
Vol.:(0123456789)

Annali di Matematica Pura ed Applicata (1923 -) (2022) 201:359–377
https://doi.org/10.1007/s10231-021-01119-0

1 3

Nilpotent groups of automorphisms of families of Riemann 
surfaces

Sebastián Reyes‑Carocca1 

Received: 11 April 2020 / Accepted: 3 May 2021 / Published online: 19 May 2021 
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer 
Nature 2021

Abstract
In this article, we extend results of Zomorrodian to determine upper bounds for the order 
of a nilpotent group of automorphisms of a complex d-dimensional family of compact Rie-
mann surfaces, where d ⩾ 1. We provide conditions under which these bounds are sharp. In 
addition, for the one-dimensional case, we construct and describe an explicit family attain-
ing the bound for infinitely many genera. We obtain similar results for the case of p-groups 
of automorphisms.
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1  Introduction and statement of the results

The classification of groups of automorphisms of compact Riemann surfaces is a classical 
subject of study which has attracted considerable interest ever since Hurwitz proved that 
the full automorphism group of a compact Riemann surface of genus g ⩾ 2 is finite and 
that its order is at most 84(g − 1). Later, this problem acquired a new relevance when its 
relationship with Teichmüller and moduli spaces was developed.

It is classically known that there are infinitely many values of g for which there exists a 
compact Riemann surface of genus g with automorphism group of maximal order; they are 
called Hurwitz curves and correspond to branched regular covers of the projective line with 
three branch values, marked with 2, 3 and 7.

We recall the known fact that each finite group can be realized as a group of automor-
phisms of a compact Riemann surface of a suitable genus. In part due to the above, an 
interesting problem is to study those compact Riemann surfaces whose automorphism 
groups share a common property and, after that, to describe among them those possessing 
the maximal possible number of automorphisms.
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Perhaps, the most noteworthy examples concerning that are the abelian and cyclic 
cases. In fact, in the late nineteenth century, Wiman showed that the largest cyclic group 
of automorphisms of a compact Riemann surface of genus g ⩾ 2 has order at most 
4g + 2. Moreover, the compact Riemann surface given by the algebraic curve

shows that this upper bound is attained for each g. See [50] and also [20] and [29].
Meanwhile, as a consequence of a result due to Maclachlan, the order of an abe-

lian group of automorphisms of a compact Riemann surface of genus g ⩾ 2 is at most 
4g + 4 ; see [33]. In addition, the fact that for each g there exists a compact Riemann 
surface of genus g with a group of automorphisms isomorphic to C2 × C2g+2, shows that 
this upper bound is attained for each value of g.

Similar bounds for special classes of groups can be found in the literature in plentiful 
supply. For instance, the solvable case can be found in [10] and [16], the supersolvable 
case in [17] and [51], the metabelian case in [11] and [15], the metacyclic case in [44] 
and several special cases of solvable groups in [46]. We also refer to the survey article 
[14].

By contrast, it seems that not much is known in this respect when considering com-
plex d-dimensional families of compact Riemann surfaces, for d ⩾ 1 . Very recently, 
Costa and Izquierdo in [12] proved that the maximal possible order of the automor-
phism group of the form ag + b, where a, b ∈ ℤ, of a complex one-dimensional family 
of compact Riemann surfaces of genus g ⩾ 2, appearing for all genera, is 4(g + 1). In 
addition, they went even further by exhibiting an explicit equisymmetric family of non-
hyperelliptic compact Riemann surfaces attaining this bound for all g (c.f. [1]). Later, 
the analogous problem for complex low-dimensional families ( d ⩽ 4 ) was addressed in 
[27] and [37].

The aim of this article is to deal with nilpotent groups and p-groups of automorphisms 
of complex d-dimensional families of compact Riemann surfaces, where d ⩾ 1.

We recall that the Jacobian variety JC of a compact Riemann surface C of genus g is an 
irreducible principally polarized abelian variety of dimension g. The relevance of the Jaco-
bian variety lies, in part, in the classical Torelli’s theorem, which establishes that

In this paper, we shall also consider isogenous decompositions of Jacobian varieties of cer-
tain compact Riemann surfaces with a nilpotent group of automorphisms.

Nilpotent groups acting on families of Riemann surfaces
In [32], Macbeath considered homomorphisms from co-compact Fuchsian groups onto 

finite nilpotent groups. Since every finite nilpotent group is isomorphic to the direct prod-
uct of its Sylow subgroups, after introducing the concept of p-localization of groups, he 
succeeded in providing necessary and sufficient conditions under which a given signature 
appears as the signature of the action of a nilpotent group of automorphisms on a compact 
Riemann surface.

Soon after and based on the aforementioned Macbeath’s result, Zomorrodian in [53] 
proved that the order of a nilpotent group of automorphisms of a compact Riemann sur-
face of genus g ⩾ 2 is at most 16(g − 1). Moreover, he noticed that if the previous bound is 
sharp then g − 1 is a power of two and the signature of the action is (0; 2, 4, 8).

Here, we extend the previous result from (zero-dimensional families of) compact Rie-
mann surfaces to d-dimensional families of compact Riemann surfaces, where d ⩾ 1.

y2 = x2g+1 − 1

C1 ≅ C2 if and only if JC1 ≅ JC2.
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Theorem 1 Let d ⩾ 1, g ⩾ 2 be integers. Let G be a nilpotent group of automorphisms of 
a complex d-dimensional family of compact Riemann surfaces C of genus g. 

(1) The order G is at most

(2) The order of G is M2,d if and only if the signature of the action of G on C is

(3) If the order of G is M2,d then G is a 2-group. In particular if, in addition, d = 1 or d − 1 
a power of two then g − 1 is a power of two.

If g − 1 is a power of two, in [53] it was also proved the existence of at least one compact 
Riemann surface of genus g with a nilpotent group of automorphisms of order 16(g − 1) , 
showing that this upper bound is attained for infinitely many values of g.

Note that for d = 2 , the previous theorem guarantees that, if the order of G is maximal 
then g − 1 is a power of two. We notice that the converse is also true. Indeed, following 
[37], for each g ⩾ 2, there exists a complex two-dimensional family of compact Riemann 
surfaces of genus g with a dihedral group of automorphisms of order

Thus, in particular, if g − 1 is a power of two then the involved dihedral group is nilpotent 
and therefore the upper bound M2,2 is attained.

It is worth pointing out here that Zomorrodian’s method to prove the existence of a 
compact Riemann surface of genus g with a nilpotent group of automorphisms of order 
16(g − 1) is based on an inductive argument and does not provide neither the Riemann sur-
face nor the nilpotent group in an explicit manner; see [53, p. 254].

The following theorem shows that the upper bound Md,1 is sharp for infinitely many val-
ues of g. In contrast with the zero-dimensional case, our strategy is to construct a complex 
one-dimensional family in an explicit enough way in order to provide a detailed description 
of the family. We include an isogeny decomposition of the associated family of Jacobian 
varieties.

Theorem 2 For each integer n ⩾ 5 , there is a complex one-dimensional closed family of 
compact Riemann surfaces C of genus 1 + 2n−3 with a nilpotent group of automorphisms G 
of order 2n isomorphic to the semidirect product

presented in terms of generators a, b, r, s and relations

acting on C with signature (0; 2, 2, 2, 4). Furthermore:

(1) the family consists of at most 22n−6 equisymmetric strata,

M2,d =

{
8(g − 1) if d = 1
4

d−1
(g − 1) if d ⩾ 2.

�2,d =

{
(0;2, 2, 2, 4) if d = 1

(0;2, d+3… , 2) if d ⩾ 2.

M2,2 = 4(g − 1) acting with signature �2,2 = (0;2, 2, 2, 2, 2).

(C2 × �2n−3 )⋊ C2

r2
n−3

= s2 = (sr)2 = a2 = b2 = 1, [s, b] = [r, b] = 1, ara = r−1, asa = sr, aba = br2
n−4
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(2) up to possibly finitely many exceptions, C is non-hyperelliptic and its automorphism 
group agrees with G, and

(3) the Jacobian variety JC of C contains an elliptic curve isogenous to JC⟨r⟩ and decom-
poses, up to isogeny, as

where the dimensions of JC⟨s⟩ and JC⟨b⟩ are 2n−4 and 2n−4 + 1 , respectively.

Remarks 

(1) The cases n = 3 and n = 4 are exceptional in the sense that the upper bound is attained 
by a group with a different algebraic structure. Concretely 

(a) for n = 3 ( g = 2 ) the bound is attained by �4, and
(b) for n = 4 ( g = 3 ) the bound is attained by C2 × �4 and by (C2 × C4)⋊ C2.

   See [5] and [3].
(2) We announce that for each odd integer d ⩾ 3, the bound M2,d is attained for infinitely 

many genera. We shall deal with this problem in a forthcoming paper.

p -groups acting on families of Riemann surfaces.
The fact that nilpotent groups of automorphisms of compact Riemann surfaces of 

maximal order turn out to be 2-groups led Zomorrodian to ask for similar bounds for the 
class of p-groups. Indeed, he proved in [52] that if G is a p-group of automorphisms of a 
compact Riemann surface of genus g ⩾ 2 then

and that (1.1) turns into an equality if and only if the signature of the action is

, respectively. Furthermore, in the same paper it was also proved the existence of a p-group 
of order pn acting on a compact Riemann surface of genus 1 + pn∕� for each n ⩾ 4 , show-
ing that the bounds (1.1) are sharp for infinitely many values of g.

The following result is a direct consequence of Theorems 1 and 2.

Corollary 1 Let d ⩾ 1 and g ⩾ 2 be integers. If G is 2-group of automorphisms of a com-
plex d-dimensional family of compact Riemann surfaces C of genus g then:

(1) the order G is at most M2,d,
(2) the order of G is M2,d if and only if the signature of the action is �2,d, and
(3) the upper bound M2,1 is attained for infinitely many values of g.

JC ∼ JC⟨s⟩ × JC⟨b⟩,

(1.1)�G� ⩽ �(g − 1) where � =

⎧⎪⎨⎪⎩

16 if p = 2

9 if p = 3
2p

p−3
if p ⩾ 5,

(0;2, 4, 8), (0;3, 3, 9) and (0;p, p, p)
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The following theorem extends both the previous corollary from p = 2 to odd prime 
numbers p ⩾ 3 and the results in [52] from the zero-dimensional situation to complex 
d-dimensional families. For each rational number t ⩾ 0 , we denote its integer part by [t].

Theorem 3 Let d ⩾ 1 and g ⩾ 2 be integers and let p ⩾ 3 be a prime number. Let G be 
a p-group of automorphisms of a complex d-dimensional family of compact Riemann sur-
faces C of genus g.

Assume p = 3.

(1) The order of G is at most

(2) The order of G is M3,d if and only if the signature of the action of G on C is

Assume p ⩾ 5.

(3) Let �d be the smallest non-negative representative of d modulo 3. The order of G is at 
most

(4) The order of G is Mp,d if and only if the signature of the action of G on C is

The previous theorem applied to d = 1 says that if p ⩾ 3 is a prime number and if G is 
a p-group of automorphism of a complex one-dimensional family of compact Riemann 
surfaces of genus g then

and the that equality holds if and only if the signature of the action is (1; p) for p ⩾ 5, and 
(1; 3) or (0; 3, 3, 3, 3) for p = 3.

The following theorem provides a detailed description of a complex one-dimensional 
family of compact Riemann surfaces whose existence shows that the bound (1.2) is sharp 
for each prime p ⩾ 3 and for infinitely many values of g.

Theorem 4 Let p ⩾ 3 be a prime number. For each integer n ⩾ 3 , there is a complex one-
dimensional closed family of compact Riemann surfaces C of genus

with a p-group of automorphisms G of order pn isomorphic to the semidirect product

M3,d =
3

d
(g − 1).

�3,d,h = (h;3, d+3−3h… , 3) for some h ∈ {0,… , [
d

3
+ 1]}.

Mp,d =
2

N
(g − 1) where N =

2

3
d + �d(

1

3
−

1

p
).

𝜎p,d = (ĥ;p, d+3−3ĥ… , p) where ĥ = [
d

3
+ 1].

(1.2)|G| ⩽ Mp,1 =
2p

p−1
(g − 1)

1 +
(p−1)pn−1

2

Cpn−1 ⋊p Cp = ⟨a, b ∶ ap
n−1

= bp = 1, bab−1 = ar⟩,
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where r = pn−2 + 1, acting on C with signature (1; p). In addition,

(1) the family consists of p − 1 equisymmetric strata,
(2) C is elliptic-p-gonal,
(3) up to possibly finitely many exceptions, the automorphism group of C agrees with G, 

and
(4) the Jacobian variety JC of C decomposes, up to isogeny, as

where E is an elliptic curve isogenous to JCG and A is an abelian subvariety of JC of 
dimension (p−1)p

n−2

2
.

Remark The groups involved in this paper have order of the form �(g − 1) where � ∈ ℚ 
and g − 1 are a power of a prime number. We remark that this situation differs radically 
from the case in which � ∈ ℤ and g − 1 are prime; see [2, 25, 26] and [37].

This paper is organized as follows. Section 2 will be devoted to briefly review the basic 
background: Fuchsian groups, group actions on Riemann surfaces, the equisymmetric 
stratification of the moduli space and the decomposition of Jacobian varieties with group 
action. The proofs of the theorems will be given in Sections 3, 4, 5 and 6.

2  Preliminaries

2.1  Fuchsian groups

A Fuchsian group is a discrete group of automorphisms of

If Δ is a Fuchsian group and the orbit space ℍΔ given by the action of Δ on ℍ is compact, 
then the algebraic structure of Δ is determined by its signature:

where h is the genus of the quotient ℍΔ and m1,… ,ml are the branch indices in the univer-
sal canonical projection ℍ → ℍΔ. The signature (2.1) is called degenerate if

Let Δ be a Fuchsian group of signature (2.1). Then, 

(1) Δ has a canonical presentation with generators �1,… , �h , �1,… , �h, �1,… , �l and rela-
tions 

 where [u, v] stands for the commutator uvu−1v−1.
(2) The elements of Δ of finite order are conjugate to powers of �1,… , �l.

(3) The Teichmüller space of Δ is a complex analytic manifold homeomorphic to the 
complex ball of dimension 3h − 3 + l.

JC ∼ E × Ap,

ℍ = {z ∈ ℂ ∶ Im (z) > 0}.

(2.1)�(Δ) = (h;m1,… ,ml),

h = 0 and l = 1 or h = 0 and l = 2 with m1 ≠ m2.

(2.2)�
m1

1
= ⋯ = �

ml

l
= Πh

i=1
[�i, �i]Π

l
i=1

�i = 1,
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(4) The hyperbolic area of each fundamental region of Δ is given by 

(5) The Euler characteristic of the signature �(Δ) is the rational number 

We refer to the classical articles [21] and [49] for further details.
Let Γ be a group of automorphisms of ℍ. If Δ is a subgroup of Γ of finite index then Γ is 

also Fuchsian and their hyperbolic areas are related by the Riemann-Hurwitz formula

2.2  Group actions on Riemann surfaces and localization

Let C be a compact Riemann surface of genus g ⩾ 2 and let Aut (C) denotes its automor-
phism group. A finite group G acts on C if there is a group monomorphism G → Aut (C). 
The space of orbits CG of the action of G on C is naturally endowed with a Riemann sur-
face structure such that the canonical projection C → CG is holomorphic.

By the classical uniformization theorem, there is a unique, up to conjugation, Fuchsian 
group Γ of signature (g;−) such that C ≅ ℍΓ. Moreover, G acts on C if and only if there is a 
Fuchsian group Δ containing Γ together with a group epimorphism

In such a case, the group G is said to act on C with signature �(Δ) and the action is said to 
be represented by the surface-kernel epimorphism �. See [21, 43] and [49]

If G is a subgroup of G′ , then the action of G on C is said to extend to an action of G′ on 
C if: 

(1) there is a Fuchsian group Δ� containing Δ,
(2) the Teichmüller spaces of Δ and Δ� have the same dimension, and
(3) there exists an epimorphism 

An action is called maximal if it cannot be extended in the afore introduced sense. A com-
plete list of signatures of pairs of Fuchsian groups Δ and Δ� for which it may be possible to 
have an extension as before was provided by Singerman in [48].

Let Δ be a Fuchsian group of signature (2.1) and let p be a prime number. Define ei as 
the largest integer such that pei is a divisor of mi. Following [32], the signature

where the (i + 1)-entry is dropped if ei = 0 is called the p-localization of � = �(Δ). The 
signature � is called nilpotent-admissible if �p is non-degenerate for each prime p.

Macbeath proved that if � is a nilpotent-admissible signature then there exists at least 
one nilpotent group acting as a group of automorphisms of a compact Riemann surface 
with signature �. Furthermore, if in addition, the signature satisfies that �(�p) ⩽ 0 for al 

�(Δ) = 2�[2h − 2 + Σl
i=1

(1 −
1

mi

)].

�(�(Δ)) = −
1

2�
�(Δ).

�(Δ) = [Γ ∶ Δ] ⋅ �(Γ).

� ∶ Δ → G such that ker (�) = Γ.

Θ ∶ Δ�
→ G� in such a way that Θ|Δ = � and ker(�) = ker(Θ).

�p ∶= (h;pe1 ,… , pel ),
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least one prime p, then there are infinitely many nilpotent groups with the same prop-
erty. See [32, Theorem (8.1)] and [32, Theorem (8.2)].

2.3  Equisymmetric stratification

Let Hom+(C) denotes the group of orientation preserving self-homeomorphisms of C. 
Two actions �i ∶ G → Aut (C) of G on C are topologically equivalent if there exist 
� ∈ Aut (G) and f ∈ Hom+(C) such that

Each homeomorphism f satisfying (2.3) yields an automorphism f ∗ of Δ where ℍΔ ≅ CG . 
If B is the subgroup of Aut (Δ) consisting of them, then Aut (G) ×B acts on the set of 
epimorphisms defining actions of G on C with signature �(Δ) by

Two epimorphisms �1, �2 ∶ Δ → G define topologically equivalent actions if and only if 
they belong to the same ( Aut (G) ×B)-orbit (see [3, 5, 21] and [31]).

We remark that if the genus of CG is one then B contains the transformations

for each n ∈ ℤ. See [3, Proposition 2.5].
Let Mg denotes the moduli space of compact Riemann surfaces of genus g ⩾ 2. It is 

well-known that Mg is endowed with a structure of complex analytic space of dimen-
sion 3g − 3, and that for g ⩾ 4 its singular locus Sing (Mg) agrees with the set of points 
representing compact Riemann surfaces with non-trivial automorphisms.

Following [4], the singular locus of Mg admits an equisymmetric stratification

where each equisymmetric stratum MG,�
g

 , if nonempty, corresponds to one topological class 
of maximal actions (see also [21]). More precisely: 

(1) the equisymmetric stratum MG,�
g

 consists of those Riemann surfaces C of genus g 
with (full) automorphism group isomorphic to G such that the action is topologically 
equivalent to �,

(2) the closure M̄G,𝜃

g
 of MG,�

g
 is a closed irreducible algebraic subvariety of Mg and consists 

of those Riemann surfaces C of genus g with a group of automorphisms isomorphic to 
G such that the action is topologically equivalent to � , and

(3) if the equisymmetric stratum MG,�
g

 is nonempty then it is a smooth, connected, locally 
closed algebraic subvariety of Mg which is Zariski dense in M̄G,𝜃

g
.

In this article, we employ use the following terminology.

Definition The subset of Mg consisting of those compact Riemann surfaces C of genus g 
with action of a given group G with a given signature will be called a (closed) family.

(2.3)�2(g) = f�1(�(g))f
−1 for all g ∈ G.

((�, f ∗), �) ↦ �◦�◦(f ∗)−1.

A1,n ∶ �1 ↦ �1, �1 ↦ �1�
n
1
, �j → �j, and A2,n ∶ �1 ↦ �1�

n
1
, �1 ↦ �1, �j → �j

Sing (Mg) = ∪G,𝜃M̄
G,𝜃

g
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The complex dimension of the family is the complex dimension of the Teichmüller space 
associated to a Fuchsian group Δ such that CG ≅ ℍΔ. Note that the interior of a family consists 
of those Riemann surfaces whose full automorphism group is isomorphic to G and is formed 
by finitely many equisymmetric strata which are in correspondence with the pairwise non-
equivalent topological actions of G. Besides, the members of the family that do not belong to 
the interior are formed by those Riemann surfaces that have strictly more automorphisms than 
G.

2.4  Decomposition of Jacobians with group action

It is well-known that if G acts on a compact Riemann surface C then this action induces a ℚ
-algebra homomorphism

from the rational group algebra of G to the rational endomorphism algebra of JC.
For each � ∈ ℚ[G] , we define the abelian subvariety

where n is some positive integer chosen in such a way that n� ∈ ℤ[G].
Let W1,… ,Wr be the rational irreducible representations of G. For each Wj , we denote 

by Vj a complex irreducible representation of G associated to it. The decomposition of 1 as 
the sum e1 +⋯ + er, where ej ∈ ℚ[G] is a uniquely determined central idempotent computed 
explicitly from Wj , yields an isogeny

which is G-equivariant; see [30]. Additionally, there are idempotents fj1,… , fjnj such that 
ej = fj1 +⋯ + fjnj where nj = dVj

∕sVj
 is the quotient of the degree dVj

 of Vj and its Schur 
index sVj

 . These idempotents provide nj subvarieties of JC which are pairwise isogenous; 
let Bj be one of them, for every j. Thus, we obtain the following isogeny

called the group algebra decomposition of JC with respect to G. See [9] and also [41].
If W1(= V1) denotes the trivial representation of G then n1 = 1 and B1 ∼ JCG.
Let H be a subgroup of G and consider the associated regular covering map �H ∶ C → CH . 

It was proved in [9] that (2.4) induces the isogeny

w here dH
Vj

 is the dimension of the vector subspace VH
j

 of Vj of elements fixed under H.
Assume that (2.1) is the signature of the action of G on C and that this action is represented 

by � ∶ Δ → G, with Δ as in (2.2). Following [43, Theorem 5.12]

where kVj
 is the degree of the extension ℚ ⩽ LVj

 with LVj
 denoting a minimal field of defini-

tion for Vj.

Φ ∶ ℚ[G] → Endℚ(JC) = End (JC)⊗ℤ ℚ,

A𝛼 ∶= Im(𝛼) = Φ(n𝛼)(JC) ⊂ JC

JC ∼ Ae1
×⋯ × Aer

(2.4)JC ∼G B
n1
1
×⋯ × Bnr

r

(2.5)JCH ∼ B
nH
1

1
×⋯ × B

nH
r

r with nH
j
= dH

Vj
∕sVj

(2.6)dim(Bj) = kVj
[dVj

(� − 1) +
1

2
Σl
k=1

(dVj
− d

⟨�(�k)⟩
Vj

)] for 2 ⩽ j ⩽ r
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The decomposition of Jacobian varieties with group actions has been extensively stud-
ied, going back to contributions of Wirtinger, Schottky and Jung. For decompositions 
of Jacobians with respect to special groups, we refer to [6–8, 13, 22, 24, 26, 28, 34, 35, 
38–40] and [42].

2.5  Notation

We denote the cyclic group of order n by Cn and the dihedral group of order 2n by �n.

3  Proof of Theorem 1

Let d ⩾ 1 and g ⩾ 2 be integers. We assume that G is a nilpotent group acting as a group 
of automorphisms of a complex d-dimensional family of compact Riemann surfaces C of 
genus g, and that the signature of the action of G on C is � = (h;m1,… ,ml).

Assume that d ⩾ 2. Note that, as each mi ⩾ 2, the hyperbolic area � of a fundamental 
domain of a Fuchsian group of signature � satisfies

Thus, by the Riemann-Hurwitz formula, one easily obtains that

as claimed. Now, if we assume that

which is at most l
2
. It follows that

The unique solution of the equation above is mi = 2 for each i, and then � = (0;2, d+3… , 2).

Assume that d = 1. We have only two cases to consider, namely (h, l) = (1, 1) and 
(h, l) = (0, 4). In the former case, it is clear that � ⩾ �. Assume � = (0;m1,m2,m3,m4) and 
denote by v the number of periods mi that are equal to 2. Note that v ⩽ 3 because if v = 4 
then � = 0.

(a) If v = 0 then each mi ⩾ 3 and therefore � ⩾
4�

3
.

(b) If v = 1 then � = (0;2,m2,m3,m4) where mi ⩾ 3. Note that if m2,m3,m4 were equal to 
3 then the 2-localization of � would be degenerate. Then, we can assume m4 ⩾ 4 and 
therefore � ⩾

7�

6
.

(c) If v = 2 then � = (0;2, 2,m3,m4) where m3,m4 ⩾ 3 and � ⩾
2�

3
.

(d) If v = 3 then � = (0;2, 2, 2,m4) where m4 ⩾ 3. Note that m4 must be a power of two, 
since otherwise the p-localization of � would be degenerate for some prime p ⩾ 3. Thus 
� ⩾

�

2
.

All the above ensures that � ⩾
�

2
 and therefore by the Riemann-Hurwitz formula,

� = 2�(2h − 2 + Σl
i=1

2

mi

) ⩾ 2�(
h

2
+

d−1

2
) ⩾ 2�

d−1

2
.

2(g − 1) =
�

2�
|G| ⩾ d−1

2
|G| ⟺ |G| ⩽ 4

d−1
(g − 1)

|G| = 4

d−1
(g − 1) then Σl

i=1

1

mi

=
d+3

2
− h,

h = 0 and Σd+3
i=1

1

mi

=
d+3

2
.
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as claimed. Now, if |G| = 8(g − 1) then

showing that m1 = m2 = m3 = 2 and m4 = 4. Thus, � = (0;2, 2, 2, 4) as desired.
Finally, as the group G is assumed to be nilpotent and as, in each case, the genus of the 

corresponding quotient is zero, we can apply [53, Theorem 2.11] to ensure that the prime 
factors of |G| are necessarily contained in the set of prime factors of the periods of �. Thus, 
the group G is a 2-group. Consequently, if we assume that, in addition, d = 1 or d − 1 is a 
power of two, then we can conclude that g − 1 is a power of two as well.

4  Proof of Theorem 2

Let Δ be a Fuchsian group of signature (0; 2, 2, 2, 4) with canonical presentation

and, for each n ⩾ 5, consider the group G ≅ (C2 × �2n−3 )⋊ C2 of order 2n with presentation 
in terms of generators a, b, r, s and relations

Note that the Riemann-Hurwitz formula is satisfied for a branched 2n-fold regular covering 
map from a compact Riemann surface of genus 1 + 2n−3 onto the projective line, ramified 
over three values marked with 2 and one value marked with 4. Thus, by virtue of Rie-
mann’s existence theorem, the existence of the desired family follows after noticing that the 
correspondence

is a surface-kernel epimorphism. Henceforth, we denote this family by F.
In order to determine an upper bound for the number of equisymmetric strata of F  , 

we have to determine an upper bound for the number of pairwise non-equivalent surface-
kernel epimorphisms � ∶ Δ → G. For each such epimorphism � , we write

and, for the sake of simplicity, we identify � with the 4-uple � = (g1, g2, g3, g4).

We notice that: 

(1) the elements of order four of G are abrl and w ∶= r2
n−5

, and
(2) the involutions of G are b, arl, z ∶= r2

n−4

, bz, srl and bsrl,

where 1 ⩽ l ⩽ 2n−3.

Claim. The central element z is different from g1, g2 and g3.
Clearly, not three or two among g1, g2, g3 can be equal to z. In addition, if one of them 

equals z, say g1 = z, then, as g1g2g3 must have order four, either

2(g − 1) = |G| �

2�
⩾

|G|
4

⟺ |G| ⩽ 8(g − 1)

Σl
i=1

1

mi

=
7

4
− h ⩽

4−3h

2
and therefore h = 0 and Σ4

j=1

1

mj

=
7

4
,

Δ = ⟨�1, �2, �3, �4 ∶ �2
1
= �2

2
= �2

3
= �4

4
= �1�2�3�4 = 1⟩

r2
n−3

= s2 = (sr)2 = a2 = b2 = [s, b] = [r, b] = 1, ara = r−1, asa = sr, aba = br2
n−4

.

Δ → G defined by (�1, �2, �3, �4) ↦ (s, bs, a, ab)

gi ∶= �(�i) for each i = 1, 2, 3, 4,
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In the former case, g4 does not have order four, while in the latter one s does not belong to 
the image of �, contradicting its surjectivity.

Similarly as argued before, we can see that the number of g′
i
s that are of the form srl 

or bsrl is exactly two. In addition, if g4 equals w then ⟨g1, g2, g4⟩ are a proper subgroup of 
G, showing that � is not surjective. Thus, � is of one of the following forms:

for some 1 ⩽ l1, l2, l3 ⩽ 2n−3. The fact that g1g2g3g4 = 1 implies that necessarily � is

Note that, after applying an appropriate conjugation, we can assume l1 = 0 or l1 = 1. Fur-
thermore, by considering the action of the automorphism of G given by

we obtain that � is equivalent to

Thereby, the number of topologically non-equivalent actions of G on C is as most 22n−6.
Following [48, Theorem 1], the signature (0; 2, 2, 2, 4) is maximal; thus, if C lies in 

the interior of the family then its automorphism group agrees with G. It is easy to verify 
that G has exactly five conjugacy classes of subgroups of order two, and that among 
them only K = ⟨z⟩ is a normal subgroup. Consider the associated two-fold regular cov-
ering map given by the action of K

and notice that, independently of the equisymmetric stratum to which C belongs (or, in 
other words, independently of the surface-kernel epimorphism �u,v representing the cor-
responding action), the covering � ramifies over exactly 2n−2 values marked with 2. Thus, 
the Riemann-Hurwitz formula implies that CK is an elliptic curve and therefore C is 
non-hyperelliptic.

If a compact Riemann surface X belongs to F  but does not belong to its interior then 
G is strictly contained in the full automorphism group of X (this is a general result that 
can be found, for instance, in [3]). Now, as the complex dimension of the family F  is 
one, it follows that the signature of the action of Aut (X) on X must be triangle, namely, 
of the form (0;t1, t2, t3). Note that there are finitely many possibilities for t1, t2, t3 and, 
in turn, to each of these possible signatures correspond at most finitely many Riemann 
surfaces. Thus, the family contains at most finitely many surfaces that do not belong to 
its interior.

We now proceed to prove the announced isogeny decomposition of JC for each C in 
the family F  . Let us consider the normal subgroup N of G given by

and the complex irreducible representation of N given by

g2, g3 ∈ {srl1 , bsrl2 ∶ 1 ⩽ lj ⩽ 2n−3} or g2, g3 ∉ {srl1 , bsrl2 ∶ 1 ⩽ lj ⩽ 2n−3}.

(srl1 , srl2 , g3, abr
l3 ), (srl1 , bsrl2 , g3, abr

l3 ) or (bsrl1 , bsrl2 , g3, abr
l3 )

(srl1 , bsrl2 , arl2+l3−l1 , abrl3 ) for some 1 ⩽ l1, l2, l3 ⩽ 2n−3.

r ↦ r−1, s ↦ sr, a ↦ a, b ↦ b

�u,v ∶= (s, bsru, arv, abrv−u) where 1 ⩽ u, v,⩽ 2n−3.

� ∶ C → CK ,

⟨r, s, b ∶ r2
n−3

= s2 = (sr)2 = b2 = 1, [b, s] = [b, r] = 1⟩
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This representation induces the complex representation V of G given by

which is, by [23, Theorem 6.11], irreducible. In addition, as V is constructed from a com-
plex irreducible representation of a dihedral group, it is easy to infer that its Schur index is 
1. Note the character field of V is ℚ(𝜔 + �̄�); this is an extension of ℚ of degree

where � is the Euler function. We denote by W2 the rational irreducible representation of G 
associated to V and by W1 the rational irreducible representation G given by

Then, as explained in § 2.4, there is an abelian subvariety P of JC such that

where BWj
 is the factor associated to Wj in the group algebra decomposition of JC with 

respect to G. As the action of G on C is determined by �u,v for some u, v ∈ {1,… , 2n−3}, we 
can apply the equation (2.6) to notice that, independently of the choice of u and v, the fol-
lowing equalities hold:

Then, by considering dimensions is the relation (4.1), one sees that

Now, we consider the induced isogeny (2.5) (with H = ⟨b⟩ and H = ⟨s⟩ ) to obtain

The previous two isogenies together with isogeny (4.1) permits us to conclude that

as claimed. Finally, is a similar way, we consider the induced isogeny (2.5) with H = ⟨r⟩ 
to obtain that JC⟨r⟩ and BW1

 are isogenous and, consequently, JC contains an elliptic curve 
isogenous to JC⟨r⟩.

r ↦

(
𝜔 0

0 �̄�

)
, s ↦

(
0 1

1 0

)
, b ↦

(
1 0

0 1

)
where 𝜔 is a 2n−3-th primitive root of unity.

r ↦

⎛
⎜⎜⎜⎝

𝜔 0 0 0

0 �̄� 0 0

0 0 �̄� 0

0 0 0 𝜔

⎞
⎟⎟⎟⎠
, s ↦

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 𝜔

0 0 �̄� 0

⎞
⎟⎟⎟⎠
,

b ↦

⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1

⎞⎟⎟⎟⎠
, a ↦

⎛⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎠

1

2
�(2n−3) = 2n−5

r ↦ 1, s ↦ −1, b ↦ 1, a ↦ −1.

(4.1)JC ∼ BW1
× B4

W2
× P,

dim(BW1
) = 1 and dim(BW2

) = 2n−5.

dim(JC) = 1 + 2n−3 = 1 + 4(2n−5) + dimP and therefore P = 0.

JC⟨b⟩ ∼ BW1
× B2

W2
and JC⟨s⟩ ∼ B2

W2

JC ∼ JC⟨b⟩ × JC⟨s⟩
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5  Proof of Theorem 3

Let d ⩾ 1, g ⩾ 2 be integers and let p ⩾ 3 be a prime number. Let G be a p-group of auto-
morphisms of a complex d-dimensional family of compact Riemann surfaces C of genus g 
and assume the signature of the action of G on C to be � = (h;m1,… ,ml).

The hyperbolic area � of a fundamental region of a Fuchsian group of signature � 
satisfies

where ĥ is the largest possible genus of the quotient CG. Note that ĥ = [
d

3
+ 1].

Assume p = 3. The Riemann-Hurwitz formula ensures that

as claimed in (1). Now, if we suppose that the order of G equals M3,d then, by the Riemann-
Hurwitz formula, we easily obtain that

Note that there is no restriction on l. Thus, � = �3,d,h for some h ∈ {0,… , ĥ}. The only if 
part of (2) is a direct computation.

Assume p ⩾ 5. Then,

In other words, if �d is the smallest non-negative representative of d modulo 3 then

as claimed in (3). If we now assume that the order of G equals Mp,d then

(1) If d ≡ 0 mod 3 then (5.1) turns into Σl
i=1

1

mi

=
l

3
 and l = 0. Thus, 

(2) If d ≡ 1 mod 3 then (5.1) turns into Σl
i=1

1

mi

=
l

3
−

1

3
+

1

p
 and l = 1. Thus, 

(3) If d ≡ 2 mod 3 then (5.1) turns into Σl
i=1

1

mi

=
l

3
−

2

3
+

2

p
 and l = 2. Thus, 

𝜇 ⩾ 2𝜋[d + 1 −
d+3

p
+ h(

3

p
− 1)] ⩾

{
4

3
d𝜋 if p = 3

2𝜋[d + 1 −
d+3

p
+ ĥ(

3

p
− 1)] if p ⩾ 5

2(g − 1) = |G| �

2�
⩾

2

3
d|G| ⟺ |G| ⩽ M3,d

Σl
i=1

1

mi

=
l

3
and, consequently, each mi = 3.

� ⩾

⎧⎪⎨⎪⎩

4

3
�d if d ≡ 0 mod 3

4

3
�d + 2�(

1

3
−

1

p
) if d ≡ 1 mod 3

4

3
�d + 4�(

1

3
−

1

p
) if d ≡ 2 mod 3.

2(g − 1) = |G| �

2�
⩾ |G|( 2

3
d + �d(

1

3
−

1

p
)) ⟺ |G| ⩽ Mp,d,

(5.1)Σl
i=1

1

mi

=
l

3
− �d(

1

3
−

1

p
).

� = (
d+3

3
;−) = �p,d

� = (
d+2

3
;p) = �p,d

� = (
d+1

3
;p, p) = �p,d
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The only if part of (4) is a direct computation.

6  Proof of Theorem 4

Let p ⩾ 3 and let Δ be a Fuchsian group of signature (1; p) with canonical presentation

and, for each n ⩾ 5, consider the group G ≅ Cpn−1 ⋊p Cp of order pn with presentation

where r = pn−2 + 1. Observe that rp ≡ 1 mod pn−1 and rk ≢ 1 mod pn−1 for 1 ⩽ k ⩽ p − 1.

Note that the Riemann-Hurwitz formula is satisfied for a branched pn-fold regular cov-
ering map from a compact Riemann surface of genus 1 + (p−1)pn−1

2
 onto a Riemann surface 

of genus one, ramified over one value marked with p. Thus, by virtue Riemann’s existence 
theorem, the existence of the family follows after noticing that the rule

is a surface-kernel epimorphism. Henceforth, we denote this family by G.
We now proceed to prove that there are exactly p − 1 pairwise non-equivalent surface-

kernel epimorphisms � ∶ Δ → G. For each such epimorphism � , we write

and, for the sake of simplicity, we identify � with the 3-uple � = (x, y, z). Note that

If k ≠ 0 and u = −mk�, where k′ is the inverse of k in the field of p elements, then the trans-
formation A1,u (see § 2.3) shows that we can assume, up to equivalence, that

On the other hand, if k = 0 then

and the transformation A2,−1◦A1,1 shows that (6.1) and (6.2) are equivalent. Now, in (6.2) 
one sees that if l and pn−1 are not coprime then � is not surjective. Thus, after sending a to 
an appropriate power of it, we can be assume l = 1. Then,

Now, if we set v = −sr−m then we apply A1,v to (6.3) to ensure that � is equivalent to

The result follows after noticing that �m and �m′ are non-equivalent if m ≠ m′.

Note that K = ⟨apn−2⟩ is a cyclic group of order p and that, independently of the equisym-
metric stratum to which C belongs, the associated regular covering map

Δ = ⟨�1, �1, �1 ∶ �1�1�
−1
1
�−1
1
�1 = �

p

1
= 1⟩

⟨a, b ∶ ap
n−1

= bp = 1, bab−1 = ar⟩,

Δ → G defined by (�1, �1, �1) ↦ (a, b, ap
n−2

)

x ∶= �(�1), y = �(�1) and z = �(�1)

x = albk and y = asbm for some 1 ⩽ l, s ⩽ pn−1 and 1 ⩽ k,m ⩽ p.

(6.1)x = albk and y = as.

(6.2)x = al and y = asbm,

(6.3)x = a and b = asbm where m ≠ 0.

�m = (a, bm, ar
m−1) for some 1 ⩽ m ⩽ p − 1.
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ramifies over pn−1 values marked with p. It follows that the quotient Riemann surface CK 
has genus one; thus, C is an elliptic-p-gonal Riemann surface. Due to the explicitness of 
the family, one can easily see that K is the unique group of automorphisms of C providing 
the elliptic-p-gonal structure (c.f. [45, Theorem 1.3] and also [18] and [19]).

According to [48, Theorem 1], the action of G on each C in G might be extended to 
only an action of a group of order 2pn acting on C with signature �� = (0;2, 2, 2, 2p).

Claim. Such extension is not possible in our case.
To prove the claim, we shall proceed by contradiction; namely, we assume that: 

(1) there is a group G′ of order 2qn with a subgroup isomorphic to G, and that
(2) there is a surface-kernel epimorphism Δ�

→ G�, where Δ� is a Fuchsian group of sig-
nature �′.

By the classical Schur-Zassenhaus theorem, we can ensure that

Observe that C2 must act on G with order 2, because of the direct product G × C2 cannot be 
generated by three involutions. Thus, by considering an automorphism of G that sends a to 
an appropriate power of it and after some routine computations, one can see that, up to an 
isomorphism of G, the action of C2 on G is given by

In particular, the involutions of G′ are of the form tak for 0 ⩽ k ⩽ p − 1. However, three of 
them cannot generate G′, contradicting the surjectivity of �. This proves the claim.

As observed in the proof of Theorem 2, the surface C belongs to the interior of the 
family G (and therefore for all up to possibly finitely many exceptions) if and only if G is 
the full automorphism group of it (see, for instance, [3]).

We now proceed to decompose the Jacobian variety JC of each C in the family G.
We apply the method of little groups of Wigner–Mackey (see, for example, [47, p. 

62]), to guarantee the irreducibility of the complex representation V of G given by

where � is a pn−1-th primitive root of unity. We notice that the character field of V is ℚ(�p) , 
which is an extension of ℚ of degree

where � is the Euler function. We recall that p-groups with p ⩾ 3 only possess representa-
tions with Schur index 1 (see, for example, [36, Theorem 41.9]).

We denote by W the rational irreducible representation of G associated to V. Then, as 
explained in § 2.4, there is an abelian subvariety Q of JC such that

C → CK

G� ≅ G⋊ C2 with C2 = ⟨t ∶ t2 = 1⟩.

tat = a−1 and tbt = b.

a ↦ diag (�,�r,… ,�rp−1 ) and b ↦

⎛
⎜⎜⎜⎜⎝

0 1 0 … 0

0 0 1 ⋯ 0

⋱

0 0 0 … 1

1 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎠

�(pn−2) = pn−3(p − 1),



375Nilpotent groups of automorphisms of families of Riemann…

1 3

where E is an elliptic curve isogenous to JCG and A is the factor associated to W in the 
group algebra decomposition of JC with respect to G. Now, as the action of G on C is 
determined by �m for some 1 ⩽ m ⩽ p − 1, we apply the equation (2.6) to notice that, inde-
pendently of the choice of m, the following equality holds:

Finally, by considering dimensions in the relation (6.4), one concludes that Q = 0 and the 
desired decomposition of JC is obtained.
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