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Abstract
In this paper, we study the Dirichlet problem of elliptic systems 

where � ≥ 0 , Ω is an open bounded C2 domain in ℝN with N ≥ 2 , and � , �(�) , � are non-
negative vector-valued functions. We obtain the existence of weak positive solutions for 
the systems. In the special case �(�) = |�|p−1� with p > 1 , we shall give a better descrip-
tion about the positive solutions including the priori estimate, regularity, existence and 
nonexistence.

Keywords  Semilinear elliptic systems · Boundary measure data · Existence · Priori 
estimate

Mathematics Subject Classification  Primary 35J57 · Secondary 35A01 · 35B09

1  Introduction

Let Ω be an open bounded C2 domain in ℝN , N ≥ 2 . The Dirichlet problem with measure 
data

{
− Δ� = �(�) in Ω,

� = �� on �Ω,
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had been studied extensively in many literatures, where p > 1 , � ≥ 0 , Δ ∶=
∑N

i=1

�2

�x2
i

 is the 
Laplace operator, and u is a nonnegative function defined on Ω and � is a Radon measure 
defined on �Ω . The existence of the weak positive solution of problem (1.1) had been 
investigated by a lot of people. One of the first attempt in this direction was obtained by 
Bidaut-Véron-Vivier [7], showing the existence of a critical exponent p∗ ∶= N+1

N−1
 for the 

solvability of this equation. More precisely, in the subcritical case 1 < p < p∗ , there exists a 
threshold value �∗ such that the problem admits a solution if and only if � ∈ [0, �∗] (see [7, 
Theorem 1.3]). They also proved that in the case p ≥ p∗ , the problem (1.1) does not admit 
any solution with 𝜚 > 0 , � = �z being a Dirac measure at z, z ∈ �Ω . Then Bidaut-Véron-
Yarur [8] considered again the problem with both interior and boundary measure data

where � is a nonegative Radon measure in Ω . They gave a complete description of the solu-
tions in the subcritical case, and sufficient conditions for the existence in the supercritical 
case by establishing sharp estimates of Green kernel and Poisson kernel. For a more gen-
eral case,

if g satisfies the so-called subcriticality condition, an existence result was recently obtained 
by Chen-Felmer-Véron [12] using the Schauder fixed point theorem, essentially based 
on estimates related to weighted Marcinkiewicz spaces. For the solvability of this prob-
lem, Bidaut-Véron-Hoang-Nguyen-Véron [4] provided new criteria, expressed in terms of 
appropriate capacities, where Ω is a bounded smooth domain or a half space. On the other 
hand, the positive solutions for the corresponding boundary value problem with the other 
sign also have been studied by Marcus-Véron in [25, 26].

Another topic about the priori estimate near the boundary for the solution of problem 
(1.1) also had been established. Bidaut-Véron-Vivier proved in [7] that if p > 1 , � is non-
negative, and u is a nonnegative solution of (1.1), then

where, for any x ∈ Ω,

Moreover, for 1 < p <
N+1

N−1
,

where ℙ is the Poisson operator (see Sect. 2 for its definition). Furthermore, suppose that 
0 ∈ �Ω , Bidaut-Véron-Ponce-Véron [5] proved that, for 1 < p <

N+2

N−2
 and � = �0 , there 

exists a positive constant C, independent of u,  such that

(1.1)
{

− Δu = up in Ω,

u = �� on �Ω,

{
− Δu = up + � in Ω,

u = �� on �Ω,

{
− Δu = g(u) in Ω,

u = �� on �Ω,

‖u‖L1(Ω) + ‖up‖L1(Ω,�dx) ≤ C(N, p,Ω)[1 + ��(�Ω)],

�(x) ∶= dist(x, �Ω).

�ℙ[�] ≤ u ≤ C(N, p,Ω,�(�Ω))(�ℙ[�] + �) in Ω,

u(x) ≤ C|x|−
2

p−1 near x = 0.
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The theory of the singularity analysis also developed well. The asymptotic behavior of the 
positive singular solutions in C2(B+

1
) ∩ C(B+

1
�{0}) for

has been established by many works, where B+

1
∶= B1 ∩ℝ

N
+

 and ��B+

1
∶= B+

1
∩ �ℝN

+
 . 

See Bidaut-Véron-Vivier [7] for 1 < p <
N+1

N−1
 , Bidaut-Véron-Ponce-Véron [5, 6] for 

N+1

N−1
≤ p <

N+2

N−2
 , and Xiong [28] for p =

N+2

N−2
 . On the other hand, a series of paper consid-

ered the internal isolated singularity; see [2, 10, 20, 22, 24] for the details.
Recently, the systems

also have been attracted a lot of attention, where �(x) = (u1(x),… , um(x)) , m ≥ 1 , 
� ∶ Ω → ℝ

m
++

 , ℝm
++

∶= {� = (y1, y2,… , ym) ∈ ℝ
m ∶ yi ≥ 0, i = 1, 2,… ,m} . They natu-

rally appear in the Hartree-Fock theory for Bose-Einstein double condensates, the fiber-
optic theory, the langmuir waves theory for plasma physics, and in studying the behavior of 
deep water waves and freak waves in the ocean. A general reference in book focus on such 
systems and their role in physics is by Ablowitz-Prinari-Trubatch [1]. For the critical expo-
nent p =

N+2

N−2
 , Druet-Hebey-Vetóis [17] proved the Liouville theorem in ℝN and Caju-do 

Ó-Silva Santos [11] obtained the qualitative properties of positive singular solutions for the 
nonlinear elliptic systems in ℝN�{0} . For the subcritical exponent 1 < p <

N+2

N−2
 , Ghergu-

Kim-Shahgholian [19] recently established that � = 0 is the only nonnegative C2 solution 
in ℝN . Furthermore, they also classified the solutions in the punctured space ℝN�{0} , and 
derived the priori estimate and the asymptotic radial symmetry around the singularity. The 
behavior of the singular positive solutions for the semilinear elliptic systems with Dirichlet 
boundary value condition was analyzed in [23].

The aforementioned results are motivations of this paper, the goal of which is two-
fold: (i) to study the existence of positive weak solutions for

with boundary measures, where � ≥ 0 , Ω is an open bounded C2 domain in ℝN with N ≥ 2 , 
� ∶= (u1, u2,… , um) , �(�) = (g1(�), g2(�),… , gm(�)) , � = (�1,�2,… ,�m) , m ≥ 1 , and 
ui ∶ Ω → ℝ+ , gi ∶ ℝ

m
++

→ ℝ+ , �i is a positive Radon measure on �Ω with 𝜇i(𝜕Ω) < ∞ for 
i = 1, 2,… ,m ; (ii) to study the systems

including the interior regularity of positive solutions, and then establish the priori estimate, 
the boundary regularity of positive solutions as well as the existence of the minimal weak 
positive solutions for the systems with boundary measure data.

Notice that all the solutions are understood in the usual weak sense, and we also 
include a definition here for completeness. Suppose � ∶= (a1, a2,… , am) ∈ ℝ

m is a vec-
tor, then we say � has some properties means that every component of � has the same 
properties. For example, � ≥ 0 means that ai ≥ 0 , i = 1, 2,… ,m and � ∈ (L1(Ω))m means 
that every component of � belongs to L1(Ω) in this article.

{
− Δu = up in B+

1
,

u = 0 on ��B+

1
�{0}

−Δ� = |�|p−1�

(1.2)
{

− Δ� = �(�) in Ω,

� = �� on �Ω,

−Δ� = |�|p−1�,
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Definition 1.1  � is a weak solution of (1.2) in the sense that � ∈ (L1(Ω))m , 
�(�) ∈ (L1(Ω, �dx))m , and

where � is the unit outward normal vector of �Ω at point x, and X1.1
0
(Ω) is the space of 

function C1 functions vanishing on �Ω with Lipschitz continuous gradient.

Our first main result is devoted to studying the existence of weak solution for prob-
lem (1.2).

Theorem 1.2  Suppose that, 1 < p < p∗ ∶=
N+1

N−1
 and � is nonnegative, continuous and

for some a, 𝜖 > 0 , then there exist positive constants �0 and �0 , depending on a and p, such 
that, for � ∈ (0, �0) and � ∈ (0, �0) , problem (1.2) admits a positive weak solution � which 
satisfies

To prove Theorem 1.2, we translate (1.2) to an equivalent problem with zero bound-
ary condition satisfied by � = � − �ℙ[�] . By the spirit of [12–15], owing to the esti-
mates of Green kernel and Possion kernel, together with the Schauder fixed point theo-
rem, we can construct a sequence of approximating solutions {�

�
} for the new problem 

provided that �ℙ[�] is small (see Lemma 2.4). Putting �
�
∶= �

�
+ �ℙ[�] and using the 

Vitali convergence theorem, we can finally show that the sequence {�
�
} converges to a 

weak solution of (1.2). This result is consistent with the scalar case [12].
Next, we consider the systems

We first give the following interior regularity result for the above problem.

Theorem 1.3  Let 1 < p <
N

N−1
 . If � is a positive weak solution of (1.4), then � ∈ (C∞(Ω))m.

Notice that the precise estimates of the Green operator �[⋅] in weighted Marcinkie-
wicz spaces will be used in our proof. Then the following we will learn this systems

with boundary measure data further. In fact, suppose that 0 ∈ �Ω , it is worth noting that in 
[23], the authors have provided one of the priori estimates about the solution of (1.5) for 
1 < p <

N+2

N−2
 , � = (�0, �0,… , �0) ∈ ℝ

m . Precisely speaking, there exists a positive constant 
C, independent of the solution � , such that

Then we shall study the priori estimates and boundary regularity for the solution of (1.5).

∫
Ω

�(−Δ�)dx =
∫
Ω

�(�)�dx − �
∫
�Ω

��

��
d�(x), ∀� ∈ X1.1

0
(Ω),

(1.3)|�(�)| ≤ a|�|p + �, ∀ � ∈ ℝ
m
++

,

� ≥ �ℙ[�] in Ω.

(1.4)−Δ� = |�|p−1� in Ω.

(1.5)
{

− Δ� = |�|p−1� in Ω,

� = �� on �Ω

|�(x)| ≤ C|x|−
2

p−1 near x = 0.
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Theorem  1.4  For p > 1 and any positive Radon measure � with |�|(𝜕Ω) < ∞ , if � is a 
positive weak solution of systems (1.5), then there exists a positive constant C, depending 
on N, p, Ω , m and � , such that

In particular, for 1 < p < p∗ , there exists a positive constant C̃ depending on, N, p, Ω , 
‖�‖�+(�Ω)

 , � and m, such that

Moreover, if � = 0 , then � ∈ (C∞(Ω) ∩ C1,�(Ω))m for any � ∈ (0, 1).

The above results can be seen as a generalization of [7]. In the proof of this theorem, 
the first eigenvalue and corresponding positive eigenfunction (�1,�1) of −Δ with Dir-
ichlet conditions on �Ω play an important role, and the fact that there exists a positive 
constant C such that C−1�(x) ≤ �1(x) ≤ C�(x) for all x ∈ Ω (see [16]) will be used. As a 
consequence of Theorem 1.4, we have

Corollary 1.5  Suppose that 0 ∈ �Ω and 1 < p < p∗ . If � is a positive weak solution of

then either � can be continuously extended at 0, or there exists a positive constant C, 
depending on � , such that

The last part of this paper is about the existence of the minimal weak positive solu-
tions for (1.5). We say � is the minimal weak positive solution of (1.5) in the sense that 
if � is a weak positive solution of (1.5), then � ≤ � in Ω.

Theorem 1.6  Assume |�|(�Ω) = 1.

Case 1) 1 < p < p∗ . There exists a threshold value 𝜚∗ > 0 such that the problem (1.5) 
admits a minimal positive weak solution �

�
 for � ∈ (0, �∗] . Moreover, {�

�
} is an increasing 

sequence which converges to the minimal solution �
�∗

 in (L1(Ω))m and in (Lp(Ω, �dx))m as 
� → �∗ . If 𝜚 > 𝜚∗ , then the problem does not admit any positive weak solution.

Case 2) p ≥ p∗ . For any 𝜚 > 0 , if there exists i ∈ {1, 2,… ,m} such that �i = �zi
 , where 

�zi
 is the Dirac measure concentrated at zi , zi ∈ �Ω , then the problem (1.5) admits no posi-

tive weak solution.

It is worth noting that any solution of (1.5) is naturally bounded from below by the 
Poisson operator �ℙ[�] which also is a subsolution. Hence, in the proof of the existence 
of the minimal weak solutions, we only need to construct a supersolution. The result is 
an extension of Bidaut-Véron-Vivier [7].

The rest of the paper is organized as follows. Using the estimates about the Green 
and Poisson operators, we shall prove Theorem 1.2 in Sect. 2. In Sect. 3, we discuss the 

(1.6)‖�‖(L1(Ω))m + ‖���p‖L1(Ω,�dx) ≤ C[1 + ���(�Ω)].

(1.7)�|ℙ[�]| ≤ |�| ≤ C̃(ℙ[|�|] + �) in Ω.

{
− Δ� = |�|p−1� in Ω,

� = 0 on �Ω�{0},

|�(x)| = C|x|−N�(x)[1 + o(1)] near x = 0.
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priori estimates, as well as the regularity properties of the weak solutions for a typical 
case. Section 4 deals with the existence of the minimal positive solution.

2 � Proof of Theorem 1.2

In this section, we establish the existence of the positive weak solution for systems (1.2), 
that is, we prove Theorem 1.2. We begin with few notions and properties. For � ∈ [0, 1] , 
�(Ω, ��dx) denotes the space of Radon measures � in Ω satisfying

where, for any x ∈ Ω, �(x) ∶= dist(x, �Ω). For simplicity, we denote �(Ω) ∶= �(Ω, �0dx) . 
The associate positive cones are denoted by �+(Ω, �

�dx) and �+(Ω) , respectively. Recall 
that, for almost every y ∈ Ω and z ∈ �Ω , the Green kernel G(⋅, y) and Poisson kernel P(⋅, z) 
are the integral solutions of

where �y and �z are Dirac measures at points y ∈ Ω and z ∈ �Ω, respectively. The Green 
operator �[⋅] and the Poisson operator ℙ[⋅] are, respectively, defined by setting

Then Φ = �[�] and Ψ = ℙ[�] are, respectively, the solution of problems

Moreover, for any �1, �2 ∈ �(Ω, �dx) with �1 ≤ �2 , by the weak maximum principle (see, 
for instance, [18, p. 344]), we have

see [7] for the details.
We recall the following property on Green operator, which can be found in [7, Remark 

2.5].

Lemma 2.1  Assume N ≥ 2 . The Green operator � is compact from L1(Ω, ��dx) to 
Lq(Ω, ��dx) for any � ∈ (0, 1] , � ∈ (−N∕(N + � − 1),N�∕(N − 2)) or � = � = 0 , and 
q ∈ [1, (N + �)∕(N + � − 2)) and q > −𝛽.

Recall that, for any k > 0 and positive Borel measure � on Ω , the Marcinkiewicz space 
of exponent k or weak Lk space Mk(Ω, d�) is defined to be the set of all u ∈ L1

loc
(Ω, d�) 

satisfying

‖𝜇‖�(Ω,𝛿𝛽dx) ∶=
∫
Ω

𝛿𝛽d�𝜇� < ∞,

{
− ΔG(⋅, y) = �y in Ω,

G(⋅, y) = 0 on �Ω,

{
− ΔP(⋅, z) = 0 in Ω,

P(⋅, z) = �z on �Ω,

𝔾[�](x) ∶=
∫
Ω

G(x, y)d�(y), � ∈ �(Ω, �dx), and ℙ[�](x)

∶=
∫
�Ω

P(x, z)d�(z), � ∈ �(�Ω).

(2.1)
{

− ΔΦ = � in Ω,

Φ = 0 on �Ω,

{
− ΔΨ = 0 in Ω,

Ψ = � on �Ω.

(2.2)�[�1] ≤ �[�2];
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The following lemma shows the boundedness of the Poisson operator. For clarity, we pro-
vide the details.

Lemma 2.2  Let N ≥ 2 , � ≥ −2 , and � ∈ �+(�Ω) . There exists a positive constant 
C(N,Ω, �) such that

Moreover, if � ≥ 0 and 1 ≤ q <
N+𝛾

N−1
, then there exists a positive constant C(q,N,Ω, �) such 

that

Proof  (2.3) was proved in [7, Theorem 2.5]. It is well known that, for any 1 ≤ p < k < ∞ 
and any u ∈ Mk(Ω, ��dx),

see, for instance, [3, Lemma A.2]. Since Ω is bounded, it follows that ∫
Ω
𝛿𝛾dx < ∞. A com-

bination of this, (2.4), and (2.3) yields the assertion. 	�  ◻

Let � ∶= (g1, g2,… , gm) be a nonnegative and continuous vector-valued function satis-
fying (1.3). Consider a sequence {�

�
}n∈ℕ of C1 nonnegative functions defined on ℝm

++
 such 

that �
�
(0) = �(0) for every n ∈ ℕ and, for every i ∈ {1, 2,… ,m},

where �
�
∶= (gn,1, gn,2,… , gn,m) . Let 𝜚 > 0 and � ∈ (�+(�Ω))

m. Define the operators 
{�

�
}n∈ℕ by, for every n ∈ ℕ,

where �
�
(�) ∶=

(
Tn,1(�),Tn,2(�),… , Tn,m(�)

)
 and Tn,i(�) ∶= 𝔾

[
gn,i(� + �ℙ[�])

]
 for every i.

We first establish the following technical lemma.

Lemma 2.3  Let 𝜚 > 0, � ∈ (�+(�Ω))
m, 1 < p < p∗ ∶=

N+1

N−1
 , and q ∈ (p, p∗) . Assume that 

� is a nonnegative function satisfying (1.3) for some a, 𝜖 > 0 . Let {�
�
}n∈ℕ be as above. 

There exists a positive constant Λ̂ such that, for every � ∈ (Lq(Ω, �dx))m,

Proof  Observe that, for every i ∈ {1, 2,… ,m},

It follows that

‖u‖Mk(Ω,d𝜈)

∶= inf

�
c ∈ [0,∞] ∶

�E

�u�d𝜈 ≤ c[𝜈(E)]
k−1

k , ∀E ⊂ Ω and E is a Borel set

�
< ∞.

(2.3)‖ℙ[�]‖
M

N+�
N−1 (Ω,��dx)

≤ C(N,Ω, �)‖�‖�(�Ω).

‖ℙ[�]‖Lq(Ω,��dx) ≤ C(q,N,Ω, �)‖�‖�(�Ω).

(2.4)
�

�
Ω

�u�p��dx
� 1

p

≤ C(p, k)‖u‖Mk(Ω,��dx)

�

�
Ω

��dx

� 1

p
−

1

k

;

(2.5)gn,i ≤ gn+1,i ≤ gi, lim sup
s∈ℝm

++

gn,i(s) = n, lim
n→∞

‖gn,i − gi‖L∞
loc
(ℝm

++)
= 0,

�
�
(�) ∶= 𝔾

[
�
�
(� + �ℙ[�])

]
, � ∈ (L1(Ω))m, � ≥ 0,

‖�‖(Lq(Ω,�dx))m ≤ Λ̂ ⇒ ����
(�)��(Lq(Ω,�dx))m ≤ Λ̂.

𝔾
[
gn,i(� + �ℙ[�])

]
≤ 𝔾

[
|�

�
(� + �ℙ[�])|

]
.
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Using this inequality and Lemma 2.1 with � = � = 1 , we have

which, together with (2.5) and (1.3), further implies that

where C1 = C1(q,N,Ω) , a > 0 , 𝜖 > 0 and 𝜚 > 0 . Since Ω is bounded, it follows that 
∫
Ω
𝛿dx < ∞. For any Λ ∈ (0,∞) , if ‖�‖(Lq(Ω,�dx))m ≤ Λ , then by the Hölder inequality, we 

have

Hence, using Lemma 2.2 with � = 1 and (2.6), we then obtain

Since p > 1 , there exist positive constants �0 and �0 such that, for any � ∈ (0, �0) and 
� ∈ (0, �0) , the algebraic equation

admits a positive root Λ̂ . This finishes the proof of Lemma 2.3. 	�  ◻

We remark that the key point in the proof of Theorem 1.2 is to derive the uniform bound 
in (Lp(Ω, �dx))m for the solutions of systems

where {�
�
} is defined by (2.5). By [7, Corollary 2.2], we know that (2.7) admits a positive 

weak solution �
�
 if and only if �

�
 can be written in the form

Hence, we shall prove the following lemma first by the Schauder fixed point theorem.

Lemma 2.4  Assume that � is a nonnegative function satisfying (1.3) for some a, 𝜖 > 0 , and 
p ∈ (1, p∗) . Let {�

�
} be a sequence of C1 nonnegative functions defined on ℝm

++
 satisfying 

(2.5). Then there exist �0 , 𝜖0 > 0 such that, for any � ∈ (0, �0) and � ∈ (0, �0) , problem (2.7) 
admits a positive weak solution �

�
 which satisfies

‖‖��
(�)‖‖(Lq(Ω,�dx))m ≤ m

‖‖‖𝔾
[
|�

�
(� + �ℙ[�])|

]‖‖‖(Lq(Ω,�dx))m .

����
(�)��(Lq(Ω,�dx))m ≤ C(q,N,Ω)m‖�

�
(� + �ℙ[�])‖(L1(Ω,�dx))m ,

(2.6)

����
(�)��(Lq(Ω,�dx))m ≤ C1m‖a�� + �ℙ[�]�p + �‖(L1(Ω,�dx))m

≤ C1m

�
2p−1a

�
Ω

���p�dx + 2p−1a�p
�
Ω

�ℙ[�]�p�dx + �
�
Ω

�dx

�
,

�
Ω

|�|p�dx ≤
(

�
Ω

|�|q�dx
) p

q
(

�
Ω

�dx

) q−p

q

≤ C(q, p,Ω)

(

�
Ω

|�|q�dx
) p

q

= C(q, p,Ω)Λp.

‖‖��
(�)‖‖(Lq(Ω,�dx))m ≤ C(q, p,N,m,Ω)(aΛp + a�p + �).

C(q, p,N,m,Ω)(aΛp + a�p + �) = Λ

(2.7)
{

− Δ� = �
�
(� + �ℙ[�]) in Ω,

� = 0 on �Ω,

(2.8)�
�
= 𝔾[�

�
(�

�
+ �ℙ[�])].
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for some positive constant � independent of n.

Proof  Let Λ̂ be the positive constant as in Lemma 2.3, q ∈ (p, p∗) , and let

Let {�
�
}n∈ℕ be as in Lemma 2.3. Ensure to use the Schauder fixed point theorem, we shall 

first prove that O is a convex, closed subset of (L1(Ω))m and �
�
 is well defined in O . After 

that we show that, for each n, �
�
 is a continuous and compact map.

Clearly, from the Minkowski inequality, it follows that O is a convex set. Next, we show 
that O is a closed subset of (L1(Ω))m . Indeed, let {�

�
} ⊂ O be a sequence converging to � in 

(L1(Ω))m . Obviously, � ≥ 0 . We can extract a subsequence, still denotes by {�
�
} , such that 

�
�
→ � a.e in Ω . By the Fatou Lemma, we then obtain

Consequently, � ∈ O and therefore O is a closed subset of (L1(Ω))m . By (2.5), we have, 
for every n ∈ ℕ, �

�
 is bounded and hence �

�
(� + �ℙ[�]) ∈ (L1(Ω))m . Combining this and 

Lemma 2.1, we then deduce that �
�
(�) ∈ (L1(Ω))m . By this and Lemma 2.3, we conclude 

that �
�
 is well defined on O and �

�
(O) ⊂ O.

The following we shall prove that �
�
 is a continuous map on O . Suppose that {�

�
} ⊂ O 

and

For each fixed n, we have �
�
(�

�
+ �ℙ[�]) → �

�
(� + �ℙ[�]) in (L1(Ω))m as j → ∞ by the 

fact that �
�
∈ (C1)m . Using Lemma 2.1 that � ∶ L1(Ω) → L1(Ω) is compact, we have

that is,

Hence, we prove that �
�
 is continuous.

Last, we shall show that �
�
 is a compact map. Let {�

�
} ⊂ O be a bounded sequence 

in (L1(Ω))m . For each fixed n, from |�
�
| ≤ |�| , and by the same argument as in (2.6), we 

deduce that

where Λ̂ is the constant in the definition of O. Thus, �
�
(�

�
+ �ℙ[�]) is uniformly bounded 

in (L1(Ω, �dx))m . Since the map � ∶ L1(Ω, �dx) → L1(Ω) is compact (see Lemma  2.1), 
it then follows that there exists a subsequence, still denoted by {�

�
(�

�
)} , and a function 

� ∈ O such that

‖�
�
‖(Lp(Ω,�dx))m ≤ �

O ∶=

�
� = (v1, v2,… , vm) ∈ (L1(Ω))m ∶ � ≥ 0 and ‖�‖(Lq(Ω,�dx))m ≤ Λ̂

�
.

‖�‖(Lp(Ω,�dx))m ≤ lim inf
j→∞

�����
���(Lp(Ω,�dx))m ≤ Λ̂.

�
�
→ � in (L1(Ω))m as j → ∞.

𝔾[�
�
(�

�
+ �ℙ[�])] → 𝔾[�

�
(� + �ℙ[�])] in (L1(Ω))m as j → ∞,

�
�
(�

�
) → �

�
(�) in (L1(Ω))m as j → ∞.

‖‖‖��
(
�
�
+ �ℙ[�]

)‖‖‖(L1(Ω,�dx))m ≤
‖‖‖�

(
�
�
+ �ℙ[�]

)‖‖‖(L1(Ω,�dx))m ≤ CΛ̂,

�
�
(�

�
) → �

�
(�) in (L1(Ω))m as j → ∞.
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Therefore, �
�
 is a compact map.

Using the Schauder fixed point theorem, there is a vector-valued function �
�
∈ O such 

that �
�
(�

�
) = �

�
 . Hence, �

�
 satisfies (2.8). Moreover, ‖�

�
‖(Lq(Ω,�dx))m ≤ Λ̂, where Λ̂ is a pos-

itive constant independent of n. By this and [7, Corollary 2.2], we conclude that �
�
 is a 

weak solution of (2.7), that is,

Furthermore, since p < q and ‖�
�
‖(Lq(Ω,�dx))m ≤ Λ̂, it follows that ‖�

�
‖(Lp(Ω,�dx))m ≤ � , where 

� = C(p, q,Ω)Λ̂ . This finishes the proof of Lemma 2.4. 	�  ◻

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2  For each n, set �
�
∶= �

�
+ �ℙ[�] , where �

�
 is the positive weak solu-

tion of (2.7) constructed in Lemma 2.4. Integrating by parts, we have

Combining this and (2.9), we then obtain

Since �
�
∈ O , it follows that ‖�

�
‖(Lq(Ω,�dx))m ≤ Λ̂, which, together with the Hölder inequal-

ity, implies that |�
�
|p is uniformly bounded in L1(Ω, �dx) . From |�

�
| ≤ |�| , and by the same 

argument as that used in (2.6), we have {�
�
(�

�
+ �ℙ[�])}n∈ℕ is uniformly bounded in 

(L1(Ω, �dx))m . By the fact that � ∶ L1(Ω, �dx) → L1(Ω) is compact, hence, up to a sub-
sequence, {𝔾[�

�
(�

�
+ �ℙ[�])]}n∈ℕ is convergent in (L1(Ω))m . Since, for every n ∈ ℕ, �

�
 

is a positive weak solution of (2.7), it then follows that {�
�
}n∈ℕ is convergent in (L1(Ω))m . 

Therefore, there exists a positive function � ∈ (L1(Ω))m such that �
�
+ �ℙ[�] → � + �ℙ[�] 

in (L1(Ω))m and a.e. in Ω as n → ∞ . Let

We have �
�
→ � in (L1(Ω))m and a.e. in Ω as n → ∞ . Consequently, �

�
(�

�
) → �(�) a.e. in 

Ω as n → ∞.
We finally prove that �

�
(�

�
) → �(�) in (L1

loc
(Ω, �dx))m as n → ∞ . In fact, for any Borel 

set E ⊂ Ω , using condition (1.3) we have

Since |�
�
|p is uniformly bounded in L1(Ω, �dx) , it follows from Lemma  2.2 that |�

�
|p is 

uniformly bounded in L1(Ω, �dx) . Hence, we obtain {�
�
(�

�
)} is uniformly integrable in 

(L1(Ω, �dx))m . On another hand, since �
�
(�

�
) → �(�) a.e. in Ω as n → ∞ , using the Vitali 

(2.9)
∫
Ω

�
�
(−Δ)�dx =

∫
Ω

�
�

(
�
�
+ �ℙ[�]

)
�dx, ∀ � ∈ X1.1

0
(Ω).

∫
Ω

ℙ[�](−Δ)� dx = −
∫
�Ω

��

��
d�(x).

(2.10)
∫
Ω

�
�
(−Δ)�dx =

∫
Ω

�
�
(�

�
)�dx − �

∫
�Ω

��

��
d�(x), ∀� ∈ X1.1

0
(Ω).

� ∶= � + �ℙ[�].

‖‖‖��
(
�
�

)‖‖‖(L1(E,�dx))m ≤
‖‖‖�

(
�
�

)‖‖‖(L1(E,�dx))m
≤ C‖‖a|��|

p + �‖‖L1(E,�dx)

≤ C

(
a
�E

|�
�
|p�dx + �

�E

�dx

)
.
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convergence theorem, we conclude that �
�
(�

�
) → �(�) in (L1

loc
(Ω, �dx))m as n → ∞ . Pass 

the limit of (2.10) as n → ∞ to derive that

A combination of this and Definition 1.1 yields that � is a weak solution of problem (1.2). 
Since � is positive, it follows that � is positive and � ≥ �ℙ[�] in Ω. This finishes the proof 
of Theorem 1.2. 	�  ◻

3 � Regularity and priori estimates

In this section, we prove Theorems 1.3 and 1.4 , and Corollary 1.5.

3.1 � Interior regularity

Now we shall give an interior regularity result for the solution of problem (1.4). We begin 
with the following lemma, which can be found in [27, Corollary 2.8].

Lemma 3.1  Let u ∈ L1
loc
(Ω) and f ∈ L1

loc
(Ω) be such that

Then, for any open subsets G and G′ satisfying G ⊂ G ⊂ G� ⊂ G� ⊂ Ω and G′ compact, 
and 1 ≤ k <

N

N−1
 , there exists a positive constant C(G,G�, k) such that

We now prove Theorem 1.3.

Proof of Theorem  1.3  Let � ∶= |�|p−1�. By Definition  1.1, we know that every compo-
nents of � and � satisfy the assumption of Lemma 3.1. By this and Lemma 3.1, we find 
that, for any 1 ≤ k <

N

N−1
 , � ∈ (Lk

loc
(Ω))m. Choose k such that k > p , then |�|p ∈ L

j0
loc
(Ω) 

for some j0 > 1 . Since � is a positive weak solution of problem (1.4), it then follows that 
� ∈ (W

2,j0
loc

(Ω))m.
If j0 >

N

2
 , then by the Sobolev embedding theorem and the Schauder estimates, we 

obtain � ∈ (C
2,�

loc
(Ω))m for some � ∈ (0, 1) . As a result, the interior regularity gives that 

� ∈ (C∞(Ω))m . If j0 <
N

2
 , by the Lp regularity theory, we obtain � ∈ (W

2,j0
loc

(Ω))m . Hence, 
|�|p ∈ L

j1
loc
(Ω) for j1 =

Nj0

p(N−2j0)
 by the Sobolev embedding theorem and the fact that p <

N

N−1
 

gives that j1 > j0 > 1 . By induction, we obtain that |�|p ∈ L
jl
loc
(Ω) for jl =

Njl−1

p(N−2jl−1)
> jl−1 . 

By the same argument as before, we conclude that there exists a jl such that jl >
N

2
 . If not, 

that is jl <
N

2
 for any l, then jl →�j =

N(p−1)

2p
< 1 , which is impossible. If j0 =

N

2
 , we may 

replace it by choosing �j0 <
N

2
 , and we can obtain the same conclusion by iterating the same 

steps as before. Hence, we complete the proof of Theorem 1.3. 	�  ◻

∫
Ω

�(−Δ)�dx =
∫
Ω

�(�)�dx − �
∫
�Ω

��

��
d�(x), ∀� ∈ X1.1

0
(Ω).

∫
Ω

u(−Δ�)dx =
∫
Ω

f �dx, ∀� ∈ C∞

0
(Ω).

‖u‖W1,k(G) ≤ C(G,G�, k)
�
‖u‖L1(G�) + ‖f‖L1(G�)

�
.
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3.2 � A priori estimate and boundary regularity

In this subsection, we study the priori estimate and regularity near the boundary. The 
following result addresses the norm estimates of a positive weak solution of problem 
(1.5).

Proposition 3.2  Let p > 1 and � be a positive weak solution of problem (1.5). Then there 
exists a positive constant C, depending on N, m,  p, Ω and � , such that (1.6) holds true.

Proof  Let �1 be the first eigenvalue of the operator −Δ with Dirichlet conditions on �Ω and 
�1 be its corresponding positive eigenfunction. Moreover, there exists a positive constant C̃ 
such that

see [16, p. 62] for the details.
By Definition 1.1, we know that

For any i ∈ {1, 2,… ,m} , using the Young inequality, we have

It then follows that

which implies that

where �
�
∶= (1, 1,… , 1) ∈ ℝ

m . Using the above inequality and (3.2), we have

and hence,

Since � is nonnegative, it follows that

(3.1)C̃−1� ≤ �1 ≤ C̃�;

(3.2)�1
∫
Ω

��1dx =
∫
Ω

�
(
−Δ�1

)
dx =

∫
Ω

|�|p−1��1dx − �
∫
�Ω

��1

��
d�.

ui ≤ (2�1)
−1u

p

i
+ p

−1

p−1
p − 1

p
(2�1)

1

p−1 ≤ (2�1)
−1u

p

i
+ (2�1)

1

p−1 .

�
Ω

ui�1dx ≤ (2�1)
−1

�
Ω

u
p

i
�1dx + (2�1)

1

p−1

�
Ω

�1dx

≤ (2�1)
−1

�
Ω

|�|p−1ui�1dx + (2�1)
1

p−1

�
Ω

�1dx,

2�1
�
Ω

��1dx ≤
�
Ω

|�|p−1��1dx + (2�1)
p

p−1

�
Ω

�1��dx,

�
Ω

|�|p−1��1dx ≤ 2�
�
�Ω

��1

��
d� + (2�1)

p

p−1

�
Ω

�1��dx,

�
Ω

|�|p−1��1dx ≤ 2�
�
�Ω

||||
��1

��

||||
�
�
d� + (2�1)

p

p−1

�
Ω

�1��dx.

|�| =
(
u2
1
+ u2

2
+⋯ + u2

m

)1∕2
≤ u1 + u2 +⋯ + um,
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which, together with the above inequality and (3.1), implies that there exists a positive con-
stant C, depending on m, p, Ω and � , such that

Since � is a positive weak solution of problem (1.5), it follows from [7, Corollary 2.2] that

By this and the triangle inequality, we obtain

Applying the above inequality, Lemma  2.1 with � = 1 and � = 0 , and Lemma  2.2 with 
� = 0 , we then deduce that there exists a positive constant C, depending on N, m,  p, and Ω , 
such that

Combining this and (3.3), we further deduce that

A combination of this and (3.3) yields the desired assertion. 	�  ◻

The following lemmas give precise estimates of �[�] and ℙ[�] , which can be found in 
[7, Theorem 2.6] and [7, Theorem 1.1].

Lemma 3.3  Assume that � ∈ �(Ω, ��dx) , � ∈ [0, 1] . If N ≥ 3 , then �[�] ∈ M
N+�

N−2+� (Ω, ��dx) 
for any � ∈

(
−N

N−1+�
,

�N

N−2

)
 and � ≠ 0 , or for any � ∈ ((−N)∕(N − 1), 0] and � = 0 . In any 

case, there exists a positive constant C(N,Ω, �, �) such that

If N = 2 and � ≠ 0 , then �[�] ∈ M
2+�−�

� (Ω, ��dx) for any � ∈

(
−2

1+�
,∞

)
 and 𝜀 > 0 small 

enough. If � = 0 , then �[�] ∈ Mp(Ω, ��dx) for any � ∈ (−2, 0] and p ∈ (max{1,−�},∞).

Lemma 3.4  Assume that � ∈ �+(�Ω) and 1 < p < p∗ . Then there exists a positive constant 
C(N,Ω, p) such that

Typically, if � = �0 and 0 ∈ �Ω , then, for any x ∈ Ω,

We turn to show the pointwise estimates of a positive weak solution of problem (1.5).

(3.3)‖���p‖L1(Ω,�dx) ≤ C
�
1 + ‖�‖(�+(�Ω))

m

�
.

(3.4)� = 𝔾
[
|�|p−1�

]
+ �ℙ[�].

‖�‖(L1(Ω))m =
���𝔾

�
���p−1�

�
+ �ℙ[�]

���(L1(Ω))m

≤ m
����𝔾

�
���p

����L1(Ω) + �‖ℙ[���]‖L1(Ω)
�
,

‖�‖(L1(Ω))m ≤ C
�
‖���p‖L1(Ω,�dx) + �‖�‖(�+(�Ω))

m

�
.

‖�‖(L1(Ω))m ≤ C
�
1 + ‖�‖(�+(�Ω))

m

�
.

‖�[�]‖
M

N+�
N−2+� (Ω,��dx)

≤ C(N,Ω, �, �)‖�‖�(Ω,��dx).

𝔾
�
ℙ
p[�]

�
≤ C(N,Ω, p)‖�‖p−1

�+(�Ω)
ℙ[�].

𝔾[ℙp[�0]](x) ≤ C(N,Ω, p)P(x, 0)|x|N+1−p(N−1).
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Proof of Theorem 1.4  In view of Proposition 3.2, it suffices to show (1.7). Since � is a posi-
tive weak solution of systems (1.5), it follows that the lower estimate of (1.7) holds true. 
Then the following we shall prove the upper estimate of (1.7). For the purpose, we divide it 
into two cases: p <

N

N−1
 , and N

N−1
≤ p <

N+1

N−1
.

Now consider first p <
N

N−1
 . By (3.3), we have |�|p ∈ L1(Ω, �dx). Combining this and 

Lemma  3.3 with � = 1 and � = 1 , we then deduce that �[|�|p−1�] ∈ (M
N

N−1 (Ω))m when 
N ≥ 3 , and �[|�|p−1�] ∈ (M2−�(Ω))m when N = 2 . Since � ∈ (�+(�Ω))

m, it follows from 
Lemma  2.2 that ℙ[�] ∈ (M

N

N−1 (Ω))m when N ≥ 3 , and ℙ[�] ∈ (M2−�(Ω))m when N = 2. 
Therefore, by (3.4), we conclude that, if N ≥ 3 , � ∈ (M

N

N−1 (Ω))m, and if N = 2 , 
� ∈ (M2−�(Ω))m for � small enough. Using this, (2.4), and p <

N

N−1
 , we have |�|p ∈ Lk0 (Ω) 

for some 1 < k0 <
N

p(N−1)
 . For any n ≥ 1 , let

By (2.1), we have

Since � is a positive weak solution of the system (1.5), it follows from (3.4) that

and hence

Now we will show that, there exist an integer n0 ≥ 1 , and constants C2 and C̃2 , depending 
on N, p, Ω , ‖�‖�+(�Ω)

 , � and m, such that vn0 ∈ C0(Ω) and

Since vp
0
∈ Lk0 (Ω) for some 1 < k0 <

N

p(N−1)
 , it follows that v1 ∈ W2,k0 (Ω) . Clearly, if N = 2, 

then k0 > N∕2 . It follows from the Sobolev inequality (see, for instance, [18, p. 284]) that 
v1 ∈ C0(Ω) . A combination of (3.6) and (3.7) yields (3.8).

If N ≥ 3 , then k0 < N∕2. By this and the Sobolev inequality, we deduce that

Moreover, we have k1 >
(N−1)k0

N−2k0
k0 > k0. If k1 < N∕2, by (2.1), we know that

Combining this, (3.7), and the weak maximum principle (see, for instance, [18, p. 344]), 
we then deduce that

v0 ∶= |�| and vn ∶= �
[
v
p

n−1

]
.

(3.5)
{

− Δvn = v
p

n−1
in Ω,

vn = 0 on �Ω.

(3.6)|�| ≤ m(v1 + �ℙ[|�|]),

(3.7)|�|p ≤ 2p−1mp
(
v
p

1
+ �pℙp[|�|]

)
.

(3.8)vn0 ≤ C2

(
ℙ[|�|] + vn0+1

)
and |�| ≤ C̃2

(
ℙ[|�|] + vn0+1

)
in Ω.

(3.9)v
p

1
∈ Lk1 (Ω), where k1 ∶=

Nk0

p(N − 2k0)
.

⎧
⎪
⎨
⎪
⎩

− Δv1 = ���p in Ω,

− Δ𝔾[�pℙp[���] + v
p

1
] = �pℙp[���] + v

p

1
in Ω,

v1 = 0 = 𝔾[ℙp[���] + v
p

1
] on �Ω.

(3.10)v1 ≤ 2p−1mp
(
v2 + �p𝔾

[
ℙ
p[|�|]

])
,
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where

Since |�| ∈ �+(�Ω) , it follows from Lemma 3.4 that there exists a positive constant C, 
depending on N, p, and Ω , such that 𝔾[ℙp[���]] ≤ C‖�‖p−1

(�+(�Ω))
mℙ[���] . Combining this, 

(3.6), and (3.10), we then obtain

where C1 and C̃1 are positive constants which depend on N, p, Ω , ‖�‖(�+(�Ω))
m , � and m. By 

induction, for any n ≥ 2 , we can obtain (3.8) holds true. Moreover, vpn ∈ Lkn (Ω) with

Now we claim that there exists n0 ≥ 2 such that kn0−1 >
N

2
 . If not, that is kn <

N

2
 for all 

n ≥ 2 , then together with p < p∗ <
N

N−2
 , we have

It is a contradiction with {kn}n∈ℕ is an increasing sequence and k0 > 1 . This proves the 
above claim. Therefore, for N ≥ 3, we can find a integer n0 ≥ 2 such that vn0 ∈ C0(Ω) and 
(3.8) holds true.

By (3.5), we obtain vn0+1 is of Hölder continuous with exponent 1 and hence, there 
exists a positive constant C3 such that

Combining this and (3.8), we conclude that there exists a constant C̃ , depending on N, p, Ω , 
‖�‖�+(�Ω)

 , and m such that

This proves (1.7) when p <
N

N−1
 . Moreover, if � = 0 , then by (1.7), we obtain, for any 

i ∈ {1, 2,… ,m} , ||ui|| ≤ C̃�(x). It follows from [21, p. 140] that ui ∈ C0,1(Ω) . By this and 
Schauder estimates, we conclude that, for any i ∈ {1, 2,… ,m} , ui ∈ C∞(Ω) ∩ C1,�(Ω) for 
any � ∈ (0, 1) . Hence, � ∈ (C∞(Ω) ∩ C1,�(Ω))m. This proves Theorem 1.4 when p <

N

N−1
.

Next, we consider the case N

N−1
≤ p <

N+1

N−1
 . Let K ≥ 2 be some fixed integer such that

For any n ∈ [0,K] , let �n ∶= 1 −
n

K
∈ [0, 1] . By Lemma  3.3, if N ≥ 3 , then 

� ∈ (M
N+1

N−1 (Ω, �dx))m , and if N = 2 , for � small, then � ∈ (M2−�(Ω, �dx))m. Let {vn}n≥0 be 
the same as in the first case. By (2.4) and �0 = 1 , we have

where 1 < r0 <
N+𝛽0

(N−1)p
 . Define v1 ∶= �[v

p

0
] in L1(Ω) . By Lemma  3.3 and (2.4), then for 

N ≥ 3 and 𝜀 > 0 small enough,

v2 ∶= �
[
v
p

1

]
∈ Lk2p(Ω) and k2 ∶=

Nk1

p(N − 2k1)
>

Nk0

p(N − 2k0)
= k1.

v1 ≤ C1

(
ℙ[|�|] + v2

)
and |�| ≤ C̃1

(
ℙ[|�|] + v2

)
,

kn =
Nkn−1

p(N − 2kn−1)
> kn−1.

kn →
N(p − 1)

2p
< 1 as n → ∞.

vn0+1(x) ≤ C3�(x) in Ω.

|�| ≤ C̃(ℙ[|�|] + �(x)).

(3.11)
1

K
< N + 1 − (N − 1)p.

v
p

0
∈ Lr0

(
Ω, ��0dx

)
,
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for any � ∈

(
−1,

N

N−2

)
 , and for N = 2 . Since �1 = 1 −

1

K
∈ (0, 1) , it follows from (3.11) 

that N + 𝛽1 − (N − 2 + 𝛽0)p = N + 1 − (N − 1)p −
1

K
> 0 and

where 1 < r1 <
N+𝛽1

(N−2+𝛽0)p
 . For any n ≤ K , assume by induction that vn−1 ∶= �[v

p

n−2
] in 

L1(Ω) , and that

where 1 < rn−1 <
N+𝛽n−1

(N−2+𝛽n−2)p
 . Then we can define vn ∶= �[v

p

n−1
] in L1(Ω) . By Lemma 3.3 

and (2.4), we obtain

for any � ∈

(
−1,

�n−1N

N−2

)
 . Taking � = �n ≥ 0 and by (3.11), we have 

N + 𝛽n − (N − 2 + 𝛽n−1)p >
(n−1)(p−1)

K
> 0 , hence

where 1 < rn <
N+𝛽n

(N−2+𝛽n−1)p
 . Now in case n = K , we have �K = 0 . This proves that 

v
p

K
∈ LrK (Ω) , with rK > 1 and we are reduced to (3.9) of the first case. By this and the same 

argument as that used in the first case, we conclude that there exists an integer n0 such that 
vn0+K ∈ C0(Ω) . Until now, we finish the proof of Theorem 1.4. 	�  ◻

At last, we give a simple proof of Corollary 1.5.

Proof of Corollary 1.5  Since its trace is necessarily of the form � = ��0 for some � ≥ 0 , 
� ∈ ℝ

m . To obtain this corollary, we just need to consider a typical case of problem (1.5) 
with � = ��0 on �Ω for some � ≥ 0 . If � = 0 , then by Theorem 1.4, we find that � is con-
tinuous at 0. If not, then by Lemma 3.4, we obtain a more precise estimate, that is, there 
exists a positive constant C, depending on N, p, Ω , and � , such that

By induction, we then obtain, for any n ∈ ℕ,

By [7, (2.8)], we know that there exists a constant C = C(N,Ω) such that, for any 
(x, z) ∈ Ω × �Ω,

From this and (1.7), it follows that

v1 ∈ L
N+�

N−2+�0
−�(

Ω, ��dx
)
,

v
p

1
∈ Lr1

(
Ω, ��1dx

)
,

v
p

n−1
∈ Lrn−1

(
Ω, ��n−1dx

)
,

vn ∈ L
N+�

N−2+�n−1
−�(

Ω, ��dx
)
,

vp
n
∈ Lrn

(
Ω, ��ndx

)
,

v1 ≤ 2p−1mp
{
v2 + |�|p𝔾

[
ℙ
p[�0]

]}
≤ C1

[
v2 + P(x, 0)|x|N+1−p(N−1)

]
.

vn ≤C1

[
vn+1 + P(x, 0)|x|N+1−p(N−1)

]
,

|�| ≤C
[
P(x, 0) + vn+1 + P(x, 0)|x|N+1−p(N−1)

]
.

(3.12)C−1�(x)|x − z|−N ≤ P(x, z) ≤ C�(x)|x − z|−N ≤ C|x − z|1−N .
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Combining this inequality and p <
N+1

N−1
 , we conclude that

This finishes the proof of Corollary 1.5. 	�  ◻

4 � Proof of Theorem 1.6

In order to show the existence of the minimal solution for the system (1.5), we first give 
a sufficient conditions for the existence of the minimal solution by Proposition 4.1. As a 
result, we can prove Proposition  4.2 and obtain that there exists a minimal solution for 
(1.5). At last, with the help of Proposition 4.2 we shall prove Theorem 1.6.

Proposition 4.1  Assume that 1 < p < p∗ . If there exists a nonnegative function 
� ∈ (Lp(Ω, �dx))m such that � ≥ 𝔾[|�|p−1�] + �ℙ[�] , then the problem (1.5) admits a 
minimal positive weak solution � satisfying

Proof  Put �0 ∶= (0, 0,… , 0) ∈ ℝ
m and

Clearly, �0 ≤ � . It then follows from (2.2) that

By induction, we can show that �
�
≤ � for any n ≥ 1 . It is easy to deduce from (2.2) that 

{�
�
}n∈ℕ is an increasing sequence. Hence, there exists a positive vextor-valued function 

� ∈ (Lp(Ω, �dx))m such that �
�
→ � almost everywhere as n → ∞ . Moreover, by the domi-

nated convergence theorem, we find that |�
�
|p−1�

�
→ |�|p−1� in (L1(Ω, �dx))m as n → ∞ . 

Therefore, by Lemma 2.1, we have

and a.e. in Ω as n → ∞ . Letting n → ∞ in (4.1), we then deduce that

By [7, Corollary 2.2], we know that � is a weak solution of (1.5).
Now, we claim that � is the minimal weak solution of (1.5). Indeed, for any positive 

weak solution � of (1.5), we have by (3.4) that

which, together with (2.2), implies that

C|x|−N�(x) ≤ |�| ≤ C
[
|x|−N�(x) + �(x) + |x|−N�(x)|x|N+1−p(N−1)

]
.

|�| = C|x|−N�(x)[1 + o(1)] as x → 0.

�ℙ[�] ≤ � ≤ �.

(4.1)�
�
∶= 𝔾

[
|�

�−�|p−1��−�
]
+ �ℙ[�], n ≥ 1.

�
�
= 𝔾

[
|�

�
|p−1�

�

]
+ �ℙ[�] ≤ 𝔾

[
|�|p−1�

]
+ �ℙ[�] ≤ �.

�[|�
�
|p−1�

�
] → �[|�|p−1�] in (L1(Ω))m

� = 𝔾
[
|�|p−1�

]
+ �ℙ[�].

� = 𝔾[|�|p−1�] + �ℙ[�] ≥ �
�
,

� ≥ 𝔾
[
|�

�
|p−1�

�

]
+ �ℙ[�] = �

�
.
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By induction, we know that � ≥ �
�
 for all n ≥ 1 . Hence � ≥ � . This proves the above claim 

and hence finishes the proof of Proposition 4.1. 	�  ◻

Using the above proposition, we establish the existence of minimal positive weak 
solution of systems (1.5).

Proposition 4.2  Assume that 1 < p < p∗ . Then there exists a positive constant �̃  such that, 
for any � ∈ (0, �̃) , systems (1.5) admit a minimal positive weak solution �.

Proof  To use Proposition 4.1, we first construct a supersolution. For any 𝜃 > 0 , define

where �
�
∶= (1, 1,… , 1) ∈ ℝ

m . By Lemma 3.4, we have

It follows that,

where C is a positive constant depends on N, Ω , p, and ‖�‖(�+(�Ω))
m . If

then |�|p−1� ≤ |�|p�
�
≤ ��p|ℙ[�]|p�

�
. Combining this, the definition of � , and (2.2), we 

obtain

By this and Proposition 4.1, we obtain the desired assertion. Now, we just need to deal with 
(4.2). Observe that (4.2) holds true if and only if

Set

then if � ≤ �0 , we have (Cm�0�p−1 + 1)p ≤ �0 , where �0 ∶=
(

p

p−1

)p

 . Hence, we have cho-
sen �0 and �0 such that (4.2) satisfied. Using Proposition 4.1, there exists a minimal solu-
tion � satisfying

This finishes the proof of Proposition 4.2. 	�  ◻

To prove Theorem 1.6, we also need the following technical lemma, which was first 
proved in [9, Lemma 5.3].

� ∶= ��p𝔾
[
|ℙ[�]|p�

�

]
+ �ℙ[�],

��� ≤ C(N,Ω, p)‖�‖p−1
�+(�Ω)

m��p�ℙ[�]� + ��ℙ[�]�.

|�|p ≤ |ℙ[�]|p(Cm��p + �)p,

(4.2)(Cm��p + �)
p
≤ ��p,

𝔾
[
|�|p−1�

]
+ �ℙ[�] ≤ 𝔾

[
��p|ℙ[�]|p�

�

]
+ �ℙ[�] = �.

(
Cm��p−1 + 1

)p
≤ �.

�0 ∶=

(
1

Cmp

) 1

p−1
(
p − 1

p

)
,

�ℙ[�] ≤ � ≤ �.
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Lemma 4.3  Assume that v1 , v2 ∈ C2(Ω) , and v2 > 0 . Let f ∶ ℝ → ℝ be a C2 and concave 
function. Then

In order to prove the first part of Theorem 1.6, we shall define a set A as follows:

By Proposition  4.2, we know that (1.5) admits a positive solution for � small enough. 
Therefore, A ≠ ∅ and A is well-defined. For the case 1 < p < p∗ , our aim is to show that 
�∗ = supA . On the other hand, by the method of contradiction, we can complete the other 
case p ≥ p∗.

Proof of Theorem 1.6  Case 1) 1 < p < p∗ . To prove

we only need to prove the following 4 claims.
Claim 1: �∗ is finite.
By Theorem  1.2, we know that systems (1.5) admit a positive weak solution � for � 

small enough. For any fixed i ∈ {1, 2,… ,m} , let v1,i ∶= ui and v2,i ∶= �ℙ[�i] . Then, we 
have −Δ(ui) = |�|p−1ui in Ω . Let

Since Δ(�ℙ[�i]) = 0 (see (2.1)) and v1,i ≥ v2,i > 0 , it follows from Lemma 4.3 that

Using the above inequality and the fact that −Δ𝔾[ℙp[�i]] = ℙ
p[�i] in Ω (see (2.1)), we then 

deduce that, for any i ∈ {1, 2,… ,m},

Since ui = �ℙ[�i] on �Ω , it follows that f ( ui

�ℙ[�i]
) = f (1) = 0 on �Ω , which, together with 

the fact that 𝔾[ℙp[�i]] = 0 on �Ω (see (2.1)), further implies that

From this, (4.3), and the weak maximum principle, it then follows that

Combining this, the fact that ui ≥ �ℙ[�i] , and f ≤ 1

p−1
 on [1,∞) , we conclude that

−Δ

[
v2f

(
v1

v2

)]
≥ f �

(
v1

v2

)
(−Δv1) +

[
f

(
v1

v2

)
−

v1

v2
f �
(
v1

v2

)]
(−Δv2).

A ∶= {𝜚 > 0 ∶ systems (1.5) admits a positive weak solution }.

�∗ = supA,

f (s) ∶=

⎧
⎪
⎨
⎪
⎩

1 − s1−p

p − 1
, if s ≥ 1,

s − 1, if s < 1.

�pℙp[�i] ≤

(
ui

�ℙ[�i]

)−p

|�|p−1ui ≤ −Δ

(
�ℙ[�i]f

(
ui

�ℙ[�i]

))
.

(4.3)−Δ

(
�ℙ[�i]f

(
ui

�ℙ[�i]

)
− �p𝔾

[
ℙ
p[�i]

])
≥ 0 in Ω.

�ℙ[�i]f

(
ui

�ℙ[�i]

)
− �p𝔾

[
ℙ
p[�i]

]
= 0 on �Ω.

�p𝔾
[
ℙ
p[�i]

]
≤ �ℙ[�i]f

(
ui

�ℙ[�i]

)
in Ω.



1344	 Y. Li, G. Xie 

1 3

Therefore, for any i ∈ {1, 2,… ,m} , (�∗)p−1𝔾
[
ℙ
p[�i]

]
≤

1

p−1
ℙ[�i]. Since |�|(�Ω) = 1 , it 

follows that �∗ is finite. This proves the first claim.
Claim 2: A is an interval.
To show this claim, it is enough to prove that if �� ∈ A and 𝜚� < 𝜚∗ , then � ∈ A for any 

� ∈ (0, ��) . By the definition of A , we find that there exists a positive weak solution ��′ of 
problem (1.5) with � = �� , and ��� ≥ ��ℙ[�] ≥ �ℙ[�] . It is easy to see that ��′ is a supsolu-
tion of (1.5) with � = � . By this and Proposition 4.1, we know that (1.5) with � = � admits 
a minimal positive weak solution �

𝜏
< �𝜚′ . This implies that � ∈ A and hence proves the 

second claim.
Claim 3: �∗ ∈ A.
To prove Claim 3, we only need to show that problem (1.5) admits a positive weak solu-

tion for � = �∗ . Let {�n} ∈ A be a nondecreasing sequence converging to �∗ . For each n, 
let �

n
 be the positive minimal weak solution of (1.5) with � = �n . By Definition 1.1, we 

obtain, for any � ∈ X1.1
0
(Ω),

It follows from Theorem 1.4 that the sequence {�
n
}n∈ℕ is uniformly bounded in (L1(Ω))m 

and in (Lp(Ω, �dx))m . By the formulation

and the Green operator � ∶ L1(Ω, �dx) → L1(Ω) is compact (see Lemma 2.1), we derive 
that there exist a function �

�∗
 and a subsequence, still denoted by the same notation, such 

that �
n
 converges to �

�∗
 in (L1(Ω))m and a.e in Ω as n → ∞.

For q ∈ (p, p∗) , by (4.5), Lemma 2.1 with � = 1 and � = 1 , and Lemma 2.2 with � = 1 , 
we deduce that, for any n ∈ ℕ,

It follows from Theorem 1.4 that, for any n ∈ ℕ,

Thus, {�
n
}n∈ℕ is uniformly bounded in (Lq(Ω, �dx))m . Furthermore, we infer that 

{|�
n
|p−1�

n
}n∈ℕ is uniformly integrable in (L1(Ω, �dx))m by the Hölder inequality. Using 

the Vitali convergence theorem, we further deduce that |�
n
|p−1�

n
→ |�

�∗
|p−1�

�∗
 in 

(L1(Ω, �dx))m as n → ∞ . Therefore, letting n → ∞ in (4.4), we have

�p𝔾
[
ℙ
p[�i]

]
≤

�

p − 1
ℙ[�i] in Ω.

(4.4)
∫
Ω

�
n
(−Δ)�dx =

∫
Ω

|||�n
|||
p−1

�
n
�dx − �n

∫
�Ω

��

��
d�.

(4.5)�
n
= 𝔾[|�

n
|p−1�

n
] + �nℙ[�],

����n
���(Lq(Ω,�dx))m ≤

���𝔾
�
��

n
�p−1�

n

����(Lq(Ω,�dx))m + �n‖ℙ[���]‖Lq(Ω,�dx)

≤ C(N, q,Ω)
������n�

p−1
�
n

���(L1(Ω,�dx))m + �n‖�‖(�+(�Ω))
m

�
,

����n
���(Lq(Ω,�dx))m ≤ C(N, q,Ω)

����
����n

���
p���L1(Ω,�dx) + �∗‖�‖(�+(�Ω))

m

�

≤ C(N, q,Ω)(1 + �∗)

�
1 + ‖�‖(�+(�Ω))

m

�
.

∫
Ω

�
�∗
(−Δ)�dx =

∫
Ω

|�
�∗
|p−1�

�∗
�dx − �

∗

∫
�Ω

��

��
d�, ∀� ∈ X1.1

0
(Ω).
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This means �
�∗

 is a positive weak solution of (1.5) with � = �∗ . Thus, �∗ ∈ A . This finishes 
the proof of the claim.

Claim 4: The function �
�∗

 is the positive minimal weak solution of (1.5) for � = �∗.
Let � be any positive weak solution of (1.5) for � = �∗ . Then � is a supsolution of (1.5) 

when � = �n . It follows from Proposition 4.1 that � ≥ �
n
 , where �

n
 is defined in the Claim 

3. Therefore, � ≥ �
�∗

 . By this, we conclude that �
�∗

 is the positive minimal weak solution 
of (1.5) for � = �∗ . This proves the desired assertion.

For any �1 , �2 ∈ (0, �∗] with �1 ≤ �2 , ��2 is a supsolution of systems (1.5) when � = �1 . 
From this and Proposition 4.1, it follows that {�

�
}�∈(0,�∗] is an increasing sequence. Moreo-

ver, by the same argument as that used in the proof of Claim 3, we conclude that {�
�
}�∈(0,�∗] 

converges to �
�∗

 in (L1(Ω))m and in (Lp(Ω, � dx))m . Furthermore, if 𝜚 > 𝜚∗ , by the definition 
of A, we find that systems (1.5) admit no positive weak solution. Hence, we finish the 
proof of Case 1).

Case 2) p ≥ p∗ . Suppose by contradiction that for some 𝜚 > 0 and zi ∈ �Ω , 
i ∈ {1, 2,… ,m} , the system with �i = �zi

 admits a positive weak solution � . Then from 
Theorem 1.4, we obtain that � ∈ (Lp(Ω, �dx))m and � ≥ �ℙ[�] . Combining this and (3.12), 
we then deduce that

Choose r > 0 such that

Then

Since p ≥
N+1

N−1
 , it follows that the integral on the right hand-side of the above inequality is 

divergent. This implies that � ∉ (Lp(Ω, �dx))m . Thus, we obtain a contradiction. Therefore, 
we complete the proof of Case 2) and hence Theorem 1.6. 	�  ◻
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