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Abstract
In this paper we prove that if u is a solution to second-order hyperbolic equation 
�2
t
u + a(x)�

t
u − ( div

x

(

A(x)∇
x
u
)

+ b(x) ⋅ ∇
x
u + c(x)u) = 0 and u is flat on a segment 

{x0} × (−T , T) (T finite), then u vanishes in a neighborhood of {x0} × (−T , T) . The novelty 
with respect to earlier papers on the subject is the nonvanishing damping coefficient a(x) in 
the hyperbolic equation.

Keywords Unique continuation property · Stability estimates · Hyperbolic equations · 
Inverse problems

Mathematics Subject Classification 35R25 · 35L10 · 35B60 · 35R30

1 Introduction

In this paper we study strong unique continuation property (SUCP) for the equation

where �0, T  are given positive numbers, B�0
 is the ball of ℝn , n ≥ 2 , of radius �0 and center 

at 0, a ∈ L∞(ℝn) , L is the second-order elliptic operator

b ∈ L∞(ℝn;ℝn) , c ∈ L∞(ℝn) and A(x) is a real-valued symmetric n × n matrix that satisfies 
a uniform ellipticity condition and entries of A(x) are functions of Lipschitz class.

We say that Eq. (1.1) has the SUCP if there exists a neighborhood U of {0} × (−T , T) 
such that for every solution, u, to Eq. (1.1) we have

(1.1)�2
t
u + a(x)�tu − L(u) = 0, in B�0

× (−T , T),

(1.2)L(u) = divx
(

A(x)∇xu
)

+ b(x) ⋅ ∇xu + c(x)u,
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Property (1.3) was proved (if the matrix A belongs to C2 ), under the additional condi-
tion T = +∞ and u is bounded, by Masuda in 1968, [25]. Later on, in 1978, Baouendi 
and Zachmanoglou, [5], proved the SUCP whenever the coefficients of equation (1.1) are 
analytic functions. In 1999, Lebeau, [23], proved the SUCP for solution to (1.1) when 
a = b = c = 0 . The proof of [23] requires the symmetry of the differential operator, and 
there seems no obvious extension of the proof to the nonsymmetric case, in particular, to 
the case of damped wave equation �2

t
u + a(x)�tu − Δu = 0 . We also refer to [29, 32] where 

the SUCP at the boundary and the quantitative estimate of unique continuation related to 
property was proved when a = 0.

The novelty of the present paper with respect to earlier papers, with finite T, is the non-
vanishing damping coefficient a(x) in the hyperbolic Eq. (1.1).

It is worth noting that SUCP and the related quantitative estimates, have been exten-
sively studied and today well understood in the context of second-order elliptic and par-
abolic equation. Among the extensive literature on the subject here we mention, for the 
elliptic equations, [3, 4, 15, 19], and, for the parabolic equations, [2, 8, 20]. In the context 
of elliptic and parabolic equations, the quantitative estimates of unique continuation appear 
in the form of three sphere inequalities [21], doubling inequalities [13], or two-sphere one-
cylinder inequality [9]. We refer to [1] and [31] for a more extensive literature concerning 
the elliptic context and the parabolic context respectively.

In the present paper we prove (Theorem 2.1) a quantitative estimate of unique continu-
ation from which we derive (Corollary 2.2) property (1.3) for equation (1.1). The crucial 
step of the proof is Theorem 3.1, in such a Theorem 3.1 we exploit in a suitable way the 
simple and classical idea of converting a hyperbolic equation into an elliptic equation, see, 
for instance, [12, Ch.6]. Formally, such a classical idea consists in substitute, in (1.1), the 
variable t by iy. More precisely, the idea can be told as follows. Let us define the integral 
transform

where the kernel Φ is a holomorphic function in variable z = t + iy . It is simple to check 
that v satisfies the elliptic equation

where F is an “error term” which depends on u(⋅,±T) , �tu(⋅,±T) and Φ(±T + iy).
The use of converting a hyperbolic equation into an elliptic equation, in the issue of 

weak unique continuation property (WUCP) for finite time T, can be tracked back to Rob-
biano in 1991, [26], see also [27]. By WUCP for (1.1) we mean: let R be a given positive 
number, there exists a neighborhood V of {0} × (−T , T) such that for every solution, u to 
equation (1.1) we have

Subsequently, in [16, 28] and [30], the WUCP was studied in the general context of equa-
tion with partially analytic coefficients (not only of hyperbolic type) and the exact depend-
ence domain V was determined, see also [6, 17, 22] for the related quantitative esti-
mates. The above mentioned papers rely on the so-called Fourier–Bros–Iagolnitzer (FBI) 

(1.3)‖u‖L2(Br×(−T ,T)) = O(rN), ∀N ∈ ℕ, as r → 0, ⟹ u = 0, in U.

(1.4)
v(x, y) = ∫

T

−T

u(x, t)Φ(t + iy)dt,

(1.5)�2
y
v + L(v) − ia(x)�yv = F(x, y),

(1.6)u = 0, in BR × (−T , T) ⟹ u = 0, in V.
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transform that is an integral transform like (1.4) whose kernel is the Gaussian function 
Φ(z) =

√

�∕2�e−�z
2 , where � is a large parameter. Although the FBI transform works very 

well to prove the WUCP for equation (1.1), it seems no obvious whether the FBI works 
well to tackle the SUCP.

In the present paper to prove SUCP for (1.1) we use integral transform (1.4) with 
well-chosen family of polynomial kernels. More precisely, we define

where �k(t + iy) is a polynomial with the following property: 

(a) �k(t + i0) is an approximation of Dirac’s �-function,
(b) |

|

�k(±T + iy)|
|

≤ Ck
|y|k for k ∈ ℕ and |y| ≤ 1 , where C is a constant.

In this way functions vk turn out solutions to the elliptic equation

where |Fk| ≤ Ck
|y|k , for k ∈ ℕ and |y| ≤ 1 . This behavior of Fk allows us to handle in a 

suitable way a Carleman estimate with singular weight for second-order elliptic operators, 
see Sect. 2.3, in such a way to get u(x, 0) = 0 for x ∈ B� , where � ≤ �0∕C . Similarly, we 
prove for every t ∈ (−T , T) , u(⋅, t) = 0 in B�(t) , where �(t) = (1 − tT−1)� . So that we obtain 
(1.3) with U =

⋃

t∈(−T ,T)(B�(t) × {t}) . As a consequence of this result and using the WUCP, 
we have that u = 0 in the domain of dependence of U.

The quantitative estimate of unique continuation that we prove in Theorem 2.1 can 
be read, roughly speaking, as a continuous dependence estimate of u

|U
 from u

|Br0
×(−T ,T)

 , 
where r0 is arbitrarily small. The sharp character of such a continuous dependence 
result is related to the logarithmic character of this estimate, that, at the light of coun-
terexample of John [18], cannot be improved and to the fact that this quantitative esti-
mate implies the SUCP property. The quantitative estimate of strong unique continua-
tion (at the interior and at the boundary) was a crucial tool, see [33], to prove sharp 
stability estimate for inverse problems with unknown boundaries for wave equation 
�2
t
u − divx

(

A(x)∇xu
)

= 0.
Before concluding Introduction, we mention an open question (to the author knowl-

edge). Such an open question concerns the SUCP, (1.3), for the second-order hyper-
bolic equation with coefficients that are analytic in variable t and smooth enough (but 
not analytic) in variables x. This is, for instance, the case of the equation

where a(x, t) is smooth enough w.r.t x and analytic w.r.t. t. Concerning this topic we men-
tion [24] in which it is proved that if u satisfies the conditions: (a) ({0} × (−T , T)) ∩ suppu 
is compact and (b) Dju(x, t) = O

(

e−k∕|x|
)

 , j = 1, 2 , for every k as x → 0 , t ∈ (−T , T) , then u 
vanishes in a neighborhood of {0} × (−T , T).

The plan of the paper is as follows: In Sect. 2 we state the main result of this paper, 
and in Sect. 3 we prove the main theorem.

(1.7)vk(x, y) = ∫
T

−T

u(x, t)�k(t + iy)dt, ∀k ∈ ℕ,

(1.8)�2
y
vk − ia(x)�yvk + L(vk) = Fk(x, y), in B1 ×ℝ,

�2
t
u + a(x, t)�tu − Δxu = 0,
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2  The main results

2.1  Notation and definition

Let n ∈ ℕ , n ≥ 2 . For any x ∈ ℝ
n we will denote x = (x�, xn) , where 

x� = (x1,… , xn−1) ∈ ℝ
n−1 , xn ∈ ℝ and �x� =

�

∑n

j=1
x2
j

�1∕2

 . Given r > 0 , we will denote by 
Br , B′

r
 and B̃r the ball of ℝn , ℝn−1 and ℝn+1 of radius r centered at 0, respectively. For any open 

set Ω ⊂ ℝ
n and any function (smooth enough) u we denote by ∇xu = (�x1u,⋯ , �xnu) the gra-

dient of u. Also, for the gradient of u we use the notation Dxu . If j = 0, 1, 2 we denote by Dj
xu 

the set of the derivatives of u of order j, so D0
x
u = u , D1

x
u = ∇xu and D2

x
u is the hessian matrix 

{�xixju}
n
i,j=1

 . Similar notation is used whenever other variables occur and Ω is an open subset of 
ℝ

n−1 or a subset ℝn+1 . By H�(Ω) , � = 0, 1, 2 , we denote the usual Sobolev spaces of order � 
(in particular, H0(Ω) = L2(Ω) ), with the standard norm

For any interval J ⊂ ℝ and Ω as above we denote

We shall use the letters c,C,C0,C1,⋯ to denote constants. The value of the constants may 
change from line to line, but we shall specified their dependence everywhere they appear. 
Generally we will omit the dependence of various constants by n.

2.2  Statements of the main results

Let 𝜌0 > 0 , T, � ∈ (0, 1] , Λ > 0 and Λ1 > 0 be given numbers. Let A(x) =
{

aij(x)
}n

i,j=1
 be a 

real-valued symmetric n × n matrix whose entries are measurable functions, and they satisfy 
the following conditions 

Let b ∈ L∞(ℝn;ℝn) and a, c ∈ L∞(ℝn) satisfy

Let

Let u ∈ W
(

[−T , T];B�0

)

 be a solution to

Let � and H be given positive numbers and let r0 ∈ (0, �0] . We assume

‖v(x)‖H� (Ω) =

�

�

0≤j≤� �Ω

�

�

�

Djv(x)
�

�

�

2

dx

�1∕2

.

W(J;Ω) =
{

u ∈ C0
(

J;H2(Ω)
)

∶ ��
t
u ∈ C0

(

J;H2−�(Ω)
)

,� = 1, 2
}

.

(2.1a)�|�|2 ≤ A(x)� ⋅ � ≤ �−1|�|2, for every x, � ∈ ℝ
n,

(2.1b)|

|

A(x∗) − A(x)|
|

≤ Λ

�0

|

|

x∗ − x|
|

, for every x∗, x ∈ ℝ
n.

(2.2)T|a(x)| + T2�−1
0
|b(x)| + T2

|c(x)| ≤ Λ1, for almost every x ∈ ℝ
n,

(2.3)L(u) = divx
(

A(x)∇xu
)

+ b(x) ⋅ ∇xu + c(x)u.

(2.4)�2
t
u + a(x)�tu − L(u) = 0, a.e. in B�0

× (−T , T).
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and

Theorem  2.1 Let u ∈ W
(

[−T , T];B�0

)

 be a weak solution to (2.4) and let (2.1), (2.2), 
(2.5) and (2.6) be satisfied. For every � ∈ (0, 1∕2) there exist constants s0 ∈ (0, 1) and 
C ≥ 1 depending on � , Λ , Λ1 , � and T�−1

0
 only such that for every t0 ∈ (−T , T) and every 

0 < r0 ≤ 𝜌 ≤ s0𝜌0 the following inequality holds true

where

The proof of Theorem 2.1 is given in Sect. 3.
The proof of the following corollary is standard (see, for instance, [32, Remark 2.2]), 

but we give it for the reader convenience.

Corollary 2.2 (Strong Unique Continuation Property) Let u ∈ W
(

[−T , T];B�0

)

 be a weak 
solution to (2.4). Assume that (2.1) and (2.2) be satisfied. We have that, if

then

where s0 is defined in Theorem 2.1.

Proof We consider the case t = 0 ; similarly, we could proceed for t ≠ 0 . If 
‖u(⋅, 0)‖

L2
�

Bs0�0

� = 0 there is nothing to proof, otherwise, if

we argue by contradiction. By (2.9) it is not restrictive to assume that

(2.5)�−n
0
T−1 �

T

−T �Br0

|u(x, t)|2dxdt ≤ �2

(2.6)max
t∈[−T ,T]

(

�−n
0 �B�0

|u(x, t)|2dx + �−n+1
0 �B�0

|

|

�tu(x, t)
|

|

2
dx

)

≤ H2.

(2.7)�−n
0 �B�(t0 )

|

|

u(x, t0)
|

|

2
dx ≤ C

(

log �0∕r0)
)�
(H + �)2

(

log
(

e + H�−1
))� ,

�(t0) = (1 − |t0|T
−1)�.

(

�−n
0
T−1 ∫

T

−T ∫Br0

|u(x, t)|2dxdt

)1∕2

= O(rN
0
), ∀N ∈ ℕ, as r0 → 0,

(2.8)u(⋅, t) = 0, for |x| +
�0|t|

T
≤ s0�0,

(2.9)‖u(⋅, 0)‖
L2
�

Bs0𝜌0

� > 0

(2.10)max
t∈[−T ,T]

(

�−n
0 ∫B�0

|u(x, t)|2dx + �−n+1
0 ∫B�0

|

|

�tu(x, t)
|

|

2
dx

)

= 1.
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Now we apply inequality (2.7) with � = CNr
N
0

 , H = 1 and passing to the limit as r0 → 0 we 
derive

by passing again to the limit as N → 0 in (2.11) we get ‖u(⋅, 0)‖
L2
�

Bs0�0

� = 0 that contra-

dicts (2.9).   ◻

2.3  Auxiliary result: Carleman estimate with singular weight

In order to prove Theorem 2.1, we need a Carleman estimate proved by several authors; 
here we recall [3, 15]. In order to control the dependence of the various constants, we use 
here a version of such a Carleman estimate proved, in the context of parabolic operator, in 
[11], see also [7, Sect. 8].

First we introduce some notation. Let P be the elliptic operator

Denote

Notice that

Theorem 2.3 Let P be the operator (2.12) and assume that (2.1) is satisfied. There exists 
constants C∗ > 1 depending on � , and Λ only and 𝜏0 > 1 depending on � , Λ and Λ1 only 
such that, denoting 

 for every � ≥ �0 and w ∈ C∞
0

�

B̃
�

2
√

�∕C∗

⧵ {0}

�

 we have

(2.11)‖u(⋅, 0)‖
L2
�

Bs0�0

� ≤ CN−�∕2, ∀N ∈ ℕ,

(2.12)P(w) ∶= �2
y
w + L(w) − ia(x)�yw.

(2.13)�(x, y) =
(

A−1(0)x ⋅ x + y2
)1∕2

,

(2.14)�B𝜚
r
=
{

(x, y) ∈ ℝ
n+1 ∶ 𝜚(x, y) < r

}

, r > 0.

(2.15)�B
𝜚
√

𝜆r
⊂ �Br ⊂

�B
𝜚

r∕
√

𝜆
, ∀r > 0.

(2.16a)Ψ(r) = r exp

(

∫
r

0

e−C∗� − 1

�
d�

)

,

(2.16b)�(x, y) = Ψ

�

�(x, y)∕2
√

�
�

,

(2.17)�
ℝn+1

(

��1−2� |
|

|

∇x,yw
|

|

|

2

+ �3�−1−2�
|w|2

)

dxdy ≤ C∗ �
ℝn+1

�2−2�
|P(w)|2dxdy.
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Remark 2.4 We emphasize that

Moreover, Ψ is an increasing and concave function and there exists C > 1 depending on � , 
and Λ such that

3  Proof of Theorem 2.1

The primary step to achieve Theorem 2.1 consists in proving the following

Theorem  3.1 Let us assume �0 = 1 and T = 1 . Let u ∈ W
(

[−1, 1];B1

)

 be a weak solu-
tion to (2.4) and let (2.1), (2.2), (2.5) and (2.6) be satisfied. For every � ∈ (0, 1∕2) there 
exist constants s0 ∈ (0, 1) and C ≥ 1 depending on � , Λ , Λ1 and � only such that for every 
0 < r0 ≤ s ≤ s0 the following inequality holds true

In order to prove Theorem 3.1, we define

where

and

so that we have

It is easy to check that

We need some simple lemmas to state the properties of functions vk.

Lemma 3.2 We have

Ψ(r) ≃ r, as r → 0.

(2.18)C−1r ≤ Ψ(r) ≤ r, ∀r ∈ (0, 1].

(3.1)�Bs

|u(x, 0)|2dx ≤ C

(

log 1∕r0
)�
(H + �)2

(

log
(

e + H�−1
))� .

(3.2)vk(x, y) = ∫
1

−1

u(x, t)�k(t + iy)dt, ∀k ∈ ℕ,

(3.3)�k(z) = �k

(

1 − z2
)k
, z = t + iy ∈ ℂ,

(3.4)�k =

(

∫
1

−1

(

1 − t2
)k
dt

)−1

,

(3.5)∫
1

−1

�k(t)dt = 1, ∀k ∈ ℕ.

(3.6)�k ≃

√

k

�
, as k → ∞.
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where c depends on n only.

Proof By (3.2) and (3.5) we have

hence, by Schwarz inequality and integrating over B1 , we have

where � ∈ (0, 1) is a number that we will choose. Now we have

and, by (2.6),

Hence, by (2.6), (3.6) and (3.8), we have

where c depends on n only. Now, we choose � = k−1∕2 log k and we get (3.7).   ◻

Lemma 3.3 Let u be a solution to (2.4), and let (2.1) and (2.2) be satisfied, then 
vk ∈ H2

(

B1 × (−1, 1)
)

 is a solution to the equation

where Fk ∈ L∞(−1, 1;L2(B1)) and it satisfies

C depending on Λ1 only.

In addition, vk satisfies the following properties

(3.7)�

�

vk(⋅, 0) − u(⋅, 0)�
�L2(B1)

≤ c
log k
√

k
, ∀k ∈ ℕ,

vk(x, 0) − u(x, 0) = ∫
1

−1

(u(x, t) − u(x, 0))�k(t)dt, ∀x ∈ B1;

(3.8)

�B1

|

|

vk(x, 0) − u(x, 0)|
|

2
dx ≤ �B1

dx�
1

−1

|u(x, t) − u(x, 0)|2�k(t)dt =

= �
[−� ,�]

�k(t)dt �B1

|u(x, t) − u(x, 0)|2dx + �
[−1,1]⧵[−� ,�]

�k(t)dt �B1

|u(x, t) − u(x, 0)|2dx,

�k(t) ≤ �k(1 − �2)k∕2, ∀t ∈ [−1, 1] ⧵ [−� , �]

�B1

|u(x, t) − u(x, 0)|2dx ≤ t2H2.

(3.9)‖

‖

vk(⋅, 0) − u(⋅, 0)‖
‖L2(B1)

≤ cH
(

� + k1∕4(1 − �2)k∕2
)

, for every � ∈ (0, 1),

(3.10)�2
y
vk − ia(x)�yvk + L(vk) = Fk(x, y), in B1 ×ℝ,

(3.11)�

�

Fk(⋅, y)
�

�L2(B1)
≤ CHk�k�

√

5y�k−1, ∀y ∈ [−1, 1],

(3.12)sup
y∈[−1,1]

‖

‖

vk(⋅, y)
‖

‖L2(B1)
≤ 2k�kH,
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where C depends on � and Λ1 only.

Proof The fact that vk belongs to H2
(

B1 × (−1, 1)
)

 is an immediate consequence of differ-
entiation under the integral sign. Actually we have

hence, by Schwarz inequality and taking into account that u ∈ W
(

[−1, 1];B1

)

 , we have 
vk ∈ H2

(

B1 × (−1, 1)
)

.
Now we prove (3.10).
By integration by parts and taking into account that

,we have

Hence, we have

Similarly, we have

Now, by (2.4), (3.14), (3.15) and (3.16) we have

where

(3.13)�B̃r0∕2

�

�

�

vk
�

�

2
+ r2

0

�

�

�

∇x,yvk
�

�

�

2
�

dxdy ≤ C

�

r04
kk�2 + H2k3

�
√

5r0

�2(k+2)
�

,

(3.14)�m
y
Dj

x
vk(x, y) = ∫

1

−1

Dj
x
u(x, t)�m

y

(

�k(t + iy)
)

dt, for j,m = 0, 1, 2;

�t�k(t + iy) =
1

i
�y�k(t + iy),

∫
1

−1

�tu(x, t)�k(t + iy)dt = ∫
1

−1

�tu(x, t)�k(t + iy)dt

= (u(x, t)�k(t + iy))|
|

t=1

t=−1
−

1

i ∫
1

−1

u(x, t)�y�k(t + iy)dt

= (u(x, t)�k(t + iy))|
|

t=1

t=−1
+ i�yvk(x, y).

(3.15)−i�yvk(x, y) = −∫
1

−1

�tu(x, t)�k(t + iy)dt + (u(x, t)�k(t + iy))|
|

t=1

t=−1
.

(3.16)
�2
y
vk(x, y) = �2

y
vk(x, y) = −∫

1

−1

�2
t
u(x, t)�k(t + iy)dt+

+ (�tu(x, t)�k(t + iy))|
|

t=1

t=−1
− (u(x, t)��

k
(t + iy))|

|

t=1

t=−1
.

(3.17)

�2
y
vk − ia(x)�yvk + L(vk) =

= −∫
1

−1

{

�2
t
u(x, t) + a(x)�tu(x, t) − L(u)(x, t)

}

�k(t + iy)dt + Fk(x, y) = Fk(x, y),

(3.18)

Fk(x, y) = �k(1 + iy)
(

a(x)u(x, 1) + �tu(x, 1)
)

− ��
k
(1 + iy)u(x, 1)

−
[

�k(−1 + iy)
(

a(x)u(x,−1) + �tu(x,−1)
)

− ��
k
(−1 + iy)u(x,−1)

]

.
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and (3.10) is proved.
Now we prove (3.11).
It is easy to check that for every k ∈ ℕ we have 

 In addition, since

we have

By (2.2), (2.6), (3.19a) and (3.19b) we have (3.11).
By Schwarz inequality and (3.20) we have, for any R ∈ (0, 1],

hence, for R = 1 , taking into account (2.6), we obtain (3.12).
Finally, let us prove (3.13). For this purpose, we firstly observe that applying (3.21) for 

R = r0 and taking into account (2.5), we have

Afterward, since vk is solution to elliptic equation (3.10), the following Caccioppoli ine-
quality, [10, 14], holds

where C depends on � only. Finally, by (3.6), (3.11), (3.22) and (3.23) we get (3.13).   ◻

Proof of Theorem 3.1 Set

By (3.13) we have

where C depends on � and Λ1 only and

(3.19a)|

|

�k(±1 + iy)|
|

= �k

(

4y2 + y4
)k∕2

, ∀y ∈ ℝ,

(3.19b)|

|

��
k
(±1 + iy)|

|

= 2k�k

(

1 + y2
)1∕2(

4y2 + y4
)(k−1)∕2

, ∀y ∈ ℝ.

|

|

�k(t + iy)|
|

= �k

[

t4 − 2t2(1 − y2) + (1 + y2)2
]

k

2 ,

(3.20)|

|

�k(t + iy)|
|

≤ 2k�k, ∀(t, y) ∈ [−1, 1] × [−1, 1].

(3.21)sup
y∈[−1,1]

‖

‖

vk(⋅, y)
‖

‖L2(BR)
≤ 2k�k

(

�
1

−1 �BR

u2(x, t)dxdt

)1∕2

;

(3.22)sup
y∈[−1,1]

‖

‖

vk(⋅, y)
‖

‖L2(Br0
)
≤ C2k�k�.

(3.23)�B̃r0∕2

|

|

|

∇x,yvk
|

|

|

2

dxdy ≤ Cr−2
0 �B̃r0

(

|

|

vk
|

|

2
+ r4

0
|

|

Fk
|

|

2
)

dxdy,

r1 =

√

�r0

8
.

(3.24)�B̃
�

4r1

(

|

|

vk
|

|

2
+ r2

1

|

|

|

∇x,yvk
|

|

|

2
)

dxdy ≤ Cr1�k(�, r1),

(3.25)�k(�, r1) = 4kk�2 + H2k3
(

C1r1
)2k+2

,
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where C1 = 2
√

5�−1∕2.
Now we apply Theorem 2.3.
Denote

and

Let us define

where h belongs to C2
0

(

0,�0(2R)
)

 and satisfies 

 where c depends on � and Λ only. Notice that if 2r1 ≤ �(x, y) ≤ R , then � (x, y) = 1 and if 
�(x, y) ≥ 2R or �(x, y) ≤ r1 , then � (x, y) = 0.

By density, we can apply (2.17) to the function w = �vk and we have, for every � ≥ �0,

where C depends on � , Λ and Λ1 only and 

  ◻

Estimate of  I1.
By (2.18) we have

where C2 > 2 depends on � and Λ only.

𝜓0(r) ∶= Ψ(r∕2
√

𝜆) , for every r > 0

R =

√

�

2C∗

.

� (x, y) = h(�(x, y)).

0 ≤ h ≤ 1,

h(r) = 1, ∀r ∈
[

�0

(

2r1
)

,�0(R)
]

,

h(r) = 0, ∀r ∈
[

0,�0

(

r1
)]

∪
[

�0(3R∕2),�0(2R)
]

,

r1
|

|

h�(r)|
|

+ r2
1
|

|

h��(r)|
|

≤ c, ∀r ∈
[

�0

(

r1
)

,�0

(

2r1
)]

,

|

|

h�(r)|
|

+ |

|

h��(r)|
|

≤ c, ∀r ∈
[

�0(R),�0(3R∕2)
]

,

(3.27)�B̃
�

2R

(

��1−2� |
|

|

∇x,y

(

�vk
)

|

|

|

2

+ �3�−1−2�
|

|

�vk
|

|

2

)

dxdy ≤ C
(

I1 + I2 + I2
)

,

(3.28a)I1 = ∫B̃
�

2R

�2−2�
|

|

Fk
|

|

2
�2dxdy,

(3.28b)I2 = ∫B̃
�

2R

�2−2�
|P(� )|2|

|

vk
|

|

2
dxdy,

(3.28c)I3 = ∫B̃
�

2R

�2−2� |
|

|

∇x,yvk
|

|

|

2
|

|

|

∇x,y�
|

|

|

2

dxdy.

(3.29)C−1
2

≤ (

|x|2 + y2
)−1∕2

�(x, y) ≤ C2, ∀(x, y) ∈ B̃1,
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By (3.11), (3.28a) and (3.29) we have

where C depends on � and Λ only.
Now let k and � satisfy

By (3.30) and (3.31) we have

Estimate of  I2.
By (3.12), (3.24) and (3.28b) we have

hence, by (3.29) we have

where C depends on � and Λ only.
Estimate of  I3.
By (3.28c) we have

Now in order to estimate from above the right-hand side of (3.34), we use the Caccioppoli 
inequality, (3.11), (3.12) and (3.24) and we get

where C depends on � , Λ and Λ1 only.
Let r1 ≤ R

2
 and let s be such that 2r1√

�
≤ s ≤ R

√

�
 . Denote

(3.30)

I1 = �B̃
�

2R

�2−2�
|

|

Fk
|

|

2
�2dxdy ≤ C

2(�−1)

2 �B̃
�

2R

(

|x|2 + y2
)1−�

|

|

Fk
|

|

2
dxdy ≤

≤ CH2k35kC
2(�−1)

2 �B̃
�

2R

(

|x|2 + y2
)k−�

dxdy,

(3.31)k ≥ � ≥ �0.

(3.32)I1 ≤ CH2k35kC
2(k−1)

2
.

I2 ≤ Cr−4
1 �B̃

�

2r1
⧵B̃

�
r1

�2−2�
|

|

vk
|

|

2
dxdy + C �B̃

�

3R∕2
⧵B̃

�

R

�2−2�
|

|

vk
|

|

2
dxdy ≤

≤ C
(

r−3
1
�2−2�
0

(r1)�k(�, r1) + H2k4k�2−2�
0

(R)
)

;

(3.33)I2 ≤ C
(

�−1−2�
0

(r1)�k(�, r1) + H2k4k�1−2�
0

(R)
)

,

(3.34)

I3 ≤ Cr−2
1
�2−2�
0

(r1)�B̃
�

2r1
⧵B̃

�
r1

|

|

|

∇x,yvk
|

|

|

2

dxdy

+ C�2−2�
0

(R)�B̃
�

3R∕2
⧵B̃

�

R

|

|

|

∇x,yvk
|

|

|

2

dxdy.

(3.35)

I3 ≤ Cr−2
1
�2−2�
0

(r1)

(

r−2
1 �B̃

�

4r1
⧵B̃

�

r1∕2

|

|

vk
|

|

2
dxdy + r2

1 �B̃
�

4r1
⧵B̃

�

r1∕2

|

|

Fk
|

|

2
dxdy

)

+ C�2−2�
0

(R)

(

R−2 �B̃
�

2R
⧵B̃

�

R∕2

|

|

vk
|

|

2
dxdy + R2 �B̃

�

2R
⧵B̃

�

R∕2

|

|

Fk
|

|

2
dxdy

)

≤
≤ C�k(�, r1)�

−1−2�
0

(r1) + CH25kk3�1−2�
0

(R) ∶= Ĩ3,
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By estimating from below trivially the left-hand side of (3.27) and taking into account 
(3.35), we get

where C depends on � , Λ and Λ1 only.
Now, by (2.15), (3.24) and into account that �0 (̃s) ≥ �0(r1) we have

Now let us add at both the sides of (3.36) the quantity

and by (3.37) we have

where C depends on � , Λ and Λ1 only. Moreover, by (3.32), (3.33) and (3.35) we have

Now by (3.29), (3.32), (3.33), (3.35) and (3.39) we have that if (3.31) is satisfied, then

where C depends on � , Λ and Λ1 only and

By a standard trace inequality, we have

and Lemma (3.2) implies

s̃ =
√

�s.

(3.36)�−1−2�
0

(̃s)�B̃
�

s̃
⧵B̃

�

2r1

|

|

vk
|

|

2
+ �1−2�

0
(̃s)�B̃

�

s̃
⧵B̃

�

2r1

|

|

|

∇x,yvk
|

|

|

2 ≤ C
(

I1 + I2 + Ĩ3

)

,

(3.37)

�−1−2�
0

(̃s)�B̃
�

2r1

|

|

vk
|

|

2
+ �1−2�

0
(̃s)�B̃

�

2r1

|

|

|

∇x,yvk
|

|

|

2

dxdy

≤ C�−1−2�
0

(̃s)�B̃
�

2r1

(

|

|

vk
|

|

2
+ r2

1

|

|

|

∇x,yvk
|

|

|

2
)

dxdy ≤ Cr1�k(�, r1)�
−1−2�
0

(r1).

�−1−2�
0

(̃s)∫B̃
�

2r1

|

|

vk
|

|

2
+ �1−2�

0
(̃s)∫B̃

�

2r1

|

|

|

∇x,yvk
|

|

|

2

dxdy

(3.38)�−1−2�
0

(̃s)�B̃
�

s̃

|

|

vk
|

|

2
+ �1−2�

0
(̃s)�B̃

�

s̃

|

|

|

∇x,yvk
|

|

|

2 ≤ C
(

I1 + I2 + Ĩ3

)

,

(3.39)I1 + I2 + Ĩ3 ≤ C�k(�, r1)�
−1−2�
0

(r1) + CH2k35kC2k
2
�1−2�
0

(R).

(3.40)�B̃�s

|

|

vk
|

|

2
+ s2 �B̃�s

|

|

|

∇x,yvk
|

|

|

2 ≤ C�k,� ,

(3.41)�k,� (�, r1) = �k(�, r1)

(

�0 (̃s)

�0(r1)

)1+2�

+ H2k35kC2k
2

(

�0 (̃s)

�0(R)

)1+2�

.

(3.42)s�B�s∕2

|

|

vk(⋅, 0)
|

|

2 ≤ C�k,� (�, r1)

(3.43)s�B�s∕2

�u(⋅, 0)�2 ≤ C

�

log k
√

k
+ �k,� (�, r1)

�

,
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where C depend on � , Λ and Λ1 only.
Now, we choose k = � in (3.43) and using trivial inequality we have that for any 0 < 𝛼 <

1

2
 

there exist constants C3 > 1 and k0 depending on � , Λ , Λ1 and � only such that for every k ≥ k0 
we have

where

Let us denote

and put s = s , by (3.44) we have trivially

If k∗ ≥ k0 , then we choose k = k∗ and by (3.45) we have

where

Otherwise, if k∗ < k0 , then log 𝜀1
2 log r1

< k0, hence

This implies

that, in turns, taking into account (2.6), gives trivially

Finally, by (3.46) and (3.48) we obtain (3.1), with s0 = 2�−1s .  □

Conclusion of the proof of Theorem 2.1.
Let t0 ∈ (−T , T) . It is not restrictive to assume t0 ≥ 0 . Denote

(3.44)s�B�s∕2

|u(⋅, 0)|2 ≤ C3H
2
1

[

(

C3sr
−1
1

)2k+1
�2
1
+
(

C3s
)2k+1

+ k−�
]

,

H1 ∶= H + e� and �1 ∶=
�

H + e�
.

s =
1

2C3

(3.45)

s�B�s∕2

|u(⋅, 0)|2 ≤ C3H
2
1

[

(

2r1
)−(2k+1)

�2
1
+ 2−(2k+1) + k−�

]

,

k∗ = min

{

p ∈ ℤ ∶ p ≥ log �1

2 log r1

}

.

(3.46)s�B�s∕2

|u(⋅, 0)|2 ≤ 2C3H
2
1

(

�
2�0
1

+

(

2 log(1∕r1)

log(1∕�1)

)�)

,

(3.47)�0 =
log 2

2 log(1∕r1)
.

𝜃0 log(1∕𝜀1) =
log 𝜀1

2 log r1
log 2 < k0 log 2.

2−2k0�
2�0
1

≥ 1,

(3.48)�B�s∕2

|u(⋅, 0)|2 ≤ H2 ≤ 4k0�
2�0
1

H2 ≤ 4k0 (H + e�)2(1−�0)�2�0 .
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and

It is easy to check that ũ is a solution to

where 

 By (2.1a) and (2.1b) we have, respectively, 

 where

By (2.2) we have

In addition, by (2.5), (2.6) we have, respectively,

and

Now we apply Theorem 3.1. Denoting s = ��−1
0

 we have 0 < r0𝜌
−1
0

< s ≤ s0 ; therefore,

Finally, come back to the variables x and t we get (2.7).   ◻
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�(t0) =
(

1 − T−1t0
)

�0, T(t0) =
(

1 − T−1t0
)

T

U(y, �) = u
(

�(t0)y, �T(t0) + t0
)

, for (y, �) ∈ B1 × (−1, 1).

�2
�
U + ã(y)�2

�
U − LU = 0, for (y, �) ∈ B1 × (−1, 1),

LU = divy

(

Ã(y)∇yU
)

+ b̃(y) ⋅ ∇yU + c̃(y)U,

Ã(y) =
(

T�−1
0

)2
A
(

�(t0)y
)

, ã(y) = (T − t0)a
(

�(t0)y
)

,

b̃(y) =
(

T(T − t0)�
−1
0

)

b
(

�(t0)y
)

, c̃(y) =
(

T − t0
)2
c
(

�(t0)y
)

.

�0|�|
2 ≤ Ã(y)� ⋅ � ≤ �−1

0
|�|2, for every x, � ∈ ℝ

n,

|

|

|

Ã(y∗) − A(y)
|

|

|

≤ Λ0

�0

|

|

y∗ − y|
|

, for every y∗, y ∈ ℝ
n,

�0 = �min{
(

T�−1
0

)2
,
(

T�−1
0

)−2
}, and Λ0 = T2�−1

0
Λ.

|

|

ã(y)|
|

+
|

|

|

b̃(y)
|

|

|

+ |

|̃

c(y)|
|

≤ Λ1, for almost every y ∈ ℝ
n.

�
1

−1 �B
r0�

−1
0

|U(y, �)|2dyd� ≤ �2
(

1 − t0T
−1
)−n

max
�∈[−1,1]

(

�B1

|U(y, �)|2dy + �B1

|

|

|

��U(y, �)
|

|

|

2

dy

)

≤ H2
(

1 − t0T
−1
)−n

.

�Bs

|U(y, 0)|2dy ≤ C
(

1 − t0T
−1
)n

(

log(�0∕r0
)�
(H + e�)2

(

log
(

e + H�−1
))� .
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