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Abstract
We study the Hermitian curvature flow of locally homogeneous non-Kähler metrics on 
compact complex surfaces. In particular, we characterize the long-time behavior of the 
solutions to the flow. We also provide the first example of a compact complex non-Kähler 
manifold admitting a finite time singularity for the Hermitian curvature flow. Finally, we 
compute the Gromov–Hausdorff limit of immortal solutions after a suitable normalization. 
Our results follow by a case-by-case analysis of the flow on each complex model geometry.

Keywords  Hermitian curvature flow · Compact complex surfaces · Homogeneous 
Hermitian metrics

Mathematics Subject Classification  Primary 53C44 · Secondary 53C15 · 53C30 · 53C55

1  Introduction

The Hermitian curvature flow (HCF shortly) is a strictly parabolic flow of Hermitian met-
rics introduced by Streets and Tian [22]. The flow evolves an initial Hermitian metric in the 
direction of its second Chern–Ricci curvature tensor modified with some first-order terms 
in the torsion.

More precisely, let (X, g0) be a Hermitian manifold. The solution to the HCF starting at 
g0 is the family of Hermitian metric g(t) satisfying

(1)�t g(t) = − S(g(t)) + Q(g(t)), g(0) = g0,
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where S(g) is the second Chern–Ricci curvature tensor and Q(g) is a (1, 1)-symmetric ten-
sor which is quadratic in the torsion components of the Chern connection (see Sect.  2). 
The flow arises from the unique Hilbert-type functional of Hermitian metrics for which S 
is the leading term of the respective Euler–Lagrange equation. Moreover, when the starting 
metric is Kähler the HCF reduces to the Kähler–Ricci flow and, in the compact case, it is 
stable near Kähler–Einstein metrics with non-positive Ricci curvature [22].

Motivated by the above arguments, we carry out an analysis of the HCF on locally 
homogeneous compact complex surfaces. Actually, one of the main reasons in studying 
this new flow is to refine the Enriques–Kodaira classification of compact complex sur-
faces, as canonical metrics could appear as limit points of the flow (see e.g., [20]).

Our first main result completely characterizes the long-time behavior of locally 
homogeneous non-Kähler solutions, namely

Theorem A  Let X be a compact complex surface and g0 a locally homogeneous non-Kähler 
metric on X. If the solution to the HCF starting from g0 develops a finite time singularity, 
then X is a Hopf surface. Conversely, any locally homogeneous solution to the HCF on a 
Hopf surface collapses in finite time.

It is worth noting that Theorem A provides the first example of a compact manifold 
developing a finite-time singularity for the HCF. Moreover, we restricted our analysis 
to starting non-Kähler metrics since the behavior of Kähler solutions is already known 
(see e.g., [5, 17, 24]).

Our second main result concerns the Gromov–Hausdorff limits of immortal normal-
ized solutions to the HCF, namely

Theorem B  Let X be a compact complex surface, g0 a locally homogeneous non-Kähler 
metric on X and g(t) the solution to the HCF starting from g0 . 

1.	 If X is either a hyperelliptic or Kodaira surface, then 
(
X, (1+t)−1g(t)

)
 converges to a 

point in the Gromov–Hausdorff topology as t → ∞.
2.	 If X is a non-Kähler properly elliptic surface, then 

(
X, (1+t)−1g(t)

)
 converges to its base 

curve (C, g
KE
) in Gromov–Hausdorff topology as t → ∞ , where Ric(g

KE
) = −g

KE
.

3.	 If X is an Inoue surface, then 
(
X, (1+t)−1g(t)

)
 converges to a circle in Gromov–Hausdorff 

topology as t → ∞.

We point out that the arguments used to prove (2) and (3) in Theorem B are analo-
gous to those used by Tosatti and Weinkove in [26] for the Chern-Ricci flow (see also 
[7, 25, 27]), and the limit spaces arising in our context are the same. We highlight that 
cohomological aspects of compact complex surfaces along the Chern-Ricci flow were 
investigated in [1], and it would be interesting to carry out a similar analysis also for the 
HCF.

Our results can be thought of as a first step in the study of the HCF on complex non-Kähler 
surfaces. In the same spirit of [3, 10], we expect the blowdown of any immortal locally homo-
geneous solution to converge to an expanding soliton. Nonetheless, at the moment we are not 
able to confirm this statement. In this direction, in [9] the second named author, Lafuente 
and Vezzoni proved that long-time existence of left-invariant solutions to the HCF is always 
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guaranteed on complex unimodular Lie groups and such solutions always converge under a 
suitable normalization to an expanding algebraic soliton (see also [12]).

We stress that different choices of the tensor Q in (1) give rise to an interesting family of 
geometric flows generalizing the Ricci flow to the Hermitian non Kähler setting. In particu-
lar one can choose Q to preserve different geometric conditions, making each of these new 
flows well-suited to investigate a certain problem. Among these, one of the most studied is 
the pluriclosed flow (PCF shortly), which preserves the pluriclosed condition 𝜕𝜕̄𝜔 = 0 (see 
e.g., [18–21, 23]). In [3] Boling studied the pluriclosed flow on complex surfaces proving 
long-time existence and convergences results; while, In [2] Arroyo and Lafuente showed that 
normalized left-invariant solutions to the PCF on 2-step nilmanifolds and almost-abelian Lie 
groups always converge to expanding solitons (see also [6, 14]).

Let us also mention that recently Ustinovskiy [28, 29] found a new flow in the HCF family 
which preserves both the Griffiths-positivity and a finite dimensional space of distinguished 
metrics called induced metrics. We mention that related works have been recently appeared 
(see e.g., [11, 13]) and it would be interesting to analyze Ustinovkiy’s flow on compact com-
plex surfaces in the same fashion as we did in this paper.

The paper is organized as follows. In Sect.  2 we recall some basics on HCF, complex 
model geometries and Gromov–Hausdorff convergence. In Sect. 3 we explicitly compute the 
HCF tensor of each compact complex surface considered throughout the paper. In Sect.  4 
we prove Theorems A and B by a case-by-case analysis of the involved equations. Finally, 
in the "Appendix’’ we explicitly write the components of the HCF tensors K for our class of 
surfaces.

2 � Preliminaries

2.1 � Basics on HCF

In the sequel, we describe the evolution equation of the Hermitian Curvature Flow on a com-
plex manifold X = (M, J) . Given a Hermitian metric g on X, we denote by ∇ its Chern con-
nection, by Ω its Chern curvature tensor Ω(X, Y) ∶= [∇X ,∇Y ] − ∇[X,Y] and by S its second 
Chern-Ricci curvature (we use the same convention adopted in [22]), i.e.,

Let also T be the torsion of ∇ and consider the tensor Q = Qij̄ defined by

where

Notice that in the formulas above

Sij̄ ∶= g�̄kΩk�̄ij̄.

(1)Q ∶=
1

2
Q1 −

1

4
Q2 −

1

2
Q3 + Q4,

(2)
Q1

ij̄
∶= g�̄kgq̄mTikq̄Tj̄�̄m, Q2

ij̄
∶= g�̄kgq̄mTkmj̄T�̄q̄i,

Q3

ij̄
∶= g�̄kgq̄mTik�̄Tj̄q̄m, Q4

ij̄
∶=

1

2
g�̄kgq̄m(Tmk�̄Tq̄j̄i + Tq̄�̄kTmij̄).

Tijk̄ ∶= g�k̄T
�

ij
, Tīj̄k ∶= gk�̄T

�̄

īj̄
, (gij̄) ∶= (gij̄)

−1.
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Then, given a Hermitian metric g0 on X, the evolution equation of the HCF on X starting 
from g0 is given by

where K ∶= S − Q . Henceforth, we will refer to K as the HCF tensor.

2.2 � HCF tensor on Lie groups

Let (G, J, g) be a real Lie group G equipped with a left-invariant Riemannian metric g and a 
left-invariant complex structure J such that g(J⋅ , J⋅ ) = g(⋅ , ⋅ ) . Let also � ∶= Lie(G) and

In the following, we compute the components of the HCF tensor in terms of the structure 
constants of �.

Let {Z1,… , Zn} be a left-invariant frame of T1,0G . Since the Chern connection is the 
unique Hermitian connection with vanishing (1,1)-part of the torsion, it follows that

or, in terms of the Christoffel symbols of ∇

On the other hand ∇J = ∇g = 0 implies

and hence

By definition, we have

with

Thus, the second Chern–Ricci curvature S takes the form

or, equivalently,

(3)�tg(t) = −K(g(t)), g(0) = g0,

𝜇 ∈ Λ2�∗ ⊗ �, 𝜇(X, Y) ∶= [X, Y].

∇Z̄k
Z� = ∇Z�

Z̄k + 𝜇(Z̄k, Z�)

Γr

k̄�
= 𝜇r

k̄�
, Γr̄

k�̄
= 𝜇r̄

k�̄
.

g(∇Zk
Zi, Z̄j) = −g(Zi,∇Zk

Z̄j) = −g(Zi,𝜇(Zk, Z̄j))

(4)Γs
ki
= −gj̄sgip̄ 𝜇

p̄

kj̄
.

Ωk�̄ij̄ = g(∇Zk
∇Z̄�

Zi, Z̄j) − g(∇Z̄�
∇Zk

Zi, Z̄j) − g(∇𝜇(Zk ,Z̄� )
Zi, Z̄j),

g(∇Zk
∇Z̄�

Zi, Z̄j) = gpj̄Γ
r

�̄i
Γ
p

kr
= gpj̄𝜇

r

�̄i
Γ
p

kr
,

g(∇Z̄�
∇Zk

Zi, Z̄j) = gpj̄Γ
r
ki
Γ
p

�̄r
= gpj̄𝜇

p

�̄r
Γr
ki
,

g(∇𝜇(Zk ,Z̄� )
Zi, Z̄j) = gpj̄(𝜇

r

k�̄
Γ
p

ri
+ 𝜇r̄

k�̄
𝜇
p

r̄i
).

Sij̄ = g�̄kgpj̄(𝜇
r

�̄i
Γ
p

kr
− 𝜇

p

�̄r
Γr
ki
− 𝜇r

k�̄
Γ
p

ri
− 𝜇r̄

k�̄
𝜇
p

r̄i
),

Sij̄ = −g�̄kgpj̄(g
v̄pgrq̄ 𝜇

q̄

kv̄
𝜇r

�̄i
− gv̄rgiq̄ 𝜇

q̄

kv̄
𝜇
p

�̄r
− gv̄pgiq̄ 𝜇

q̄

rv̄
𝜇r

k�̄
+ 𝜇r̄

k�̄
𝜇
p

r̄i
).
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On the other hand, since Tij = ∇Zi
Zj − ∇Zj

Zi − �(Zi, Zj) , from (4) we have

and hence

Therefore, the explicit expression of the tensor Q can be recovered from (1), (2) and (5). 
Indeed,

2.3 � Complex model geometries

In this subsection, we recall some basics about the geometry of locally homogeneous 
Hermitian manifolds. In particular, we focus on compact locally homogeneous Hermitian 
surfaces.

A Hermitian manifold (X, g) is locally homogeneous if the pseudogroup of local auto-
morphisms of (X,  g) acts transitively on X, i.e., for any choice of x, y ∈ X there exist 
neighborhoods Ux,Uy ⊂ X of x and y, respectively, and a holomorphic local isometry 
f ∶ Ux → Uy such that f (x) = y . If in addiction (X, g) is compact, then its universal Her-
mitian covering (X̃, g) is globally homogeneous (see [16]) and hence it admits a left coset 
presentation X̃ = G∕H for some closed subgroup G ⊂ Aut(�X, g) . Here, with a slight abuse 
of notation, we denote by g both the Hermitian metric on X and its pullback on the univer-
sal cover X̃.

Motivated by this, we recall the following

Definition 2.1  A complex model geometry of dimension n is a pair (X̃,G) given by a con-
nected, simply-connected n-dimensional complex manifold X̃ and a real connected Lie 
group G such that:

•	 G acts properly, transitively and almost-effectively by biholomorphisms on X̃;
•	 G contains a discrete subgroup Γ ⊂ G with Γ�X̃ compact.

If G is a minimal group with such properties, then the complex model geometry is said to 
be minimal.

Let (X̃,G) be a complex model geometry. A Hermitian manifold (X,  g) has geometric 
structure of type (X̃,G) if X̃ is the universal cover of X and the pulled-back metric g on X̃ 
is invariant under the action of G. Of course, if (X, g) has a geometric structure, then it is 
locally homogeneous. On the other hand, by the previous observation, any compact locally 

Tk
ij
= −gq̄kgjā𝜇

ā
q̄i
+ gq̄kgiā𝜇

ā
q̄j
− 𝜇k

ij

(5)Tijk̄ = −gjā𝜇
ā

k̄i
+ giā𝜇

ā

k̄j
− gmk̄𝜇

m
ij
.

Q1

ij̄
= g�̄kgq̄m(−gkā𝜇

ā
q̄i
+ giā𝜇

ā
q̄k
− gvq̄𝜇

v
ik
)(−gb�̄𝜇

b

mj̄
+ gbj̄𝜇

b

m�̄
− gmr̄𝜇

r̄

j̄�̄
),

Q2

ij̄
= g�̄kgq̄m(−gmā𝜇

ā

j̄k
+ gkā𝜇

ā

j̄m
− gvj̄𝜇

v
km
)(−gbq̄𝜇

b

i�̄
+ gb�̄𝜇

b
iq̄
− gir̄𝜇

r̄

�̄q̄
),

Q3

ij̄
= g�̄kgq̄m(−gkā𝜇

ā

�̄i
+ giā𝜇

ā

�̄k
− gv�̄𝜇

v
ik
)(−gbq̄𝜇

b

mj̄
+ gbj̄𝜇

b
mq̄

− gmr̄𝜇
r̄

j̄q̄
),

2Q4

ij̄
= g�̄kgq̄m

[
(−gkā𝜇

ā

�̄m
+ gmā𝜇

ā

�̄k
− gv�̄𝜇

v
mk
)(−gbj̄𝜇

b
iq̄
+ gbq̄𝜇

b

ij̄
− gir̄𝜇

r̄

q̄j̄
)

+ (−giā𝜇
ā

j̄m
+ gmā𝜇

ā

j̄i
− gvj̄𝜇

v
mi
)(−gb�̄𝜇

b
kq̄
+ gbq̄𝜇

b

k�̄
− gkr̄𝜇

r̄

q̄�̄
)
]
.
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homogeneous Hermitian manifold has geometric structure of type (X̃,G) for some minimal 
complex model geometry (X̃,G).

By the Riemann Uniformization Theorem, it is known that there exist exactly three min-
imal complex model geometries of dimension 1, that are

Here, the group G acts on the respective space X̃ in the standard way.
Subsequently in [30, 31] Wall classified all complex model geometries of dimension 2. 

In particular, he proved the following

Theorem  2.2  ([30, 31]) If (X̃,G) is a minimal complex model geometry of dimension 2, 
then one of the following cases occurs: 

1.	 (X̃,G) = (X̃1 × X̃2,G1 × G2) is the product of two complex model geometries of dimen-
sion 1.

2.	 (X̃,G) = (ℂP2, SU(3)) or (X̃,G) = (ℂH2, SU(2, 1)) , both considered endowed with the 
standard action of G on X̃.

3.	 X̃ = (G, J) where G acts on itself by left translations and J is a left-invariant complex 
structure.

Remark 2.3  If (X̃,G) is one of the model listed in (1) or (2) above, then any Hermitian 
G-invariant metric on X̃ is necessarily Kähler–Einstein.

2.4 � Gromov–Hausdorff convergence

We collect here some basic facts about Gromov–Hausdorff convergence of compact metric 
spaces. We refer to [4, Sect. 7.3.2] and [15] for more details.

Let Z = (Z, dZ) be a metric space and X, Y ⊂ Z two compact subsets. The Hausdorff 
distance between X and Y is given by

where B𝜖(X) ∶= {x ∈ Z ∶ dZ(x,X) < 𝜖} is the �-tube of X in Z. The pair

is also a metric space and it is compact if and only if Z is compact as well.
Let now X = (X, dX) , Y = (Y , dY ) be two compact metric spaces. The Gromov–Haus-

dorff distance between X and Y is defined as

where the infimum is taken with respect to all metric spaces Z and all pairs (�1,�2) of 
isometric embeddings �1 ∶ X → Z and �2 ∶ Y → Z . Letting X  denote the set of isometric 
classes of compact metric spaces, it turns out that 

(
X, dist

GH

)
 is a complete metric space. 

Therefore, given a one-parameter family {Xt}t∈[0,T) and an element Y both in X  , whenever 
limt→T− dist

GH
(Xt, Y) = 0 we write

(ℂ,ℂ), (ℂP1, SU(2)), (ℂH1, SU(1,1)).

distZ
H
(X, Y) ∶= inf

{
𝜖 > 0 ∶ X ⊂ B𝜖(Y) Y ⊂ B𝜖(X)

}
,

(
{compact subsets of Z}, distZ

H

)

dist
GH
(X, Y) ∶= inf

{
distZ

H

(
�1(X),�2(Y)

)}
,
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and we say that Xt convergences in the Gromov–Hausdorff topology to Y.
Finally, a GH �-approximation between two metric spaces X, Y ∈ X  , with 𝜖 > 0 , is a pair 

of non-necessarily continuous maps � ∶ X → Y and � ∶ Y → X satisfying for any x, x� ∈ X 
and y, y� ∈ Y

Remarkably, if there exists a GH �-approximation (�,�) between X and Y, then 
dist

GH
(X, Y) ≤

3

2
� (see e.g., [15, Lemma 1.3.3]).

3 � HCF tensor on complex model geometries

The aim of this section is to compute the HCF tensor K of any 2-dimensional complex model 
geometry (X̃,G) endowed with an invariant metric g. By means of Remark 2.3, we will 
restrict our discussion to those minimal complex model geometries arising from (3) in Theo-
rem 2.2. Hence, following [3, Sec. 2.2], we list below all the connected, simply-connected real 
4-dimensional Lie groups which admits a left-invariant complex structure, their compact quo-
tients according to Enriques-Kodaira classification and their HCF tensors. We mention here 
that all the computations were made with the help of the software Maple.

In the following, given a connected, simply connected 4-dimensional real Lie groups 
(G, J) equipped with a left-invariant complex structure, we will consider a fixed left-invariant 
(1, 0)-frame {Z1, Z2} and we will denote by {�1, �2} its dual frame. This allows us to write any 
left-invariant Hermitian metric g on (G, J) in the form

with x, y ∈ ℝ>0 , z ∈ ℂ and xy − |z|2 > 0.

Remark 3.1  We refer to the "Appendix’’ for an explicit computation of the HCF tensors 
written in the following.

3.1 � Complex tori

The Lie group is G = ℝ
4 , which is abelian and admits a unique left-invariant complex struc-

ture Jst . In this case, the HCF tensor of any left-invariant metric on ℂ2 = (ℝ4, Jst) is just 
K = 0 . Compact quotients of ℂ2 are complex tori.

3.2 � Hyperelliptic surfaces

The Lie group is G = S̃E(2) ×ℝ , where S̃E(2) is the universal cover of the special Euclidean 
group SE(2) ∶= SO(2)⋉ℝ

2 . It admits a unique left-invariant complex structure J and the 
structure constants � of its complexified Lie algebra are

Xt

GH
������������→ Y as t → T−

||dX(x, x�) − dY (𝜑(x),𝜑(x
�))|| < 𝜖, dX(x, (𝜓◦𝜑)(x)) < 𝜖,

||dY (y, y�) − dX(𝜓(y),𝜓(y�))|| < 𝜖, dY (y, (𝜑◦𝜓)(y)) < 𝜖.

(6)g = x 𝜁1 ⊙ 𝜁1 + y 𝜁2 ⊙ 𝜁2 + z 𝜁1 ⊙ 𝜁2 + z̄ 𝜁2 ⊙ 𝜁1,

𝜇(Z1,Z2) = Z1, 𝜇(Z1, Z̄2) = −Z1.
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The HCF tensor of a left invariant Hermitian metric on 
(
S̃E(2) ×ℝ, J

)
 is given by

Compact quotients of 
(
S̃E(2) ×ℝ, J

)
 are hyperelliptic surfaces, which admit Kähler 

metrics.

3.3 � Hopf surfaces

The Lie group is G = SU(2) ×ℝ . It admits a one-parameter family J� of left-invariant com-
plex structures, with � ∈ ℝ , and with respect to J� the structure constants � = �� of its com-
plexified Lie algebra are

The HCF tensor of a left-invariant Hermitian metric on 
(
SU(2) ×ℝ, J�

)
 is given by

Compact quotients of 
(
SU(2) ×ℝ, J�

)
 are Hopf surfaces, which are non-Kähler.

3.4 � Non‑Kähler properly elliptic surfaces

The Lie group is G = S̃L(2,ℝ) ×ℝ , where S̃L(2,ℝ) is the universal cover of SL(2,ℝ) . It 
admits a one-parameter family J� of left-invariant complex structure, with � ∈ ℝ , with respect 
to which the structure constants � = �� of its complexified Lie algebra are

The HCF tensor of a left-invariant Hermitian metric on 
(
S̃L(2,ℝ) ×ℝ, J�

)
 is given by

Compact quotients of 
(
S̃L(2,ℝ) ×ℝ, J�

)
 are non-Kähler properly elliptic surfaces.

K11̄ =
x2|z|2

(xy − |z|2)2 , K22̄ =
|z|4

(xy − |z|2)2 , K12̄ =
x2yz

(xy − |z|2)2 .

𝜇(Z1, Z2) = Z2 , 𝜇(Z1, Z̄2) = −Z̄2, 𝜇(Z2, Z̄2) = (−1 +
√
−1𝜆)Z1 + (1 +

√
−1𝜆)Z̄1.

K11̄ =
x4(1 + 𝜆2) + |z|2(2x2 + |z|2)

(xy − |z|2)2

K22̄ =
(1 + 𝜆2)x2|z|2 + 2(xy − |z|2)2 + |z|2(y2 + 2|z|2) − 2(1 + 𝜆2)x2(xy − |z|2)

(xy − |z|2)2

K12̄ =
xz(𝜆2x2 + (x + y)2)

(xy − |z|2)2

.

𝜇(Z1, Z2) =
√
−1Z1, 𝜇(Z1, Z̄2) =

√
−1Z̄1,

𝜇(Z1, Z̄1) = (−𝜆 +
√
−1)Z2 + (𝜆 +

√
−1)Z̄2.

K11̄ =
(1 + 𝜆2)y2|z|2 − 2(xy − |z|2)2 + |z|2(x2 − 2|z|2) − 2(1 + 𝜆2)y2(xy − |z|2)

(xy − |z|2)2

K22̄ =
𝜆2y4 + (y2 − |z|2)2

(xy − |z|2)2

K12̄ =
yz(𝜆2y2 + (x − y)2)

(xy − |z|2)2

.
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3.5 � Primary Kodaira surfaces

The Lie group is G = ℝ × H3(ℝ) , where H3(ℝ) is the three-dimensional real Heisenberg 
group. It admits a unique left-invariant complex structure J and the structure constants � of its 
complexified Lie algebra are

The HCF tensor of a left-invariant Hermitian metric on 
(
ℝ × H3(ℝ), J

)
 is

Compact quotients of 
(
ℝ × H3(ℝ), J

)
 are primary Kodaira surfaces, which are non-Kähler.

3.6 � Secondary Kodaira surfaces

The Lie group is G = ℝ⋉ H3(ℝ) . It admits two different left-invariant complex structure J± 
and the structure constants � = �± of its complexified Lie algebra are

The HCF tensor of a left-invariant Hermitian metric on 
(
ℝ⋉ H3(ℝ), J±

)
 is given by

Compact quotients of 
(
ℝ⋉ H3(ℝ), J±

)
 are secondary Kodaira surfaces, which are 

non-Kähler.

3.7 � Inoue surfaces of type S0

The group G = Sol4
0
 is a solvable 4-dimensional real Lie group which admits a two-parameter 

family Ja,b of left-invariant complex structures, where a, b ∈ ℝ , and with respect to Ja,b the 
structure constants � = �a,b of its complexified Lie algebra are

The HCF tensor of a left-invariant Hermitian metric on 
(
Sol4

0
, Ja,b

)
 is given by

Notice that 
(
Sol4

0
, Ja,b

)
 does not always admit a co-compact lattice. When such a lattice 

does exist, the quotient is an Inoue surface of type S0 , which is non-Kähler.

𝜇(Z1, Z̄1) =
√
−1(Z2 + Z̄2).

K11̄ =
−2y2(xy − |z|2) + y2|z|2

(xy − |z|2)2 , K22̄ =
y4

(xy − |z|2)2 , K12̄ =
y3z

(xy − |z|2)2 .

𝜇(Z1, Z2) = 𝜀Z1, 𝜇(Z1, Z̄2) = −𝜀Z1, 𝜇(Z1, Z̄1) = −𝜀
√
−1(Z2 + Z̄2), with 𝜀 = ± 1.

K11̄ =
|z|2(x2 + y2) − 2y2(xy − |z|2)

(xy − |z|2)2 , K22̄ =
y4 + |z|4

(xy − |z|2)2 , K12̄ =
yz(x2 + y2)

(xy − |z|2)2 .

𝜇(Z1,Z2) = −(b +
√
−1a)Z1, 𝜇(Z1, Z̄2) = (b +

√
−1a)Z1, 𝜇(Z2, Z̄2) = −2

√
−1a(Z2 + Z̄2).

K11̄ =
x2|z|2(b2 + 9a2)

(xy − |z|2)2

K22̄ =
|z|4(a2 + b2) + 16|z|2a2xy − 8a2x2y2

(xy − |z|2)2

K12̄ =
x2yz(b2 + 9a2)

(xy − |z|2)2

.
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3.8 � Inoue surfaces of type S±

The group G = Sol4
1
 is a solvable 4-dimensional real Lie group which admits two differ-

ent left-invariant complex structure J1,2 . The structure constants � = �1 of the complexi-
fied Lie algebra of 

(
Sol4

1
, J1

)
 are

and the HCF tensor of a left-invariant Hermitian metric on 
(
Sol4

1
, J1

)
 is given by

On the other hand, the structure constants � = �2 of the complexified Lie algebra of (
Sol4

1
, J2

)
 are

and the HCF tensor of a left-invariant Hermitian metric on 
(
Sol4

1
, J2

)
 is given by

Compact quotients of 
(
Sol4

1
, J1

)
 are Inoue surfaces of type S± , while compact quotient of (

Sol4
1
, J2

)
 are Inoue surfaces of type S+ . In both cases, these surfaces are non-Kähler.

4 � HCF on locally homogeneous surfaces

In this section we study the behavior of locally homogeneous solutions to the HCF on 
the family of compact complex surfaces we listed in Sect. 3. Furthermore, whenever a 
solution to the HCF is immortal, we determine the Gromov–Hausdorff limit of its nor-
malization (1+t)−1g(t) as t → +∞.

Let X be a compact complex surface covered by a connected, simply-connected 
4-dimensional real Lie group G and Γ ⊂ G a co-compact lattice such that X = Γ�G . By 
construction, all left-invariant tensor fields on G factorizes through X. This yields a one-
to-one correspondence between locally homogeneous solutions to the HCF on X and 
solutions to the corresponding ODE on G

where g0 denotes the pull-back of the starting metric on G. Nonetheless, since the standard 
left-action of G on itself does not always factorize through X = Γ�G , the quotient Γ�G is 
not globally G-homogeneous in general.

𝜇(Z1, Z2) = −Z2, 𝜇(Z1, Z̄2) = −Z2, 𝜇(Z1, Z̄1) = −Z1 + Z̄1,

K11̄ = −3 −
|z|2(z − z̄)2

(xy − |z|2)2 , K22̄ = −
y2(z − z̄)2

(xy − |z|2)2 , K12̄ =
y(z(z̄2 − z2) − 2xy(z̄ − z))

(xy − |z|2)2 .

𝜇(Z1, Z2) = −Z2, 𝜇(Z1, Z̄2) = −Z2, 𝜇(Z1, Z̄1) = −Z1 + Z̄1 + Z2 − Z̄2,

K11̄ = −3 −
|z|2(z − z̄)2 + 2y2(xy − |z|2) − y2|z|2

(xy − |z|2)2

K22̄ = −
y2((z − z̄)2 − y2)

(xy − |z|2)2

K12̄ =
y(z(z̄2 − z2) − 2xy(z̄ − z) + y2z)

(xy − |z|2)2

.

d

dt
g(t) = −K(g(t)), g(0) = g0,
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Notation. Any left-invariant Hermitian metric g on (G, J) will be considered in the 
form of (6). For the sake of shortness, we set D ∶= xy − |z|2 and u ∶= |z|2.

4.1 � Hyperelliptic surfaces

The HCF on 
(
S̃E(2) ×ℝ, J

)
 reduces to the following ODEs system:

Proposition 4.1  Let g0 be a locally homogeneous Hermitian metric on a hyperelliptic sur-
face X. Then, the solution g(t) to the HCF starting from g0 exists for all t ≥ 0 . Moreover

Proof  A direct computation yields that

i.e., the determinant of g(t) is always increasing. On the other hand, since all x,  y,  u 
decrease, the first claim follows. The last claim follows directly from the fact that

as t → +∞ . 	�  ◻

It is easy to show that a left-invariant metric g on 
(
S̃E(2) ×ℝ, J

)
 is Kähler if and 

only if z = 0 . Indeed, by a direct computation, one gets

Moreover, in that case it is also flat and so we get

Corollary 4.2  Any locally homogeneous solution g(t) to the HCF on a hyperelliptic surface 
X converges exponentially fast to a flat Kähler metric g∞.

Proof  We recall that g(t) is immortal and Ḋ(t) > 0 , x(t) < x0 , y(t) < y0 , u(t) < u0 for any 
t ≥ 0 . Notice that

which implies u(t) ≤ u0e
−

2

y0
t for all t ≥ 0 . Finally, since

it comes that x(t) → x∞ ∈ (0, x0) and y(t) → y∞ ∈ (0, y0) as t → +∞ . 	�  ◻

ẋ = −
x2u

D2
, ẏ = −

u2

D2
, u̇ = −2

x2yu

D2
.

(
X, (1+t)−1g(t)

) GH
������������→ {point} as t → ∞.

Ḋ =
xu

D
≥ 0,

(1+t)−1x(t), (1+t)−1y(t), (1+t)−1u(t) → 0

d𝜔 = −z 𝜁1 ∧ 𝜁2 ∧ 𝜁2 + z̄ 𝜁2 ∧ 𝜁1 ∧ 𝜁2.

u̇ ≤ −2
u

y0
,

lim
t→+∞

D(t) = D∞ ∈ (D0,+∞),
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4.2 � Hopf surfaces

The HCF on 
(
SU(2) ×ℝ, J�

)
 reduces to the ODEs system

with c ∶= 1 + �2.

Proposition 4.3  Let g0 be a locally homogeneous Hermitian metric on a Hopf surface X. 
Then, the solution g(t) to the HCF starting from g0 develops a finite extinction time T < ∞ 
and (X, g(t)) collapses as t → T−.

Proof  Let T ∈ (0,+∞] be the maximal existence time of the flow. Then, for any t ∈ [0, T) 
we have

Let us suppose by contradiction that T = +∞ . Then, it necessarily holds

On the other hand

and so by means of (9)

which is absurd. Thus g(t) develops a finite time singularity T < ∞ . In order to prove the 
last claim, let us suppose by contradiction that D → ∞ as t → T− . Then, 

this in turn imply limt→T− D ≠ ∞ , which is not possible. On the other hand, since the 
solution cannot be extended over t = T  , the limit limt→T− D cannot be positive and finite. 
Therefore, limt→T− D = 0 and the thesis follows. 	�  ◻

Next, we exhibit an explicit solution to the HCF starting from a diagonal metric on (
SU(2) ×ℝ, J�

)
.

(7)

ẋ = −
cx4 + u(2x2 + u)

D2

ẏ = −2 +
2cx2D − cx2u − u(y2 + 2u)

D2

u̇ = −2
xu(cx2 + 2xy + y2)

D2

,

(8)
Ḋ =

c x3 − 2x2y + (4x + y)u

D
,

ẋ < 0, u̇ < 0 ⟹ x(t) ≤ x0, u(t) ≤ u0.

(9)
lim
t→+∞

ẋ(t) = 0 ⟹ lim
t→+∞

(c − 1)
(
x2

D

)2

= lim
t→+∞

x2 + u

D
= 0

lim
t→+∞

u̇(t) = 0 ⟹ lim
t→+∞

u

x
(c − 1)

(
x2

D

)2

= lim
t→+∞

xu
(x + y

D

)2

= 0.

ẏ + 2 =
2cx2D − cx2u − u(y2 + 2u)

D2
≤ 2c

x2

D
≤ 2c

x2 + u

D
,

lim
t→+∞

ẏ(t) ≤ −2

lim
t→T−

ẋ(t) = 0 and lim
t→T−

ẏ(t) < −2,
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Example 4.4  Let g0 be a left-invariant diagonal Hermitian metric on 
(
SU(2) ×ℝ, J�

)
 . Then, 

the ODEs system (7) reduces to

It is worth noting that

Now suppose that y0 =
3

2
cx0 and that the solution to (10) starting from g0 satisfies

Then, by (11) we would get

which in turn implies

for some k ∈ ℝ . A direct computation yields that (12) solves (10) if and only if k = −
4

9c
 . 

Notice that the maximal existence time for this explicit solution is T =
9

4
cx0 .

4.3 � Non‑Kähler properly elliptic surfaces

The HCF on 
(
S̃L(2,ℝ) ×ℝ, J�

)
 reduces to the ODEs system

with c ∶= 1 + �2.

Proposition 4.5  Let g0 be a locally homogeneous Hermitian metric on a non-Kähler prop-
erly elliptic surface X. Then, the solution g(t) to the HCF starting from g0 exists for all 
t ≥ 0 . In particular, x(t) ∼ 2t and y(t) < y0 , u(t) < u0 for any t > 0.

Proof  Let T ∈ (0,+∞] be the maximal existence time of the flow. Then, for any t ∈ [0, T) , 
we have

(10)ẋ = − c
x2

y2
, ẏ = −2

y − cx

y
.

(11)ẍ = − 4c
x2

y2

(
y −

3

2
cx
)
, ÿ = + 4c

x

y3

(
y −

3

2
cx
)
.

y(t) =
3

2
c x(t) for all t ∈ [0, T).

ẍ(t) = ÿ(t) = 0,

(12)x(t) = x0 + kt, y(t) =
3

2
cx0 +

3

2
ckt

(13)

ẋ =2 +
2cy2D − cy2u − ux2 + 2u2

D2

ẏ = −
cy4 − 2y2u + u2

D2

u̇ = − 2
yu(x2 − 2xy + cy2)

D2

,
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We prove now that Ḋ(t) > 0 for any t ∈ [0, T) . Let us suppose by contradiction that there 
exists t∗ ∈ [0, T) such that Ḋ(t∗) ≤ 0 . Then, using (14) we get

On the other hand, since D(t) = x(t)y(t) − u(t) and u̇(t∗) < 0 , it necessarily holds

Moreover, by (15) and a straightforward computation we get

and

Finally, (16), (17) and (18) imply

which is not possible. Hence, the determinant D satisfies

On the other hand, it holds

and hence (14), (19) and (20) imply T = +∞.
We are now ready to prove the second part of the proposition, that is, x(t) ∼ 2t as 

t → ∞ . To do this, we use again a contradiction argument. Let us denote with

and suppose by contradiction that u∞ > 0 . Since

we have by means of (14)

(14)
Ḋ =

cy3 + 2y(D − u) + xu

D
,

ẏ < 0, u̇ < 0 ⟹ y(t) ≤ y0, u(t) ≤ u0.

(15)−x(t∗)u(t∗) ≥ cy(t∗)
3 − 2y(t∗)(u(t∗) − D(t∗)).

(16)ẋ(t∗)y(t∗) + x(t∗)ẏ(t∗) ≤ 0.

(17)D(t∗)
2ẋ(t∗)y(t∗) ≥ 4D(t∗)

2y(t∗) + 3cy(t∗)
3D(t∗)

(18)D(t∗)
2x(t∗)ẏ(t∗) ≥ 4y(t∗)u(t∗)D(t∗) − cy(t∗)

3D(t∗).

4D(t∗)y(t∗) + 2cy(t∗)
2 + 4y(t∗)u(t∗) ≤ D(t∗)(ẋ(t∗)y(t∗) + x(t∗)ẏ(t∗)) ≤ 0

(19)Ḋ > 0 ⟹ D(t) ≥ D0 for all t ∈ [0, T).

(20)

ẋ ≤ 2 +
2cy2D + 2u2

D2
≤ 2

(
1 + c

y2
0

D0

+
u2
0

D2
0

)
⟹ x(t) ≤ 2

(
1 + c

y2
0

D0

+
u2
0

D2
0

)
t + x0

u∞ ∶= lim
t→+∞

u(t), y∞ ∶= lim
t→+∞

y(t),

lim
t→+∞

ẏ(t) = 0 ⟹ lim
t→+∞

(c − 1)
(y2
D

)2

= lim
t→+∞

y2 − u

D
= 0,

lim
t→+∞

u̇(t) = 0 ⟹ lim
t→+∞

u

y
(c − 1)

(y2
D

)2

= lim
t→+∞

yu
(x − y

D

)2

= 0,

(21)lim
t→+∞

y(x − y)

D
= lim

t→+∞

y2 − u

D
= 0 ⟹ lim

t→+∞

y

x
−

u

xy

1 −
u

xy

= lim
t→+∞

1 −
y

x

1 −
u

xy

= 0.
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In view of (21), we have two cases depending on whether limt→∞ |1 − u

xy
| is bounded or 

not. If we suppose that limt→∞ |1 − u

xy
| < ∞ , then

On the other hand, if limt→∞ |1 − u

xy
| = ∞ , then

Since both cases lead to an absurd, it comes

Let us now suppose by contradiction that x(t) → x∞ < +∞ as t → +∞ . Then, 
D(t) → D∞ = x∞y∞ ∈ (D0,+∞) as t → +∞ and therefore it must holds x∞ > 0 . By means 
of (14)

which is not possible. Therefore, x(t) → ∞ as t → ∞ . On the other hand, we have

and, since

the claim follows. Indeed, if y∞ > 0 , then D∞ = +∞ and hence (23) follows. Now, let us 
assume that y∞ = 0 . Since D∞ > D0 > 0 , we get

Moreover, u
(

x

D

)2

∼
u

y2
 and

Hence, there exist C > 0 and t∗ > 0 such that

This in turns implies

and hence u
(

x

D

)2

→ 0 . 	�  ◻

In view of this result it comes the following

lim
t→+∞

xy = u∞ and lim
t→+∞

D = 0.

lim
t→+∞

xy = 0 and lim
t→+∞

D = −u∞.

(22)u∞ = 0.

lim
t→+∞

Ḋ(t) = 0 ⟹ cy3
∞
+ 2y∞D∞ = 0 ⟹ y∞ = 0 ⟹ D∞ = 0

ẋ = 2 + 2c
y2

D
− cu

( y

D

)2

−
ux2

D2
+ 2

u2

D2

(23)y2

D
→ 0, u

( y

D

)2

→ 0, u
(
x

D

)2

→ 0,
(
u

D

)2

→ 0,

y2

D
→ 0, u

( y

D

)2

→ 0,
(
u

D

)2

→ 0.

d

dt

(
u

y2

)
= 2

(
u

y2

)
⋅
1

y

(
−1 + 2

y2 − u

D

)
.

d

dt

(
u

y2

)
≤ −2C

(
u

y2

)
for any t ≥ t∗.

(
u(t)

y(t)2

)
≤

( u(t∗)

y(t∗)
2

)
e−2C(t−t∗) for any t ≥ t∗,
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Proposition 4.6  Let X be a non-Kähler properly elliptic surface and g(t) be a locally homo-
geneous solution to the HCF on X. Then, 

where C is the base curve of X and g
KE

 is the Kähler–Einstein metric on C with 
Ric(g

KE
) = −g

KE
.

The proof of this statement follows the same arguments used in [26, Thm 1.6 (c)]. For 
this reason, we just recall the main points.

Proof  By definition, a properly elliptic surface is a compact complex surface X with 
Kodaira dimension �(X) = 1 and first Betti number b1(X) odd admitting an elliptic fibra-
tion � ∶ X → C over a compact complex curve C of genus g(C) ≥ 2 . Moreover, by the 
Riemann Uniformization Theorem, C admits a unique Kähler–Einstein metric g

KE
 with 

Ric(g
KE
) = −g

KE
 . Note that, this metric also satisfies 𝜋∗g

KE
= 2𝜁1 ⊗ 𝜁1.

On the other hand, the fibers of the elliptic fibration � ∶ X → C are spanned by the 
real and imaginary parts of Z2 , which shrinks to zero along (1+t)−1g(t) as t → ∞ . There-
fore, if we consider a not necessarily continuous function f ∶ C → S satisfying �◦f = id , 
then for any 𝜖 > 0 there exists t∗(𝜖) > 0 such that (�, f ) is a GH �-approximation between (
X, (1+t)−1g(t)

)
 and (C, g

KE
) for any t > t∗(𝜖) . This concludes the proof. 	�  ◻

4.4 � Primary Kodaira surfaces

The HCF on 
(
ℝ × H3(ℝ), J

)
 reduces to the ODEs system

Proposition 4.7  Let g0 be a locally homogeneous Hermitian metric on a primary Kodaira 
surface X. Then, the solution g(t) to the HCF starting from g0 exists for all t ≥ 0 . Moreover,

Proof  Let T ∈ (0,+∞] denote the maximal existence time of the flow. Then, for any 
t ∈ [0, T) , it holds that

and, on the other hand

(
X, (1+t)−1g(t)

) GH
������������→

(
C, g

KE

)
as t → ∞,

(24)ẋ =
2y2D − y2u

D2
, ẏ = −

y4

D2
, u̇ = − 2

y3u

D2
.

(
X, (1+t)−1g(t)

) GH
������������→ {point} as t → ∞.

(25)
Ḋ =

y3

D
> 0 ⟹ D(t) ≥ D0,

ẏ < 0, u̇ < 0 ⟹ y(t) ≤ y0, u(t) ≤ u0
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Therefore, the long-time existence of the solution follows from (25) and (26). For the sec-
ond claim, we notice that

Now, let us suppose by contradiction that y
2u

D2
→ 𝛿 > 0 , as t → +∞ . From this and (27) it 

comes that

and hence there exist 0 < 𝛿′ < 𝛿 and t∗ > 0 such that, for any t ∈ [t∗,+∞) , it holds

which is not possible. As a consequence, we have that ẋ(t) → 0 as t → +∞ . From this last 
claim, arguing again by contradiction, we also get (1+t)−1x(t) → 0 as t → +∞ . 	�  ◻

4.5 � Secondary Kodaira surfaces

The HCF on 
(
ℝ⋉ H3(ℝ), J

)
 reduces to the ODEs system

Proposition 4.8  Let g0 be a locally homogeneous Hermitian metric on a secondary Kodaira 
surface X. Then, the solution g(t) to the HCF starting from g0 exists for all t ≥ 0 . Moreover

Proof  Let T ∈ (0,+∞] be the maximal existence time of the solution. Then, for any 
t ∈ [0, T) it holds

Moreover, since

(26)
Ḋ ≤

y3
0

D
⟹ D(t) ≤

√
2ty3

0
+ D2

0
,

ẋ ≤
2y2

0

D0

⟹ x(t) ≤
(2y2

0

D0

)
t + x0.

(27)
lim
t→+∞

ẏ(t) = 0 ⟹ lim
t→+∞

y2

D
= 0,

lim
t→+∞

u̇(t) = 0 ⟹ lim
t→+∞

y3u

D2
= 0.

ẋ ∼ −
y2u

D2
as t → ∞

ẋ ≤ −𝛿� ⟹ x(t) ≤ −𝛿�t + x(t∗),

(28)ẋ =
2y2D − u(x2 + y2)

D2
, ẏ = −

y2 + u2

D2
, u̇ = −2

yu(x2 + y2)

D2
.

(
X, (1+t)−1g(t)

) GH
������������→ {point} as t → ∞.

Ḋ =
y3 + xu

D
> 0 ⟹ D(t) ≥ D0,

ẏ < 0, u̇ < 0 ⟹ y(t) ≤ y0, u(t) ≤ u0.
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it follows that T = +∞ . For the second claim, we firstly suppose by contradiction that 
u(t) → u∞ > 0 as t → +∞ . Thus, since

we have

On the other hand, it follows by (29) that

which is not possible, and hence u(t) → 0 as t → +∞.
Finally, let us assume by contradiction that x

2u

D
→ 𝛿 > 0 as t → +∞ . Then, we get

and so there exist 0 < 𝛿′ < 𝛿 and t∗ > 0 such that, for any t ∈ [t∗,+∞) , we have

which is absurd. Consequently it comes ẋ(t) → 0 as t → +∞ . Arguing again by contradic-
tion, we finally get (1+t)−1x(t) → 0 as t → +∞ . 	�  ◻

4.6 � Inoue surfaces of type S0

The HCF on 
(
Sol4

0
, Ja,b

)
 reduces to the ODEs system

Proposition 4.9  Let g0 be a locally homogeneous Hermitian metric on an Inoue surfaces X 
of type S0 . Then, the solution g(t) to the HCF starting from g0 exists for all t ≥ 0 . In par-
ticular, y(t) ∼ 8a2 t and x(t) < x0 , u(t) < u0 for any t > 0.

ẋ <
2y2

D
≤

2y2
0

D0

⟹ x(t) ≤
(2y2

0

D0

)
t + x0,

(29)
lim
t→+∞

ẏ(t) = 0 ⟹ lim
t→+∞

y

D
= lim

t→+∞

u

D
= 0,

lim
t→+∞

u̇(t) = 0 ⟹ lim
t→+∞

x2yu

D2
= 0,

0 ≤
u∞

D
≤

u

D
→ 0 ⟹ lim

t→+∞
D(t) = +∞ ⟹ lim

t→+∞
x(t)y(t) = +∞.

x2yu

D2
=

1

1 −
u

xy

⋅ u ⋅
1

y −
u

x

→ 0 ⟹ y −
u

x
→ +∞

ẋ ∼ −
x2u

D2
as t → ∞

ẋ < −𝛿� ⟹ x(t) ≤ −𝛿�t + x(t∗),

(30)

ẋ = −(9a2 + b2)
x2u

D2

ẏ = 8a2 − (9a2 + b2)
(
u

D

)2

u̇ = −2(9a2 + b2)
x2u

D2
y

.
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Proof  Let T ∈ (0,+∞] denotes the maximal existence time of the solution. For any 
t ∈ [0, T) we have

Moreover, since

where k ∶= 8a2x0

x0y0−|z0|2 , it follows that T = +∞.
For the second claim, let us assume by contradiction that u

D
→ 𝛿 > 0 , i.e., u → u∞ > 0 

and D → D∞ < ∞ . Then, there exists a finite time t∗ > 0 and a constant k1 > 1 such that, 
for any t ≥ t∗,

and hence

Up to enlarge t∗ , we can also assume that there exists k2 > 1 such that

and so, by means of (31)

for any t ≥ t∗ . This leads us to

for any t ≥ t∗ , and hence limt→+∞ u(t) = −∞ , which is not possible. Therefore, u
D
→ 0 must 

hold and we have

as t → +∞ . 	�  ◻

Then, in view of this result, we have

Proposition 4.10  Let X be an Inoue surface of type S0 and g(t) be a locally homogeneous 
solution to the HCF on X. Then, 

Ḋ = 8a2x + (9a2 + b2)
xu

D
> 0, ⟹ D(t) ≥ D0,

ẋ < 0, u̇ < 0 ⟹ x(t) ≤ x0, u(t) ≤ u0.

ẏ ≤
8a2xy

D
<

8a2x0y

D0

⟹ y < y0e
kt,

−k1x(t)
2 ≤ ẋ(t) ≤ −

1

k1
x(t)2

(31)
1

k1(t − t∗) +
1

x(t∗)

≤ x(t) ≤
1

1

k1
(t − t∗) +

1

x(t∗)

−k2x(t) ≤ u̇(t) ≤ −
1

k2
x(t) for any t ≥ t∗

−k2
1

1

k1
(t − t∗) +

1

x(t∗)

≤ u̇(t) ≤ −
1

k2

1

k1(t − t∗) +
1

x(t∗)

,

u(t∗) − k1k2 log
( x(t∗)

k1
(t − t∗) + 1

)
≤ u(t) ≤ u(t∗) −

1

k1k2
log

(
k1x(t∗)(t − t∗) + 1

)
,

ẏ(t) → 8a2

�
X, (1+t)−1g(t)

� GH
������������→ S1

�√
2a

�

�
as t → ∞,
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where S1
�√

2a

�

�
=
�
z ∈ ℂ ∶ �z� =

√
2a

�

�
 is the circle of length 2

√
2a.

In order to prove this statement, we recall the underlying geometry of the Inoue sur-
faces of type S0 . Let a, b ∈ ℝ , with a > 0 and b ≠ 0 , and A ∈ SL(3,ℤ) be a matrix with 
eigenvalues

The pair Ga,b ∶=
(
Sol4

0
, Ja,b

)
 can be realized as the group of complex 3 × 3 matrices of the 

form

Indeed, let {Ei
j
} denote the standard basis of ��(3,ℂ) . Then, the Lie algebra 

�a,b ∶= Lie(Ga,b) ⊂ ��(3,ℂ) is the ℝ-span of

Since the structure constants of �a,b with respect to {Xi} are given by

setting

one obtains the structure constants given in Sect.  3. Let now (v1, v2, v3)t ∈ ℝ
3 and 

(w1,w2,w3)
t ∈ ℂ

3 be the eigenvectors of e2
√
2a and e

√
2(−a+

√
−1b) , respectively, and consider 

the lattice Γa,b ⊂ Ga,b generated by

Then, the left action of Γa,b on Ga,b is explicitly given by

and the quotient X = Γa,b�Ga,b is an Inoue surface of type S0.

Proof of Proposition 4.10  Let X = Γa,b�Ga,b be an Inoue surface of type S0 and g(t) a locally 
homogeneous solution to the HCF on X. By (32), the projection

e2
√
2a, e

√
2(−a+

√
−1b), e

√
2(−a−

√
−1b).

Ga,b =

⎧
⎪⎨⎪⎩
M(p, q, r, s) ∶=

⎛
⎜⎜⎜⎝

es
√
2(−a+

√
−1b) 0 p +

√
−1q

0 es2
√
2a r

0 0 1

⎞
⎟⎟⎟⎠
∶ p, q, r, s ∈ ℝ

⎫
⎪⎬⎪⎭
.

X1 ∶= (1 −
√
−1)E1

3
, X2 ∶= (1 +

√
−1)E1

3
, X3 ∶= E2

3
,

X4 ∶=
√
2(−a +

√
−1b)E1

1
+ 2

√
2aE2

2
.

[X1,X4] =
√
2aX1 −

√
2bX2, [X2,X4] =

√
2bX1 +

√
2aX2, [X3,X4] = −2

√
2aX3,

Z1 ∶=
X1 −

√
−1X2√
2

, Z2 ∶=
X3 −

√
−1X4√
2

,

h0 ∶=

⎛
⎜⎜⎜⎝

e
√
2(−a+

√
−1b) 0 0

0 e2
√
2a0

0 0 1

⎞
⎟⎟⎟⎠
, hi ∶=

⎛⎜⎜⎝

10wi

01 vi
00 1

⎞⎟⎟⎠
, i = 1, 2, 3.

(32)

h0 ⋅M(p, q, r, s) = M
�
e−

√
2a(cos(

√
2b)p − sin(

√
2b)q), e−

√
2a(sin(

√
2b)p + cos(

√
2b)q), e2

√
2ar, s + 1

�

hi ⋅M(p, q, r, s) = M(p + Re(wi), q + Im(wi), r + vi, s)
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factorizes to a map � ∶ X → S1 = ℝ∕ℤ , which is a fibration with standard fiber T3 (see 
[8]). On the other hand, the path

factorizes to a section � ∶ S1 = ℝ∕ℤ → X whose length with respect to g(t) is

Notice also that by Proposition 4.9

Moreover, in analogy with [26, Lemma 5.2], the kernel of g̃∞ is the integrable distribution 
D spanned by X1,X2 , which is dense inside any fiber of � . Finally, the claim follows by 
(33) and this last observation (see e.g., [3, Cor 3.18]). 	�  ◻

4.7 � Inoue surfaces of type S±

The HCF on 
(
Sol4

1
, J1

)
 reduces to the ODEs system

Proposition 4.11  Let g0 be a locally homogeneous Hermitian metric on an Inoue surfaces 
X of type S± obtained by 

(
Sol4

1
, J1

)
 . Then, the solution g(t) to the HCF starting from g0 

exists for all t ≥ 0 . In particular, x(t) ∼ 3t and y(t) < y0 , u(t) < u0 for any t > 0.

Proof  Let T ∈ (0,+∞] be the maximal existence time of the flow. Then, for any t ∈ [0, T) , 
we have

On the other hand

and the long-time existence follows, i.e., T = +∞ . Finally, to conclude the proof it is 
enough to show

Ga,b → ℝ, M(p, q, r, s) ↦ s

ℝ → Ga,b, s ↦ M(0, 0, 0, s)

(33)�g(t)(�) =
√
y(t).

(1+t)−1g(t) → g̃∞ ∶=

(
0 0

08a2

)
as t → ∞.

(34)ẋ = 3 −
u|z − z̄|2

D2
, ẏ = −

y2|z − z̄|2
D2

, u̇ = −
2xy2|z − z̄|2

D2
.

(35)
Ḋ = 3y +

y|z − z̄|2
D

≥ 0,

ẏ < 0, u̇ < 0 ⟹ y(t) ≤ y0, u(t) ≤ u0.

ẋ = 3 −
u|z − z̄|2

D2
≤ 3 ⟹ x(t) ≤ 3t + x0

(36)lim
t→∞

|z − z̄|
D

= 0.
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Let us assume by contradiction that |z−z̄|
D

→ 𝜖 > 0 . Then, by the means of (34) and (35), 
there exists t∗ > 0 and a constant k1 > 1 such that

This in turn implies, for any t ≥ t∗,

Besides, up to enlarge t∗ , there also exists a constant k2 > 1 such that

Therefore, since (37) holds, for any t ≥ t∗ we have

and

Nonetheless, this would imply limt→+∞ u(t) = −∞ , which is not possible. Hence, (36) 
holds and x ∼ 3t follows. 	�  ◻

The HCF on 
(
Sol4

1
, J2

)
 reduces to the ODEs system

Proposition 4.12  Let g0 be a locally homogeneous Hermitian metric on an Inoue surfaces 
X of type S+ obtained by 

(
Sol4

1
, J2

)
 . Then, the solution g(t) to the HCF starting from g0 

exists for all t ≥ 0 . In particular, x(t) ∼ 3t and y(t) < y0 , u(t) < u0 for any t > 0.

Proof  Let T ∈ (0,+∞] denote the maximal existence time of the solution. Then, a direct 
computation yields that

On the other hand, since

−k1y(t)
2 ≤ ẏ(t) ≤ −

1

k1
y(t)2 for any t ≥ t∗.

(37)
1

k1(t − t∗) +
1

y(t∗)

≤ y(t) ≤
1

1

k1
(t − t∗) +

1

y(t∗)

.

−k2y(t) ≤ u̇(t) ≤ −
1

k2
y(t) for any t ≥ t∗.

−k2
1

1

k1
(t − t∗) +

1

y(t∗)

≤ u̇(t) ≤ −
1

k2

1

k1(t − t∗) +
1

y(t∗)

u(t∗) − k1k2 log

(
y(t∗)

k1
(t − t∗) + 1

)
≤ u(t) ≤ u(t∗) −

1

k1k2
log

(
k1y(t∗)(t − t∗) + 1

)
.

(38)

ẋ = 3 +
2y2

D
−

u(y2 + |z − z̄|2)
D2

ẏ = −
y2(|z − z̄|2 + y2)

D2

u̇ = −
2y2(x|z − z̄|2 + yu)

D2

.

(39)
Ḋ = 3y +

y(|z − z̄|2 + y2)

D2
≥ 0,

ẏ < 0, u̇ < 0 ⟹ y(t) ≤ y0, u(t) ≤ u0.
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we have T = +∞ and the first part of the claim follows. To conclude the proof it is enough 
to show that

By the means of (39), we can have either

In the former case, (39) directly implies (40). Let us assume then limt→+∞ D(t) < +∞ . By 
means of (39), this implies y(t) → 0 for t → ∞ , and hence limt→∞

2y2

D
= 0 . Moreover, using 

the same argument as in the proof of Proposition 4.11, one can prove that |z−z̄|
D

→ 0 neces-
sarily holds, and so we obtain (40). 	�  ◻

In view of the above results, we have

Proposition 4.13  Let X be an Inoue surface of type S± and g(t) be a locally homogeneous 
solution to the HCF on X. Then, 

where S1
�√

3

2�

�
= {z ∈ ℂ ∶ �z� =

√
3

2�
} is the circle of length 

√
3.

We briefly recall the construction of Inoue surfaces of type S+ . Let N ∈ SL(2,ℤ) be 
a unimodular matrix with real positive eigenvalues given by � and �−1 , with 𝜆 > 1 . It is 
well known that any S+ surface can be realized as the quotient of the group

by a lattice Γ+ ∶= ⟨f0, f1, f2, f3⟩ , where fi ∈ G+ are defined starting from N (see [8]).
Notice that Inoue surfaces of type S± enjoy nearly the same properties of surfaces of 

type S0 (see [8]). In particular, they do not contain complex curves and any S+ surface 
is diffeomorphic to a bundle over S1 . Moreover, since any S− surface admits an unrami-
fied double cover given by a S+ surface, it is enough to prove the statement for Inoue 
surfaces of type S+.

Proof of Proposition 4.13  Let X = Γ+�G+ be an Inoue surface of type S+ and g(t) a locally 
homogeneous solution to the HCF on X. The application

factorizes to a map � ∶ X → S1 , which is a locally trivial fibration (see [8]). On the other 
hand, the path

ẋ ≤ 3 +
2y2

D
≤ 3 +

2y2
0

D0

,

(40)lim
t→∞

2y2

D
= lim

t→∞

u(y2 + |z − z̄|2)
D2

= 0.

lim
t→+∞

D(t) = +∞ or lim
t→+∞

D(t) < +∞.

�
X, (1+t)−1g(t)

� GH
������������→ S1

�√
3

2�

�
as t → ∞,

G+ ∶=

⎧
⎪⎨⎪⎩
M+(r, q, v, u) ∶=

⎛⎜⎜⎝

1uv

0qr

001

⎞⎟⎟⎠
∶ r, v, u ∈ ℝ, q ∈ ℝ>0

⎫
⎪⎬⎪⎭
.

G+ → ℝ, M+(r, q, v, u) ↦
log q

log �
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factorizes to a section � ∶ S1 → X whose length with respect to g(t) is

Now, in view of the above results

Again, the kernel of g̃∞ is the integrable distribution D spanned by the real and imaginary 
part of Z2 , which is dense inside any fiber of � (see [26, Lemma 6.2]). Therefore, in anal-
ogy with the case of S0 surfaces, the claim follows. 	�  ◻

We are now in position to prove Theorems A and B.

Proof of Theorems A and B  Let X be a compact complex surface and g0 a locally homogene-
ous non-Kähler metric on X. By Theorem 2.2 and Remark 2.3 X is a quotient Γ�G , where 
G is one of the Lie groups listed in Sect. 3, i.e.,

and Γ ⊂ G is a co-compact lattice.
Let also T ∈ (0,+∞] be the extinction time of the HCF solution starting from g0 . Then, 

by means of Propositions 4.1, 4.3, 4.5, 4.7, 4.8, 4.9, 4.11 and 4.12, we have T < ∞ if and 
only G= SU(2) ×ℝ . This implies Theorem A.

Finally, Theorem B comes from Propositions 4.1, 4.6, 4.7, 4.8, 4.10 and 4.13. 	�  ◻
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Appendix

In this “Appendix”, we explicitly write down the tensors S and Qi used in Sect. 3 to obtain 
the HCF tensor K. We assume G to be one of the (non-abelian) Lie groups listed in Sect. 3, 
equipped with a left-invariant Hermitian structure (J, g) as in (6). Our results directly follow 
by the formulas given in Sect. 2 and the structure equations of G.

ℝ → G+, s ↦ M+(0, �
s, 0, 0)

�g(t)(�) =
√
x(t).

(1+t)−1g(t) → g̃∞ ∶=

(
30

00

)
as t → ∞.

S̃E(2) ×ℝ, SU(2) ×ℝ, S̃L(2,ℝ) ×ℝ, ℝ × H3(ℝ), ℝ⋉ H3(ℝ), Sol4
0
, Sol4

1
,
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Hyperelliptic surfaces

Hopf surfaces

Here, � ∈ ℝ denotes the parameter of the family of complex structures related to Hopf 
surfaces.

S11̄ =
x2|z|2

(xy−|z|2)2 , S22̄ =
xy|z|2

(xy−|z|2)2 , S12̄ =
x2yz

(xy−|z|2)2 ,

Q1

11̄
=

x2|z|2
(xy−|z|2)2 , Q1

22̄
=

xy|z|2
(xy−|z|2)2 , Q1

12̄
=

xz|z|2
(xy−|z|2)2 ,

Q2

11̄
= 0, Q2

22̄
=

2|z|2
xy−|z|2 , Q2

12̄
= 0,

Q3

11̄
=

x2|z|2
(xy−|z|2)2 , Q3

22̄
=

|z|4
(xy−|z|2)2 , Q3

12̄
=

xz|z|2
(xy−|z|2)2 ,

Q4

11̄
= 0, Q4

22̄
=

|z|2
xy−|z|2 , Q4

12̄
= 0.

S11̄ =
x(x3(1+𝜆2)+|z|2(2x+y))

(xy−|z|2)2 ,

S22̄ =
−(1+𝜆2)x2(xy−2|z|2)−4|z|2(xy−|z|2)+y2(2x2+|z|2)

(xy−|z|2)2 ,

S12̄ =
xz(−i𝜆(xy−|z|2)+x2(1+𝜆2)+y(x+y)+|z|2)

(xy−|z|2)2 ,

Q1

11̄
=

x((1+𝜆2)x3(xy−|z|2)2+y|z|2(x2y2−|z|4)+(x+y)(xy−2|z|2)|z|4+2x2y(xy−|z|2))
(xy−|z|2)4 ,

Q1

22̄
=

y((1+𝜆2)x3(xy−|z|2)2+y|z|2(x2y2−|z|4)+(x+y)(xy−2|z|2)|z|4+2x2y(xy−|z|2))
(xy−|z|2)4 ,

Q1

12̄
=

z((1+𝜆2)x3+(2x+y)|z|2)
(xy−|z|2)2 ,

Q2

11̄
=

2|z|2
xy−|z|2 ,

Q2

22̄
=

2(1+𝜆2)x2

xy−|z|2 ,

Q2

12̄
=

−2xy(1+i𝜆)

xy−|z|2 ,

Q3

11̄
=

(1+𝜆2)x4+(2x2+|z|2)|z|2
(xy−|z|2)2 ,

Q3

22̄
=

(1+𝜆2)x2+(2x+y)y|z|2
(xy−|z|2)2 ,

Q3

12̄
=

z((1+𝜆2)x3+i𝜆x+(x+y)|z|2+x2y)
(xy−|z|2)2 ,

Q4

11̄
=

|z|2
xy−|z|2 ,

Q4

22̄
=

(1+𝜆2)x2

xy−|z|2 ,

Q4

12̄
=

−(1+i𝜆)xz

xy−|z|2 .
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Non‑Kähler properly elliptic surfaces

Here, � ∈ ℝ denotes the parameter of the family of complex structures related to non-
Kähler properly elliptic surfaces.

Primary Kodaira surfaces

S11̄ =
−y(2x+(1+𝜆2)y)(xy−|z|2)+((x+y)2+a2y2−4)|z|2

(xy−|z|2)2 ,

S22̄ =
y((1+𝜆2)y3+(x−2y)|z|2)

(xy−|z|2)2 ,

S12̄ =
yz((1+i𝜆)(xy−|z|2)+x2−2xy+(1+𝜆2)y2)

(xy−|z|2)2 ,

Q1

11̄
=

x((1+𝜆2)y3+(x−2y)|z|2)
(xy−|z|2)2 ,

Q1

22̄
=

y((1+𝜆2)y3+(x−2y)|z|2)
(xy−|z|2)2 ,

Q1

12̄
=

z((1+𝜆2)y3+(x−2y)|z|2)
(xy−|z|2)2 ,

Q2

11̄
=

2y2(1+𝜆2)

xy−|z|2 ,

Q2

22̄
=

2|z|2
xy−|z|2 ,

Q2

12̄
=

2(1+i𝜆)yz

xy−|z|2 ,

Q3

11̄
=

((1+𝜆2)y2+x(x−2y))|z|2
(xy−|z|2)2 ,

Q3

22̄
=

(1+𝜆2)y4+|z|2(|z|2−2y2)
(xy−|z|2)2 ,

Q3

12̄
=

z((1−i𝜆)y(xy−|z|2)+(1+𝜆2)y3+x|z|2)
(xy−|z|2)2 ,

Q4

11̄
=

y2(1+𝜆2)

xy−|z|2 ,

Q4

22̄
=

|z|2
xy−|z|2 ,

Q4

12̄
=

1+i𝜆

xy−|z|2 .

S11̄ =
−y2(xy−2|z|2)
(xy−|z|2)2 , S22̄ =

y4

(xy−|z|2)2 , S12̄ =
y3z

(xy−|z|2)2 ,

Q1

11̄
=

xy3

(xy−|z|2)2 , Q1

22̄
=

y4

(xy−|z|2)2 , Q1

12̄
=

y3z

(xy−|z|2)2 ,

Q2

11̄
=

2y2

xy−|z|2 , Q2

22̄
= 0, Q2

12̄
= 0,

Q3

11̄
=

y2|z|2
(xy−|z|2)2 , Q3

22̄
=

y4

(xy−|z|2)2 , Q3

12̄
=

y3z

(xy−|z|2)2 ,

Q4

11̄
=

y2

xy−|z|2 , Q4

22̄
= 0, Q4

12̄
= 0.
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Secondary Kodaira surfaces

Inoue surfaces of type S0

Here, a, b ∈ ℝ denotes the parameters of the family of complex structures on Inoue sur-
faces of type S0.

S11̄ =
(x2+y2)|z|2−y2(xy−|z|2)

(xy−|z|2)2 , S22̄ =
y(x|z|2+y3)
(xy−|z|2)2 , S12̄ =

(x2+y2)+i(xy−|z|2)
(xy−|z|2)2 ,

Q1

11̄
=

x(x|z|2+y3)
(xy−|z|2)2 , Q1

22̄
=

y(x|z|2+y3)
(xy−|z|2)2 , Q1

12̄
=

z(x|z|2+y3)
(xy−|z|2)2 ,

Q2

11̄
=

2y2

xy−|z|2 , Q2

22̄
=

2|z|2
xy−|z|2 , Q2

12̄
=

2iyz

xy−|z|2 ,

Q3

11̄
=

(x2+y2)|z|2
(xy−|z|2)2 , Q3

22̄
=

y4+|z|4
(xy−|z|2)2 , Q3

12̄
=

z(x+iy)(|z|2−iy2)
(xy−|z|2)2 ,

Q4

11̄
=

y2

xy−|z|2 , Q4

22̄
=

|z|2
xy−|z|2 , Q4

12̄
=

iyz

xy−|z|2 .

S11̄ =
x((b2+9a2)|z|2+4a2(xy−|z|2))

(xy−|z|2)2 ,

S22̄ =
xy((b2+9a2)|z|2−8a2(xy−|z|2))

(xy−|z|2)2 ,

S12̄ =
xz((b2+9a2)xy−2a(a+ib)(xy−|z|2))

(xy−|z|2)2 ,

Q1

11̄
=

x2((b2+9a2)|z|2+4a2(xy−|z|2))
(xy−|z|2)2 ,

Q1

22̄
=

xy((b2+9a2)|z|2+4a2(xy−|z|2))
(xy−|z|2)2 ,

Q1

12̄
=

xz((b2+9a2)|z|2+4a2(xy−|z|2))
(xy−|z|2)2 ,

Q2

11̄
=

8a2x2

xy−|z|2 ,

Q2

22̄
=

2(b2+a2)|z|2
xy−|z|2 ,

Q2

12̄
=

−4a(a+ib)

xy−|z|2 ,

Q3

11̄
=

(b2+9a2)x2|z|2
(xy−|z|2)2 ,

Q3

22̄
=

(b2+9a2)|z|4+4a2(xy+2|z|2)(xy−|z|2)
(xy−|z|2)2 ,

Q3

12̄
=

xz((b2+9a2)|z|2+2a(3a+ib)(xy−|z|2))
(xy−|z|2)2 ,

Q4

11̄
=

4a2x2

xy−|z|2 ,

Q4

22̄
=

(b2+a2)|z|2
xy−|z|2 ,

Q4

12̄
=

−2a(a+ib)

xy−|z|2 .
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Inoue surfaces of type S±

For what concerns the complex structure J1 on Inoue surfaces of type S± , we get

On the other hand, given the complex structure J2 on Inoue surfaces of type S+ , we get

S11̄ =
−2(xy−|z|2)2−xy(xy−|z|2)−(z2+z̄2)|z|2+2xy|z|2

(xy−|z|2)2 ,

S22̄ =
y2(xy+|z|2−(z2+z̄2))

(xy−|z|2)2 ,

S12̄ =
xy2(z−z̄)+yz(xy−z2)

(xy−|z|2)2 ,

Q1

11̄
=

xy(xy+|z|2−(z2+z̄2))
(xy−|z|2)2 ,

Q1

22̄
=

y2(xy+|z|2−(z2+z̄2))
(xy−|z|2)2 ,

Q1

12̄
=

yz((z−z̄)|z|2+xyz−z3)
(xy−|z|2)2 ,

Q2

11̄
=

2|z|2
xy−|z|2 ,

Q2

22̄
=

2y2

xy−|z|2 ,

Q2

12̄
=

2yz̄

xy−|z|2 ,

Q3

11̄
=

x2y2−xy(z2+z̄2)+|z|4
(xy−|z|2)2 ,

Q3

22̄
=

y2(2|z|2−(z2+z̄2))
(xy−|z|2)2 ,

Q3

12̄
=

y(xy−z2)(z−z̄)

(xy−|z|2)2 ,

Q4

11̄
=

|z|2
xy−|z|2 ,

Q4

22̄
=

y2

xy−|z|2 ,

Q4

12̄
=

yz̄

xy−|z|2 .
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