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Abstract
We discuss the following mean curvature equation 

with 0-Dirichlet boundary condition on a bounded domain. We obtain the global gradient 
estimate of classical solutions. Furthermore, we investigate the existence and uniqueness 
of classical solution. By variational method, we also establish the multiplicity of strong 
solutions. Moreover, according to the behavior of f near 0, we obtain the global structure of 
positive solutions. Finally, we also investigate the symmetry of positive solutions when Ω 
is radially symmetric.
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Positive solution · Uniqueness · Regularity · Symmetry
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1 � Introduction and main results

It is well known that a hypersurface in the Lorentz–Minkowski space �N+1 is said to 
be spacelike if its induced metric is a Riemannian one. Consider two different mean 
curvature functions on a spacelike hypersurface, the mean curvature function related to 
the metric induced by ℝN+1 , that we will denote by HR , and the one related to the metric 
inherited from �N+1 , HL . For N = 2 , Kobayashi [20] proved that the only surfaces sat-
isfying HR = HL = 0 are open pieces of a spacelike plane or of a helicoid in the region 
where the helicoid is spacelike. Further, Albujer and Caballero [1] obtained some 
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geometric properties of surfaces with HR = HL and N = 2 . In particular, when Ω ⊂ ℝ
2 , 

they showed that the following problem

has a unique solution u ∈ C2(Ω) ∩ C
(
Ω

)
 , where � ∈ C(�Ω).

A nature question is that what will happen if HR ≢ HL ? Therefore, this paper is 
devoted to the following more general problem

where Ω ⊆ ℝ
N with N ≥ 1 is a bounded domain, a and b are two nonnegative constants 

with a > b , f denotes the difference of aNHR and 2bNHL and � is a nonnegative param-
eter which indicates the strength of f. Here, we do not require HR ≡ HL . Thus, a solution 
of problem (1.1) may denote a hypersurface with different mean curvatures in ℝN+1 and 
�
N+1 . Let d denote the diameter of Ω . It is easy to verify that any spacelike solution u is 

uniformly bounded by d/2 and ‖u‖∞ ≤ �
d‖∇u‖∞

�
∕2 . It follows that the image of u lies 

in 
[
−d∕2, d∕2

]
= Id . Therefore, we assume that f is a real function defined on Ω × Id . We 

always assume that ess supΩ×Id |f (x, s)| ≤ Λ < +∞ and

for any fixed � . Clearly, this condition can be satisfied if d�Λ + b is sufficiently small, or a 
is sufficiently large.

If a = 1 and b = 0 , the first equation of problem (1.1) is the well-known mean cur-
vature equation in the Minkowski space. In this case, extensive research has been done 
regarding the existence, nonexistence, uniqueness, multiplicity and regularity of non-
trivial solutions to problem (1.1), here we refer to [2–10, 13, 14, 19, 25] and the refer-
ences therein.

The aim of this paper is to investigate the existence/nonexistence, regularity, symmetry, 
uniqueness and multiplicity of spacelike solutions for equation (1.1). In order to achieve 
main aim, we establish the following global gradient estimate.

Theorem 1.1  Let u ∈ C2(Ω) ∩ C1
(
Ω

)
 be any nontrivial spacelike solution of problem (1.1) 

with � = 1 . Then, there exists a positive constant � = �(Λ, d, a, b) such that 
max

Ω
|∇u| ≤ 1 − �.

When a = 1 and b = 0 , gradient estimates have been obtained in [2, Theorem 3.6]. Here, 
we do not require Ω being a C2 domain. Based on Theorem 1.1, we can obtain the follow-
ing existence and uniqueness of classical solution.

Theorem 1.2  Assume that Ω has C2,� boundary �Ω for some � ∈ (0, 1) . If f ∈ C0,�
(
Ω × Id

)
 , 

problem (1.1) with � = 1 has at least one spacelike solution u ∈ C2,�
(
Ω

)
 such that 
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max
Ω
|∇u| ≤ 1 − � for some positive constant � , which only depends on sup

Ω×Id
|f (x, s)| , d, 

a and b. Moreover, the solution is unique if f(x, s) is decreasing with respect to s.

Now, the natural question is whether there exist multiple solutions of problem (1.1). 
We will use variational method to give a confirmed answer for this question. A function 
u ∈ W2,p(Ω) for some p > N with ‖∇u‖∞ < 1 and satisfying the problem (1.1) is called 
strong (spacelike) solution. Then, we have the following multiplicity of strong spacelike 
solutions.

Theorem  1.3  Suppose that f ∶ Ω ×
[
0, d∕2

]
→ ℝ satisfies the Carathéodory conditions 

and the L∞-growth condition

for some function h ∈ L∞(Ω) . Assume that Ω has C2 boundary �Ω , f (x, s) > 0 for a.e. 
x ∈ Ω and ∀s ∈ (0,R) with any fixed R ∈ (0, d∕2) such that

Then, there exists 𝜆∗ > 0 such that problem (1.1) has at least two nontrivial nonnegative 
strong spacelike solutions for any 𝜆 > 𝜆∗.

If Ω has C2,� boundary and f ∈ C0,�
(
Ω ×

[
0, d∕2

])
 , applying Theorem 1.2, it is clear 

that solutions obtained in Theorem 1.3 are belonging to C2,�
(
Ω

)
 . Finally, we will use 

bifurcation method to investigate the global structure of positive solutions set of prob-
lem (1.1). Let �1 be the first eigenvalue of

Let

with the norm ‖u‖ ∶= ‖∇u‖∞ . Let P = {u ∈ X ∶ u > 0 on Ω} . From now on, we add the 
point ∞ to our space ℝ × X . Then, we have the following theorem, which is the last main 
result of this paper.

Theorem  1.4  Assume that Ω has C2,� boundary, f ∈ C0,�
(
Ω ×

[
0, d∕2

])
 such that 

f (x, s) > 0 for any x ∈ Ω and s ∈ (0, d∕2
]
 , and there exists f0 ∈ [0,+∞] such that

uniformly for x ∈ Ω . Then,

(1.3)f (x, s) ≤ h(x) for a.e. x ∈ Ω,∀s ∈
[
0, d∕2

]

(1.4)lim
s→0+

f (x, s)

s
= 0, uniformly with a.e. x ∈ Ω.

(1.5)
{

−(a − b)Δu = �u in Ω,

u = 0 on �Ω.

X =

{
u ∈ C1

(
Ω

)
∶ u = 0 on �Ω

}

lim
s→0+

f (x, s)

s
= f0
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(a)	 if f0 = 1 , there is an unbounded component C  of the set of nontrivial solutions 
of problem (1.1) bifurcating from 

(
�1, 0

)
 such that C ⊆ (ℝ × P) ∪

{(
𝜆1, 0

)}
 , (

𝜆1,+∞
)
⊆ pr

ℝ
(C) , ‖‖u𝜆‖‖ < 1 and lim

�→+∞
‖‖u�‖‖ = 1 for 

(
�, u

�

)
∈ C ⧵

{(
�1, 0

)}
 , where 

pr
ℝ
(C) denotes the projection of C  on ℝ,

(b)	 if f0 = +∞ , there is an unbounded component C  of the set of nontrivial solutions of 
problem (1.1) emanating from (0, 0) such that C ⊆ (ℝ × P) ∪ {(0, 0)} , joins to (+∞, 1) 
and ‖‖u𝜆‖‖ < 1 for 

(
�, u

�

)
∈ C ⧵ {(0, 0)},

(c)	 if f0 = 0 , there is an unbounded component C  of the set of nontrivial solutions of 
problem (1.1) such that C ⊆ ℝ × P , joins (+∞, 1) to (+∞, 0) and ‖‖u𝜆‖‖ < 1 for any (
�, u

�

)
∈ C  with 𝜆 < +∞.

Figure 1 illustrates the global bifurcation branches of Theorem 1.4. From Theorem 1.2, we 
see that these positive solutions also belong to C2,�

(
Ω

)
 . The rest of this paper is arranged as 

follows. In Sect. 2, we study the uniqueness of solution and present the proofs of Theorems 
1,1–1.2. The proofs of Theorems 1.3–1.4 will be given in Sects. 3 and 4, respectively. Moreo-
ver, a result involving the nonexistence of positive solution is also given in Sect. 4. In the last 
Section, we show a result concerning the symmetry of positive solutions when Ω is the unit 
ball.

2 � Proofs of Theorems 1.1–1.2

In this section, we always assume that � = 1 and f satisfies the L∞-growth condition (1.3) on 
Ω × Id . Let C0,1(Ω) denote the class of locally Lipschitz functions on Ω and

Define the energy functional I ∶ S → ℝ as follows

S =
{
w ∈ C0,1(Ω) ∶ w = 0 on �Ω and |∇w| ≤ 1 a.e. in Ω

}
.

Fig. 1   Bifurcation diagrams of Theorem 1.4
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It is obvious that I is uniformly bounded on S  . The equicontinuity of S  gives a uni-
formly convergent minimizing sequence un ⇉ u ∈ S  as n → +∞ . Consider the function 
g(s) ∶= a

√
1 − s2 + b

√
1 + s2 for |s| < 1 . Then, we have that

Therefore, a
√
1 − p2 + b

√
1 + p2 is concave with respect to |p| . Thus, it is not difficult to 

verify that ∫
Ω

�
a + b − a

√
1 − �∇u�2 − b

√
1 + �∇u�2

�
dx is convex. Consequently, a semi-

continuity theorem of [22, Theorem 1.8.1] shows that

It follows that u is the ground-state (least energy) solution of problem (1.1). Moreover, we 
have the following uniqueness.

Lemma 2.1  The ground-state solution of

is unique for any h(x) ∈ L∞(Ω) , which is denoted by Ψ(h).

Proof  Suppose that u, w are two ground-state solutions of problem (2.1). By the concavity 
of a

√
1 − p2 + b

√
1 + p2 , we have that

where ut = u + t(w − u) . This yields I
(
ut
) ≤ (1 − t)I(u) + tI(w) . Since u and w are both 

least energy solutions, we conclude that

Thus, it is direct to check that

I(u) = ∫
Ω

�
a + b − a

√
1 − �∇u�2 − b

√
1 + �∇u�2

�
dx − ∫

Ω

⎛
⎜
⎜
⎝

u

∫
0

f (x, s) ds

⎞
⎟
⎟
⎠
dx.

g��(s) =
b

(
1 + s2

)3∕2 −
a

(
1 − s2

)3∕2 < 0.

I(u) ≤ lim inf
n→+∞

I
(
un
)
.

(2.1)

�
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+ t �
Ω

(
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√
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dx,
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Ω

(
a

√
1 − ||∇ut||

2
+ b

√
1 + ||∇ut||

2
+ uth(x)

)
dx

=(1 − t)∫
Ω

(
a

√
1 − |∇u|2 + b

√
1 + |∇u|2 + uh(x)

)
dx

+ t ∫
Ω

(
a

√
1 − |∇w|2 + b

√
1 + |∇w|2 + wh(x)

)
dx.
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Then, the concavity of a
√
1 − p2 + b

√
1 + p2 and u = w on �Ω imply that u = w in Ω . 	

� ◻

Furthermore, in view of Lemma 2.1, by an argument similar to that of [2, Lemma 1.2], we 
have the following comparison principle for the ground-state solutions.

Lemma 2.2  Assume that ui ( i = 1, 2 ) is the ground-state solution of problem (2.1) with 
hi ∈ L∞(Ω) and h1(x) ≤ h2(x) for a.e. x ∈ Ω . Then, u1 ≤ u2 in Ω.

By Lemma 2.2, we can show the following comparison principle for strong spacelike 
solutions.

Lemma 2.3  Assume that �Ω is C1 and ui ( i = 1, 2 ) is strong solution of problem (2.1) with 
hi ∈ L∞(Ω) and h1(x) ≤ h2(x) for a.e. x ∈ Ω . Then, u1 ≤ u2 in Ω.

Proof  By virtue of Lemma 2.2, it suffices to show that any strong solution u of problem 
(2.1) is also the ground-state solution. According to the concavity of a

√
1 − p2 + b

√
1 + p2 , 

for any v ∈ S  , we observe that

Multiplying problem (2.1) by u − v and integrating over Ω , we obtain that

Integrating by parts, we get

Therefore, we conclude that

∫
Ω

(
a

√
1 − ||∇ut||

2
+ b

√
1 + ||∇ut||

2

)
dx =(1 − t)∫

Ω

(
a

√
1 − |∇u|2 + b

√
1 + |∇u|2

)
dx

+ t ∫
Ω

(
a

√
1 − |∇w|2 + b

√
1 + |∇w|2

)
dx.

�
Ω

�
a
√
1 − �∇v�2 + b

√
1 + �∇v�2

�
dx − �

Ω

�
a
√
1 − �∇u�2 + b

√
1 + �∇u�2

�
dx

≤ �
Ω

�
a∇u

√
1 − �∇u�2

−
b∇u

√
1 + �∇u�2

�
∇(u − v) dx.

∫
Ω

�
bdiv

�
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− adiv
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��
(u − v) dx = ∫
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h(x)(u − v) dx.
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Ω

�
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−
b∇u

√
1 + �∇u�2

�
∇(u − v) dx = ∫

Ω

h(x)(u − v) dx.
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which ensures that I(v) ≥ I(u) . Consequently, u is the ground-state solution of problem 
(2.1). 	�  ◻

Furthermore, the uniqueness for monotonous nonlinearity read as follows.

Proposition 2.1  The ground-state solution of problem (1.1) in S  is unique if f(x,  s) is 
decreasing with respect to s.

Proof  Let u, w be any two ground-state solutions of problem (1.1) in S  . It is seen from the 
Lemmas 2.1–2.2 that

where Nf (u) ∶= f (x, u(x)) is the Nemytskii operator of f(x, u). It follows that u = w in Ω . 	
� ◻

Now, we present the proof of Theorem 1.1.

Proof of Theorem  1.1  We assume that max
Ω
|∇u| = |∇u(x∗)| ∶= � . Since u is non-

trivial, one has that 𝛾 > 0 . We choose two distinct points x0, y0 ∈ �Ω such that 
lx0,y0 ∶=

{
x = tx0 + (1 − t)y0 ∶ t ∈ (0, 1)

}
 contains in Ω and x∗ ∈ lx0,y0 . After rotation of the 

coordinates 
(
x1,… , xn

)
 , we may assume that

where xi
0
 and yi

0
 denote the ith component of x0 and y0 , respectively. For any x ∈ lx0,y0 , we 

obtain that

Set u(x) =∶ w(t) and z(t) = w(t)||x0 − y0
||
−1 for any x ∈ lx0,y0 . Then, we have

and

�
Ω

�
a
√
1 − �∇v�2 + b

√
1 + �∇v�2

�
dx − �

Ω

�
a
√
1 − �∇u�2 + b

√
1 + �∇u�2

�
dx

≤ �
Ω

h(x)(u − v) dx.

0 ≤ (u − w)2 =
(
Ψ
(
Nf (u)

)
− Ψ

(
Nf (w)

))
(u − w) ≤ 0,

xi
0
= yi

0
for i ≠ 1,

t =

(
x − y0

)(
x0 − y0

)

||x0 − y0
||
2

∈ (0, 1).

ui = w�(t)
�t

�xi
= w�(t)

xi
0
− yi

0

||x0 − y0
||
2
= z�(t)

xi
0
− yi

0

||x0 − y0
||

uij = w��(t)

(
xi
0
− yi

0

)(
x
j

0
− y

j

0

)

||x0 − y0
||
4

= z��(t)

(
xi
0
− yi

0

)(
x
j

0
− y

j

0

)

||x0 − y0
||
3

,
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where ui = ∇iu = �u∕�xi , uij = �
2u∕�xi�xj , i, j ∈ {1,… ,N} . By some elementary calcula-

tions, we reach that

where f̃ (t, z) = f
(
tx0 + (1 − t)y0,

||x0 − y0
||z
)
.

Obviously, there exists t̂ ∈ (0, 1) such that z�
(
t̂
)
= 0 . Integrating the first equation of 

problem (2.2) from t̂  to t, we observe that

This gives that

which implies that

Since a > 0 , we get 𝜌 < 1 . Thus, we conclude that

Similarly, we show that

It is seen from (1.2) that

Taking � = 1 −
√
N� , noting that � only depends on Λ, d, a and b, we get the desired con-

clusion. 	�  ◻

It is straightforward to see that the argument of Theorem 1.1 is more simple than the 
corresponding ones of [2, Corollary 3.4 and Theorem 3.5] even in the case of b = 0 . To 
prove Theorem 1.2, we need the following lemma, which roughly says that the classical 
solution is also the ground-state solution of problem (1.1).

Lemma 2.4  If f(x,  s) is decreasing with respect to s, any spacelike solution 
u ∈ C1

(
Ω

)
∩ C2(Ω) is also the ground-state solution of problem (1.1).

Proof  Combining Theorem  1.1 and an argument similar to that of Lemma 2.3, for any 
v ∈ S  , gives

(2.2)

⎧
⎪
⎨
⎪
⎩

−a

�
z�

√
1 − z�2

��

+ b

�
z�

√
1 + z�2

��

= ��x0 − y0
��f̃ (t, z), t ∈ (0, 1),

z(0) = z(1) = 0,

b
z�(t)

√
1 + |z�(t)|2

− a
z�(t)

√
1 − |z�(t)|2

=

t

∫̂
t

||x0 − y0
||f̃ (t, z) dt.

a|z�(t)|
√

1 − |z�(t)|2
≤dΛ +

b|z�(t)|
√

1 + |z�(t)|2
≤ dΛ + b,

��z
�(t)�� ≤ dΛ + b

√
a2 + (dΛ + b)2

∶= �.

||∇1u(x
∗)|| ≤ �.

||∇iu(x
∗)|| ≤ � for any i ∈ {2,… ,N}.

𝛾 = �∇u(x∗)� ≤ √
N𝜌 < 1.
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Since f is decreasing, we find that

Thus, showing that

which implies that I(v) ≥ I(u) . This ensures that u is the ground-state solution of problem 
(1.1). 	�  ◻

According to Lemma 2.4 and reasoning as that of [2, Lemma 1.3], we can establish 
the following result, which will be used later.

Lemma 2.5  Suppose that there is a sequence 
{
uk
}∞

1
 in C1

(
Ω

)
∩ C2(Ω) of spacelike solu-

tions of problem (1.1) with nonlinearities hk , hk is measurable on Ω and 
supΩ

||hk|| ≤ Λ < +∞ , such that 
{
uk
}
 converges uniformly and 

{
hk
}∞

1
 converges weakly,

Then, u is weakly spacelike and is the ground-state solution of problem (1.1) with nonlin-
earity h.

We end this section by providing the proof of Theorem 1.2.

Proof of Theorem 1.2  For any � ∈ [0, 1] , we consider the following problem

�
Ω

�
a
√
1 − �∇v�2 + b

√
1 + �∇v�2

�
dx − �

Ω

�
a
√
1 − �∇u�2 + b

√
1 + �∇u�2

�
dx

≤ �
Ω

f (x, u)(u − v) dx.

�
Ω

⎛
⎜
⎜
⎝

v

�
0

f (x, s) ds −

u

�
0

f (x, s) ds

⎞
⎟
⎟
⎠
dx =�

Ω

v

�
u

f (x, s) ds dx

=�
u≤v

v

�
u

f (x, s) ds dx + �
u>v

v

�
u

f (x, s) ds dx

≤�
Ω

f (x, u)(v − u) dx.

�
Ω

�
a
√
1 − �∇v�2 + b

√
1 + �∇v�2

�
dx − �

Ω

�
a
√
1 − �∇u�2 + b

√
1 + �∇u�2

�
dx

≤ �
Ω

⎛
⎜
⎜
⎝

u

�
0

f (x, s) ds −

v

�
0

f (x, s) ds

⎞
⎟
⎟
⎠
dx,

uk ⇉ u in C0
(
Ω

)
,

hk ⇀ h in L2(Ω).
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By Theorem 1.1, for any spacelike solution u ∈ C2,�
(
Ω

)
 of problem (2.3), there exists a 

positive constant � = �

(
sup

Ω×Id
|f (x, s)|, d, a, b

)
 such that max

Ω
|∇u| ≤ 1 − �.

By some calculations, we find that u satisfies

where

It is easy to see that

Next, we use these inequalities in (2.4) and the inductive approach to show that all 
the leading principal minors of matrix 

(
A�ij + Buiuj

)
 are positive. It is clear that 

A + Bu2
1
≥ A ≥ a − b . For any k ∈ {1,… ,N} , we may assume

Then, there must hold

Thus, the matrix 
(
A�ij + Buiuj

)
 is positive definite. In particular, the eigenvalues �i of (

A�ij + Buiuj
)
 , i = 1,… ,N , are positive. Since 

(
A�ij + Buiuj

)
 is symmetrical, we have that

It follows that

(2.3)

�
−adiv

�
∇u√

1−�∇u�2

�
+ bdiv

�
∇u√

1+�∇u�2

�
= �f (x, u) in Ω,

u = 0 on �Ω.

�
−
∑N

i,j=1

�
A�ij + Buiuj

�
uij = �f (x, u) in Ω,

u = 0 on �Ω,

A =
a

√
1 − �∇u�2

−
b

√
1 + �∇u�2

, B =
a

�
1 − �∇u�2

�3∕2 +
b

�
1 + �∇u�2

�3∕2 .

(2.4)A ≥ a − b, B ≥ a.

||||||||

A + Bu2
1

Bu1u2 ⋯ Bu1uk−1
Bu2u1 A + Bu2

2
⋯ Bu2uk−1

⋮ ⋮ ⋱ ⋮

Buk−1u1 Buk−1u2 ⋯ A + Bu2
k−1

||||||||

∶= Ak−1,k−1 ≥ (a − b)k−1.

Ak,k =

||||||||

A + Bu2
1

Bu1u2 ⋯ 0

Bu2u1 A + Bu2
2

⋯ 0

⋮ ⋮ ⋱ ⋮

Buku1 Buku2 ⋯ A

||||||||

+

||||||||

A + Bu2
1

Bu1u2 ⋯ Bu1uk
Bu2u1 A + Bu2

2
⋯ Bu2uk

⋮ ⋮ ⋱ ⋮

Buku1 Buku2 ⋯ Bu2
k

||||||||
=AAk−1,k−1 + Ak−1Bu2

k
≥ (a − b)k.

N�

i=1

�i = NA + B�∇u�2 = Na
√
1 − �∇u�2

−
Nb

√
1 + �∇u�2

+
a�∇u�2

�
1 − �∇u�2

�3∕2 +
b�∇u�2

�
1 + �∇u�2

�3∕2 .

a − b ≤ a
(
1 − |∇u|2

)3∕2 −
b

(
1 + |∇u|2

)3∕2 ≤
N∑

i=1

�i ≤ Na
(
1 − |∇u|2

)3∕2 −
Nb

(
1 + |∇u|2

)3∕2

≤ Na
(
1 − (1 − �)2

)3∕2 ,
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which implies that

Therefore, we obtain

Noting that

gives

It is seen that

Therefore, problem (2.3) is uniformly elliptic. By Theorem 13.7 of [18], there exists a con-
stant C0 = C0

(
N, sup

Ω×Id
|f (x, s)|,Ω, a, b

)
 such that ‖u‖

C1,�

�
Ω

� ≤ C0 for some 𝛼 > 0 . 

According to Theorem 11.4 of [18], problem (1.1) is solvable in C2,�
(
Ω

)
 . Finally, combin-

ing Proposition 2.1 and Lemma 2.4, we can derive the desired conclusions. 	� ◻

3 � Existence of solutions via variational method

In this section, we still assume that f satisfies the L∞-growth condition (1.3) on Ω × Id . 
Define

Let Φ ∶ C
(
Ω

)
∶⟶ (−∞,+∞] be defined by

Clearly, Φ is convex. By an argument similar to that of [5, Lemma 4], we can show that Φ 
is lower semicontinuous.

Nmin
i

�i ≤
N∑

i=1

�i ≤ Na
(
1 − (1 − �)2

)3∕2 , a − b ≤
N∑

i=1

�i ≤ Nmax
i

�i.

maxi �i

mini �i

≥ (a − b)
(
1 − (1 − �)2

)3∕2

Na
.

(
max

i
�i

)N−1

min
i

�i ≥ �1�2 ⋯�N = det
(
A�ij + Buiuj

) ≥ (a − b)N ,

min
i

�i ≥ (a − b)N

maxi �i

≥ (a − b)N

∑N

i=1
�i

≥ (a − b)N

Na

(1−(1−�)2)
3∕2

=
(a − b)NNa

�
1 − (1 − �)2

�3∕2 .

maxi �i

mini �i

≤
∑N

i=1
�i

mini �i

≤
Na

(1−(1−�)2)
3∕2

(a−b)NNa

(1−(1−�)2)
3∕2

=
1

(a − b)N
.

K0 =
�
u ∈ W1,∞(Ω) ∶ ‖∇u‖∞ ≤ 1, u = 0 on �Ω

�
.

Φ(u) =

� ∫
Ω

�
a + b − a

√
1 − �∇u�2 − b

√
1 + �∇u�2

�
dx if u ∈ K0,

∞ otherwise.
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Obviously, the Nemytskii operator Nf  is continuous and maps the bounded sets in C
(
Ω

)
 

into the bounded sets in L1(Ω) . For any u ∈ C
(
Ω

)
 , we can see that Nf (u) ∈ L∞(Ω) . Define 

the functional

on C
(
Ω

)
 . Clearly, H is C1 . Following the definition of [24], u ∈ K0 is critical point of I if it 

satisfies the following variational inequality

According to [24], I is said to satisfy the (PS)-condition if 
{
un
}
 is a sequence containing in 

K0 such that I
(
un
)
→ c ∈ ℝ and

where �n → 0+ as n → +∞ , then 
{
un
}
 possesses a convergent subsequence. We infer from 

Lemma 2 of [5] that I satisfies the (PS)-condition. To prove Theorem 1.3, we first prove the 
following result.

Proposition 3.1  Assume that Ω has C2 boundary �Ω and h ∈ L∞(Ω) . Then, problem (2.1) 
has a unique solution u ∈ W2,p(Ω) for some p > N and there exists a positive constant 
� = �

�
‖h‖∞, d, a, b

�
 such that max

Ω
|∇u| ≤ 1 − � . Moreover, if h ≥ 0 in Ω , then u ≥ 0 in Ω 

and u cannot achieve a minimum in Ω unless it is the trivial solution.

Proof  We first assume that h ∈ C1
(
Ω

)
 . By Theorem  1.1, for any spacelike solution 

u ∈ C2(Ω) ∩ C1
(
Ω

)
 of problem (2.1), there exists a positive constant � = �

�
‖h‖∞, d, a, b

�
 

such that max
Ω
|∇u| ≤ 1 − � . As that of Theorem 1.2, we find that u satisfies

From the proof of Theorem 1.2, we know that problem (2.1) is uniformly elliptic. By Theo-
rem  13.7 of [18], there exists a constant C1 = C1

(
N, sup

Ω×Id
|f (x, s)|,Ω, a, b

)
 such that 

‖u‖
C1,�

�
Ω

� ≤ C1 for some 𝛼 > 0.

Define

For any fixed w ∈ X  , consider the following problem

where

H(u) = −∫
Ω

⎛
⎜
⎜
⎝

u

∫
0

f (x, s) ds

⎞
⎟
⎟
⎠
dx

Φ(v) − Φ(u) +
⟨
H

�(u), v − u
⟩ ≥ 0 for all v ∈ K0.

Φ(v) − Φ
(
un
)
+
⟨
H

�
(
un
)
, v − un

⟩ ≥ −�n
‖‖v − un

‖‖∞, ∀v ∈ K0,

�
−
∑N

i,j=1

�
A�ij + Buiuj

�
uij = h in Ω,

u = 0 on �Ω.

X =

�
w ∈ C1,�

�
Ω

�
∶ max

Ω

�∇w� ≤ 1 − �, ‖w‖
C1,�

�
Ω

� ≤ C1

�
.

(3.1)
�

−
∑N

i,j=1
aijvij = h in Ω,

v = 0 on �Ω,



347Some results on surfaces with different mean curvatures in ℝ
N+1 and �

N+1﻿	

1 3

We claim that problem (3.1) is strictly elliptic. It is straightforward to see that

This together with some elementary calculations gives that

It follows that

which verify our desired claim. Applying Theorem 9.15 of [18], problem (3.1) has a unique 
solution v ∈ W2,p(Ω) with 1 < p < +∞ , which is denoted by L(w) . Then, by Theorem 9.11 
of [18], there exists a constant C2 = C2(N, �, p, a, b,Ω) such that

We infer from Theorem 9.1 of [18] that

for some constant C3 depends on d, p, N, � , a and b. Therefore, it is direct to check that

for some constant C4 = C4(N, �, p, a, b,Ω) . Since p > N , we choose � small enough such 
that W2,p(Ω) compactly imbedded into C1,�

(
Ω

)
 . (3.2) shows that L ∶ X ⟶ C1,�

(
Ω

)
 is 

completely continuous.
Clearly, u is a solution of problem (2.1) if and only if it is a fixed point of L in X  . By the 

Leray-Schauder continuation theorem (see [21, Theorem 4.4.3]) and the similar proof as 
that of [9, Lemma 2.2], we can show that L has a fixed point u ∈ X  . The uniqueness can be 
deduced from Lemma 2.3. The general case of h ∈ L∞(Ω) can be proved by approximation. 
If h ≥ 0 in Ω , by Theorem 9.1 of [18], we know that u ≥ 0 in Ω . We conclude from Theo-
rem 9.6 of [18] that u cannot achieve a minimum in Ω unless it is a constant. 	�  ◻

If Ω has C2 boundary �Ω and h ∈ L∞(Ω) , by the proof of Lemma 2.3, we see that the 
solution obtained in Proposition 3.1 is the unique ground-state solution of problem (2.1) in 
K0 . Conversely, if u is a critical point of I, it is also ground-state solution of the following 
problem

aij = A�ij + Bwiwj.

max
i

�i ≤
N∑

i=1

�i ≤ Na
(
1 − (1 − �)2

)3∕2 .

(
max

i
�i

)N−1

min
i

�i ≥ �1�2 ⋯�N = det
(
aij
)
= AN + AN−1B ≥ (a − b)N + (a − b)N−1a.

min
i

�i ≥
(
(a − b)N + (a − b)N−1a

)(
1 − (1 − �)2

) 3(N−1)

2

NN−1aN−1
,

‖v‖W2,p(Ω) ≤ C2

�
‖v‖Lp(Ω) + ‖h‖Lp(Ω)

�
.

‖v‖∞ ≤ C3‖h‖Lp(Ω)

(3.2)‖v‖W2,p(Ω) ≤ C4‖h‖Lp(Ω)

�
−adiv

�
∇w√

1−�∇w�2

�
+ bdiv

�
∇w√

1+�∇w�2

�
= Nf (u) in Ω,

w = 0 on �Ω.
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Further, if �Ω is C2 , by Proposition 3.1, u is a strong spacelike solution of problem (1.1) 
with � = 1 . The first existence result to problem (1.1) of this section is the following 
proposition.

Proposition 3.2  Assume that Ω has C2 boundary �Ω . Then, problem (1.1) with � = 1 has a 
strong spacelike solution, which is also the ground-state solution.

Proof  Since f satisfies the L∞-growth condition, it is easy to verify that I is bounded from 
below on C

(
Ω

)
 . In view of Theorem 1.7 of [24], we obtain a critical point u0 ∈ K0 of I 

such that

By the above remark, u0 is a strong spacelike solution of problem (1.1) with � = 1 and it is 
also the ground-state solution. 	�  ◻

Obviously, the energy functional associated to problem (1.1) takes the form

on C
(
Ω

)
 . Then, by virtue of Proposition 3.1 and the reasoning as that of [5, Theorem 2], 

we can show the following existence result.

Proposition 3.3  Besides the condition of Proposition 3.2, we also assume that there exists 
R ∈ (0, �) such that f (x, s) > 0 for a.e. x ∈ Ω and ∀s ∈ (0,R) . Then, there exists 𝜆∗ > 0 
such that problem (1.1) has at least one nontrivial strong spacelike solution for any 𝜆 > 𝜆∗ 
which is a minimizer of I

�
 with negative energy.

Now, on the basis of Proposition 3.3, we can give the proof of Theorem 1.3 via the 
Mountain Pass Theorem [24, Theorem 3.2].

Proof of Theorem  1.3  We first extend continuously f to the whole Id by taking f = 0 on 
Ω × [−d∕2, 0] , which is still denoted by f. For any fixed 𝜆 > 𝜆∗ , by Proposition 3.3, I

�
 has a 

nontrivial minimizer e
�
∈ K0 such that I

𝜆

(
e
𝜆

)
< 0.

To get the second critical point of I
�
 , it is sufficient to show that there exist two positive 

constants � and 𝜌 < ‖e
𝜆
‖∞ such that

By some simple calculations, we can verify the following elementary inequality

For any u ∈ K0 , combining (3.4) and the Poncaré inequality gives

I
(
u0
)
= inf

u∈C
(
Ω

) I(u).

I
�
(u) = Φ(u) − �∫

Ω

⎛
⎜
⎜
⎝

u

∫
0

f (x, s) ds

⎞
⎟
⎟
⎠
dx

(3.3)I
�
(u) ≥ � for all u ∈ K0 with ‖u‖∞ = �.

(3.4)a + b − a
√
1 − s2 − b

√
1 + s2 ≥ (a − b)s2

2
.



349Some results on surfaces with different mean curvatures in ℝ
N+1 and �

N+1﻿	

1 3

Since (1.4) and a > b , there exists 𝜎 > 0 such that

It follows that

Thus,

for any u ∈ K0 with ‖u‖∞ ∈ [−�, �] . Let � ∈
(
0,min

{
�, ‖‖e�‖‖∞

})
 , it follows from the 

proof of [5, Theorem 3] that

which implies (3.3) with � =
(
�1(a − b)�

)
∕4.

Therefore, using the Mountain Pass Theorem, we obtain a critical point u
�
∈ C

(
Ω

)
 of 

I
�
 such that 𝛼 ≤ I

𝜆

(
u
𝜆

)
< +∞ . This ensures that u

�
∈ K0 ⧵

{
e
�

}
 is the nontrivial solution 

of problem (1.1). Finally, we show that e
�
 and u

�
 are nonnegative. Indeed, for any strong 

solution u, setting u− = min{0, u} , multiplying the first equation of problem (1.1) by u− and 
integrating over Ω , we conclude that

It follows that u− ≡ 0.

4 � Bifurcation

For any t ∈ (0, 1] , consider the following problem

for a given g ∈ C�

(
Ω

)
 with some � ∈ (0, 1) . Let v =

√
tu , problem (4.1) is equivalent to

Φ(u) ≥ (a − b)�1

2 �
Ω

|u|2 dx.

f (x, s) ≤ (a − b)�1

2�
|s| for a.e. x ∈ Ω and ∀s ∈ [−�, �].

��
Ω

⎛
⎜
⎜
⎝

u

�
0

f (x, s) ds

⎞
⎟
⎟
⎠
dx ≤ (a − b)�1

4 �
Ω

�u�2 dx.

I
�
(u) ≥ (a − b)�1

4 �
Ω

|u|2 dx

0 < inf
u∈K0,‖u‖∞=𝜌∫

Ω

�u�2 dx ∶= 𝛾 ,

∫
Ω

�
a

√
1 − �∇u�2

−
b

√
1 + �∇u�2

�
�∇u−�2 dx = 0.

(4.1)

�
−adiv

�
∇u√

1−t�∇u�2

�
+ bdiv

�
∇u√

1+t�∇u�2

�
= g(x) in Ω,

u = 0 on �Ω
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According to Theorem  1.2, problem (4.2) has a unique spacelike solution v ∈ C2,�(Ω) 
which is denoted by Ψ(

√
tg) . It follows that u = Ψ(

√
tg)∕

√
t is the unique solution of prob-

lem (4.1). We also consider the following problem

By virtue of Theorem 8.34, Theorem 4.3 and Theorem 4.6 of [18], we know that problem 
(4.3) has a unique solution u ∈ C1,�

(
Ω

)
∩ C2,�(Ω) , which is denoted by Φ(g) . Clearly, 

Φ ∶ C�

(
Ω

)
⟶ C1,�

(
Ω

)
 is continuous and linear. Therefore, Φ ∶ C�

(
Ω

)
⟶ X is com-

pletely continuous and linear. Define

We have the following compact result.

Lemma 4.1  G ∶ [0, 1] × C�

(
Ω

)
⟶ X is completely continuous.

Proof  For any gn, g ∈ C�

(
Ω

)
 and tn, t ∈ [0, 1] with gn → g in C�

(
Ω

)
 and tn → t in [0, 1] 

as n → +∞ , it is sufficient to show that un ∶= G
(
tn, gn

)
→ u ∶= G(t, g) in X.

If t > 0 , by Theorem 1.2, un
√
tn ∶= vn, u

√
t ∶= v ∈ C2,�

�
Ω

�
 and ‖vn‖ ≤ 1 − � for any 

n ∈ ℕ . Theorem 13.7 of [18] gives a priori estimate for ‖vn‖C1,�

�
Ω

� for some 𝛽 > 0 . Then, 

up to a subsequence, there exists w ∈ C1
(
Ω

)
 such that vn → w in C1

(
Ω

)
 as n → +∞ . We 

infer from Lemma 2.5 that w is the minimum point of

in S  . Further, Lemma 2.1 implies that w is also the unique minimum point of I. From 
Lemma 2.4, we get that w = v . It follows that un → u in X as n → +∞.

If t = 0 and there exists a subsequence tni of tn such that tni = 0 , then 
uni = G

(
tni , gni

)
= Φ

(
gni

)
→ Φ(g) = u in X as i → +∞ . Next, we assume that t = 0 and 

tn > 0 for any n ∈ ℕ . We conclude from Theorem 1.2 that problem (4.2) has only the trivial 
solution when t = 0 . Reasoning as the above, we can show that vn → 0 in X as n → +∞ . 
Noting that un satisfies

where

(4.2)

�
−adiv

�
∇v√

1−�∇v�2

�
+ bdiv

�
∇v√

1+�∇v�2

�
=
√
tg(x) in Ω,

v = 0 on �Ω.

(4.3)
{

−(a − b)Δu = g(x) in Ω,

u = 0 on �Ω.

G(t, g) =

�
Ψ(

√
tg)

√
t

if t ∈ (0, 1],

Φ(g) if t = 0.

I(z) = ∫
Ω

�
a + b − a

√
1 − �∇z�2 − b

√
1 + �∇z�2

�
dx − ∫

Ω

√
tg(x)z dx

(4.4)
�

−
∑N

i,j=1
aijuij = gn(x) in Ω,

u = 0 on �Ω,
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In view of the proof of Proposition 3.1, we know that problem (4.4) is strictly elliptic. 
Then, Theorem 3.7 of [18] implies a priori estimate for ‖un‖C0

�
Ω

� . Furthermore, by virtue 

of Theorem 6.6 of [18], we have that ‖un‖C2,�

�
Ω

� ≤ C for some positive constant C inde-

pending on n. Thus, up to a subsequence, there exists w ∈ C2
(
Ω

)
 such that un → w in 

C2
(
Ω

)
 as n → +∞ . Letting n → +∞ in (4.4), we obtain that

which yields w = Φ(g) = G(0, g) = u.
Anyway, there exists a subsequence umk

 of un such that umk
→ u in X as k → +∞ . We 

claim that un → u in X. Otherwise, there exists a subsequence unk of un and 𝜀0 > 0 such that 
‖‖‖unk − u

‖‖‖ ≥ �0 for any k ∈ ℕ . While, in view of the above arguments, we obtain that unk 
contains a further subsequence unkj such that unkj → u in X as j → +∞ , which contradicts 
‖‖‖‖
unkj

− u
‖‖‖‖
≥ �0 . Therefore, G is continuous. The compactness of G can be got by a similar 

way of [15, Lemma 2.3]. 	�  ◻

Consider the following problem

It is obvious that problem (4.5) is equivalent to the operator equation u = Ψ(�u) ∶= Ψ
�
(u) . 

Choosing � small enough such that there is no eigenvalue of problem (1.5) in 
(
�1, �1 + �

)
 , 

we can obtain the following topological degree jumping result.

Lemma 4.2  For any r ∈ (0, 1) , we have 

where Br(0) = {w ∈ X ∶ ‖w‖ < r}.

Proof  We claim that the Leray-Schauder degree deg
(
I − G(t, �⋅),Br(0), 0

)
 is well defined 

for any � ∈
(
0, �1 + �

)
⧵
{
�1

}
 and t ∈ [0, 1] . The claim is obvious for t = 0 . Thus, it is 

enough to show that u = G(t, �u) has no solution with ‖u‖ = r for r sufficiently small and 
any t ∈ (0, 1] . Otherwise, there exists a sequence 

{
un
}
 such that un = Ψ

�

�√
tun

�
∕
√
t and 

‖‖un‖‖ → 0 as n → +∞ . Let wn ∶= un∕
‖‖un‖‖ , by an argument similar to that of Lemma 4.1, 

we can show that wn → w as n → +∞ and w verifies problem (1.5) with ‖w‖ = 1 . Hence, � 
is an eigenvalue of problem (1.5), which is a contradiction. Combining the invariance of 
the degree under homotopies and Lemma 4.1 gives

aij = �ij

⎛
⎜
⎜
⎜
⎝

a
�

1 − ��∇vn��
2

−
b

�
1 + ��∇vn��

2

⎞
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎝

a
�
1 − ��∇vn��

2
� 3

2

+
b

�
1 + ��∇vn��

2
� 3

2

⎞
⎟
⎟
⎟
⎠

∇ivn∇jvn.

{
−(a − b)Δw = g(x) in Ω,

w = 0 on �Ω.

(4.5)

�
−adiv

�
∇u√

1−�∇u�2

�
+ bdiv

�
∇u√

1+�∇u�2

�
= �u in Ω,

u = 0 on �Ω.

deg
(
I − Ψ

�
,Br(0), 0

)
=

{
1 if � ∈

(
0, �1

)
,

−1 if � ∈
(
�1, �1 + �

)
,
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Noting that Theorem 8.10 of [16] shows

which implies the desired conclusion. 	�  ◻

Now, we present the proof of Theorem 1.4.

Proof of Theorem 1.4  (a) Let � ∶ Ω × [0, 2∕d] → ℝ be such that

with

uniformly for x ∈ Ω . Then, problem (1.1) is equivalent to

Define

for any (�, u) ∈ ℝ × X . By some elementary calculations, we obtain that

It follows that if (�, 0) is a bifurcation point of problem (4.6), � must be an eigenvalue of 
problem (1.5).

Consider the following problem

for any s ∈ [0, 1] . Clearly, problem (4.7) is equivalent to

According to Lemma 4.1, F
�
∶ [0, 1] × X ⟶ X is completely continuous. Let

Then, �̃  is nondecreasing with respect to w and

deg
(
I − Ψ

�
,Br(0), 0

)
= deg

(
I − G(1, �⋅),Br(0), 0

)

= deg
(
I − G(0, �⋅),Br(0), 0

)
= deg

(
I − �Φ,Br(0), 0

)
.

deg
(
I − �Φ,Br(0), 0

)
=

{
1 if � ∈

(
0, �1

)
,

−1 if � ∈
(
�1, �1 + �

)
,

f (x, s) = s + �(x, s)

lim
s→0+

�(x, s)

s
= 0

(4.6)

�
−adiv

�
∇u√

1−�∇u�2

�
+ bdiv

�
∇u√

1+�∇u�2

�
= �u + ��(x, u) in Ω,

u = 0 on �Ω.

F(�, u) = �u + ��(x, u) + adiv

�
∇u

√
1 − �∇u�2

�
− bdiv

�
∇u

√
1 + �∇u�2

�

Fu(�, 0)v = lim
t→0

F(�, tv)

t
= �v + (a − b)Δv.

(4.7)

�
−adiv

�
∇u√

1−�∇u�2

�
+ bdiv

�
∇u√

1+�∇u�2

�
= �u + �s�(x, u) in Ω,

u = 0 on �Ω

u = Ψ(�u + �s�(x, u)) ∶= F
�
(s, u).

�̃(x,w) = max
0≤s≤w |�(x, s)| for any x ∈ Ω.
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It follows from (4.8) that

uniformly in x ∈ Ω.
Noting (4.9) and an argument similar to that of Lemma 4.2, we may obtain that the Leray-

Schauder degree deg
(
I − F

�
(s, ⋅),Br(0), 0

)
 is well defined for � ∈

(
0, �1 + �

)
⧵
{
�1

}
 . By 

the invariance of the degree under homotopies, we find that

where H
�
∶= F

�
(1, ⋅) . It is seen from Lemma 4.2 that

By Theorem 4.12 of [23] (or Proposition 2.1 of [15]), there exists a continuum C  of non-
trivial solution of problem (1.1) bifurcating from 

(
�1, 0

)
 which is either unbounded or 

C ∩
(
ℝ ⧵

{
�1

}
× {0}

) ≠ � . Since u ≡ 0 is the only solution of problem (1.1) for � = 0 and 
0 is not an eigenvalue of problem (1.5), C ∩ ({0} × X) = � . Using Proposition 3.1, we have 
u ≥ 0 in Ω for any (�, u) ∈ C .

We claim that C ∩
(
ℝ ⧵

{
�1

}
× {0}

)
= � . Otherwise, there exists a nontrivial solu-

tion sequence 
(
�n, un

)
∈ C ⧵

{(
�1, 0

)}
 such that �n → � and un → 0 as n → +∞ . Set 

wn ∶= un∕
‖‖un‖‖ , in view of (4.9) and reasoning as that of Lemma 4.1, we can show that 

wn → w as n → +∞ and w verifies problem (1.5) with ‖w‖ = 1 . It follows that � = �1 , 
which is a contradiction. Therefore, C  is unbounded. Moreover, using Proposition 3.1, 
we know that u > 0 in Ω for any (�, u) ∈ C ⧵

{(
�1, 0

)}
 . We see from Theorem  1.2 that 

‖u‖ < 1 for any fixed (�, u) ∈ C  , which implies that the projection of C  on ℝ+ ∶= [0,+∞) 
is unbounded.

Finally, we show the asymptotic behavior of u
�
 as � → +∞ for 

(
�, u

�

)
∈ C ⧵

{(
�1, 0

)}
 . 

Otherwise, there exist a constant 𝛿 > 0 and 
(
�n, un

)
∈ C ⧵

{(
�1, 0

)}
 with �n → +∞ as 

n → +∞ such that ‖‖un‖‖
2 ≤ 1 − �

2 for any n ∈ ℕ . Our assumptions on f imply that there 
exists a positive constant 𝜌 > 0 such that

for any x ∈ Ω and n ∈ ℕ . Let �1 be a positive eigenfunction associated to �1 . Multiplying 
the first equation of problem (1.1) by �1 , we obtain after integrations by parts that

(4.8)lim
w→0+

�̃(x,w)

w
= 0.

(4.9)
����
�(x, u)

‖u‖
����
≤ �̃(x, u)

‖u‖
≤ �̃

�
x, ‖u‖∞

�

‖u‖
≤ d

2

�̃

�
x,

d‖u‖
2

�

d‖u‖
2

→ 0 as ‖u‖ → 0

deg
(
I − H

�
,Br(0), 0

)
= deg

(
I − F

�
(1, ⋅),Br(0), 0

)
= deg

(
I − F

�
(0, ⋅),Br(0), 0

)

= deg
(
I − Ψ

�
,Br(0), 0

)
,

deg
(
I − H

�
,Br(0), 0

)
=

{
1 if � ∈

(
0, �1

)
,

−1 if � ∈
(
�1, �1 + �

)
.

f (x, un(x))

un(x)
≥ �
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This yields �n ≤ �1a∕(��(a − b)) , which contradicts the fact of �n → +∞.
(b) For any n ∈ ℕ , define

It is direct to see that limn→+∞ f n(x, s) = f (x, s) and f n
0
= n . Consider the following approxi-

mation problem

By (a), there exists a sequence unbounded continua Cn of the set of nontrivial solutions of 
problem (4.10) emanating from 

(
�1∕n, 0

)
 and joining to (+∞, 1) such that

Taking z∗ = (0, 0) , then there must hold z∗ ∈ lim infn→+∞ Cn . The compactness of Ψ 
implies that 

(
∪+∞

n=1
Cn

)
∩ �R is pre-compact, where 𝔹R = {z ∈ ℝ × X ∶ ‖z‖ < R} for any 

R > 0 . By Theorem 2.1 of [11], C = lim supn→+∞ Cn is unbounded and connected such that 
z∗ ∈ C  and (+∞, 1) ∈ C  . From the definition of superior limit (see [26]) and the continu-
ity of Ψ , it is not difficult to see that u is a solution of problem (1.1) for any (�, u) ∈ C  . 
Obviously, u is nonnegative for any (�, u) ∈ C  . By the definition of inferior limit (see 
[26]), we can derive that C ∩ ((0,+∞) × {0}) = � . Therefore, by virtue of Proposition 3.1, 
we have that u > 0 in Ω for any (�, u) ∈ C ⧵ {(0, 0)}.

(c) For any n ∈ ℕ , define

Consider the following problem

�1a

�(a − b) �
Ω

un�1 dx =
a

� �
Ω

∇un∇�1 dx

≥�
Ω

⎛
⎜
⎜
⎜
⎝

a
�

1 − ��∇un��
2

−
b

�
1 + ��∇un��

2

⎞
⎟
⎟
⎟
⎠

∇un∇�1 dx

=�n �
Ω

f
�
x, un

�

un
un�1 dx ≥ �n��

Ω

un�1 dx.

f n(x, s) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ns, s ∈
�
0,

1

n

�
,

�
f
�
x,

2

n

�
− 1

�
ns + 2 − f

�
x,

2

n

�
, s ∈

�
1

n
,
2

n

�
,

f (x, s), s ∈
�
2

n
,+∞

�
.

(4.10)

�
−adiv

�
∇u√

1−�∇u�2

�
+ bdiv

�
∇u√

1+�∇u�2

�
= �f n(x, u) in Ω,

u = 0 on �Ω.

Cn ⊆
((
ℝ+ × P

)
∪
{(

𝜆1∕n, 0
)})

.

fn(x, s) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1

n
s, s ∈

�
0,

1

n

�
,

�
f
�
x,

2

n

�
−

1

n2

�
ns + 2

1

n2
− f

�
x,

2

n

�
, s ∈

�
1

n
,
2

n

�
,

f (x, s), s ∈
�
2

n
,+∞

�
.
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By modifying the argument given in [14, Theorem 1.3] with obvious changes, we can ver-
ify the desired conclusion. 	�  ◻

Finally, we show a result is concerned with the nonexistence of positive solution.

Theorem 4.1  Assume that there exists a positive constant � such that

for any s ∈ (0, d∕2] and a.e. x ∈ Ω . Then, there exists 𝜚∗ > 0 such that problem (1.1) has 
no any positive classical solution for � ∈

(
0, �∗

)
.

Proof  Suppose that u is a positive classical solution of problem (1.1) with some 𝜆 > 0 . 
Multiplying the first equation of problem (1.1) by u, in view of Theorem 1.1, we obtain 
after integrations by parts that

which follows that � ≥ �1∕� ∶= �∗ . 	�  ◻

5 � Radial symmetry of solutions

Our purpose of this section is to provide sufficient conditions on the prescription function 
to ensure that any eventual positive solution of problem (1.1) must be radially symmetric 
when Ω is the unit ball B. More precisely, we shall show the following result.

Theorem 5.1  Assume that f(x,  s) is continuous on B × Id , has continuous first derivative 
with respect to s, is radially symmetric, decreasing on (0, 1) with respect to the first varia-
ble and satisfies f (x, 0) ≥ 0 on �B . Then, any positive solution u ∈ C2

(
B
)
 of problem (1.1) 

is radially symmetric and monotone decreasing about the origin.

Proof  For convenience, we assume � = 1 . Let u be any positive solution of problem (1.1). 
We infer from Theorem 1.1 that |∇u| ≤ 𝜃 < 1 on B for some positive constant � . Define the 
truncated function as follows

�
−adiv

�
∇u√

1−�∇u�2

�
+ bdiv

�
∇u√

1+�∇u�2

�
= �fn(x, u) in Ω,

u = 0 on �Ω.

f (x, s)

s
≤ �

(a − b)�
Ω

�∇u�2 dx ≤�
Ω

�
(a − b)�∇u�2
√
1 − �∇u�2

+
b�∇u�2

√
1 − �∇u�2

−
b�∇u�2

√
1 + �∇u�2

�
dx

=�
Ω

�
a�∇u�2

√
1 − �∇u�2

−
b�∇u�2

√
1 + �∇u�2

�
dx = ��

Ω

f (x, u)

u
u2 dx

≤���
Ω

u2 dx ≤ ��(a − b)

�1 �
Ω

�∇u�2 dx,
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where the function � and the constant c are such that � ∈ C1
(
ℝ+

)
 is increasing. We 

observe that both � and �′ are bounded on ℝ+.
Further, consider the following problem

Set

It is straightforward to see that

where

We can easily see that

Combining the arguments of Theorem  1.2 and Proposition 3.1, we conclude that F is 
strictly elliptic. Consequently, the desired conclusions can be deduced from Corollary 2.1 
of [17].
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