
0, otherwise.

Thus
lu(x, ) — u, O (ulx, 1) — u(y, ) (W, Ow P — wy, Ow ) )n(t)’
> |wix, 1) — w(y, H1P (wx, Dy () — w(y, Dy ()Y n).

This implies,
J> / 2 / / W, 1) = W, DY W, w0 — w(y, Ow PO dp dt.
n JB, JB,

Let us now consider the case when w(x, ) > w(y, ) and yw(x) < w(y). By Lemma 2.8 we
obtain

wxy > (1= Cpew ) — (1 + Cple)e' |y x) -y (3.5
for any € € (0, 1] where C(p) = (p — 1)I"(max{1,p —2}). Now by letting

1 W()C, t) _W(ys t)

T max(1,2C()) w1 € .11

we deduce from above that the following inequality holds for some positive constant
C=Cp)

(W, 1) = w0~ W DW= (v, 1) — w(y. O~ w(e, 1) max {y (o), y ()}
- %(w(x, ) — w(y, DY max {y(x), w(y)}”
— Cmax (w(x, 1), w(y. D)y (x) — W) IP.
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Note that over here, we used that under the assumption w(x) <w(y), we have

max{y(x),y ()} =w(y). In the other cases w(x,1)>w(,1), wkx)>w() or
w(x, 1) = w(y, 1), the above estimate is clear. Therefore, when w(x, ) > w(y, t), we have

w(x, 1) = w(y, DY (wx, Dy ()P — w(y, Hy (yY)
> (w(x, 1) — w(y, DY (w(x, ) max{y (X), y ()} — w(y, Dy (V)

- %(w(x, ) — w(y, DY max {y(x), w(3))”
— Cmax{wx, 0, w(y. 0}y () — y )P

> %(w(x, 1) — w(y. )Y max{y (), w())?

(3.6)

- CmaX{W(x, t)a w(yy t)}p|1,u(x) - W(y)|p

If w(x, 1) < w(y, 1), we may interchange the roles of x and y above to obtain (3.6). We then
observe that

[w(x, Dy (x) = wl, Dy WP < 277 w(x, 1) — w(y, H)]P max{y (), y(y)}’ a7
+ 2/~  max{w(x, ), w(y, D} [y (x) — y )IP. '
Now (3.6) and (3.7) gives

Jse / 2 / / I, D () = Wy DY O PEOn (Y dyadi

ne (3.9)

-C / / / max{w(x, 1), w®, ) ¥ [w(x) — yWIPL.On()Y du dt,
n JB JB,

for some positive constants ¢ = c(p), C = C(p).
Estimate of Jzz To estimate Jf, we observe that

e, 1) = u(y, P2 (e, 1) = uCy, YW, 1) = —(uly, 1) = e, P~ wix, 1)
> —(u(y, 1) — kY wix, 1)
> —w(y, ) w(x, 1).

As a consequence, we obtain,

Ps- / 2 / / Ky, WG, 07w, ow P, om0y dxdy dr
1 "\B, JB

P! 2
>-A( s / SO ) / / W, O P L (On(0Y d .
t,<t<t,, x€suppy J R"\B, [x — y|+sp f B,

(3.9)

Therefore from (3.8) and (3.9), we obtain for some positive constants ¢ = c¢(p) and
C =C(p),
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lim lim J,, . = lim J, _hm(J1 +J2)

e—0h—0

l2
> ¢ / / / I, D () — Wi, DOy dy di
i, JB, JB

3
-C / / max{w(x, 1), w(y, )}’ lw(x) —wOWIP () du dt
i, JB JB,

P! L
- A( sup / W(y—)p dy) / / w(x, Dy (xPy(t)’ dxdt.
1) <t<ty,x€suppy J R"\B, |x - y|"”” A B,

(3.10)
Now employing the estimates (3.2) and (3.10) into (3.1) and then first letting /, — ¢, and
then by [, — t,, we get

/ 2 / / Wx, D () — w( P (e du de
t B, JB,

SC(/Z/ / max{w(x, 1), w(y, )} [w(x) — wO)|Pn(t)y du dt
gt B, JB,

! e
+ ( sup / w(y Y ) / / w(x, Dy (X’ n(6) dx dt
xesuppy, 1, <t<t, J R"\B, |x y|rrsp t, JB,

+ / / §(W)w(x)”0,n(t)”dxdt).
t, JB,

Again using (3.2) and (3.10) and then first letting /;, — ¢, and then by choosing [, € (7, 7,)
such that

(3.11)

/ EW)(x, L)y (x)’ dx > = sup / EW)(x, Hy (x)P dx,
B,

‘rl <<,

we observe that

sup / Ew)(x, iy (x)’ dx

7, <I<7,

SC(/ //max{w(x”)’w(y’[)}p|llf(x)—ll/(y)l”n(t)”dudt
1 B, JB,

_ 3.12)
P 1 123 (
+ < sup / WO} ) ) / / w(x, Dy (X n(t) dxdt
xesuppy, 1, <1<ty JR"\B, |)C y|rrsp n JB,
+/ / EWw (x) oy dxdt).
] B,
Now from (3.11) and (3.12), we get the required estimate. O
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4 Proof of Theorem 2.15

n+3p

LetO<s< landk =
we denote by

,if sp <nandx = 51nthecasewhensp>n For j=0,1,2,.

and
B;=B,(x)), B;=B,(x), T;=(—r".1), T;=t—s".1).
Moreover, for k > 0 to be chosen later, we let

kit +k;
T j+1 j
k=0-20k k=-"-—

7 wj=(u—kj)Jr and v'vj=(u—l_<j)+.

We observe that since I_c > k;, w; > Ww;, one has that the following inequality holds,
Wi 2 (k= k= Q7R g 4.1)

Indeed, (4.1) can be seen as follows. Suppose u < k then w; = 0 and thus (4.1) holds.
Instead if u > I_cj, then one has that I_cj —k <u—k; <w;and also by using k k=2 2k
and w; < w;, we obtain

Q7 ky N, = (k= k) gwf <w,

J

which proves (4.1). Addmonally, we choose y; € C°(B;), n; € C*(I';) such that 0 < y; < 1
in Bj, _1OIIB+1,|Vl[/]|<—IIlB and0<;1<11nF and11(t)—11ft>t0—r+1
w1th11(t) =0ifr < to—sgpand|atn| < —' inT;. Letk = "Hpandl( = n—lfSp < n, and

K= % k* =2 if sp > n. Then noting that s (;«11) =p, by Lemma 2.4 we have for some
positive constant C = C(n, p, s) that the followmg inequality holds,

/ f Wl dxdt
/+1 /
|w;(x, ) — w;(y, DIP K1

< Cr;iln/ / / ! nis dxdydt - (supf Wfdx)

_[+] /+1 |'x_y| r F/+1 B,‘+|

K1
+C/ f wpdxdt <supf wpdx)
j+1 /+1
-1

—C’fi1"1'<| | +c/ f ;1P dcdt - (I I> ,

j+1 Ly I By, +1

4.2)

where

|1/_V~(X, t) - "_V()’» t)lp
11=/ / / d = dxdyd: and 12=sup/ |17 dx.
Uier 4 Biyy J By e = yfrp Tjs1 JB;

j+1

Let U; = B;xI; and U B XF Since ;. <7, 5; <r;, we have EjCBj, l_“jcl“j,

B C B; and w1 C T To estlmate I, and I, we apply Lemma 3.1 with r=r;, 7, = 1,
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T =1ty — ,+1’ = sj - rj+1 and @;(x, 1) = y/](x)nj(t) with n,(1) = 0ifr <7, —1and (1) = 1
if t > 7,. Observing that B, | C BJ and I’ i+ Fj, using Lemma 3.1, for some positive con-

stant C = C(n, p, s, A) we get

L +CL < / / [W;(x, Dy ;(x) = Wiy, Dy, P (1) d dt
I; JB; J B

+ Csup/ w;(x, t)Pq/j(x)P dx 4.3)
I*j+l B,'

<CU, +Jy+T3),

where
Ji = / / / maX{Wj(x, t)P,Wj(y, t)p}W/j(x) — Wj()’)|p7]j(t)p dy dt,
Fj Bj B/
w;(y, t)’”‘1
J, = su —— w.(x, Dy () n:(t) dx,
2 IEF XEsrl)lppy/] /R"\B |)C y|"+5p /B-j J J lj
and

Jy = / EW))(x, D (x) 0,n;(t)’ dxdt.
r, /B,

Now we estimate each J;, i = 1,2, 3 separately.
Estimate of J;: Using r; < r and w; < w;, we have

J]:///maX{Wj(x,l‘)p,Wj(y,t)pHy/j(x)_Wj(y)lpnj(t)pd”dt
rj B; Bj

— P
< C(n,p,s’ /\)(sup/ |W1( ) W](y)l / / W(.x t)l’ dx dt (44)
B;

XEBJ Ix y|n+vp

2J(n+sp+p)
< C(n,p,s, A)T/ / wi(x, tyY dxdt.
i I; /B

Estimate of J,: Without loss of generality, we may assume x, = 0. Using the fact that
W; < wy, under the assumptions on y;, we have for x € suppy;, and y € R" \ B,,
2j+4

14+ 28) < =2—.
( ) o

L _1h—G-pl 1

x—=yl Iyl |x—yl Iy|

This implies

Wiy, t)f’“
J, = sup / B — / / w;(x, t)q{i(x)qu(t)" dxdt

1€T;, xesuppy; J R"\B; |x — y[r+sp
Dj(ntsp+p) 1” . » Jrd
< CW ai (Wo,xo, ok —-r fo) W (%, ty ! 4.5)

2/(n+5p+p)
61" / / w;(x, 1) dx dt,
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2/+2

-1 _
- ) wj’ from (4.1) and also that k would be chosen
finally such that k > & Tail, (w;Xo» E’ tg — 1P, 1y).

Estimate of J;: To estimate J5, we first note that by Lemma 2.10 and the fact that p > 2
we have

where we also used the fact w; < (

J3=/ / EGwCx. DY Oy (1) v dr
I; JB;

< Cp) /F /B (W5, 1) + &Y ~2,(x, 02w, 0P 0,0 | dx e (4.6)
=J,+ JS,/ /
where
Jy= / W)+ KT 0w () |01 | dx i,
(C:xB)N{0<u—k;<k;}
and

Js = / W 1)+ kPR, 0w (0|0, (1 | dx dit
(T xB)N{w;=k; }
<22 / w6, Oy (0 |0,m; (1) | dx dt 4.7
(TCxB)N{w;2k;)

21(n+3p+p)
<C / / wi(x, 1 dxdt,

where to deduce the estimate (4.7) we have again used the fact that p > 2.
Estimate of J,: Now we estimate J, by adapting some ideas from [3]. Indeed, we denote
by A =T;xB)n {O<u-— kj < kj} and using binomial expansion we observe that,

Jy = / (W6, 1) + k72w, x, 1w (0)P |0, (0| dx dit
A;

p—-2 w;(x, 1) a2 4.8)
/ ( ) ) v

_ 7l 2
—J4+J4,

[p 2]
/ <P 2>kf<W(x l)> |6t11j(l‘)p|dx‘h‘
A; ki
s ) W( ) d+2
J? = / <” >k”( > 0,16 | dx dt.
4 d:[pz_;m " d j % 4

7

where

and
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Estimate of Jj: Let us estimate J i as follows. Using Hélder’s inequality, we obtain

Now, since u > I_cj in Aj, we observe that

/A,. W dvdr 2 (F; - kj)p|Aj| _ (%)pmﬂ.

[p-2]

n<y

d=0

d+2
d+2
]—==

Gy /w”(an'])w drdr) " 1)

Therefore, we obtain
20+2\p
Al < () /A W dxdr. (4.9)

Now using (4.9) together with the fact w; <w k <k, r; < r and also by using the bounds
[p=2] d+2

on|d,n;|, we get
da+2 _da+2
XEECD) <” 2>2]p</wp|5t'7|d+2dxdt /wpdxdt> ,,

Jp( +1)
(p)2 - /w’?dxdt.
rj Aj J

(4.10)

Estimate of J2: Now since 1_3 therefore for all d > [p—2]+ 1, we have that
w2 < kd p-21-1 Thuskp 2 < kp_3 (P=213 ['7 23 and consequently we obtain

p—2
d
Finally by using k” 2 o wp 37721 we have

- p—2 _
Z‘; <d >‘/.wf|0,;1f|dxdt

2

2
Jy <
d=[p—21+1

/ RT3 Rgm2 g oP) e dr
Ai J J J

£
|/\

@.11)

//wpdxdt

. -21,.
where we have also used the fact that the series 2210 | <p ) | is convergent. Therefore,

d
using (4.10) and (4.11) into (4.8), we obtain

2ip(s+1)
.14 < C(p) W /1— /B‘ wfdxdl. 4.12)
J )

Now using the estimates (4.7) and (4.12) in (4.6) we conclude
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j(n+sp+p)
Iy < C(p.s)2 //W”dxdt 4.13)

DK =27 p(x—1 :
Then using wf > (272)¢ )w§'+1 in (4.2), we get

1:(2—1‘—212)1’(K—1>f f wh | dxdt
i I By !

cn . 4.14)

AN -1
< ( 2 ) +cf f W drdr - ( ) .
il \ 1By | T 4By,

Plugging the estimates (4.4), (4.5) and (4.13) into (4.3), we have
j(n+sp+p)
Iohy < Clnp, s, N~ 2 //W"dxdf (4.15)

Then using (4.15) in (4.14), we get

Jjrbspp) «
1< Cp,s, A)(Z— w’?dxdt)
or-1 r, /5

1Bj1 |

We now let

- (fujwjf’dxdz)’l’

Then we have

. 2j(n+sp+p) K
—j—2 (k—1) AP 4
QYA < Clnpos, (AT )

Then for some positive constant C = C(n, p, s, A) we have

kK~ kr

X i(n+s x i\ k=1+(n+sp+p)(L) .
A € j(x—l)(_z’( +p+p)A§?)” - C—zl( o) (?{’)K.

or-1 sP0;7
Noting that w, = u, we now let

1

_ e
k= 6Tail  (uxg. 5.1y = 7", 1) + Cribe? § ren ( f u dxdt) ",
U-(r)

such that for

f=x—1, cozLK>1, p =250 S 1 and Y, =

k‘|| D>

the hypothesis of Lemma 2.7 is satisfied and consequently we have that

sup u <k,
U-(5)

which proves Theorem 2.15.
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5 Some qualitative and quantitative properties of supersolutions

In this section, we prove some qualitative and quantitative properties of supersolutions
which are strictly bounded away from zero. Throughout this section, by a global supersolu-
tion u in R” X (0, T), we refer to a bounded positive function # which satisfies the hypoth-
esis of Definition 2.11 in Q X (0, T) where Q is any bounded domain in R".

The following lemma is the nonlocal analogue of Lemma 3.1 in [4] which states that the
inverse of a supersolution is a subsolution.

Lemma 5.1 Let p>2 and u € L¥(0, T;L*(R") N o (0, T5L7 () N LY (0, T;W,7(Q))

1
be a supersolution of (1.1) in QX (0,T) such that u > p > 0 in R" X (0,T), then u‘of isa
subsolution of (1.1).

Proof Letv=u"!,Q' € Qandy € Wllo’f O, ;L7 Q) N LfOC(O, T;Wg’p (€")) be nonnegative.
Since u is a weak supersolution of (1.1), by formally choosing ¢(x, 1) = u(x, £)* Py (x, f)
as a test function in (2.6) which can be justified by mollifying in time as in the proof of

Lemma 3.1, we obtain for every (¢,,2,) € (0,T),

0<I +1, (5.1
where
I, = / u(x, t,)P " p(x, t,) dx — / ux, t, Y plx, ;) dx
Q Q
153
- / / u(x, P ~10,¢(x, 1) dx dt,
4 Q'
=/ u(x,tz)l_”y/(x,tz)dx—/ u(x,tl)l_”u/(x,tl)dx—13,
/ Q/
with

153
L= / / u(e, P~ (uCe, P10,y (x, 1)
4 Q'

= 2(p — Dy (x, Hu(x, ' 0,u(x, 1)) dx dt

ty )
= / / u(x, t)l_”z),l,u(x, Hdxdt—2(p—1) / / w(x, Hu(x, )P o,ulx, t) dx dt
t Q' t Q'

tp 153
= / / u(x, D' Pow(x, 1) dxdt — 2 / / u(x, D' Pow (x, 1) dx dt + 21,
4 Q t Q

and
1, = / u(x, tz)l_”u/(x, ) dx — / u(x, tl)l_pu/(x, t;)dx.
Q/ /

‘We thus obtain from above,

@ Springer



Some local properties of subsolution and supersolutions for... 1737

Il — _( 4/9/ V(x, [2)‘0_11[/()‘:7 tz)dx— /S;/ v(x, ll)P—ly/(x, tl)dx

o)
—/ v”_ldtu/dxdt).
t Q'

Here

122/2/ / Aux, y, D)(@x, 1) — ¢y, D) dp dt
n Jre JRre

=/ //Iu(x,t)—u(y,t)l”_z(u(x,t)—M(yyt))
n JRJRe

- (e, )X Py (x, ) — uly, Py (y, 1) dp dt

_ /t, ; /R ” /R; AGG.y. t))((iiﬁyc 3 )P—lw(x, 1 — (:gc 2 )P—lw(y, t)) d dr.

Now we estimate I,. Let us first consider the case when v(x, ) > v(y,?). In this case, we
have

AG(x,y, r))((”ﬁx 3 ) v - (%)’Hm )

> AWy, ) (v () = w(.0).

Likewise when v(x, t) < v(y, t), we have

AW, M)«vg 2)" ya ) — (:g g) v(.0)
(. 1)

1
= 1400 =020 e ) () T w0 = (38 ) )
Z A(V()” X, t))(lll(y’ t) - l//(-x’ t))

Therefore in either case, we obtain

o)
]2 S - / / / A(V(xvy’ t))(W(-x’ t) - W(y’ t)) d/’l dt
Rn Rn
By inserting the above estimates for /; and I, into (5.1), we get

/ v(x, )P Yy(x, t2)dx—/ v(x, )P Yy(x, t;)dx

/ / v(x, Hy’~ aty/(x ) dx dt

+/ / / AW, y, )y (x, 1) = w(y, 1) dudt < 0.
R J R

Hence v = u~!is a subsolution of (1.1). O
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Now we prove an energy estimate for strictly positive supersolutions of (1.1) which
is the key ingredient needed to deduce reverse Holder inequality for strictly positive
supersolutions.

Lemma 5.2 Let p>2, x€R", r>0 and a € (0,p—1) with B, =B,.(x,) € Q and
(z1,7 + 1) € (0,T). Suppose that u e L=(0,T;:L=(R") N Cioo(0, T;L (@) N LY (0, T;W,P(Q)) is

a weak supersolution of (1.1) in Q X (0,T) withu > p > 0 in R" X (7|, 7, + [). Then there
exists positive constants C = C(n, p, s, A) and ¢ = c(p) large enough such that

p-1 sup / w () ulx, )* dx

a <<t JB,

¢
T

T+l
s(covivgm) [ ] / W) = YOI (e 0F + uty, 07 dp i

T+
+ C(A) sup / —nﬂp / / u(x, ) w (x)’n(t) dx dt
x& supp v J R"\B, |-x yl

T+l

T+ « a
/ / lw @ux, e —wu@y, e ') du dt
T B, JB,

uCe, 0w (Y 10,10 ded,
Br

where e =p—a—1 and {(¢) = Z—pp’], if a>1 and {(e) = % if a € (0,1). Moreover,
W E Cg"(B,) is taken to be nonnegative and n € C*(R) is also nonnegative such that
n)=1lifr, <t <ryandn) =0ift > 7, + 1

Proof Let t, € (1), 1,) and ¢, = 7, + [. We consider # € C*(¢,,1,) such that 5(#,) = 0 and
n(t) = 1forallz <t,. Lete € (0,p — 1)and @ = p — ¢ — 1. Then since u is a strictly positive
weak supersolution of (1.1), choosing ¢(x, 1) = u(x, ) ¢y (x)’n(¢) as a test function in (2.6)
(which is again justified by mollifying in time), we obtain

0<I+1,+2L, (5.2)
where
0, poi
/ / 0—(u )p(x, 1) dx dt,
= / / / Aulx, y, )@, )@ @) — u(y, )™ w@)YIn@t) du dt,
B, JB,
and

I = / i / / Au(x, y, O)ulx, )~ w(x, Y n(t) dp dt.
"\B, JB,

We observe that for any x € B, and y € R" \ B,, we have that the integrand in /; is non-
negative precisely in the set where u(x, 1) > u(y,t). In view of this, we observe that /; can
be estimated from above in the following way,
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I = / / \ / lux, ) = u(y, D> wlx, 1) = u(y, e, &P n(t) dp di
1y JrRn\B,

/ / / uCx, 1Y~y (P n(t) du dt (5.3)
"\B,

< C(A) sup / — / /u(x P~y (P n () dx dt.
xesuppy JR\B, Jx =yl yI r

Then we note that /, can be estimated using Lemma 2.9 as follows,

L < C((;)) / / / e, )7 — wuly, 07 'n(e) du dt

(C(e) +1 t o / / / lw () = wIP(ulx, % + uly, D)) dp dt.
G4

For I, we have

’ 5.5)
B —g_l/ /”(x 1Y~y (x o,n(t) dx dt.

Now using (5.3), (5.4), (5.5) into (5.2) and letting #; — 7;, we obtain

40

7+ . )
C(p) . //|W(X)u(x,t)17_W(y)u(y’t);lﬂn(t)d’udt

T+
<C(€) tl+ - / / / lw () =y (ulx, F + uly, )*)n(t) du dt

T+l
+ C(A) sup / _ / / u(x, )y (x)n(t) dx dt
xesuppy Jre\g, X — }’|"+‘W 7 B,
-1 T+
—/ / u(x, )*y(x)’|0,n(t)| dx dt.
T B,

We then choose ¢, such that

(5.6)

/ u(x,tl)P‘e‘lw(x)”de% sup / ux, 0P~y ()P dx. (5.7)
B,

; 7,<i<7, J B,

Again using (5.3), (5.4), (5.5) and (5.7), we get
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p-1 sup /q/(x)pu(x,t)“dx

a <<t JB,

T+
s(covivgm) [ / W) = YOI (e 0F + uty, 07 dp i

T+
+ C(A) sup / |X yI””” / / u(x, H)*w (x)’n(t) dx dt
x€E supp v J R"\B,
p— 1 T+

u(x, )*y (x)’|9,n(1)| dx dt.
B,

(5.8)
Therefore from (5.6) and (5.8) we get the required estimate. O

Following the energy estimate, we now proceed with the proof of the reverse Holder
inequality for strictly positive supersolutions as in Theorem 2.17.
Proof of Theorem 2.17 Let 0 < s < 1 and k = X2
denote by "

= %ifspZn.Letus

1-27 i .
n=rnon=(1-0-0g5555 ) 6=27n j=12.m

andU; = B; xI'; =B (xo) X (tg, tg + rv’ ). We shall fix m later. Now we choose nonnegatlve
test functlons v, € C°°(B) such that 0 <y;<1in B =1in By, |Vy;| £ ——— and

(1 o)r
dist (supp y;, R" \B) > 5f(] . Moreover, we choose n; € C°°(F) such that 0 <#; < 1 in

2/7(/ 3)
[, n;=11in I}, and |atn/| < o ni() =0 if t>t0+rp Let «a =p—¢e—1 where

€ € (0,p—1). Then ae(Op—l) Denote by v=wur. Let r=r

I=r7 =7 Leti = 2

ing tha =p, by the Sobolev embeddmg theorem (Lemma 2.4), we obtain for some
positive constant C = C(n, p, s) that the following inequality holds,

-1
/ f v‘”‘dxdt<C L+ / f vpdxdt ) , (5.9)
/+1 /+l /+1 | +1|
t Ny
I = / / / e —ve.oP wdydr,
o S, =yl

i Ty =1y, Ty —t0+rj+],

= % x* =2 if sp > n. Then not-

and x*

tpK (K D

where

and
I, =sup / Wdx.
Ui By,

Using the fact that y; = 1 on B, and also that#; = 1 on T, we obtain using Lemma 5.2
that the following holds,

1.1, < CU, +Jy + J3), (5.10)
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for some positive constant C which is independent of « as long as a is away from p — 1,

where
lw;(x) — w;()IP
J, = /r /B /(v(x Y +vy, 1) —— ppT— nj(t) dxdydt
2/(n+sp+p) G.11)
- //v(x 1Y dx dt,
H)Pr[7
since r<r,
J,= su v(x, P y.(x)Pn(f) dx dt
2 Xesupppw] /R”\B I — y|n+vp // v (X n;
2jn+sp+p) (5.12)
_CT//v(x,t)”dxdt,
rj r; JB
and

2ps(i+3)
Jy = //lyj(x)pv(x t)P|6tnj(t)|dxdt<C H)rjp/r/BV(x 1) dxdt, (5.13)

again since r; < r.
Therefore, using (5.11), (5.12) and (5.13) into (5.10) we obtain

2J(n+w+p)
11,12_ “opr vp//v(x 1Y’ dx dt, (5.14)

for some positive constant C independent of « as long as a is away from p — 1, but may
depend on n, p, 5, A.
Using the estimate (5.14) and the fact that r;, | < r; < 2r;, for every j, we obtain from

(5.9), since v = ur that
Ka gy gy < 2j(n+sp+p) “ gy d K
'%l‘] u X l‘_C(mf]‘M X t) P (5.15)

J+1

for some positive constant C independent of a (given that our choice of a will be away from
p — 1) but may depend on n,p,s, A. Now we use Moser iteration technique into (5.15).
Let us fix g, g such that 0 < § < g < g, = k(p — 1) and m such that gx™~! < g < gx™. Let
ty = Kim, then 7, < g. Denote by 7, = k/t, for j=0,1,---,m. Then observing that r,, = 0r
and ry = r, we getU,, = U*(0r) and U, = U*(r). Hence by (5.15), we obtain

1 1
<f uqudt)q = (f u"dxdt)q
U+(0r) u,
(n+sp+p)m » 1

< ( C(Zl —po) )7] ( fyml uir dx‘”) "

1
< <CPL(I12 f ulo dxdt) o ,
A= T

where
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m—1

" nEspEp iy pKﬁj
Cpmd(m) =C" H (2 , )> s

=0

and

m—1
. K
m=p Y k= P (1= 7).
=0 K=

It can be easily seen that C,,4(m) is a positive constant uniformly bounded on m, where C
is independent of g but depends on ¢ due to the singularity of the constants involved in the
energy inequality in Lemma 5.2 at ¢ = 0. Finally using Holder’s inequality, we obtain

(fwm uqudty < (ﬁ)m(ﬁw)u‘_’dxdoq.

Now, since gx™~! < t,x™, we have 7, > 9 Asa consequence the required estimate follows
2
. o
with y = pr

In closiﬁg, we prove the following logarithmic estimate for strictly positive supersolu-
tions which constitutes the nonlocal analogue of Lemma 6.1 in [4] and also constitutes one
of the key ingredients in the proof of weak Harnack in the local case.

Lemma 5.3 Let p > 2, x, € R", r > 0 and t, € ("7, T — r**) with Bs = Bx(x,) € Q and
2 2

(ty = r*P. 1y + r*P) € (0,T). Suppose that ue L0, T:L®[R") N Co(0.T5L. (@) N LD O, T;W7() is a

weak supersolution of (1.1) in Q X (0, T) withu > p > 0inR" X (t, — 7, t, + r'?). Then for

every A > 0, there exists a positive constant C = C(n, p, s, \) such that

+ ) Crrse
[{(x,1) € Ut (xg, 19, 1) : logu(x,1) < =4 —b}| < pr= (5.16)
and
_ Crsw
[{(x,0) € U (xy. 19, 7) = logu(x,1) > A — b}| SF (5.17)
where

P 4 () 108 U(X, 1)y (X dx

/B%, () WO dx

2

b= blu(-, 1)) = -

Proof Following Lemma 6.1 in [4], we only prove (5.16) because the proof of (5.17) is
analogous. Without loss of generality, we may assume x, = 0. Let y € C3°(B ) be a non-

negative radially decreasing function such that 0 <y < 1in B, v = 1in B,, [Vy| < Sin
2 r
By Since u is a strictly positive supersolution of (1.1), choosing ¢(x, 1) = w(x)’u(x, £)' P as

2
a test function in (2.6), we get
I +1,+2I; >0, (5.18)

where for any 1, — 7 < t; <t, <ty + P, we have
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I, =/2/ %(u(x,t)p_l)qﬁ(x,t)dxdt:(p—1)/ log u(x, Hy(x) dx - s
n JB B, =h

3

3r
2 2

12 = /2 / A(M(X, Y, H)(p(x, 1) — d)()’, ) dﬂ dr,
a} B3 JB3,

(5.19)
and

I = / : / / Au(x,y, 0))p(x, t) du dt.
t ”\B%r B3

3r
2

Following the arguments in the proof of [12, Lemma 1.3], we obtain for some positive
constant C = C(p),

I= / 2 / / AGuCe,y, D) (r. 1) — (v, 1)) dp di
t 337, B

3r
2

o)
<1 / / / K(o,y, ) log u(x, 1) — log u(y, 0Py (s’ dvdy d
1 Bﬁ B

3r
2

+C/2/ / K(x,y, Dlwx) —y |’ dxdydt (5.20)
| B B

3r 3r
2 2
1"
< __/ / / K(xaya t)l log M(X, t) - log ’/l(y, t)|pW(y)p dXdydt
C 4 B3 JBj3
2

+ C(ty —t "™,

where the last inequality is obtained using the properties of y. Again following the proof
of [12, Lemma 1.3], we get that

I = / ' / \ / Au(x, y, 0)p(x, 1) dp dt < C(t, — 1,)r" ™. (521)
1 "\B3 JB

3
2

Therefore using the estimates (5.19), (5.20) and (5.21) into (5.18), we obtain

)
%/ / / K(x,y, )| log u(x, ) — log u(y, )|’y (y)y dxdydt
t By JBj
2 2

[ (5.22)
-p-1) / log u(x, Hy (X dx :_f < Cty — 1,)r"™.
B3, =h
7

Let v(x, 1) = —log u(x, ) and
/B& v(x, Dy (x)P dx

Vi) = ——.
Ji, WP dx
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Since 0 <y < 1lin B3r and y = 1in B,, therefore we have that fB w(x)? dx ~ r". Hence
dividing by fB q/(x)P dx on both sides of (5.22), we obtain using the weighted Poincaré

inequality in Lemma 2.6 that the following holds,

V(t,) = V() + - / f [v(x, 1) = V()| dx dt < (t2 —1).

LetA, =C(p—-1), A, = ,Z’
Wwix, 1) = v(x,£) — AyrP(t — 1) and  W() = V() — A,r~P(t — 1)).

Therefore v(x, ) — V() = w(x, f) — W(z). Hence, we get
W) — W(t)) + —nﬂp / / [w(x, 1) — WP dxdt < 0. (5.23)

Therefore, W(¢) is a monotone decreasing function in #, — r < t; < t, < t, + r*P. Hence,
W(¢) is differentiable almost everywhere with respect to ¢. Dividing by #, — ¢, on both sides
of (5.23), we obtain after letting t, — t,,

W' (@) +

1 _ _
YW /B [we,0) = W) dx < 0. (5.24)

Let t, = t,, then W(¢,) = V(t,) and we denote by b(u(-, t,)) = W(t,). Let
Qf(A)={x€B, : Wix.,t) > b+ A}.
Then for any x € QF(4) and > 1, since W(r) < W(ty) = b, we have
wt,x) = WE) > b+ A—-WE) > b+ A—W() = 4i>0.
Hence from (5.24), we have
WD) + s 2 +( ) b+ a-W)" <
Therefore, we have

+sp

—0,(b+ - W)™

Art
1QF ()] < ——
Py

Integrating over ¢, to #, + r*/, we obtain

[{(x.0) € B, X (1,19 + 1) = W(x,1) > b+ A}]

A n+sp to+r? B _
lr / 0,(b+ 4= W)™ dr,
17

S_
p=1J,

which gives
Al prsp

-1 -t
(5.25)

[{(x,1) € B, X (1. 1y + r'") : log u(x, 1) + Ayr~P(t —1,) < —A—b}| <
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Finally, we note that
[{(x, 1) € B, X (ty, 1y + ') : log u(x,t) < —A—b}| <A+ B, (5.26)
where

Crtsp

A= |{(x,0) € B, X (tg, 1y + ") : log u(x, 1) + Ayr™P(t — 1) < —g -b}| < T

which follows from (5.25) and
B=|{(x,1) € B, X (ty, 1 + 1'") 1 Ayr~P(t — 1) > §}| < (1 - Z%)r”””.
2
A
IfE < 1, then

i)rnﬂp < PP < (%)p_lrn-i-sp'

Bg(l—
2 j«

If ﬁ > 1, then B = 0. Hence in either case we have
2

Crn+sp
a1

Inserting the above estimates of A and B into (5.26), we obtain

Crn+sp
[{(x, 1) € B, X (tg, 1o + r?) : log u(x,1) < =4 —b}| < prem
for some positive constant C = C(n, p, s, A), which proves (5.16). The proof of (5.17) is
analogous. |
Appendix

In this section, we prove Lemma 2.9. To this end, we establish the following auxiliary lem-
mas. Throughout this section, we assume p > 1.

Lemma 6.1 Let f,g € C'([a, b]). Then

Jb) —f(a) + ‘g(b) —g(a) |p <
b—a b—

4 / 4
max [F'® + 18 0]
Proof Suppose the result does not hold, then by contradiction, we get

Jf(b) —f(a) + |g(b) -
b—a b—

SO > i+ 180,

for all t € [a, b]. Integrating over a to b, we obtain

gy —gap 1 [P
== |>b_alﬁgmvm

—da
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which contradicts Jensen’s inequality. O

Lemma 6.2 Leta,b > 0,0 < e < p — 1. Then we have

-1 p—e=1
|b=al b -a)a™ b )2 LEb 7 —a v [,
where {(€) = — e — 1< 1, then we may choose {(€) = ,,'jfy
Proof Let 0 <e <p—1and {(e) = (] — 1)ﬂ Let f(t) = — and g —t P By Lemma
6.1, we have
L pe=t pe-t
Lt bt et g
() b—a b—a
If b > a, multiplying by (b — a)”, we obtain
pzezl pmezl
b—ay @ =b)=¢l@b 7 —ar | (6.1)

If b < a, interchanging a and b, the Lemma follows. If 0 < p —e — 1 < 1, then we have
0<(p—e€e—1)Y <p—e—1, therefore {(¢) > f:e_l and (6.1) implies

€—1 —€e—1
(b_a)pfl(afe_b—e)Z Pp 1 bﬂp —apP |17
—e—
Hence the claim follows with {(¢) = e when O<p—-e—-1<1 a

Proof of Lemma 2.9

We denote the left-hand and right- hand sides of (2.3) by L.H.S and R.H.S, respectively. Let
¢i(e) = @ and §,(e) ={(e) + 1 + oo . Then ¢,(e) — {y(e) < —1 since C(p) > 1 (to be

finally chosen appropriately).
Case 1. If r; = 7, = 0, then (2.3) holds trivially.
Case 2. If r; > O and 7, = 0. In this case, we note that if b > a, then

LHS = [b—alP(b—a)({a ™ - )b™) = (b —ay ' tla”
and

RHS = (@)@ = (e (" + a7
= (G1(&) = Genela™ ! = ey

Now L.H.S is positive and since {;(¢) — §,(e) < 0 and {,(¢) > 0, the R.H.S is negative.
Therefore, we have L.H.S > R.H.S. On the other hand if b < a, then

LHS=—(a—- b)p_lfllja_g > _Tfap—e—l’

and since ¢, (e) — {,(e) < —land {,(e) > 0, we have
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RH.S = (£ (e) = &(e)TV a7 = §y(e)d b~ < =@~ <L H.S.
Case 3. If r; = O and 7, > 0. Then we have
LH.S = —|b—al’*(b - a)thb™,
and
RH.S = (¢(e) = L)~ — G (e)rha .
If b > a, then
LHS =—(b—-ay "&b~ > -,

and since §,(e) — {,(¢) < —land §,(e) > 0, we have

RH.S = (¢(e) = L)t = Ly (e)r) a7
< - ' <LHS.
If b <a, then the L.H.S is nonnegative and the R.H.S is negative. Therefore, we have
L.HS >RHS.

Case 4. Let both 7,7, > 0. By symmetry, we may assume that b > a. Lett = - b>u,
=2 >0 and A = sPt7¢. It can be easily seen that the inequality (2.3) is equlvalent to

the followmg inequality

Cl(s)lst”?j 1P <=1 A =D+ G@)s = 1P +1). (6.2)

We first estimate the following term.

—e-l pzecl pzecl pme-l
|st o =1 =|st v —t r +t r» —1J
(S N (S N
pmecl
<2 s— 1Pty ot — 1P
=A+B,

where

A=2""Ys— 1P and B=2"" ]|t =17
By Lemma 6.2, we have

P el V(e )
- {(e)

As a consequence, we obtain

21— 171 =)

p—e—1
Ist 7 =11 <27V s— 1Pt +
(e

‘We observe that
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1—1=1-A4+4A-1°=1-24+E"=-1r°
=1l—-A+|s=1Pre+(s"—1-|s—1P)y°.

Therefore, we get

|sr"72;1 -1 <27 (1 + %)Is — et
» 2 e O
+%(t—l)ﬁ’ (1—/1)+@(t—1)” (s =1—|s—=1")".

Next we estimate the term 7 = zp(—;;(t — 1)y 1(s? =1 = |s — 1|P)¢t~¢ for different values of ¢
and s.

Case (a). If > 1 and s > 2. Then using the fact that s > 2, it can be easily seen that
there exists constant C(p) large enough such that s — 1 — (s — 1)? < C(p)(s — 1)*. There-
fore, we get

Cp)

T < %'s — 1P, (6.4)

By inserting (6.4) into (6.3), we get

pmezl 1 1 C
Ist 7 —1P <CP)(1+—)|s— 1Pt 4 2
( ¢ (6)) ¢(e)

Case (b). If t =10or0 < s < 1. Then T < 0. Hence, we get the estimate in (6.5).
Case (c). If t > 1, s € (1,2). Let r > p be the nearest integer to p. Again it follows that
there exists a positive constant C(p) large enough such that s?» — 1 — |s — 1|P < C(p)|s — 1].

‘We have further subcases.
Case (i). If

t-1'A-2.  (65)

r—1
r—1< 2

ts—1).
€

Note that we can choose C(p) large enough such that 72"~! < C(p). Hence, we have

C)

p—e=l|1o _ 1P
< €p—lé’(€)t |s — 1}7. (6.6)
By inserting (6.6) into (6.3), we get
et (1 SV et 1 @y -
Ist 7 1|”§C(p)<1+§(€)< +€p_l)>|s L LA
6.7)
Case (ii). If
r—1> 2 o,
€

Since r is an integer, we observe that

SHs=2=(—-DE""+5 2+ +5+2).
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By the mean value theorem there exists # € (1,7) such that ¥ — 1 = ex*~!(t — 1) and so
e = —~—L_ Now, we have
nel@=1y"

s —2 -1 _
L:S_(s’ Ly g2 4542)

t—1 t—1
<L (AT 5 +2)
r2r-1t
€ _
< € -1

- L —,
t T omEel(e-1)

which gives 17 !(s" +5 —2) <€ — L.

Now, the fact ¢ >0 and 1 <5 <t gives 14! > 4° > 1. Therefore since r > p and
s>1, we get s"+s5s—-2<s5s+5-2< meI(s"+s5—2) <t —1. Hence, we have
s—1<t¢—s”=1(1 —A). Thus

C(p)
N
< C()(t Yl )- (6.8)
Using (6.8) into (6.3) we get
st — 117 < Cp)(1 + %)m 1Pt %(r— A=A (69

Finally from the estimates (6.5), (6.7) and (6.9), we obtain

st 7 —1|”<C(p)(1+—( +— )ls—1|p(tp_€1 1

{(e)
) (6.10)

—Z (=11 = ).
+§()(t Y= )

Multiplying g(—(;)) on both sides of (6.10), we obtain
29\ —p < (C(e) +1+ %)m —1PE T D+ (= 1PN = ),
=

which corresponds to the inequality (6.2). The lemma thus follows.
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