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Abstract
Given an arbitrary C∞ Riemannian manifold Mn , we consider the problem of introduc-
ing and constructing minimal hypersurfaces in M ×ℝ which have the same fundamental 
properties of the standard helicoids and catenoids of Euclidean space ℝ3

= ℝ
2
×ℝ . Such 

hypersurfaces are defined by imposing conditions on their height functions and horizontal 
sections and then called vertical helicoids and vertical catenoids. We establish that verti-
cal helicoids in M ×ℝ have the same fundamental uniqueness properties of the helicoids 
in ℝ3

. We provide several examples of properly embedded vertical helicoids in the case 
where M is one of the simply connected space forms. Vertical helicoids which are entire 
graphs of functions on Nil

3
 and Sol

3
 are also presented. We show that vertical helicoids of 

M ×ℝ whose horizontal sections are totally geodesic in M are locally given by a “twisting” 
of a fixed totally geodesic hypersurface of M. We give a local characterization of hyper-
surfaces of M ×ℝ which have the gradient of their height functions as a principal direc-
tion. As a consequence, we prove that vertical catenoids exist in M ×ℝ if and only if M 
admits families of isoparametric hypersurfaces. If so, properly embedded vertical catenoids 
can be constructed through the solutions of a certain first-order linear differential equation. 
Finally, we give a complete classification of the hypersurfaces of M ×ℝ whose angle func-
tion is constant.
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1 Introduction

In this paper, we address the problem of defining and constructing minimal hypersurfaces 
in M ×ℝ with special properties, where Mn is an arbitrary C∞ Riemannian manifold. We 
will focus our attention on those fundamental properties of the standard helicoids and cat-
enoids of Euclidean space ℝ3

= ℝ
2
×ℝ, so that the corresponding minimal hypersurfaces 

of M ×ℝ will be called vertical helicoids and vertical catenoids.
More specifically, these hypersurfaces will be introduced by imposing conditions on 

their horizontal sections (intersections with M × {t}, t ∈ ℝ ), and also on the trajectories of 
the gradient of their height functions (height trajectories, for short). Vertical helicoids, for 
instance, are defined as those hypersurfaces of M ×ℝ whose horizontal sections are mini-
mal hypersurfaces of M × {t} , and whose height trajectories are asymptotic lines. Vertical 
catenoids, in turn, have nonzero constant mean curvature hypersurfaces as horizontal sec-
tions, and lines of curvature as height trajectories.

In this setting, we show that vertical helicoids of M ×ℝ have all the classical unique-
ness properties of the standard helicoids of ℝ3 . Namely, they are minimal hypersurfaces of 
M ×ℝ and, as such, they are the only ones which are foliated by horizontal minimal hyper-
surfaces. They are also the only minimal local graphs of harmonic functions (defined on 
domains in M), and the only minimal non-totally geodesic hypersurfaces of M ×ℝ whose 
spacelike pieces are maximal with respect to the standard Lorentzian product metric of 
M ×ℝ.

This last property extends the analogous classical result, set in Lorentzian space �3, 
established by O. Kobayashi [16]. In our approach, we briefly consider the class of hyper-
surfaces of M ×ℝ whose mean curvatures with respect to both the Riemannian and Lor-
entzian metrics of M ×ℝ coincide. We call them mean isocurved. These hypersurfaces 
have been studied by Albujer-Caballero [3] in the case where the ambient space is �3 (see 
[1] as well). Actually, during the preparation of this paper, we became acquainted with 
the recent works by Alarcón-Alias-Santos [2] and Albujer-Caballero [4] which have some 
overlapping with ours on this subject. Mean isocurved surfaces in ℍ2

×ℝ and 𝕊2
×ℝ have 

also been considered by Kim et al in [15].
Concerning examples of vertical helicoids in M ×ℝ , we show that they can be con-

structed by considering one-parameter groups of isometries of M acting on suitable mini-
mal hypersurfaces. When M is one of the simply connected space forms, this method 
allows us to construct properly embedded minimal vertical helicoids in M ×ℝ which are 
foliated by vertical translations of totally geodesic hypersurfaces of M. We also construct 
properly embedded vertical helicoids in ℝn

×ℝ and ℍ3
×ℝ which are foliated by vertical 

translations of helicoids of ℝn and ℍ3, respectively. In the same way, we construct vertical 
helicoids in 𝕊3

�
×ℝ, where �3

�
 is a Berger sphere. Finally, we obtain a family of properly 

embedded minimal vertical helicoids in 𝕊2n+1
×ℝ which are foliated by 2n-dimensional 

Clifford tori, and also a corresponding family of vertical helicoids in ℝ2n+2
×ℝ (previously 

constructed by Choe and Hoppe [7]), whose horizontal sections are the cones of these tori 
in ℝ2n+2.

Other examples of vertical helicoids that we give are graphs of harmonic and horizon-
tally homothetic functions defined on domains of certain manifolds M,  such as the Nil and 
Sol three-dimensional spaces (see Sect. 4.1). We remark that, all the vertical helicoids pre-
sented here, graphs or not, contain spacelike zero mean isocurved open sets.

We also give a local characterization of vertical helicoids of M ×ℝ with totally geodesic 
horizontal sections and nonvanishing angle function by showing that each of its points has 
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a neighborhood which can be expressed as a “twisting” of a totally geodesic hypersurface 
of M (see Sect. 4.2 for more details).

Regarding vertical catenoids in M ×ℝ , their study naturally leads to the consideration 
of a broader class of hypersurfaces of M ×ℝ; those which have the gradient of their height 
functions as a principal direction. These hypersurfaces have been given a local characteri-
zation by R. Tojeiro [22] assuming that M is one of the simply connected space forms. 
Here, we extend this result to general products M ×ℝ and conclude that a necessary and 
sufficient condition for the existence of minimal or constant mean curvature (CMC) hyper-
surfaces in M ×ℝ with this property (in particular, vertical catenoids) is that M admits 
families of isoparametric hypersurfaces.

This extension of Tojeiro’s result, in fact, provides a way of constructing such minimal 
and CMC hypersurfaces (as long as they are admissible) by solving a first-order linear dif-
ferential equation. This can be performed, for instance, when M is any of the simply con-
nected space forms, a Damek–Ricci space or any of the simply connected 3-homogeneous 
manifolds with isometry group of dimension 4: �(k, τ), k − 4τ2 ≠ 0. This result will also 
be applied for constructing properly embedded vertical catenoids in M ×ℝ when M is a 
Hadamard manifold or the sphere �n. As a further application, we give a complete classifi-
cation of hypersurfaces of M ×ℝ whose angle function is constant.

The paper is organized as follows. In Sect.  2, we set some notation and formulae. In 
Sect. 3, we introduce mean isocurved hypersurfaces and establish some basic lemmas. We 
discuss on vertical helicoids in Sect.  4. In Sect.  5, we consider hypersurfaces of M ×ℝ 
which have the gradient of their height functions as a principal direction. Finally, in Sect. 6, 
we discuss on vertical catenoids.

2  Preliminaries

Throughout this paper, M will denote an arbitrary n(≥ 2)-dimensional C∞ orientable Rie-
mannian manifold. For such an M,  we will consider the product manifold M ×ℝ with its 
standard differentiable structure. We will set

for the tangent bundle of M ×ℝ, where TM and Tℝ denote the tangent bundles of M and ℝ, 
respectively. We will endow M ×ℝ with the Riemannian product metric:

We shall write �
M
 and �

ℝ
 for the projection of M ×ℝ on its first and second factors, respec-

tively, and �t for the gradient of �
ℝ
 with respect to the Riemannian metric ⟨ , ⟩. We remark 

that �t is a parallel field on M ×ℝ.

Let Σ be an orientable hypersurface of M ×ℝ. Given a unit normal field 
N ∈ TΣ⟂ ⊂ T(M ×ℝ), we will denote by A the shape operator of Σ relative to N,  i.e.,

where ∇ stands for the Levi-Civita connection of M ×ℝ . The gradient of a differentiable 
function � on Σ will be denoted by ∇� .

The height function � and the angle function Θ of Σ are defined as

T(M ×ℝ) = TM ⊕ Tℝ

⟨ , ⟩ = ⟨ , ⟩
M
+ dt2.

AX = −∇XN,
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Regarding these functions, the following fundamental identities hold:

where the second one follows from the fact that �t is parallel in M ×ℝ. We point out 
that Θ ∈ [−1, 1], and that x ∈ Σ is a critical point of the height function � if and only if 
Θ

2
(x) = 1. If so, we say that x is a horizontal point of  Σ. Any field X ∈ TM ⊂ T(M ×ℝ) 

will be called horizontal as well.

3  Basic lemmas

Given a product manifold M ×ℝ, for each t ∈ ℝ, we will call the submanifold 
Mt ∶= M × {t} a horizontal section of M ×ℝ. If Σ intersects a horizontal section Mt trans-
versally, we call the set

a horizontal section of the hypersurface Σ.
Notice that, for all t ∈ ℝ, Mt is isometric to M,  and that any horizontal section Σt is a 

hypersurface of Mt . In this setting, it is easily checked that

is a well defined unit normal field to Σt .
Now, denote the shape operator of  Σt with respect to � by A� , and set H and H

Σt
 for the 

(non-normalized) mean curvature functions of Σ and Σt , respectively.

Lemma 1 Let Σt be a horizontal section of a hypersurface Σ of M ×ℝ. Then,

As a consequence, for T = ∇�∕‖∇�‖ , the following equality holds along Σt:

Proof We have that Mt = M × {t} is totally geodesic in M ×ℝ. Hence, its Riemannian 
connection coincides with the restriction of the Riemannian connection ∇ of M ×ℝ to 
TMt × TMt . Therefore, for all X ∈ TΣt , we have

Thus, for all Y ∈ TΣt = TMt ∩ TΣ ,

Now, in a suitable neighborhood U ⊂ Σ of an arbitrary point on Σt , consider an orthonor-
mal frame {X1 … ,Xn−1, T} such that X1 ,…Xn−1 are all tangent to Σt . Then, on U ∩ Σt , we 
have

� ∶= �
ℝ
�
Σ

and Θ ∶= ⟨N, �t⟩.

(1)∇� = �t − ΘN and ∇Θ = −A∇�,

Σt ∶= Mt ∩ Σ

(2)� ∶= �(N − Θ�t), � = −(1 − Θ
2
)
−1∕2,

⟨A�X, Y⟩ = �⟨AX, Y⟩ ∀X, Y ∈ TΣt .

(3)H
Σt
= �(H − ⟨AT , T⟩).

A�X = −∇X� = −∇X�(N − Θ�t) = −X(�)(N − Θ�t) + �(AX + X(Θ)�t).

⟨A�X, Y⟩ = �⟨AX, Y⟩.
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which concludes the proof.  ◻

3.1  Mean isocurved hypersurfaces

Let us consider in M ×ℝ the Lorentzian product metric, which is defined as

This metric relates to the Riemannian metric ⟨ , ⟩ of M ×ℝ through the identity

which, as one can verify, is valid for all X, Y ∈ T(M ×ℝ).

Denote by Σ
L
∶= (Σ, ⟨ , ⟩

L
) a hypersurface Σ of M ×ℝ with the induced Lorentzian metric 

of M ×ℝ. We say that Σ is spacelike if Σ
L
 is a Riemannian manifold, that is, the Lorentzian 

metric on Σ is positive definite. It is easily checked that Σ is spacelike if and only if ⟨Z, Z⟩
L
< 0 

for all nonzero local field Z ∈ TΣ⟂

L
. Also, any spacelike hypersurface of M ×ℝ is necessarily 

orientable.
Assuming Σ ⊂ M ×ℝ spacelike, choose a unit normal N

L
 to Σ

L
 , that is,

It is a well-known fact that the connections of M ×ℝ with respect to the Riemannian and 
Lorentzian metrics coincide. So, keeping the notation of Sect. 2, we define the Lorentzian 
shape operator of Σ

L
 with respect to N

L
 as

Finally, the (non-normalized) Lorentzian mean curvature H
L
 of  Σ

L
 is defined as

Definition 1 A spacelike hypersurface Σ ⊂ M ×ℝ is said to be mean isocurved if its Rie-
mannian and Lorentzian mean curvature functions, H and H

L
 , coincide. When H = H

L
= 0, 

we say that Σ is zero mean isocurved.

Let us consider the following map

which is easily seen to be an involution, that is, Φ◦Φ is the identity map of T(M ×ℝ). 
Moreover, for all X, Y ∈ T(M ×ℝ), the following identities hold:

Given an oriented hypersurface Σ ⊂ M ×ℝ with unit normal N,  it follows from the second 
relation in (6) that Φ(N) is a Lorentzian normal field on Σ. Indeed,

H
Σt
=

n−1�
i=1

⟨A�Xi,Xi⟩ = �

n−1�
i=1

⟨AXi,Xi⟩ = �(H − ⟨AT , T⟩),

⟨ , ⟩
L
∶= ⟨ , ⟩

M
− dt2.

(4)⟨X, Y⟩
L
= ⟨X, Y⟩ − 2⟨X, �t⟩⟨Y , �t⟩,

⟨N
L
,N

L
⟩
L
= −1 and ⟨X,N

L
⟩
L
= 0 ∀X ∈ TΣ.

(5)A
L
X ∶= −∇XNL

.

H
L
∶= −traceA

L
.

Φ(X) = X − 2⟨X, �t⟩�t, X ∈ T(M ×ℝ),

(6)⟨Φ(X), Y⟩ = ⟨X, Y⟩
L

and ⟨Φ(X), Y⟩
L
= ⟨X, Y⟩.
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Moreover, considering also the equality (4), we have

from which we conclude that Σ is spacelike if and only if 2Θ2 > 1. If so, set

and write A
L
 for the shape operator of Σ

L
 with respect to N

L
.

Lemma 2 Let Σ be a spacelike hypersurface of M ×ℝ with no horizontal points. With the 
above notation, the following identities hold: 

 (i) ⟨A
L
X, Y⟩

L
= �⟨AX, Y⟩ ∀X, Y ∈ TΣ.

 (ii) H
L
+ �H = �(1 − �2

)⟨AT , T⟩, T = ∇�∕‖∇�‖.

Proof Given  X, Y ∈ TM,  one has

which proves (i).
Now, let us consider a point x ∈ Σ and a basis � = {X1 ,… ,Xn} of TxΣ which is 

orthonormal with respect to the Riemannian metric ⟨ , ⟩ . Since x is non-horizontal, 
we can assume that X1 ,… ,Xn−1 are horizontal, i.e., tangent to M,   and Xn = T . Hence, 
by (4), {X1 ,… ,Xn−1} is orthonormal with respect to the Lorentzian metric ⟨ , ⟩

L
 , and 

⟨Xi, T⟩L = 0 ∀i = 1,… , n − 1.

Denote by [aij] and [�ij] , the matrices of the shape operators A  and A
L
 , respectively, with 

respect to the basis �. From (i), we have

Also, for any index   j = 1,… , n, one has

However, by (1) and (4),

This, together with (8), yields

Putting (7) and (9) together, we have

⟨Φ(N),X⟩
L
= ⟨N,X⟩ = 0 ∀X ∈ TΣ.

⟨Φ(N),Φ(N)⟩
L
= ⟨N,Φ(N)⟩ = ⟨N,N⟩

L
= 1 − 2Θ2,

N
L
∶= 𝜇Φ(N), 𝜇 ∶=

−1√
2Θ2 − 1

< 0,

⟨A
L
X, Y⟩

L
= ⟨∇XY ,NL

⟩
L
= ⟨∇XY ,�Φ(N)⟩

L
= �⟨∇XY ,N⟩ = �⟨AX, Y⟩,

(7)�ij = ⟨A
L
Xi,Xj⟩L = �⟨AXi,Xj⟩ = �aij ∀i, j = 1,… , n − 1.

(8)�anj = �⟨AXj, T⟩ = ⟨A
L
Xj, T⟩L =

n�
i=1

�ij⟨Xi, T⟩L = �nj⟨T , T⟩L .

⟨T , T⟩
L
= 1 − 2⟨T , �t⟩2 = 2Θ2

− 1 =
1

�2
⋅

(9)�nj = �3anj ∀j = 1,… , n.
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which implies that

Since we have ann = ⟨AT , T⟩, H
L
= −trace[�ij], and H = trace[aij], the identity (10) clearly 

implies (ii).

The following result extends [3, Theorem 4], set in Lorentzian space �3, to hypersur-
faces in M ×ℝ.

Corollary 1 Let Σ be a mean isocurved hypersurface of M ×ℝ. Then, its second fundamen-
tal form � is nowhere definite. Furthermore, � is semi-definite at x ∈ Σ if and only if  Σ is 
totally geodesic at x.

Proof Let us denote by C ⊂ Σ the set of critical points of the height function � of Σ. Keep-
ing the notation of the proof of the preceding lemma, and considering the equality (10), we 
have that H = �(1 − �)ann on Σ − C, for H

L
= H. Thus,

However, 1 + 𝜇(𝜇 − 1) > 0 and aii = ⟨AXi,Xi⟩ = �(Xi,Xi), i = 1,… , n. Hence, the equality 
(11) implies that, at a point x in the closure of Σ − C in Σ, � is neither definite nor semi-
definite, unless, in the latter case, it vanishes.

4  Vertical helicoids in M ×ℝ.

Inspired by some fundamental properties of the standard helicoids of ℝ3 (see Example 
1 below), we introduce in this section the concept of vertical helicoid in M ×ℝ . We 
shall establish the uniqueness properties of these hypersurfaces and present a variety 
of examples, as we mentioned in the introduction. In addition, we will characterize the 
vertical helicoids which are graphs of functions on M and give a local characterization 
of vertical helicoids Σ whose horizontal sections Σt are totally geodesic in Mt .

Definition 2 Let Σ be a hypersurface of M ×ℝ with no horizontal points and nonconstant 
angle function. We say that Σ is a vertical helicoid if it satisfies the following conditions:

• The horizontal sections Σt ⊂ Σ are minimal hypersurfaces of M × {t}.

• ∇� is an asymptotic direction of  Σ, that is, ⟨A∇�,∇�⟩ = 0 on  Σ.

[𝓁ij] = �

⎡
⎢⎢⎢⎢⎣

a11 ⋯ �2a1n
⋮ ⋮

ai1 ⋯ �2ain
⋮ ⋮

�2an1 ⋯ �2ann

⎤
⎥⎥⎥⎥⎦
,

(10)trace[�ij] = �(trace[aij] + (�2
− 1)ann).

(11)
n−1∑
i=1

aii + (1 + �(� − 1))ann = 0.
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Remark 1 Considering the standard helicoids in ℝ3
= ℝ

2
×ℝ, one could expect that a right 

extension of this concept to the context of products M ×ℝ should ask for the horizon-
tal sections to be totally geodesic, since the horizontal sections of the helicoids in ℝ3 are 
straight lines. However, as our results and examples shall show, the appropriate condition 
to be imposed to the horizontal sections is, in fact, minimality, as in the above definition.

Remark 2 The identity ∇Θ = −A∇� implies that ∇� is an asymptotic direction of Σ if and 
only if the equality ⟨∇Θ,∇�⟩ = 0 holds on Σ. In this case, we have that Θ is constant along 
any trajectory �(s) of ∇�. However, ⟨∇�, �t⟩ = 1 − Θ

2, which gives that the tangent direc-
tions � �(s) make a constant angle with the vertical direction �t. Therefore, considering the 
concept of helix in ℝ3 as a curve which makes a constant angle with a given direction, we 
can extend it to curves in M ×ℝ in an obvious way and conclude that the trajectories of ∇� 
on a vertical helicoid in M ×ℝ are vertical helices.

In what follows, let Qn
c
 denote the simply connected n-space form of constant sec-

tional curvature c ∈ {0, 1,−1}, that is, the Euclidean space ℝn ( c = 0 ), the n-sphere �n 
( c = 1 ), or the hyperbolic space ℍn ( c = −1).

Example 1 (Helicoids in Q2
c
×ℝ ) Consider the following parametrization of the standard 

vertical helicoid Σ of ℝ3
= ℝ

2
×ℝ with pitch a > 0,

As its Riemannian unit normal field, we can choose

which gives Θ = x∕(x2 + a2)1∕2.

Since Ψ is an orthogonal parametrization and Θ depends only on x,  we have that ∇Θ is 
parallel to Ψx = (cos y, sin y, 0). In particular,

Hence, ∇� is an asymptotic direction of Σ.
We also have that all horizontal sections of Σ are straight lines. Therefore, Σ is a vertical 

helicoid as in Definition 2. Moreover, from the equality

we conclude that the open subset Σ�
= {Ψ(x, y) ∈ Σ ; |x| > a} is spacelike and, as is well 

known, zero mean isocurved (see, e.g., [16]).
Considering the standard inclusions 𝕊2

↪ ℝ
3 and ℍ2

↪ 𝕃
3, we can apply an analogous 

reasoning to the parametrizations (see, e.g., [8, Section 4]):

Ψ(x, y) = (x cos y, x sin y, ay), (x, y) ∈ ℝ
2.

N =
1√

x2 + a2
(a sin y,−a cos y, x),

⟨∇Θ,∇�⟩ = ⟨∇Θ, �t⟩ = 0.

2Θ2
− 1 =

x2 − a2

x2 + a2
,

Ψsph(x, y) = (cos x cos y, cos x sin y, sin x, ay) ∈ 𝕊
2
×ℝ;

Ψhyp(x, y) = (sinh x cos y, sinh x sin y, cosh x, ay) ∈ ℍ
2
×ℝ;
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and conclude that their images are vertical helicoids in 𝕊2
×ℝ and ℍ2

×ℝ, respectively. 
They are both minimal surfaces containing open spacelike zero mean isocurved subsets, as 
verified in [15].

We prove now, as suggested by the above examples, that vertical helicoids in product 
spaces M ×ℝ are minimal hypersurfaces. As such, except for some constant angle hyper-
surfaces, they are the only ones foliated by horizontal minimal hypersurfaces. Moreover, 
spacelike pieces of vertical helicoids (if any) are zero mean isocurved hypersurfaces in 
M ×ℝ , and they are unique with respect to this property as well.

Theorem 1 Let Σ be a hypersurface of M ×ℝ with no horizontal points and nonconstant 
angle function. Then, the following statements are equivalent: 

 (i) Σ is a vertical helicoid.
 (ii) Σ and all the horizontal sections Σt are minimal hypersurfaces.

If, in addition, Σ is spacelike, then both (i) and (ii) are equivalent to: 

 (iii) Σ is zero mean isocurved.

Proof (i) ⇒ (ii): Since we are assuming that Σ is a vertical helicoid, we have H
Σt
= 0 for all 

horizontal sections Σt ⊂ Σ, and ⟨A∇� ,∇�⟩ = 0 on Σ. Thus, from the identity (3) in Lemma 
1, H = 0, that is, Σ is minimal.

(ii) ⇒ (i): Now, we have H = H
Σt
= 0 for any horizontal section Σt ⊂ Σ. In this case, (3) 

yields ⟨AT , T⟩ = 0, which implies that ∇� is an asymptotic direction, that is, Σ is a vertical 
helicoid.

(ii) ⇒ (iii): We have H = 0 and, as above, ⟨AT , T⟩ = 0. Hence, by Lemma 2-(iii), 
H

L
= 0, i.e., Σ is zero mean isocurved.
(iii) ⇒ (ii): From H = H

L
= 0 and Lemma 2-(ii), one has ⟨AT , T⟩ = 0. This, together 

with identity (3), gives that the horizontal sections Σt ⊂ Σ are minimal hypersurfaces of 
M × {t}. Hence, Σ is a vertical helicoid.

Vertical helicoids can be constructed by “twisting” minimal hypersurfaces, as shown in 
the following examples.

Example 2 (Twisted planes in ℝ3
×ℝ ) Given a, k > 0, consider the map

which we call a vertical twisting of the plane ℝ2
× {0} ⊂ ℝ

3 in ℝ3
×ℝ. It is easily verified 

that Ψ is a parametrization of a properly embedded hypersurface Σ of ℝ3
×ℝ . Also, direct 

computations give that

Ψ(x, y, s) ∶=

⎡
⎢⎢⎢⎣

cos ks − sin ks 0 0

sin ks cos ks 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x

0

y

0

⎤⎥⎥⎥⎦
+ a

⎡
⎢⎢⎢⎣

0

0

0

s

⎤
⎥⎥⎥⎦
, (x, y, s) ∈ ℝ

3,

N =
(a sin ks,−a cos ks, 0, kx)√

a2 + (kx)2
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is a unit normal field on Σ . In particular, Θ = kx∕
√
a2 + (kx)2 depends only on x and 

Θ
2 ≠ 1, that is, � has no critical points on Σ. Also, the inverse matrix [gij] of the first funda-

mental form of Σ in this parametrization is

Therefore,

Thus, Σ is a (minimal) vertical helicoid, since its horizontal sections Σt are planes of 
ℝ

3
× {t}. Moreover, its angle function Θ satisfies

which implies that the nonempty open subset Σ� of Σ given by

is spacelike. So, by Theorem 1, Σ� is zero mean isocurved in ℝ3
×ℝ.

Example 3 (Twisted helicoids in ℝn
×ℝ ) Let us consider now the map

where a, k > 0.

Clearly, Σ = Ψ(ℝ
3
) is a properly embedded hypersurface of ℝ3

×ℝ, which we call a 
twisted helicoid. A unit normal field to Σ is

so that Θ = kx∕
√
a2(1 + x2) + (kx)2. Again, we have Θ2 ≠ 1 and

which yields ⟨∇Θ,∇�⟩ = 0.

Since, by construction, the horizontal sections Σt of Σ are two-dimensional helicoids in 
ℝ

3
× {t}, we conclude from the above that Σ is a vertical helicoid in ℝ3

×ℝ. Moreover, if 
k > a, then the set

is easily seen to be spacelike and, so, zero mean isocurved.
Now, define the functions f , g ∶ ℝ

n−1
→ ℝ by

[gij] =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0
1

a2+(kx)2

⎤
⎥⎥⎦
.

∇Θ =
�Θ

�x

�Ψ

�x
=

�Θ

�x
(cos ks, sin ks, 0, 0) ⇒ ⟨∇Θ,∇�⟩ = ⟨∇Θ, �t⟩ = 0.

2Θ2
− 1 =

(kx)2 − a2

(kx)2 + a2
,

Σ
�
∶= {Ψ(x, y, s) ∈ Σ ; |x| > a∕k}

Ψ(x, y, s) ∶=

⎡⎢⎢⎢⎣

cos ks − sin ks 0 0

sin ks cos ks 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

x cos y

x sin y

y

0

⎤⎥⎥⎥⎦
+ a

⎡⎢⎢⎢⎣

0

0

0

s

⎤⎥⎥⎥⎦
, (x, y, s) ∈ ℝ

3,

N =
1√

a2(1 + x2) + (kx)2
(a sin(y + ks),−a cos(y + ks), ax, kx),

∇Θ = g11
�Θ

�x

�Ψ

�x
= g11

�Θ

�x
(cos(y + ks), sin(y + ks), 0, 0),

Σ
�
∶=

�
Ψ(x, y, s) ∈ Σ ; �x� > a∕

√
k2 − a2

�
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Applying induction on n and proceeding as above, one concludes that the map

parametrizes a properly embedded minimal vertical helicoid Σn ⊂ ℝ
n
×ℝ whose hori-

zontal sections are vertical helicoids in ℝn−1
×ℝ. Furthermore, for k > a, Σ contains open 

spacelike zero mean isocurved subsets.

Example 4 (Twisted Clifford torus in  𝕊3
×ℝ ) Given k > 0, consider the immersion

defined by the equality

Then, Σ = Ψ(ℝ
3
) is proper and embedded in 𝕊3

×ℝ. A computation shows that

is a unit normal to Σ, which implies that its angle function is given by

Also, the matrix [gij] of the first fundamental form of Σ is

In particular, for its inverse [gij], we have that g12 = g32 = 0, since the corresponding cofac-
tors of [gij] clearly vanish. This, together with the fact that Θ depends only on y,  gives that

for �Ψ∕�y is a horizontal vector. Therefore, ∇� is an asymptotic direction of Σ. Observing 
that each horizontal section of Σ is a Clifford torus, which is a compact embedded minimal 
hypersurface of �3, we conclude that Σ is a properly embedded minimal vertical helicoid of 
𝕊
3
×ℝ.

Finally, we have that the angle function of Σ satisfies

Hence, if we assume k > 2, we have that the open set

f (x2 ,… , xn−1, s) = cos(x2 + x3 +⋯ + xn−1 + s).

g(x2 ,… , xn−1, s) = sin(x2 + x3 +⋯ + xn−1 + s).

Ψ(x1 ,… , xn−1, s) = (x1f (x2 ,… , ks), x1g(x2 ,… , ks), x2 , x3 ,… , xn−1, as)

Ψ ∶ ℝ
3
→ 𝕊

3
×ℝ ⊂ ℝ

5

Ψ(x, y, s) = (cos (x + ks) cos y, sin (x + ks) cos y, cos x sin y, sin x sin y, s).

N =
(sin y sin (x + ks),−sin y cos (x + ks),−sin x cos y, cos x cos y, k cos y sin y)√

1 + (k cos y sin y)2

Θ =
k cos y sin y√

1 + (k cos y sin y)2
=

k sin(2y)∕2�
1 + k2 sin2(2y)∕4

⋅

[gij] =

⎡⎢⎢⎣

1 0 k cos2 y

0 1 0

k cos2 y 0 k2 cos2 y + 1

⎤⎥⎥⎦
.

∇Θ = g22
�Θ

�y

�Ψ

�y
⇒ ⟨∇Θ,∇�⟩ = ⟨∇Θ, �t⟩ = 0,

2Θ2
− 1 =

k2 sin2(2y) − 4

k2 sin2(2y) + 4
⋅
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is nonempty and zero mean isocurved in 𝕊3
×ℝ.

Example 5 (Twisted hyperbolic helicoid in ℍ3
×ℝ ) Consider the Lorentzian model of 

hyperbolic space ℍ3
↪ 𝕃

4
= (ℝ

4, ds2), ds2 = dx2
1
+ dx2

2
+ dx2

3
− dx2

4
. It is well known that 

the map

parametrizes a properly embedded minimal surface which is called the hyperbolic helicoid 
of ℍ3. Considering its twisting Ψ ∶ ℝ

3
→ ℍ

3
×ℝ defined, for k > 0, by

we have that the hypersurface Σ = Ψ(ℝ
3
) is proper and embedded in ℍ3

×ℝ. A unit normal 
field for Σ is given by

where � = (cosh2 x + sinh2 x + (k cosh x sinh x)2)−1∕2 . Therefore, the angle function of Σ is 
Θ = k� sinh x cosh x, which depends only on x.

Proceeding as before, one easily concludes that ∇Θ is horizontal, i.e., that ∇� is an 
asymptotic direction of Σ. Hence, Σ is a properly embedded minimal vertical helicoid in 
ℍ

3
×ℝ whose horizontal sections Σt are hyperbolic helicoids of ℍ3

× {t}. Also, for suffi-
ciently large k, Σ contains open spacelike zero mean isocurved subsets.

Example 6 (Twisted helicoid in 𝕊3
�
×ℝ ) Consider the product 𝕊3

�
×ℝ , where the first factor 

is a Berger sphere. It is well known that, given � ∈ ℝ, the map

is a parametrization of a minimal helicoid of �3
�
 (see, for instance, [21]).

From this helicoid, using the same twisting method of the previous examples, we obtain 
a vertical helicoid in 𝕊3

�
×ℝ that is given by

To see that Ψ is indeed a vertical helicoid, it suffices to compute the angle function Θ and 
check that its gradient is horizontal. After a long but straightforward computation, Θ can be 
written as

where �(τ) is given by

Σ
�
∶= {Ψ(x, y, s) ∈ Σ ; y > arcsin(2∕k)∕2} ⊂ Σ

(x, y) ∈ ℝ
2
↦ (sinh x cos y, sinh x sin y, cosh x sinh y, cosh x cosh y) ∈ ℍ

3

Ψ(x, y, s) = (sinh x cos(y + ks), sinh x sin(y + ks), cosh x sinh y, cosh x cosh y, as),

N = �

⎡
⎢⎢⎢⎢⎣

cosh x sin(y + ks)

− cosh x cos(y + ks)

sinh x cosh y

sinh x sinh y

k sinh x cosh x

⎤
⎥⎥⎥⎥⎦
,

(s, τ) ∈ ℝ
2
↦ (ei�s cos(τ), eis sin(τ)) ∈ 𝕊

3
�

Ψ(s, τ, u) = (ei(�s+u) cos(τ), ei(s+u) sin(τ), au), a ≠ 0.

Θ =
−� cos(τ) sin(τ)

�(τ)
,
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From these expressions, and after some further computations, we get that ∇Θ is horizontal. 
Also, for a convenient choice of the parameters �, a, � , and of the range of s, τ, and u, Ψ is 
a spacelike immersion.

4.1  Vertical Helicoids as Graphs

Let u be a differentiable (i.e., C∞ ) function defined on a domain Ω ⊂ M. It is easily checked 
that

is a unit normal to Σ = graph(u) ⊂ M ×ℝ , where, by abuse of notation, we are writing ∇u 
instead of ∇u◦�

M
. In particular,

is the angle function of Σ.
Denoting by div the divergence of fields on M,   as is well known, Σ = graph(u) is a 

minimal hypersurface of M ×ℝ if and only if u satisfies the equation

Lemma 3 Let Σ be the graph of a differentiable function u on a domain Ω ⊂ M , and let  Σt 
be a horizontal section of  Σ. Then, the following holds: 

 (i) Σ is minimal in M ×ℝ if and only if u satisfies: 

 (ii) The mean curvature of  Σt is given by: 

Proof Given a differentiable function � on Ω, it is an elementary fact that

�(τ) = [cos4(τ)((1 − �2)�2(� + 1)2a2 − �2
)

+ cos2(τ)(�2(� + 1)(�2(� + 1) − 2)a2 + �2
) + �2a2]1∕2.

(12)N =

−∇u + �t√
1 + ‖∇u‖2

,

(13)Θ =
1√

1 + ‖∇u‖2

(14)div

�
∇u√

1 + ‖∇u‖2

�
= 0.

(15)Δu −
‖∇u‖

1 + ‖∇u‖2 ⟨∇u,∇‖∇u‖⟩ = 0.

(16)H
Σt
=

Δu

‖∇u‖ −

⟨∇u,∇‖∇u‖⟩
‖∇u‖2 ⋅

(17)div(�∇u) = �Δu + ⟨∇�,∇u⟩.
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Then, considering (14) and setting � = 1∕
√
1 + ‖∇u‖2 , one easily concludes that the equa-

tions (14) and (15) are equivalent.
From (12), we have that � = −∇u∕‖∇u‖ is a unit normal field to Σt  . Therefore, if we 

choose an orthonormal frame {X1 ,… ,Xn−1} in TΣt , we have

Now, equality (16) follows from (17) if we set � = 1∕‖∇u‖.

The identities in the above lemma suggest the consideration of horizontally homo-
thetic functions, which we now introduce (cf. [18, 19]).

Definition 3 We say that a smooth function u on Ω ⊂ M is horizontally homothetic if the 
identity ⟨∇u,∇‖∇u‖⟩ = 0 holds on Ω.

Our next result establishes the uniqueness of vertical helicoids as minimal hypersur-
faces which are local graphs of harmonic functions.

Theorem 2 Let Σ = graph(u), where u is a smooth function defined on a domain Ω ⊂ M 
whose gradient never vanishes. Then, if the angle function of Σ is nonconstant, the follow-
ing are equivalent: 

 (i) Σ is a vertical helicoid in M ×ℝ.

 (ii) u is harmonic and Σ is minimal.
 (iii) u is harmonic and horizontally homothetic.

Proof Assume that Σ is a vertical helicoid. Then, H
Σt
= 0 for any horizontal section Σt of Σ. 

Also, by Theorem 1, Σ is minimal. So, by Lemma 3, u satisfies equation (15). Combining it 
with (16), we have

which yields ⟨∇u,∇‖∇u‖⟩ = 0. This, together with (15), implies that u is a harmonic func-
tion, that is, (i) ⇒ (ii).

Let us suppose now that (ii) holds. Then, u satisfies (15). Since u is harmonic, it follows 
that u is also horizontally homothetic. Now, we have from (16) that the horizontal sections 
of Σ are minimal. Hence, from Theorem 1, Σ is a vertical helicoid, which shows that (i) and 
(ii) are equivalent.

The equivalence between (ii) and (iii) follows directly from Lemma 3-(i).

We now make use of Theorem 2 to obtain vertical helicoids Σ ⊂ M ×ℝ which con-
tain spacelike pieces of zero mean isocurved hypersurfaces. Before that, let us remark 
that, by (13), the angle function Θ of Σ = graph(u) satisfies

H
Σt
=

n−1�
i=1

−

�
∇Xi

�,Xi

�
= div

∇u

‖∇u‖ ⋅

⟨∇u,∇‖∇u‖⟩
‖∇u‖(1 + ‖∇u‖2) = 0,
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Therefore, Σ = graph(u) is a spacelike hypersurface if and only if ‖∇u‖ < 1.

Example 7 Consider the set Ω of points (x1 ,… , xn) ∈ ℝ
n which satisfy xn−1 > 0 and define 

on it the function

From a direct computation, one concludes that u is harmonic and horizontally homothetic. 
Thus, Theorem 2 gives that Σ = graph(u) is a vertical helicoid. Moreover, the gradient of 
u is

which implies that

Therefore, if we assume a2
1
+⋯ + a2

n−2
< 1 and consider the set Ω� ⊂ Ω of points 

(x1 ,… , xn) ∈ Ω for which the right hand side of (18) is < 1, we have that Σ�
= graph(u|

Ω� ) 
is spacelike and, in particular, zero mean isocurved in ℝn

×ℝ.

Example 8 (Y-L Ou examples) The following functions u ∶ M → ℝ , which were considered 
by Y-L Ou in [18, 19], are all harmonic and horizontally homothetic. Therefore, by Theo-
rem 2, their graphs are complete embedded vertical helicoids in the corresponding product 
M ×ℝ.

 (i) M = ℍ
n
= (ℝ

n
+
, x−2

n
g
Euc
),   u(x1,… , xn) = axi , 1 ≤ i ≤ n − 1.

 (ii) M = (ℝ
3, g

Nil
),  g

Nil
= dx2 + dy2 + (dz − xdy)2,    u(x, y, z) = a(z − xy∕2).

 (iii) M = (ℝ
3, g

Sol
),  g

Sol
= e2zdx2 + e−2zdy2 + dz2,     u(x, y, z) = az.

We remark that, in contrast with (i), in (ii) and (iii) the horizontal sections of Σ = graph(u) 
are non-totally geodesic. Also, in all cases, for certain suitable values of the parameter a,  Σ 
has nonempty spacelike zero mean isocurved open sets.

4.2  Construction and local characterization of vertical helicoids

In this section, we generalize the method for constructing vertical helicoids in M ×ℝ 
which we applied in Examples 2–6. We also give a local characterization of vertical heli-
coids whose horizontal sections are totally geodesic.

Let I ∋ 0 be an open interval in ℝ and let

2Θ2
− 1 =

(1 − ‖∇u‖2)
(1 + ‖∇u‖2) ⋅

u(x1 ,… , xn) =

n−2∑
i=1

aixi + b arctan(xn∕xn−1).

∇u(x1 ,… , xn) =

(
a1 ,… , an−2 ,

−bxn

x2
n−1

+ x2
n

,
bxn−1

x2
n−1

+ x2
n

)
,

(18)‖∇u‖2 =
n−2�
i=1

a2
i
+

b2

x2
n−1

+ x2
n

⋅



2400 R. F. de Lima, P. Roitman 

1 3

be a one-parameter group of isometries of M such that Γ0 is the identity map. Choose a 
hypersurface Σn−1

0
⊂ Mn, define Σn−1

s
⊂ Mn by

and let � and �s = Γs
∗

� be unit normal fields on Σ0 and Σs , respectively.

Definition 4 Given a constant a > 0, we call the hypersurface

the a-pitched twisting of  Σ0 determined by {Γs ; s ∈ I} ⊂ Isom (M).

Given p ∈ Σ0 , denote by �p the orbit of p in M under the action of Γs , that is,

Finally, define the �-function of Σ as

Lemma 4 Given a > 0, let Σ ⊂ M ×ℝ be the a-pitched twisting of a hypersurface Σ0 ⊂ M 
determined by a one-parameter group {Γs ; s ∈ I} ⊂ Isom(M). Then, ∇� never vanishes on 
Σ, and the following assertions hold: 

 (i) ∇� is an asymptotic direction on Σ if and only if the gradient ∇� of the �-function of 
Σ is a horizontal field.

 (ii) The open set Σ�
= {x ∈ Σ ; |𝜈(x)| > a} ⊂ Σ is spacelike (if nonempty).

In particular, if  ∇� is horizontal and the horizontal sections Σt ⊂ Σ are minimal, then Σ 
is a vertical helicoid in M ×ℝ , and Σ� is zero mean isocurved.
Proof Given a point x = (�p(s), as) ∈ Σ, we have that

Hence, a unit normal field N for Σ in T(M ×ℝ) can be defined as

In particular, the angle function of Σ at x is given by

Γs ∶ M → M, s ∈ I,

Σs = Γs(Σ0), s ∈ I,

(19)Σ ∶= {(Γs(p), as) ∈ M ×ℝ ; p ∈ Σ0, s ∈ I} ⊂ M ×ℝ

(20)�p(s) ∶= Γs(p) ∈ Σs, s ∈ I.

(21)�(�p(s), as) ∶= ⟨��

p
(s), �s(�p(s))⟩, (�p(s), as) ∈ Σ.

(22)TxΣ = T𝛼p(s)Σs ⊕ Span{𝜕s}, 𝜕s = 𝛼�

p
(s) + a𝜕t.

N(x) ∶=
−a�s(�p(s)) + �(x)�t√

a2 + �2(x)
, x = (�p(s), as) ∈ Σ .

(23)Θ(x) =
�(x)√

a2 + �2(x)
⋅



2401Helicoids and catenoids in M ×ℝ  

1 3

Hence, Θ2 ≠ 1 , which implies that ∇� never vanishes on Σ. Equality (23) also gives 
that ∇Θ(x) is a multiple of ∇�(x). So, ∇� is an asymptotic direction of Σ if and only if 
⟨∇�(x), �t⟩ = 0 for all x ∈ Σ , which proves (i).

Now, a direct computation yields

which implies that Σ� is spacelike, as stated in (ii).

Let Σ be as in the above lemma. Given x = (�p(s), as) ∈ Σ, considering the decompo-
sition (22) of TxΣ, we have that any vector X ∈ TxΣ can be written as

Since Xs is horizontal, taking the inner product with �t on both sides of (24), one gets 
� = ⟨X, �t⟩∕a. Thus, for X = ∇�(x) , setting Xs

= ∇
s�(x), one has

Lemma 5 Let Σ be as in Lemma 4. Assume that its �-function is independent of s,   i.e., 
⟨∇�, �s⟩ = 0 on Σ. Then, ∇� is a horizontal field on Σ if and only if

Proof We have that 0 = ⟨∇�, �s⟩ = ⟨∇�, ��

p
+ a�t⟩. This, together with (25), gives

Hence, ⟨∇�(x), �t⟩ = 0 if and only if ⟨∇s�(x), ��

p
(s)⟩ = 0.

Recall that the cone over a given hypersurface Σn−1
0

 of  𝕊n ⊂ ℝ
n+1 is the hypersurface 

Σ̂0 of ℝn+1 which is defined as

It is an elementary fact that the unit normal �̂� of the cone Σ̂0 at rp is the parallel transport of 
the unit normal � at p ∈ Σ0 along the radial line of ℝn+1 through p and rp. So, they can be 
identified as vectors of ℝn+1, that is,

Also, Σ0 is minimal in �n if and only if Σ̂0 is minimal in ℝn+1.

Lemma 6 Assume that Σ0 is a hypersurface of  �n and let Σ̂0 be the cone of  ℝn+1 over 
Σ0 . Assume further that {Γs ; s ∈ I} is a one-parameter subgroup of the orthogonal group 
O(n + 1) = Isom(�

n
). Given a > 0, denote by Σ ⊂ 𝕊

n
×ℝ (respect. �Σ ⊂ ℝ

n+1
×ℝ ) the 

a-pitched twisting of  Σ0 in  𝕊n
×ℝ (respect. ℝn+1

×ℝ ) determined by {Γs ; s ∈ I} , that is,

2Θ2
− 1 =

�2 − a2

�2 + a2
,

(24)X = Xs
+ ��s , Xs

∈ T�p(s)Σs , � ∈ ℝ.

(25)∇�(x) = ∇
s�(x) +

⟨∇�(x), �t⟩
a

�s ∀x ∈ Σ.

(26)⟨∇s�(x) , ��

p
(s)⟩ = 0 ∀x = (�p(s), as) ∈ Σ.

⟨∇�(x), �t⟩ = −
1

a
⟨∇�(x), ��

p
(s)⟩ = −

1

a

�
⟨∇s�(x), ��

p
(s)⟩ + ⟨∇�(x), �t⟩

a
‖��

p
(s)‖2

�
.

Σ̂0 ∶= {rp ∈ ℝ
n+1 ; r ∈ (0,+∞), p ∈ Σ0}.

(27)𝜂(p) = �̂�(rp) ∀p ∈ Σ0 , rp ∈ �Σ0 .
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• Σ ∶= {(Γs(p), as) ∈ 𝕊
n
×ℝ ; p ∈ Σ0, s ∈ I} ⊂ 𝕊

n
×ℝ.

• �Σ ∶= {(Γs(rp), as) ∈ ℝ
n+1

×ℝ ; rp ∈ �Σ0, s ∈ I} ⊂ ℝ
n+1

×ℝ.

Under these conditions,  Σ is a vertical helicoid in 𝕊n
×ℝ if and only if  Σ̂ is a vertical 

helicoid in ℝn+1
×ℝ. Moreover, open spacelike subsets occur in Σ̂ if they occur in Σ.

Proof Set x = (Γs(p), as) ∈ Σ and x̂ = (Γs(rp), as) ∈
�Σ . Let �p and � be as in (20) and (21) 

and denote the corresponding objects for Σ̂ by �̂�rp and �̂�, that is,

Since Γs is linear, we have that �̂�rp(s) = Γs(rp) = rΓs(p) = r𝛼p(s). Therefore, considering 
(27), we conclude that

Therefore, denoting by �r ∈ TrpΣ̂0 the gradient of the radial function rp ∈ Σ̂0 ↦ r ∈ ℝ on 
Σ̂0 , it follows from (28) that

where ∇̂ denotes the gradient on Σ̂.
Since �r is horizontal, it follows from this last equality that �∇�̂�(x̂) is horizontal if and 

only if ∇�(x) is horizontal. Therefore, by Lemma 4, �∇𝜉 is an asymptotic direction on 
Σ̂ if and only if ∇� is an asymptotic direction on Σ. In addition, any horizontal section 
�Σt ⊂ ℝ

n+1
× {t} is clearly the cone of Σt ⊂ �

n
× {t} in ℝn+1

× {t}. In particular, Σt is mini-
mal in �n

× {t} if and only if Σ̂t is minimal in ℝn+1
× {t}. Thus, Σ is a vertical helicoid in 

𝕊
n
×ℝ if and only if Σ̂ is a vertical helicoid in ℝn+1

×ℝ.
From Lemma 4, Σ�

= {x ∈ Σ ; |𝜈(x)| > a} ⊂ Σ is the spacelike part of Σ, which we 
assume to be nonempty. Thus, by (28), the set

is nonempty. Then, by Lemma 4, it is spacelike.

Now, by means of Lemmas 4–6, we construct properly embedded vertical helicoids 
in Qn

c
×ℝ whose horizontal sections project on totally geodesic hypersurfaces of Qn

c
. 

First, we handle the Euclidean case c = 0. For that, consider the matrices

and, for k > 0, define Γs = Γs(k) as the following n × n block diagonal matrix:

• Γs =

⎡⎢⎢⎢⎢⎣

e(ks)J

e(ks)J

⋱

e(ks)J

e(ks)J

⎤⎥⎥⎥⎥⎦
 (n even).

�̂�rp(s) = Γs(rp) and �̂�(x̂) = ⟨�̂�(rp), �̂��

rp
(s)⟩.

(28)�̂�(x̂) = r𝜈(x).

�∇�̂�(x̂) = r∇𝜈(x) + 𝜈(x)𝜕r ,

�Σ�
= {x̂ ∈ �Σ ; |�̂�(x̂)| > a} ⊂ �Σ

J =

[
0 − 1

1 0

]
and e(ks)J =

[
cos(ks) − sin(ks)

sin(ks) cos(ks)

]
, s ∈ ℝ,
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• Γs =

⎡
⎢⎢⎢⎢⎣

e(ks)J

e(ks)J

⋱

e(ks)J

1

⎤
⎥⎥⎥⎥⎦
 (n odd).

We have that G ∶= {Γs ; s ∈ ℝ} is a one-parameter group of isometries of ℝn. So, given 
a > 0, we can choose a totally geodesic hyperplane Σn−1

0
⊂ ℝ

n through the origin 0 ∈ ℝ
n 

and consider the a-pitched twisting Σ = Σ(a, k) determined by G  . In this setting, since J 
and e(ks)J commute, we have that

Hence, for any (Γs(p), as) ∈ Σ,

where

• J =

⎡
⎢⎢⎢⎢⎣

J

J

⋱

J

J

⎤⎥⎥⎥⎥⎦
 (n even).

• J =

⎡
⎢⎢⎢⎢⎣

J

J

⋱

J

0

⎤⎥⎥⎥⎥⎦
 (n odd).

Thus,

i.e., � is nonconstant and independent of s. Also, the orbits �p(s) = Γs(p) , p ∈ ℝ
n, lie on geo-

desic spheres of ℝn centered at the origin 0. Thus, since the hypersurfaces Γs(Σ0) ⊂ ℝ
n all 

intersect these spheres orthogonally, we have, in particular, that (26) holds. So, by Lemma 5, 
∇� is horizontal on Σ.

Now, Lemma 4 applies and gives that Σ is a properly embedded vertical helicoid in ℝn
×ℝ, 

since its horizontal sections are minimal. In addition, equality (29) and the second part of 
Lemma 4 imply that, for a sufficiently large k,  Σ contains open spacelike zero mean isocurved 
subsets.

The above method can be easily adapted for constructing properly embedded vertical heli-
coids in ℍn

×ℝ. Indeed, one has just to consider the standard isometric immersion of ℍn into 
the Lorentz space �n+1 and then define the isometries Γs as

d

ds
e(ks)J = kJe(ks)J = ke(ks)JJ.

��

p
(s) ∶=

d

ds
Γs(p) = kΓs Jp,

(29)�(�p(s), as) = ⟨��

p
(s), �s(�p(s))⟩ = k⟨ΓsJp,Γs�(p)⟩ = k⟨Jp, �(p)⟩,
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• Γs =

⎡
⎢⎢⎢⎢⎢⎢⎣

e(ks)J

e(ks)J

⋱

e(ks)J

e(ks)J

1

⎤
⎥⎥⎥⎥⎥⎥⎦

 (n even).

• Γs =

⎡
⎢⎢⎢⎢⎢⎢⎣

e(ks)J

e(ks)J

⋱

e(ks)J

1

1

⎤⎥⎥⎥⎥⎥⎥⎦

 (n odd).

The rest of the argument is the same as in the Euclidean case.
For the spherical case c = 1, we consider the standard isometric immersion of �n into 

ℝ
n+1

= ℝ
n
×ℝ, and then define Σ0 as the totally geodesic sphere �n

∩ Σ̂0, where Σ̂0 is an 
arbitrary totally geodesic hyperplane of ℝn+1 through the origin 0 . For a, k > 0 , the a-twist-
ing of Σ̂0 determined by Γs(k) ∈ Isom(ℝ

n+1
), as described above, is a vertical helicoid in 

ℝ
n+1

×ℝ. Since Σ̂0 − {0} is the cone of ℝn+1 over Σ0 , Lemma 6 gives that the correspond-
ing a-twisting of Σ0 is a properly embedded minimal vertical helicoid in 𝕊n

×ℝ.

We summarize these considerations in the following

Theorem  3 There exists a two-parameter family {Σ(a, k) ; a, k > 0} of properly embed-
ded vertical helicoids in Qn

c
×ℝ whose horizontal sections are vertical translations of 

totally geodesic hypersurfaces of Qn
c
. Such a Σ(a, k) is an a-pitched twisting of a totally 

geodesic hypersurface   Σ0 ⊂ Qn
c
 determined by a suitable one-parameter subgroup 

G = {Γs = Γs(k) ; s ∈ ℝ} of   Isom(Qn
c
) . Furthermore, for any fixed a > 0, the parameter 

k can be chosen in such a way that Σ(a, k) contains open spacelike zero mean isocurved 
subsets.

Our next result shows that any vertical helicoid in M ×ℝ with nonvanishing angle func-
tion and totally geodesic horizontal sections is locally a twisting. In particular, Theorem 3 
admits a local converse.

Theorem  4 Let Σ ⊂ M ×ℝ be a vertical helicoid with non-vanishing angle function. 
Assume that each horizontal section Σt ⊂ Σ is totally geodesic in M × {t}. Then, given 
x0 ∈ Σ, there exists a connected open set  Σ�

∋ x0 of  Σ , a totally geodesic hypersurface 
�0 ⊂ 𝜋

M
(Σ

�
) ⊂ M, and a one-parameter group of isometries

such that Σ� is the 1-pitched twisting of �0 determined by {Γt ; t ∈ (−�, �)}, that is,

Proof Let �t be the flow of the field Z = ∇�∕‖∇�‖2 on Σ, i.e.,

Γt ∶ 𝜋
M
(Σ

�
) → Γt(𝜋M

(Σ
�
)) ⊂ M , t ∈ (−𝜖, 𝜖),

Σ
�
= {(Γt(p), t) ∈ Σ ; p ∈ �0 , t ∈ (−�, �)}.

d�t

dt
(x) = Z(�t(x)) ∀x ∈ Σ.
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Considering that

we have �(�t(x)) = t + �(x). In particular, �t takes a horizontal section Σs to Σs+t .
Since we are assuming Θ ≠ 0, we have that  Σ is locally a vertical graph. So, there exists 

a connected open set Σ�
∋ x0 of Σ satisfying Σ�

= graph(u), where u is a differentiable func-
tion defined on the domain Ω = 𝜋

M
(Σ

�
) ⊂ M.

After a vertical translation, we can assume Σ
�
∩ (M × {0}) nonempty and 

�
ℝ
(Σ

�
) = (−2�, 2�) for some 𝜖 > 0. In this setting, define the field Z0 ∈ T(Ω) as

and let Γt be the its flow on Ω , that is,

Writing �t ∶= u−1(t), t ∈ (−2�, 2�), one has Γt(�s) = �s+t for |s + t| < 2𝜖. (Here, we are 
identifying M × {0} with M.) Moreover, it follows from (12) that �

M∗

∇� is parallel to ∇u, 
which implies that Z0 is orthogonal to all level sets �t , t ∈ (−2�, 2�).

Noticing that the family {�t , t ∈ (−2�, 2�)} defines a totally geodesic foliation 
of  Ω ⊂ M, we conclude from [23, Corollary 6.6] that, for t, s ∈ (−�, �), the restriction of 
Γt to �s is an isometry over its image Γt(�s) = �s+t  . Also, since Σ is a vertical helicoid, 
we have that ‖∇�‖ , and so ‖Z‖, is constant along the curves t ↦ �t(x), x ∈ Σ

� (see Remark 
2). In addition, Z0 = Z − ⟨Z, �t⟩�t = Z − �t , and Γt

∗

◦Z0 = Z0◦Γt. Thus, for any p = �
M
(x), 

x ∈ Σ
�, we have

It follows from the above considerations that, defining Ω𝜖 ⊂ Ω as the union of all level 
sets �t with t ∈ (−�, �), any map p ∈ Ω� ↦ Γt(p), t ∈ (−�, �), is an isometry from Ω� to 
Γt(Ω𝜖) ⊂ Ω. Therefore, if we set, by abuse of notation, Σ�

= �−1
M
(Ω�) ∩ Σ

�, and Ω = Ω� , we 
have that

as we wished to prove.

Since one-dimensional minimal submanifolds are totally geodesic, Theorem 4 has the 
following consequence.

Corollary 2 Any two-dimensional vertical helicoid Σ2 ⊂ M2
×ℝ with nonvanishing angle 

function is given, locally, by a twisting of a geodesic of M.

As a further application of Lemma 4, we now generalize the construction made in 
Example 4. Namely, we will obtain a family of properly embedded vertical helicoids in the 
product 𝕊2n+1

×ℝ by twisting 2n-dimensional Clifford tori.
We will adopt the following notation. The identity matrix of order n + 1 will be denoted 

by Id . We will write J , now, for the (2n + 2) × (2n + 2) block matrix

d

dt
�(�t(x)) =

⟨
∇�(�t(x)),

d�t(x)

dt

⟩
= 1,

Z0(�M
(x)) ∶= �

M∗

Z(x), x ∈ Σ
�,

Γt(�M
(x)) ∶= �

M
�t(x), x ∈ Σ

�.

‖Γt
∗

Z0(p)‖2 = ‖Z0(Γt(p))‖2 = ‖Z(�t(x))‖2 − 1 = ‖Z(x)‖2 − 1 = ‖Z0(p)‖2.

Σ
�
= {(Γt(p), t) ∈ Σ ; p ∈ �0 , t ∈ (−�, �)},
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Then, setting C(t) = (cos t)Id , and S(t) = (sin t)Id, the following identity holds:

In particular, the derivative of the map t ∈ ℝ ↦ etJ ∈ O(2n + 2) is

Theorem  5 Let Σ0 = �
n
(1∕

√
2) × �

n
(1∕

√
2) be the minimal Clifford torus of the 

sphere  �2n+1 . Then, for any a, k > 0, the a-pitched twisting

is a properly embedded vertical helicoid in 𝕊2n+1
×ℝ . Furthermore, for any fixed a > 0, 

the parameter k can be chosen in such a way that Σ(a, k) contains open spacelike zero 
mean isocurved subsets.

Proof Consider the standard immersion of 𝕊2n+1
×ℝ into ℝ2n+2

×ℝ and define the follow-
ing local parametrization of Σ:

where Γs = e(ks)J and �,� ∶ ℝ
n
→ 𝕊

n are conformal parametrizations of  �n.

Setting �i = ��∕�xi and �i = ��∕�yi , we have that

In particular, �s = Γs� is a unit normal field on Σs = ΓsΣ0 ⊂ �
2n+1, where

Writing x = (x1 ,… , xn) and y = (y1 ,… , yn) , we have that the orbit of a point 
p =

1√
2
(�(x),�(y)) ∈ Σ0 under the action of Γs is

From dΓs

ds
= kJe(ks)J = kJΓs = kΓsJ , one has

Thus, with the notation of Lemma 4,

J ∶=

[
0 − Id

Id 0

]
.

etJ =

[
C(t) − S(t)

S(t) C(t)

]
.

d

dt
etJ = JetJ.

Σ = Σ(a, k) ∶= {(e(ks)Jp, as) ; p ∈ Σ0, s ∈ ℝ} ⊂ 𝕊
2n+1

×ℝ

Ψ(x1 ,… , xn , y1 ,… , yn, s) =

�
1√
2
Γs((�(x1 ,… , xn),�(y1 ,… , yn)), as

�
,

�Ψ

�xi
=

1√
2
(Γs(�i, 0), 0) and

�Ψ

�yi
=

1√
2
(Γs(0,�i), 0), 1 ≤ i ≤ n.

� =
1√
2
(�,−�).

�p(s) = Γs(p) =
1√
2
Γs(�(x),�(y)).

(30)��

p
(s) =

d

ds
Γs(p) = kΓsJp =

k√
2
Γs(−�(y),�(x)).
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so that � is independent of s. Now, for i = 1,… , n, define

and notice that

• ‖�‖2 =
n�
i=1

⟨� ,�i⟩2
‖�i‖2

+

⟨� ,�⟩2
‖�‖2 =

1

k2

n�
i=1

a2
i

‖�i‖2
+

⟨� ,�⟩2
‖�‖2 ⋅

• ‖�‖2 =
n�
i=1

⟨�i,�⟩2
‖�i‖2

+

⟨� ,�⟩2
‖�‖2 =

1

k2

n�
i=1

b2
i

‖�i‖2
+

⟨� ,�⟩2
‖�‖2 ⋅

Hence, setting � = ⟨�i,�i⟩ and � = ⟨�i,�i⟩ , i = 1,… , n, (recall that � and � are both 
conformal), we have that

for ‖�‖2 = ‖�‖2 = 1∕2.

From (30), we have that �Ψ∕�s =
�

k√
2
Γs(−� ,�), a

�
. So,

from which we conclude that the [gij] matrix of Σ with respect to Ψ is

where the non-dotted missing entries are all zero.
Computing the cofactors of the first 2n entries of the last line of [gij] , we conclude that 

the first 2n entries of the last line of [gij] = [gij]
−1 are

where D = det[gij]. Since the coordinates of ∇� with respect to the frame

are the entries of the column matrix

�(�p(s), as) = ⟨��

p
(s), �s(�p(s)⟩ = k⟨ΓsJp,Γs�(p)⟩ = k⟨Jp, �(p)⟩ = −k⟨�(x),�(y)⟩,

ai ∶=
��

�xi
= −k⟨�i,�⟩ and bi ∶=

��

�yi
= −k⟨�,�i⟩,

(31)
n�
i=1

a2
i
=

�k2

2
− 2�k2⟨� ,�⟩2 and

n�
i=1

b2
i
=

�k2

2
− 2�k2⟨� ,�⟩2,

�
�Ψ

�xi
,
�Ψ

�s

�
= −

k

2
⟨�i,�⟩ = ai

2
and

�
�Ψ

�yi
,
�Ψ

�s

�
=

k

2
⟨�,�i⟩ = −

bi

2
,

[gij] =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

� a1
⋱ ⋮

� an
� − b1

⋱ ⋮

� − bn
a1 ⋯ an − b1 ⋯ − bn k2 + 2a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(32)−
�n−1�n

22nD
a1 ,… ,−

�n−1�n

22nD
an ,

�n�n−1

22nD
b1 ,… ,

�n�n−1

22nD
bn ,

� ∶=

{
𝜕Ψ

𝜕x1
,… ,

𝜕Ψ

𝜕xn
,
𝜕Ψ

𝜕y1
,… ,

𝜕Ψ

𝜕yn
,
𝜕Ψ

𝜕s

}
⊂ TΣ
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it follows from (31) and (32) that the last coordinate of ∇� with respect to � is

so that ∇� is a horizontal field on Σ.
Finally, we observe that

Thus, given a > 0 , for a sufficiently large k > 0, the open set of points of Σ on which |𝜈| > a 
is nonempty. The result, then, follows from Lemma 4.

From the above theorem and Lemma 6, we have:

Corollary 3 Let �Σ0 ⊂ ℝ
2n+2 be the cone over the Clifford torus Σ0 of  �2n+1 . Then, for any 

a, k > 0, the a-pitched twisting

is an embedded vertical helicoid of ℝ2n+2
×ℝ. Furthermore, for any fixed a > 0, the 

parameter k can be chosen in such a way that Σ(a, k) contains open spacelike zero mean 
isocurved subsets.

It should be mentioned that, through a method different from ours, Choe and Hoppe [7] 
showed that the twisted cones in the above corollary are minimal hypersurfaces of ℝ2n+3 . (We 
are grateful to Alma Albujer for let us know about this work.) A distinguished property of 
these a-twisted cones is that, for sufficiently large a > 0, they constitute nodal sets of the solu-
tions of the Allen-Cahn differential equation (see [9]).

5  Hypersurfaces with a canonical direction

With the aim of introducing and studying vertical catenoids in M ×ℝ, we proceed now to 
the characterization of hypersurfaces of M ×ℝ which have ∇� as a principal direction. Our 
approach will be based on the work of Tojeiro [22], who considered the case where M is a 
constant sectional curvature space form Qn

c
.

We start with an arbitrary isometric immersion

[gij]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��

�x1

⋮
��

�xn
��

�y1

⋮
��

�yn
��

�s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [gij]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1
⋮

an
b1
⋮

bn
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

1

22nD

(
−�n−1�n

n∑
i=1

a2
i
+ �n�n−1

n∑
i=1

b2
i

)
=

k2

22nD
(−�n�n

+ �n�n
) = 0,

��(�p(s), as)� = k�⟨�(x),�(y)⟩� ∀(�p(s), as) ∈ Σ.

(33)�Σ(a, k) ∶= {(e(ks)Jp, as) ; p ∈ �Σ0, s ∈ ℝ} ⊂ ℝ
2n+2

×ℝ
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with Σ0 orientable, assuming that there is a neighborhood U  of Σ0 in TΣ⟂

0
 without focal 

points of f,  that is, the restriction of the normal exponential map exp⟂
Σ0

∶ TΣ⟂

0
→ M to U  is 

a diffeomorphism onto its image. In other words, denoting by � the unit normal field of f,  
we are assuming that there is an open interval I ∋ 0 such that, for all p ∈ Σ0, the curve

is a well defined geodesic of M without conjugate points. In particular, for all s ∈ I,

is an immersion of Σ0 into M,  which is said to be parallel to f. Observe that, given p ∈ Σ0 , 
the tangent space fs

∗

(TpΣ0) of fs at p is the parallel transport of f
∗
(TpΣ0) along �p from 0 to 

s. Also, with the induced metric, the unit normal �s of fs at p is �s(p) = � �
p
(s).

Now, define in M ×ℝ the hypersurface

where a ∶ I → a(I) ⊂ ℝ is an increasing diffeomorphism, i.e., a′ > 0. We call Σ an (fs, a)
-graph of M ×ℝ.

For any point x = (fs(p), a(s)) ∈ Σ, one has

A unit normal to Σ is

In particular, its angle function is

Theorem 6 If  Σ is an (fs, a)-graph in M ×ℝ, the following holds: 

 (i) Θ and ∇� never vanish on  Σ.
 (ii) ∇� is a principal direction of  Σ.
 (iii) Θ and the principal curvature of  Σ in the direction ∇� are constant along the hori-

zontal sections Σt of  Σ.

Conversely, if  Σ ⊂ M ×ℝ is a hypersurface with nonvanishing angle function which has 
∇� as a principal direction, then Σ is locally an (fs, a)-graph.
Proof Assume that Σ is an (fs, a)-graph of M ×ℝ. Then, by (35), Θ ≠ 0 and Θ2 ≠ 1. In par-
ticular, ∇� never vanishes on Σ.

f ∶ Σ
n−1
0

→ Mn,

�p(s) = exp
M
(f (p), s�(p)), s ∈ I,

fs ∶ Σ0 → M

p ↦ �p(s)

(34)Σ ∶= {(fs(p), a(s)) ∈ M ×ℝ ; p ∈ Σ0, s ∈ I},

TxΣ = fs
∗

(TpΣ0)⊕ Span {𝜕s}, 𝜕s = 𝜂s + a�(s)𝜕t.

N =
−a�√

1 + (a�)2
�s +

1√
1 + (a�)2

�t .

(35)Θ =
1√

1 + (a�)2
⋅
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Since, for any p ∈ Σ0 , �p is a geodesic of M (and so of M ×ℝ ), and �s = � �
p
(s), we have 

∇�s
�s = 0. Then, noticing that N = Θ(−a��s + �t), one has

Hence, for all X ∈ {�s}
⟂
∩ TΣ, we have that ⟨∇�s

N,X⟩ = 0, which implies that �s is a prin-
cipal direction of Σ. In addition, one has

So, the corresponding eigenvalue of A is

(for ‖�s‖2 = 1 + (a�)2 = 1∕Θ2 ), which gives that � is a function of s alone, and so it is con-
stant along the horizontal sections of Σ. By (35), the same is true for Θ.

Finally, observing that ∇� = �t − ΘN = a�Θ2�s, we conclude that ∇� is also a principal 
direction of Σ with principal curvature � = a��Θ3, i.e.,

This proves the first part of the theorem.
Conversely, let us suppose that Σ ⊂ M ×ℝ is a hypersurface which has ∇� as a principal 

direction and whose angle function Θ never vanishes. Then, Σ is (locally) a graph of a dif-
ferentiable function u defined on a domain Ω ⊂ M. (By abuse of notation, we keep denot-
ing this local graph by Σ.)

As we have seen in Section 4.1, in this setting,

where, as before, we are writing ∇u instead of ∇u◦�
M
. Notice that, since we are assuming 

that ∇� is a principal direction, we have ∇� ≠ 0. In particular, Θ2 ≠ 1 , so that ‖∇u�� never 
vanishes.

Considering the flow �t of ∇�∕‖∇�‖2 on Σ, and possibly restricting the domain Ω, we 
can assume that the horizontal sections Σt ⊂ Σ are all connected and homeomorphic to a 
certain Riemannian manifold Σ0. In other words, there exists an open interval I0 ∋ 0 such 
that the map G ∶ Σ0 × I0 → Σ ⊂ M ×ℝ given by

is a well defined immersion satisfying G(Σ0 × {t}) = Σt .
Define the map ft ∶ Σ0 → M by

and observe that each ft is an immersion whose image ft(Σ0) is a level set of u. In par-
ticular, ∇u is orthogonal to ft with respect to the induced metric. Furthermore, since ∇� 
is a principal direction and ∇Θ = −A∇�, we have that Θ is constant along the horizontal 
sections Σt (so, the same is true for ‖∇�‖, since ‖∇�‖2 + Θ

2
= 1 ). This, together with (37), 

∇�s
N = ∇�s

Θ(−a��s + �t) =
Θ

�

Θ

N − Θ(a���s + a�∇�s
�s) =

Θ
�

Θ

N − Θa���s .

⟨A�s, �s⟩ = −⟨∇�s
N, �s⟩ = a��Θ.

� ∶= a��Θ3
=

a��√
(1 + (a�)2)3

(36)A∇� = (a��Θ3
)∇�.

(37)Θ =
1√

1 + ‖∇u‖2
,

G(p, t) = �t(p)

ft = �
M
G(⋅, t), t ∈ I0,
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gives that, for each t ∈ I0, ‖∇u‖ is constant on the level set ft(Σ0). Consequently, the (nor-
malized) trajectories of ∇u are geodesics of M (see [22, Lemma 1]).

For a fixed p ∈ Σ0, let us denote by ��

t
(p) the velocity vector of the trajectory 

t ∈ I0 ↦ �t(p) ∈ Σ at t,  that is,

In particular, the curve �p(t) ∶= �
M
◦�t(p) is tangent to ∇u and, by the above considerations, 

is a geodesic of M (when reparametrized by arclength). Also, from

we have � �
p
= ��

t
(p) − ⟨��

t
(p), �t⟩�t = ��

t
(p) − �t , which yields

Let s = Lp(t) ∈ I ⊂ ℝ be the arclength parameter of �p from an arbitrary point t0 ∈ I0. Since 
‖∇�‖ is a function of t alone, it follows from (38) that the same is true for Lp(t). Hence, 
the function a = L−1

p
∶ I → I0 depends only on s and satisfies a′ > 0. Writing, by abuse of 

notation, �p = �p◦a , and fs = fa(s) , one has that each �p is an arclength geodesic of M,  so 
that the immersions fs are parallel and Σ is the corresponding (fs, a)-graph. This finishes the 
proof.

We get from Theorem  6 the following result, which classifies the hypersurfaces of 
M ×ℝ whose angle function is constant. For M = Qn

c
 , this was done in [17, 22].

Corollary 4 Let Σ be a connected hypersurface of M ×ℝ . Then, if the angle function Θ 
of  Σ is constant, one of the following holds: 

 (i) Σ is an open set of M × {t}, t ∈ ℝ.
 (ii) Σ is an open set of a vertical cylinder over a hypersurface of M.
 (iii) Σ is locally an (fs, a)-graph with a′ constant.

Conversely, if one of these possibilities occurs, then Θ is constant.
Proof Suppose that Θ is constant on Σ. Clearly, (i) occurs if Θ2

= 1 , and (ii) occurs if 
Θ = 0. Otherwise, ∇� ≠ 0 and Θ ≠ 0. Since, A∇� = −∇Θ = 0, it follows that ∇� is a prin-
cipal direction of Σ. Hence, by Theorem 6, Σ is locally an (fs, a)-graph and, by (35), a′ is 
constant.

The converse is immediate in cases (i) and (ii). The case (iii) follows directly from 
equality (35).

An important class of hypersurfaces of Qn
c
×ℝ having ∇� as a principal direction are 

the rotational hypersurfaces, which are those obtained by the rotation of a plane curve 
about an axis {o} ×ℝ, o ∈ Qn

c
. Clearly, any horizontal section Σt of a rotational hyper-

surface Σ ⊂ Qn
c
×ℝ is contained in a geodesic sphere with center at (o, t) ∈ Qn

c
×ℝ. 

��

t
(p) =

∇�

‖∇�‖2 (�t(p)).

‖��

t
(p)‖ =

1

‖∇�(�t(p))‖ and ⟨��

t
(p), �t⟩ = 1,

(38)‖� �
p
‖ =

√
1 − ‖∇�‖2
‖∇�‖ ⋅
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Considering this property, we introduce the following notion of rotational hypersurface 
in M ×ℝ.

Definition 5 A hypersurface Σ ⊂ M ×ℝ is called rotational, if there exists a fixed point 
o ∈ M such that any horizontal section Σt is contained in a geodesic sphere with center at 
(o, t) ∈ Mn

×ℝ. If so, we call {o} ×ℝ the axis of Σ.

Remark 3 Let Σ ⊂ M ×ℝ be a rotational hypersurface with no horizontal points and non-
vanishing Θ. Since concentric geodesic spheres constitute a parallel family {fs} of hypersur-
faces of M,  under these hypotheses, Σ is locally an (fs, a)-graph. Hence, by Theorem 6, ∇� 
is a principal direction of any such rotational Σ.

We introduce now a special type of family of parallel hypersurfaces which will play a 
fundamental role in the sequel.

Definition 6 We call a family of parallel hypersurfaces fs ∶ Σ0 → M, s ∈ I, isoparametric 
if fs has constant mean curvature Hs (depending on s) for all s ∈ I. If so, each hypersurface 
fs is also called isoparametric.

Example 9 It is well known that any totally umbilical hypersurface of Qn
c
 is isoparametric 

(see, e.g., [10]).

Example 10 There are certain Hadamard–Einstein manifolds, known as Damek–Ricci 
spaces, which have many families of isoparametric hypersurfaces, including its geodesic 
spheres. More specifically, geodesic spheres (of any radius) in symmetric Damek–Ricci 
spaces are isoparametric with constant principal curvatures, whereas geodesic spheres (of 
small radius) in non-symmetric Damek–Ricci spaces are isoparametric with nonconstant 
principal curvatures. The symmetric Damek–Ricci spaces are completely classified. They 
are the hyperbolic space ℍn, the complex hyperbolic space ℂℍn, the quaternionic hyper-
bolic space, and the octonionic hyperbolic plane (see [10, Section 6] and the references 
therein for an account of Damek–Ricci spaces).

Example 11 Let �(k, τ) , k − 4τ2 ≠ 0, be one of the simply connected 3-homogeneous mani-
folds with isometry group of dimension 4: The products ℍ2

×ℝ and 𝕊2
×ℝ ( τ = 0 ), the 

Heisenberg space Nil3 ( k = 0, τ ≠ 0 ), the Berger spheres ( k > 0, τ ≠ 0 ), or the universal 
cover of the special linear group SL2(ℝ) ( k < 0, τ ≠ 0 ). In [11], the authors classified all 
isoparametric hypersurfaces of these spaces, showing, in particular, that none of them is 
spherical.

In our next result, we show that there exist minimal or constant mean curvature (fs, a)
-graphs in M ×ℝ if and only if M has isoparametric hypersurfaces.

Theorem  7 Let Σ ⊂ M ×ℝ be an (fs, a)-graph, s ∈ I ⊂ ℝ, such that   fs is isoparametric 
with constant mean curvature Hs . Assume that, for a given constant H ∈ ℝ, the diffeomor-
phism a ∶ I → a(I) ⊂ ℝ is defined by the equality
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where y = �(s) is a solution of the linear differential equation of first-order

satisfying 0 < 𝜚(s) < 1. Under these conditions, Σ has constant mean curvature H. Con-
versely, if Σ has constant mean curvature H,  then fs is isoparametric and the function a(s) 
is necessarily given by (39) with � = a�Θ.

Proof Let us denote the mean curvature of Σ by H
Σ
 . By equalities (3) and (36), we get 

Hs = �(H
Σ
− �), where

So, we have H
Σ
= −(a�Θ)Hs + a��Θ3. However, by (35), one has (a�Θ)� = a��Θ3. Therefore, 

if we set � = a�Θ, we get

A direct computation gives that 0 < 𝜁2 = (a�)2∕(1 + (a�)2) < 1, and also that

Thus, if fs is isoparametric and the function a(s) is defined by (39) (with � satisfying (40)), 
it follows by (42) that � = �. Then, comparing (40) and (41), we conclude that Σ has con-
stant mean curvature H.

Conversely, if Σ has constant mean curvature H
Σ
= H ∈ ℝ, it follows from (41) that fs is 

isoparametric and, by (42), that a(s) is given by equality (39) with � = � = a�Θ.

6  Vertical catenoids in M ×ℝ.

In this section, we introduce the minimal hypersurfaces of M ×ℝ which resemble the 
standard catenoids of ℝ3 with respect to some of its fundamental properties. The definition 
is as follows.

Definition 7 We say that a hypersurface Σ of M ×ℝ with no horizontal points and non-
vanishing and nonconstant angle function is a vertical catenoid if the following conditions 
are satisfied: 

 (i) ∇� is a principal direction of Σ with principal curvature � ≠ 0.

 (ii) Any horizontal section Σt ⊂ Σ has nonzero constant mean curvature (i.e., depending 
only on t) given by 

(39)a(s) = ∫
s

s0

�(u)√
1 − �(u)2

du, s0 ∈ I,

(40)y� = Hsy + H

� = −(1 − Θ
2
)
−1∕2

= −(a�Θ)−1 and � = a��Θ3.

(41)� � = Hs� + H
Σ
∀s ∈ I.

(42)a� =
�

Θ

=
�√

1 − �2
⋅

(43)H
Σt
=

�√
1 − Θ2

⋅
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Regarding condition (ii) in the above definition, notice that, from Theorem 6, for any Σ 
satisfying condition (i), the functions � e Θ depend only on t,  so that �∕

√
1 − Θ2 is con-

stant along the horizontal sections Σt. It should also be noticed that a vertical catenoid, as 
defined, is not necessarily rotational (see Definition 5). At the end of this section, we con-
struct non-rotational properly embedded vertical catenoids in M ×ℝ , where M is a Had-
amard manifold (see Theorems 10 and 11).

The result below establishes the minimality of catenoids as hypersurfaces of M ×ℝ , 
and also the uniqueness of rotational vertical catenoids as minimal rotational hypersurfaces 
of M ×ℝ . The latter is a well-known property of the standard catenoids of Euclidean space 
ℝ

3.

Proposition 1 The following assertions on a hypersurface Σ ⊂ M ×ℝ with no horizontal 
points, no minimal horizontal sections, and nonconstant and non-vanishing angle function 
hold: 

 (i) If Σ is a vertical catenoid, then Σ is minimal.
 (ii) If Σ is rotational and minimal, then Σ is a vertical catenoid.

Proof Suppose that Σ is a vertical catenoid. Then, any horizontal section Σt satisfies (43). 
Thus, by (3), we have

which proves (i).
Regarding (ii), if Σ is rotational, then ∇� is a principal direction of Σ , so that Σ is, 

locally, an (fs,�)-graph (see Remark 3). In particular, the eigenvalue � associated with ∇� 
and the angle function Θ of Σ depends only on t. If, in addition, Σ is minimal, again by 
identity (3), we have that the mean curvature of any horizontal section Σt satisfies (43) with 
� ≠ 0, since we are assuming H

Σt
≠ 0. Hence, Σ is a vertical catenoid.

It follows from Theorems 6 and 7 that, as long as M contains isoparametric hyper-
surfaces, there exist vertical catenoids in M ×ℝ which are (fs, a)-graphs. This applies, 
for instance, to all manifolds M described in Examples 9–11. In what follows, we use 
this fact to construct properly embedded vertical catenoids by “gluing” pieces of such 
graphs.

First, recall that M is said to be a Hadamard manifold if it is complete, simply con-
nected and has non-positive sectional curvature. Any Hadamard manifold Mn is diffeomor-
phic to ℝn through the exponential map, so that, for a given point o ∈ M , and r > 0, the 
geodesic sphere Sr(o) with center at o and radius r is well defined. We will write Br(o) for 
the geodesic ball of M with center at o ∈ M and radius r > 0 , and Br(o) for its closure in M.

Theorem 8 Let Mn be a Hadamard manifold whose geodesic spheres are all isoparametric. 
Then, there exists a one-parameter family of properly embedded rotational catenoids in the 
product M ×ℝ which are all homeomorphic to 𝕊n−1

×ℝ and symmetric with respect to the 
horizontal section M × {0} ⊂ M ×ℝ.

H = −

√
1 − Θ2H

Σt
+ ⟨AT , T⟩ = −

√
1 − Θ2 �√

1 − Θ2

+ � = 0,
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Proof Fix o ∈ M and choose r > 0. For each s ∈ (r,+∞), let

be the geodesic sphere of M with center at o ∈ M and radius s > r. Since M is a Hadamard 
manifold, each immersion fs is convex and non-totally geodesic. Hence, taking the “out-
ward” unit normal �s of fs , we have that the (constant) mean curvature Hs of fs is negative. 
In particular, setting

we have that � is a solution of y� = Hsy which satisfies 0 < 𝜚(s) < 1 for all s > r.

Now, with the purpose of applying Theorem 7, we define the function

The integral on the right is improper, for �(s) → 1 as s → r. So, we have to prove that a is 
well defined, i.e., that this integral is convergent. For that, notice that 𝜚�(s) → Hr < 0 as 
s → r. In particular, there exist 𝛿,C > 0 such that

This, and the fact that � is decreasing and satisfies 0 < 𝜚(s) < 1 for s > r, gives

which implies that the function a is well defined, and that a(s) → 0 as s → r. From this and 
Theorems 6 and 7, we conclude that the (fs, a)-graph, which we denote by Σ�

r
 , is a rotational 

vertical catenoid.

fs ∶ 𝕊
n−1

→ Mn
≃ Mn

× {0} ⊂ M ×ℝ

�(s) ∶= exp

(
∫

s

r

Hudu

)
, s ∈ (r,+∞),

a(s) ∶= ∫
s

r

�(u)√
1 − �2(u)

du, s ∈ (r,+∞).

𝜚�(s) < −C ∀s ∈ (r, r + 𝛿).

�
r+�

r

�(u)√
1 − �2(u)

du =�
r+�

r

��(u)�(u)du

��(u)
√
1 − �2(u)

≤ 1

C �
�(r)

�(r+�)

d�√
1 − �2

=
1

C
(arcsin(�(r)) − arcsin(�(r + �))) ≤ �

2C
,

Fig. 1  The rotational half-catenoid Σ�

r
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Furthermore, Σ�

r
 is clearly a graph over M − Br(o) contained in M ×ℝ

+
 and with bound-

ary �Σ�

r
= Sr(o). In addition,

which, together with (35), gives that Θ(s) → 0 as s → r. Hence, the tangent spaces of Σ�

r
 

along any trajectory of −∇� on Σ�

r
 converge to a vertical space (i.e., parallel to �t ) at a point 

on �Σ�

r
= Sr(o) (see Fig. 1).

Now, let Σ��

r
⊂ M ×ℝ be the reflection of Σ�

r
 with respect to M × {0}. Then, Σ��

r
 is also 

a rotational catenoid in M ×ℝ with boundary �Σ��

r
= Sr(o), which implies that it can be 

“glued” together with Σ�

r
 along Sr(o), that is, we can define

Since the tangent spaces of Σ�

r
 and Σ��

r
 are vertical along Sr(o), we have that the tangent 

spaces of Σr along Sr(o) are well defined, so that Σr is a differentiable manifold. Let us 
see that Σr is, in fact, of class C∞. Indeed, being a geodesic sphere, Sr(o) is a C∞ manifold. 
Also, the trajectories of ∇� on Σr are geodesics (see [22, Lemma 1])—so, they are C∞ as 
well—and any of them intersects Sr(o) transversally. These facts imply that Σr is C∞.

Therefore, Σr is a C∞ properly embedded rotational catenoid in M ×ℝ which is clearly 
homeomorphic to 𝕊n−1

×ℝ and symmetric with respect to M × {0}.  ◻

The above theorem and the considerations of Example 10 give the following result.

Corollary 5 Let M be a symmetric Damek–Ricci space. Then, there exists a one-parameter 
family of properly embedded rotational catenoids in M ×ℝ which are all homeomorphic 
to  𝕊n−1

×ℝ and symmetric with respect to M × {0}.

Assume M = ℝ
n and let Σr be a rotational catenoid as in Theorem 8. When n = 2 , Σr is 

a standard catenoid of ℝ3 obtained by rotating a catenary about a fixed axis. For the half 
catenoid Σ�

r
 in ℝn

×ℝ, one has

It is easily checked that this function is bounded for n ≥ 3. So, in this case, for any r > 0 , 
the rotational catenoid Σr is contained in a “slab” determined by two horizontal sections. 
For n = 2, we have

which is clearly an unbounded function.
In ℍn

×ℝ, the height function of any Σr is uniformly bounded. More precisely, given 
n ≥ 2, for any r > 0, Σr is contained in a slab of width �∕(n − 1). Indeed, in this setting, the 
mean curvature of fs is Hs = (1 − n) coth s, which gives, for s ∈ (r,+∞),

a�(s) =
�(s)√

1 − �2(s)
→ +∞ as s → r,

Σr ∶= closure (Σ�

r
) ∪ closure (Σ��

r
).

a(s) = ∫
s

r

rn−1√
u2n−2 − r2n−2

du.

a(s) = r log

�
s +

√
s2 − r2

r

�
, s > r,
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Thus, the function a which defines Σ�

r
 is

Applying, in the last integral, the change of variables v = sinh u∕ sinh r, we get

However, (1 + (sinh2 r)v2)−1∕2 < ((sinh r)v)−1, which implies that

Remark 4 In [5], the authors constructed the rotational catenoids Σr in ℍn
×ℝ by rotating 

suitable curves about an axis. They also obtained the bound �∕2(n − 1) for the height of 
the half catenoids Σ�

r
.

Next, we show that 𝕊n
×ℝ admits a one-parameter family of rotational catenoids as 

well.

Theorem 9 There exists a one-parameter family  
�∑

r ;0 < r < 𝜋∕2
�
 of properly embedded 

Delaunay-type rotational catenoids in 𝕊n
×ℝ , that is, each Σr is periodic, homeomorphic 

to  𝕊n−1
×ℝ and has unduloids as the trajectories of the gradient of its height function.

�(s) = exp

(
∫

s

r

Hudu

)
= exp

(
(1 − n)∫

s

r

coth udu

)
=

(
sinh r

sinh s

)n−1

⋅

a(s) = ∫
s

r

�(u)√
1 − �2(u)

du = sinhn−1(r)∫
s

r

(sinh2n−2(u) − sinh2n−2(r))−1∕2du.

a(s) = sinh r ∫
sinh s

sinh r

1

(v2n−2 − 1)−1∕2(1 + (sinh2 r)v2)−1∕2dv.

a(s) ≤ �
sinh s

sinh r

1

dv

v
√
v2n−2 − 1

=
1

n − 1
arctan

√
v2n−2 − 1

����
sinh s

sinh r

1

≤ �

2(n − 1)
⋅

Fig. 2  The “block” Σ�

r
 of the rotational catenoid Σ

r
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Proof Let fs ∶ �
n−1

→ �
n , s ∈ (0,�), be a family of concentric geodesic spheres of �n 

with center at o ∈ �
n and outward normal orientation, that is, the mean curvature of fs is 

Hs = −(n − 1) cot(s). Given r ∈ (0,�∕2), consider the function

which can be verified to be a solution of y� = Hsy satisfying 0 < 𝜚r|(r,𝜋−r) < 1.

Now, let us define the function

Since ��
r
(r) = Hr ≠ 0 and ��

r
(� − r) = H�−r ≠ 0, we can proceed as in the proof of The-

orem  8 to conclude that ar is well defined and bounded. In particular, t1 = ar(r) and 
t2 = ar(� − r) are well defined.

It follows from the above that Σ�

r
 is homeomorphic to �n−1

× (r,� − r) and has bound-
ary �Σ�

r
= Sr(o) × {t1} ∪ S�−r(o) × {t2} (Fig. 2). Also, the tangent spaces of Σ�

r
 are vertical 

along its boundary �Σ�

r
, for �r(r) = �r(� − r) = 1. Therefore, from successive reflections 

of Σ�

r
 with respect to suitable horizontal sections of 𝕊n

×ℝ , we obtain a periodic properly 
embedded rotational catenoid Σr homeomorphic to 𝕊n−1

×ℝ.

Remark 5 The above Delaunay-type catenoids were also obtained in [20].

Given a Hadamard manifold M,   recall that the Busemann function �� (p) of M corre-
sponding to an arclength geodesic � ∶ (−∞,+∞) → M is defined as

The level sets Hs ∶= �−1
�
(s) of a Busemann function �� are called horospheres of M. In 

this setting, as is well known, {Hs ; s ∈ (−∞,+∞)} is a parallel family which foliates M. 
Furthermore, any geodesic of M which is asymptotic to � (i.e., with the same point on the 
asymptotic boundary M(∞) of M) is orthogonal to each horosphere Hs . We also remark 
that horospheres are submanifolds of class (at least) C2 (see, e.g., [14, Proposition 3.1]).

In hyperbolic space ℍn, any horosphere is totally umbilical with constant principal cur-
vatures equal to 1. Also, as shown in [6, Proposition-(vi), pg. 88], except for hyperbolic 
space,1 any Damek–Ricci space contains a family {Hs ; s ∈ (−∞,+∞)} of parallel horo-
spheres such that the principal curvatures of each Hs are 1/2 and 1, both with constant 
multiplicities.

Let us see now that, when M is a Hadamard manifold whose horospheres are properly 
embedded and isoparametric with the same mean curvature, as in the above examples, one 
can construct properly embedded vertical catenoids in M ×ℝ with special properties.

Theorem  10 Let {Hs ; s ∈ (−∞,+∞)} be a parallel family of properly embedded horo-
spheres of constant mean curvature H0 > 0 in a Hadamard manifold M. Then, there exists 
a properly embedded vertical catenoid Σ in M ×ℝ of class at least C2 which is 

�r(s) =
(
sin r

sin s

)n−1

, s ∈ [r,� − r],

ar(s) = ∫
s

r

�r(u)√
1 − �2

r
(u)

du, s ∈ (r,� − r).

�� (p) ∶= lim
s→+∞

(distM(p, �(s)) − s), p ∈ M.

1 In [6], hyperbolic space is not considered a Damek–Ricci space.
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homeomorphic to  ℝn . Furthermore, Σ is foliated by horospheres, is symmetric with respect 
to M × {0}, and is asymptotic to both M × {−

�

2H0

} and M × {
�

2H0

}.

Proof For each s ∈ (−∞,∞) , consider the isometric immersion fs ∶ ℝ
n−1

→ Mn such that 
fs(ℝ

n−1
) = Hs . Define the function

and notice that � is a solution of y� = H0y satisfying

Thus, by Theorem 7, defining

one has that the (fs, a)-graph Σ� is a minimal hypersurface of M ×ℝ. In addition,

Hence, denoting by B0 the mean convex side of H0 , and identifying M × {0} with M,  it 
follows that Σ� is a minimal graph over M − B0 which has boundary �Σ�

= H0 and is 
asymptotic to M × {−

�

2H0

} (see Fig. 3). In particular, Σ� is homeomorphic to ℝn.
We also have that �(0) = 1. So, as in the previous theorems, any trajectory of ∇� on 

Σ
� meets �Σ� orthogonally. Therefore, setting Σ�� for the reflection of Σ� with respect to 

�(s) ∶= eH0s, s ∈ (−∞, 0],

0 < 𝜚(s) < 1 = 𝜚(0) ∀s ∈ (−∞, 0).

a(s) ∶= ∫
s

0

�(u)√
1 − �2(u)

du =
1

H0

(arcsin(eH0s) − �∕2),

lim
s→−∞

a(s) = −
�

2H0

⋅

Fig. 3  The half-catenoid Σ� foliated by horospheres
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M × {0} , and defining Σ ∶= closure (Σ�
) ∪ closure (Σ��

), we can argue just as before and 
conclude that Σ is a properly embedded C2-differentiable (for horospheres are, at least, C2 
differentiable) vertical catenoid of M ×ℝ which has all the stated properties.

In our next result, we consider more general isoparametric foliations of Hadamard 
manifolds.

Theorem 11 Let F ∶= {fs ∶ Σ0 → M, s ∈ (−∞,+∞)} be an isoparametric family of hyper-
surfaces in a Hadamard manifold  Mn. Assume that: 

 (i) For all s ∈ (−∞,+∞), fs is a Ck (k ≥ 2) proper embedding with positive mean cur-
vature Hs .

 (ii) F  foliates M,  i.e., M =

⋃
fs(Σ0),  s ∈ (−∞,+∞).

Then, there exists a properly embedded Ck catenoid Σ in M ×ℝ which is homeomorphic to 
Σ0 ×ℝ. Furthermore, Σ is foliated by (vertical translations of) the leaves of  F  and is sym-
metric with respect to M × {0}.

Proof Since Hs > 0 for all s ∈ (−∞,+∞), we have that the function

which is a solution of y� = Hsy, satisfies:

In addition, 𝜚�(0) = H0 > 0. From this, as in the preceding proofs, we get that

is a well defined function, i.e., this improper integral is convergent. So, the (fs, a)-graph Σ� 
is a minimal graph over M − B0 whose ∇�-trajectories meet �Σ�

= �0 × {0} orthogonally. 
Here, B0 ⊂ M is the mean convex side of �0 . In particular, Σ� is homeomorphic to Σ0 ×ℝ . 
Now, by reflecting Σ� with respect to M × {0}, as we did before, we obtain the desired ver-
tical catenoid of M ×ℝ.

We conclude from the above proof that, under the conditions of Theorem 11, the result 
is still valid if we assume that Hs > 0 on an interval (−∞, c], c ∈ ℝ. In ℍn, this is the case 
of the well known family of equidistant hypersurfaces from a fixed totally geodesic hyper-
plane of ℍn. Also, each leaf of such a family is C∞ and homeomorphic to ℝn−1. So, we have 
the following final result, which was obtained in [8, 12], and [13] for the particular case 
n = 2.

Corollary 6 Let F ∶= {fs ∶ ℝ
n−1

→ ℍ
n, s ∈ (−∞,+∞)} be a family of parallel equi-

distant hypersurfaces in ℍn. Then, there exists a properly embedded C∞ vertical cate-
noid in  ℍn

×ℝ which is homeomorphic to ℝn . Moreover, Σ is symmetric with respect to 
ℍ

n
× {0} and is foliated by (vertical translations of) the leaves of F.

�(s) ∶= exp

(
∫

s

0

Hudu

)
, s ∈ (−∞, 0],

0 < 𝜚(s) < 1 = 𝜚(0) ∀s ∈ (−∞, 0).

a(s) ∶= ∫
s

0

�(u)√
1 − �2(u)

du, s ∈ (−∞, 0),
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