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Abstract
In this work, we establish the existence of nonzero solutions for a class of quasilinear 
elliptic equations involving indefinite nonlinearities with exponential critical growth of 
Trudinger–Moser type. Our proofs rely on variational arguments in a Orlicz–Sobolev space 
with a version of the Trudinger–Moser inequality.
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1 � Introduction and main results

In this paper, we consider a class of quasilinear elliptic equations involving a sign-changing 
weight function and a nonlinearity with exponential critical growth. More precisely, we 
study the existence of nonzero solutions for the equation
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where ΔΦu = div
(
Φ�(|∇u|)∇u∕|∇u|) , N ≥ 2 , W ∶ ℝ

N
→ ℝ is a continuous function 

changing sign, f ∈ C(ℝ) has exponential critical growth and Φ ∶ ℝ → ℝ+ is a function 
satisfying some appropriate conditions.

Elliptic problems with indefinite nonlinearities have been intensively studied in the last 
years. We would like to mention that existence of solutions for indefinite elliptic problems 
of the type

where Ω ⊂ ℝ
N is a smooth bounded domain and 𝜆 > 0 , has already been established in 

various contexts when the dimension N ≥ 3 . If the domain Ω is a compact manifold of 
dimension N ≥ 3 , the critical exponent case f (s) = |s|2∗−2s , where 2∗ = 2N∕(N − 2) , arises 
in the prescribed scalar curvature problem (see [36]). For manifolds carrying scalar flat 
metrics, sufficient conditions for the existence of positive solutions were given in [29]. 
Results for more general nonlinearities were obtained by Alama–Tarantello [5]. After that, 
many authors have studied indefinite semilinear elliptic problems when the nonlinear term 
f(s) has polynomial growth (see [4, 6, 11, 20, 22, 23, 28, 40, 44] and references therein). 
Indefinite problems of type (1.2) involving critical growth in the Sobolev case were treated 
by various authors; see, for instance, [19, 33, 34].

We quote that there are few results involving indefinite nonlinearity with exponential 
critical growth. In the paper [41], the authors establish a version for dimension two of the 
main result in [5] (see also [40]) when the nonlinearity f(s) has exponential critical growth. 
In [1], the authors consider an indefinite problem having exponential subcritical growth in 
all ℝ2 with the nonlinearity being of the form f (s) = �(s)es and �(s) between two powers. 
We also emphasize that Alves et al. [8] studied the existence of solution for the problem

where Ω is an exterior domain of ℝN(N ≥ 2) and f(s) has exponential critical growth.
Motivated by the previous works, our main purpose here is to study Eq. (1.1) by consid-

ering the maximal growth on the nonlinear term f(s) which allows us to treat the problem 
variationally in the Orlicz–Sobolev space W1,Φ(ℝN) . Furthermore, W(x) is a weight func-
tion changing sign and having a thick zero set. In what follows, Φ ∶ ℝ → ℝ+ is a N-func-
tion of class C1 fulfilling the conditions 

(Φ1)	� There exists C > 0 such that tN∕C ≤ Φ(t) ≤ CtN for all t ∈ [0, 1∕C);
(Φ2)	� lim

t→+∞

Φ(t)

tN log� t
= 1 , for some � ∈ [0,N − 1);

 and W1,Φ(ℝN) is the Orlicz–Sobolev space that consists of functions in LΦ(ℝN) (the Orlicz 
space associated with the N-function Φ ) such that its weak derivatives exist and belong 
to LΦ(ℝN) . For the definition and information about N-functions, see Sect. 2. We regard 
W1,Φ(ℝN) endowed with the norm

(1.1)−ΔΦu + Φ�(|u|) u

|u| = W(x)f (u) in ℝ
N ,

(1.2)
{

−Δu = �u +W(x)f (u) in Ω,

u = 0 on �Ω,

(1.3)

{
−div

(|∇u|N−2∇u) + |u|N−2u = W(x)f (u) in Ω,

u = 0 on �Ω,

‖u‖1,Φ = �∇u�Φ + �u�Φ,
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where | ⋅ |Φ denotes the Luxemburg norm associated with LΦ(ℝN) . It is known that the Lor-
entz–Zygmund space LN,N,� (ℝN) , � = �∕N , reproduces (up to equivalent norms) the Orlicz 
spaces LΦ(ℝN) (see [10, 43]). Thus, W1,Φ(ℝN) is equivalent to W1LN,N,� (ℝN).

When � = 0 , Φ(t) = |t|N satisfies conditions (Φ1) and (Φ2) , and therefore, (1.1) becomes 
an elliptic equation involving the N-Laplacian operator, namely

where ĝ(x, u) = W(x)f (u)∕N . Equations of type (1.4), with ĝ(x, u) having definite sign and 
critical exponential growth with respect to the Trudinger–Moser inequality, have been 
intensively investigated by many authors; see, for example, [2, 15, 24, 26, 27, 39, 42].

Throughout this paper, we assume that f(t) can behave like exp(b|t|� ) as t → +∞ ; more 
precisely, we suppose the following growth condition on the nonlinearity f(t): 

(f1)	� there exist constants C > 0 and b > 0 such that 

 for all t ∈ ℝ , where � = N∕(N − 1 − �) and 

 This growth on f(t) is motivated by a version of the Trudinger–Moser inequality in the 
space W1,Φ(ℝN) (see Lemma 3.3) which was proved in [18, 21].

Next, let us to obtain some properties of the function Φ . As a consequence of (Φ1) , it 
follows that

Moreover, by (Φ2) we have

Thus, there exists K1 ≥ 2N such that Φ(2t) ≤ K1Φ(t) for all t ≥ 0 ; that is, Φ satisfies the Δ2

-condition. Moreover, since Φ is convex, we reach (K1 − 1)Φ(t) ≥ Φ(2t) − Φ(t) ≥ Φ�(t)t , 
and therefore,

On the other hand, given any t0 > 0 , by the mean value theorem there exists s ∈ (0, t0) 
verifying Φ(t0) = Φ�(s)t0 , and since Φ�(t) is nondecreasing for t > 0 , it follows that 
Φ(t0) ≤ Φ�(t0)t0 , and thus,

(1.4)−ΔNu + |u|N−2u = ĝ(x, u) in ℝ
N ,

f (t) ≤ CtN−1 + C
[
exp(bt� ) − SN,�(bt

� )
]

SN,𝛼(bt
𝛾 ) =

∑
0≤j< N

𝛾

(bt𝛾 )j

j!
.

lim inf
t→0+

Φ(2t)

Φ(t)
≥ 2N

C2
.

lim
t→+∞

Φ(2t)

Φ(t)
= 2N .

(1.5)c𝛼 ∶= sup
t>0

Φ�(t)t

Φ(t)
≤ K1 − 1.

(1.6)1 ≤ m𝛼 ∶= inf
t>0

Φ�(t)t

Φ(t)
.
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By using (Φ1) and (Φ2) , we shall show that m𝛼 > 1 (see Proposition  2.7). Moreover, by 
deriving Φ(t)∕tc� we have that (1.5) implies that Φ(t)∕tc� is nonincreasing for t > 0 . Simi-
larly, from (1.6) we deduce that Φ(t)∕tm� is nondecreasing for t > 0 . Hence,

Combining these inequalities with condition (Φ1) , for all t ∈ [0,min{1, 1∕C}) we reach

which imply that m� ≤ N ≤ c�.
With respect to the term W(x), we require the following conditions: 

(W1)	� W ∶ ℝ
N
→ ℝ is a continuous function changing sign and W ∈ Lr(ℝN) for some 

r ∈ [N,+∞);
(W2)	� Ω+ is a bounded set and Ω+ ∩ Ω− = � , where 

Since Ω+ is compact and Ω+ ⊂ ℝ
N�Ω− , there exists a function � ∈ C∞(ℝN) such that 

0 ≤ � (x) ≤ 1 for all x ∈ ℝ
N , � (x) = 1 for x ∈ Ω+ and � (x) = 0 for x ∈ Ω− . From now on, we 

set

Besides the condition (f1) on the nonlinearity f(t), setting F(t) = ∫ t

0
f (s)ds , we also consider 

the following assumptions: 

(f2)	� There exists 𝜎 > (1 + K)c𝛼 such that 

(f3)	� There exist 𝜃 > m𝛼 and 𝜇 > 0 such that F(t) ≥ �t� for all t ∈ [0, 1].

We observe that by (f2) and deriving the quotient F(t)∕t� we deduce that F(t)∕t� is non-
decreasing for t > 0 . Thus, F(t) ≤ F(1)t� = C1t

� for all t ∈ [0, 1] . Consequently, in view of 
(Φ1) , F(t)∕Φ(t) ≤ C1Ct

�−N for all t ∈ (0,min{1, 1∕C}) , and therefore, we obtain

Assumption (f3) is used to estimate the minimax level of the energy functional associated 
with (1.1). Note that we require this condition only for t ∈ [0, 1].

We say that u ∶ ℝ
N
→ ℝ is a weak solution of problem (1.1) if u ∈ W1,Φ(ℝN) and it holds

In order to state our main result, let us introduce some notations. Without loss of general-
ity, we can assume that 0 ∈ Ω+ . Let 𝛿 > 0 be such that B𝛿 ∶= B𝛿(0) ⊂⊂ Ω+ . For A ⊂ ℝ

N 
measurable, from now on we will denote its Lebesgue measure by |A| and we introduce the 
number

Φ(1)tc� ≤ Φ(t) ≤ Φ(1)tm� , for all t ∈ [0, 1].

Φ(1)tc� ≤ Φ(t) ≤ CtN and
1

C
tN ≤ Φ(t) ≤ Φ(1)tm� ,

Ω+ =
{
x ∈ ℝ

N ∶ W(x) > 0
}

and Ω− =
{
x ∈ ℝ

N ∶ W(x) < 0
}
.

(1.7)K ∶= sup
ℝN

|∇𝜁 | > 0.

0 < 𝜎F(t) ≤ f (t)t, for all t ≠ 0;

(1.8)lim
t→0+

F(t)

Φ(t)
= 0.

∫
ℝN

[
Φ�(|∇u|) ∇u

|∇u|∇v + Φ�(|u|) u

|u|v
]
dx − ∫

ℝN

W(x)f (u)vdx = 0, for all v ∈ W1,Φ(ℝN).
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where �0(t) = min{tm� , tc�} for t ≥ 0 , a1 ∶= max{W(x); x ∈ B𝛿} > 0 , r� = r∕(r − 1) (r is 
given in (W1)),

a0 ∶= min{W(x); x ∈ B𝛿} > 0 and KN,� = B1∕BN�
�∕N

N−1
 , B = 1 − �∕(N − 1) and �N−1 is the 

measure of the unit sphere in ℝN.
Now, we are ready to present our main result:

Theorem 1.1  Assume that Φ is a N-function verifying (Φ1) − (Φ2). Moreover, suppose that 
(W1) − (W2) , (f1) − (f3) are satisfied with � ≥ �∗ in (f3). Then, problem (1.1) has a nonzero 
weak solution.

The main features of this class of problems, considered in this paper, are that it is 
defined in the whole ℝN and involves exponential critical growth (according to Lemma 3.3) 
and the operator inhomogeneous ΔΦu = div

(
Φ�(|∇u|)∇u∕|∇u|) . We will show that the 

functional energy associated with (1.1) verifies the Palais–Smale compactness condition in 
certain energy levels. By applying the mountain pass theorem, we will establish the exist-
ence of nonzero solution for Eq. (1.1). Here, we improve and complement some previ-
ously cited works. As far as we know, there are no papers which deal with Eq. (1.1) in the 
Orlicz context, where the nonlinearities have exponential critical growth and changes sign. 
Besides, to prove the existence of nonzero solution, we do not assume the conditions (Φ3) , 
(1.7), (1.12), (1.13), (1.16) and (1.17) in [18] (see also similar assumptions in [16]). We 
also mention that we do not impose an specific hypothesis on F(t) at the origin and we do 
not assume the condition

which is often used in semilinear and quasilinear problems involving exponential critical 
growth. In this direction, our paper improves and complements, for example, the works 
[16, 18, 24–27, 39, 46].

Example 1.2  Notice that, for 0 ≤ 𝛼 < N − 1 , the hypotheses of Theorem 1.1 are, for exam-
ple, satisfied by Φ(t) and f(t) given by: 

	 (i)	 Φ(t) = |t|N + N ∫ |t|
0

sN−1arc sinh� s ds;
	 (ii)	 f (t) = F�(t) with F(t) = �tp exp(bt� ) ,  where � ≥ �∗ ,  p > c𝛼  ,  b > 0 and 

� = N∕(N − 1 − �).

Notice that in this example we have m� = N and c� = N + �.
Remark 1.3  We emphasize that the approach used in this paper can be adapted with slight 
modifications to deal with a more general condition than (Φ2) , namely

(1.9)�∗ ∶= max

⎧
⎪⎪⎨⎪⎪⎩

�1,

⎡⎢⎢⎢⎢⎣

a1�B�� �−m�

m�

�
�1m�

�

� �

�−m�

�
1 −

c�

�
−

Kc�

�

�
�0

�
K

1∕�

N,�

(r�b)1∕�

�
⎤⎥⎥⎥⎥⎦

�−m�
m�

⎫
⎪⎪⎬⎪⎪⎭

,

�1 ∶=
2Φ(1)|B�|
a0|B�∕2| ,

there exist M > 0, t0 > 0 such that F(t) ≤ M|f (t)|, for all |t| ≥ t0,
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where log[k](t) = log(log[k−1](t)) and log[1](t) = log(t) , which was considered in [16–18]. 
For the sake of simplicity, we prefer to treat only the case l = 1.

Remark 1.4  Equations involving the operator ΔΦ appear in several physical contexts, as 
observed in [30] (and references [6, 7, 8] therein). They are related to concrete examples 
from fluid mechanics and plasticity theory. Moreover, if Ω is a domain of ℝN , with N = 2 
or N = 3 , and

� ∈ (0,N − 1) , the slow steady-state motion of a fluid of Prandtl–Eyring type in Ω can be 
modeled by the following set of equations:

where u ∶ Ω → ℝ
N denotes the velocity field of a incompressible fluid and 

Du ∶=
1

2
(∇u + ∇u⟂) is the symmetric gradient of u (for more details see [13] and [31]).

Remark 1.5  In the papers [3, 12, 35], the authors establish integrability estimates for 
N-Laplace equation with an external force. In short, they consider the problem

where Ω ⊂ ℝ
N is a bounded smooth domain and f belongs to L1(Ω) or to a better space, and 

they show that if u ∈ W
1,N

0
(Ω) is a weak solution (or an entropy solution) then u satisfies an 

integrability estimate of type

where �N is the measure of the unit sphere in ℝN and |Ω| is the measure of Ω . Since the 
function Φ satisfies condition (Φ1) − (Φ2) , we believe that the approach used in [3, 12, 35] 
seems to lead to similar results in the case of the problem

which can enable us to get regularity results to the solutions of (1.1).

This paper is organized as follows: In Sect. 2, we present some preliminary results about 
Orlicz spaces which are used in the work. In Sect.  3, we establish the variational frame-
work for our problem and we obtain some embedding results involving our working space. 

lim
t→+∞

Φ(t)

tN
�∏l−1

j=1
log�

[j]
(t)
�
log�

[l]
(t)

= 1, l ∈ ℕ and � ∈ [0,N − 1),

(1.10)Φ(t) = |t|N + N ∫
|t|

0

sN−1arc sinh� s ds, t ∈ ℝ,

⎧⎪⎨⎪⎩

div
�
Φ�(�Du�)Du∕�Du�� + (potential term) = 0 in Ω,

div u = 0 in Ω,

u = 0 on �Ω,

{
−ΔNu = f (x) in Ω,

u = 0 on �Ω,

�Ω

exp

�
(N�

1∕(N−1)

N
− �)�u(x)�

‖f‖1∕(N−1)
1

�
dx ≤ N�

1∕(N−1)

N

�
�Ω�, for all � ∈ (0,N�

1∕(N−1)

N
),

{
−ΔΦu = f (x) in Ω,

u = 0 on �Ω,
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Section 4 shows that the energy functional has the geometric structure of the mountain pass 
theorem, and in Sect. 5, we prove that this functional satisfies the Palais–Smale condition in 
certain energy levels. Finally, in Sect. 6, we prove Theorem 1.1.

Throughout this paper, W1,N(ℝN) denotes the Sobolev space endowed with the norm

We use | ⋅ |p to denote the norm of the Lebesgue space Lp(ℝN) , 1 ≤ p ≤ ∞ . We denote by 
BR the ball centered at the origin with radius R > 0 and the symbols C,Ci , i = 0, 1, 2,… 
will denote different (possibly) positive constants.

2 � Preliminaries

In order to facilitate the understanding of the paper, in this section we present briefly some 
results about Orlicz spaces. For the proofs and more details, see, for instance, [7, 37, 45].

A function A ∶ ℝ → [0,+∞) is called N-function if it is convex, even, A(t) = 0 if and only 
if t = 0 , A(t)∕t → 0 as t → 0 and A(t)∕t → +∞ as t → +∞ . In particular, we have A�(0) = 0 , 
and if A is differentiable, then A�(t) is nondecreasing for t ≥ 0 , which implies that A(t) is 
increasing for t > 0 . For a N-function A and an open set Ω ⊂ ℝ

N , the Orlicz class is the set 
defined by

The linear space LA,�(Ω) generated by KA,�(Ω) is called Orlicz space. If � is the Lebesgue 
measure, then we denote KA,�(Ω) and LA,�(Ω) by KA(Ω) and LA(Ω) , respectively. When A 
satisfies the Δ2-condition, namely, there exists a constant k > 0 such that

the Orlicz class KA,�(Ω) is a linear space and hence equal to LA,�(Ω) . We consider the fol-
lowing norm (called of Luxemburg’s norm) on LA,�(Ω):

It can be shown that 
(
LA,�(Ω), | ⋅ |A,Ω

)
 is a Banach space (see [45, Theorem 10, p. 67]). In 

the case Ω = ℝ
N , we denote | ⋅ |A,ℝN by | ⋅ |A . The complement N-function of A is defined by

It is not difficult to verify that ̃̃A = A . In the spaces LA,�(Ω) and LÃ,𝜇(Ω) , an extension of the 
Hölder inequality holds, namely

As a consequence, for every ũ ∈ LÃ,𝜇(Ω) there corresponds a continuous linear functional 
fũ ∈ (LA,𝜇(Ω))

� given by fũ(v) = ∫
Ω
ũ(x)v(x) d𝜇 , v ∈ LA,�(Ω) . Thus, we can define

‖u‖1,N =

�
∫
ℝN

(�∇u�N + �u�N)dx
�1∕N

, u ∈ W1,N(ℝN).

KA,𝜇(Ω) =

{
u ∶ Ω → ℝ; u is measurable and ∫Ω

A(|u(x)|) d𝜇 < ∞

}
.

A(2t) ≤ kA(t), for all t ≥ 0,

|u|A,Ω = inf

{
𝜆 > 0;�Ω

A

(|u(x)|
𝜆

)
d𝜇 ≤ 1

}
.

Ã(t) = sup
s>0

{ts − A(s)}.

(2.1)
||||�Ω

u(x)v(x) d𝜇
|||| ≤ 2|u|A,Ω|v|Ã,Ω, for all u ∈ LA,𝜇(Ω), v ∈ LÃ,𝜇(Ω).
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and ‖ ⋅ ‖Ã,Ω is called the Orlicz norm on the space LÃ,𝜇(Ω) . Similarly, we can define the 
Orlicz norm ‖ ⋅ ‖A,Ω on LA,�(Ω) . The norms | ⋅ |A,Ω and ‖ ⋅ ‖A,Ω are equivalent and satisfy the 
inequalities

We define the Orlicz–Sobolev space W1,A(Ω) as follows

equipped with the norm

where ∇u is the gradient of u, and we are using its Euclidean norm in ℝN . An important 
property is that if A and Ã verify the Δ2-condition, then the spaces LA(Ω) and W1,A(Ω) are 
reflexive, separable and

Proposition 2.1  Let A be a N-function of class C1. Then Ã is a function C1 and verifies the 
conditions below:

(i)	� A(Ã�(t)) = Ã�(t)t − Ã(t), for all t ≥ 0;
(ii)	� A�(Ã�(t)) = t, for all t ≥ 0.

Proof  See Lemma A.2 and Lemma 2.5 in [32]. 	�  ◻

Definition 2.2  We say that a N-function A satisfies the ∇2 condition (we denote by 
A ∈ ∇2 ), if there exists 𝛾 > 1 such that

Proposition 2.3  Let A and Ã be a pair of differentiable complementary N-functions. Then, 
the following assertions are equivalent:

(a)	� A ∈ Δ2;
(b)	� there exists � ∈ (1,∞) such that A�(t)t∕A(t) < 𝛼 for all t ≥ 0;
(c)	� there exists � ∈ (1,∞) such that Ã�(s)s∕Ã(s) > 𝛽 for all s ≥ 0;
(d)	� A ∈ ∇2.

Proof  See Theorem 3 (p. 22) in [45]. 	� ◻

‖ũ‖Ã,Ω = sup
�v�A,Ω≤1�Ω

ũ(x)v(x) d𝜇

�u�A,Ω ≤ ‖u‖A,Ω ≤ 2�u�A,Ω, for all u ∈ LA(Ω).

W1,A(Ω) =
{
u ∶ Ω → ℝ ∶ u is measurable and u, |∇u| ∈ LA(Ω)

}

‖u‖W1,A(Ω) ∶= �u�A,Ω + �∇u�A,Ω,

�
LA(Ω), � ⋅ �A,Ω

��
=
�
LÃ(Ω), ‖ ⋅ ‖Ã,Ω

�
and

�
LÃ(Ω), � ⋅ �Ã,Ω

��
=
�
LA(Ω), ‖ ⋅ ‖A,Ω

�
.

A(t) ≤ 1

2�
A(�t), for all t ≥ 0.
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Next, we state two lemmas due to Fukagai et al. [32, Lemma 2.1, Lemma 2.5] and 
Lieberman [38, Lemma 1.1 (e)] which will be used in our arguments.

Lemma 2.4  Suppose that A is a N-function and let Ã be the complement N-function of A. 
Then,

(a)	� A(A�(t)) ≤ A(2t) for all t ≥ 0;
(b)	� A

(
A(t)

t

) ≤ A(t) for all t > 0;
(c)	� A�(t)s ≤ A�(t)t + A�(s)s for all t, s ≥ 0.

Lemma 2.5  Suppose that A is a differentiable N-function satisfying

for some M ≥ m > 0. Defining, for t ≥ 0 , �0(t) = min{tm, tM} and  �1(t) = max{tm, tM} , one 
has

and

Lemma 2.6  Let Φ be a N-function satisfying conditions (Φ1) and (Φ2). Then, Φ satisfies the 
condition ∇2.

Proof  In order to show that Φ ∈ ∇2 , we will verify that there exists a constant C > 0 such 
that CΦ(t)�N ≤ Φ(�t) for each 𝜌 > 1 and t ≥ 0 . In fact, setting M0 ∶= inft∈[0,1] Φ(t)∕tN 
and M1 ∶= supt∈[0,1] Φ(t)∕tN , by ( Φ1 ) one has 0 < M0 ≤ M1 < ∞ . Therefore, 
M0t

N�N ≤ Φ(�t) ≤ M1�
NtN if �t ≤ 1 . Thus,

On the other hand, setting

from condition (Φ2) we have 0 < M2 ≤ M3 < ∞ and

Therefore, if 𝜌t > 1 then

(2.2)m ≤ A�(t)t

A(t)
≤ M, for all t > 0,

�0(�)A(t) ≤ A(�t) ≤ �1(�)A(t) for �, t ≥ 0

�0(|u|A,Ω) ≤ �Ω

A(|u(x)|) d� ≤ �1(|u|A,Ω) for u ∈ LA,�(Ω).

(2.3)Φ(�t) ≥ M0

M1

�NΦ(t) for �t ≤ 1.

M2 ∶= inf
t≥1

Φ(t)

log�(t + 1)
and M3 ∶= sup

t≥1
Φ(t)

log�(t + 1)
,

M3t
N log�(t + 1) ≥ Φ(t) ≥ M2t

N log�(t + 1), for all t ≥ 1.

(2.4)Φ(�t) ≥ M2t
N�N log�(�t + 1) ≥ M2t

N�N log�(t + 1) ≥ M2

M3

�NΦ(t).
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Hence, taking C = min
{
M0∕M1,M2∕M3

}
 , by (2.3) and (2.4) we get Φ(�t) ≥ C�NΦ(t) for 

each 𝜌 > 1 and t ≥ 0 . Finally, taking 𝛾 = 𝜌 > (2∕C)1∕(N−1) we obtain Φ(t) ≤ Φ(�t)∕(2�) for 
t ≥ 0 , which shows that Φ ∈ ∇2 and the proof is finished. 	�  ◻

Proposition 2.7  If Φ is a N-function satisfying (Φ1) − (Φ2), then m𝛼 > 1, where m� was 
defined in (1.6).

Proof  The proof follows combining Proposition 2.3 and Lemma 2.6. 	�  ◻

Remark 2.8  As we saw in Introduction, our N-function Φ satisfies Δ2-condition and 
assumption (2.2) with m = m� and M = c�.Combining Proposition 2.3 with Lemma 2.6, Φ̃ 
satisfies Δ2-condition. Therefore, it can be shown that

and (un) is bounded in LΦ,�(ℝ
N) if and only if (∫

ℝN Φ(|un|)d�) is bounded. Moreover, as 
observed above 

(
LΦ,�(ℝ

N), | ⋅ |Φ
)
 is a separable and reflexive Banach space as well as �

W1,Φ(ℝN), ‖ ⋅ ‖�.

3 � Variational framework

The next lemma presents some embeddings which will be used in our arguments.

Lemma 3.1  If (Φ1) and (Φ2) are satisfied, then the following embeddings are continuous:

(a)	� LΦ(ℝN) ↪ LN(ℝN);
(b)	� W1,Φ(ℝN) ↪ W1,N(ℝN);
(c)	� W1,Φ(ℝN) ↪ Lr(ℝN) for any r ∈ [N,∞).

Proof  We observe that by (Φ1) − (Φ2) there exists C1 > 0 such that tN ≤ C1Φ(t) for all 
t ≥ 0 . Thus, if un → 0 in LΦ(ℝN) then

and items a) and b) are proved. The proof of item c) follows directly from b) and by the 
continuous embedding from W1,N(ℝN) into Lr(ℝN) for any r ∈ [N,∞) . 	�  ◻

Now, we prove a result of convergence, which will be crucial in the sequel.

Proposition 3.2  Under conditions (W1) and (Φ1) − (Φ2), if un ⇀ u in W1,Φ(ℝN) then

un → 0 in LΦ,�(ℝ
N) ⟺ ∫

ℝN

Φ(|un|) d� → 0

�
ℝN

|un|Ndx ≤ C1 �
ℝN

Φ(|un|)dx → 0

lim
n→+∞

(
∫
ℝℕ

|W(x)||un − u|s dx
)1∕s

= 0, for all s ∈ [N,∞).
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Proof  In view of (W1) and by the Hölder inequality, we have

On the other hand, since the embedding W1,N(ℝN) ↪ Ls(BR) is compact and 
W1,Φ(ℝN) ↪ Lsr

�

(ℝN) is continuous, given 𝜀 > 0 there exists n0 ∈ ℕ such that

and there exists C > 0 verifying

Moreover, by (W1) there exists R0 > 0 sufficiently large such that

Hence, from (3.1)–(3.4),

and the proof is complete. 	�  ◻

The next lemma presents a version of the Trudinger–Moser inequality for functions in 
W1,Φ(ℝN) , which was proved by Cerný in [18] (see also [21]). It is necessary to use vari-
ational methods to find solutions for problem (1.1) with nonlinearities f(t) satisfying the 
condition growth (f1).

Lemma 3.3  If N ≥ 2 , �K > 0 , � ∈ [0,N − 1) , Φ is a N-function verifying (Φ1) − (Φ2) and 
u ∈ W1,Φ(ℝN), then

Furthermore, if |∇u|Φ ≤ 1 , |u|Φ ≤ M < ∞ and �K < KN,𝛼 then there exists a constant 
C = C(N, 𝛼,M,Φ, �K) > 0 , which depends only N, �,M,Φ and K̃ such that

(3.1)

�
ℝN

|W(x)||un − u|s dx = �BR

|W(x)||un − u|s dx + �Bc
R

|W(x)||un − u|s dx

≤ |W|∞,BR �BR

|un − u|s dx

+

(
�Bc

R

|W(x)|r dx
)1∕r(

�Bc
R

|un − u|sr� dx
)1∕r�

.

(3.2)∫BR

|un − u|s dx < 𝜀

2|W|∞,BR

for all n > n0

(3.3)
(
�Bc

R

|un − u|sr� dx
) 1

r�

≤ C, for all n ∈ ℕ.

(3.4)
(
�Bc

R

|W(x)|r dx
) 1

r

<
𝜀

2C
, for all R ≥ R0.

∫
ℝN

|W(x)||un − u|s dx < 𝜀, for all n > n0,

∫
ℝN

[
exp(�K|u|𝛾 ) − SN,𝛼(�K|u|𝛾 )

]
dx < ∞.

�
ℝN

[
exp(K̃|u|� ) − SN,�(K̃|u|� )

]
dx ≤ C,
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where KN,� = B1∕BN�
�∕N

N−1
 , B = 1 − �∕(N − 1) and �N−1 is the measure of the unit sphere 

in ℝN.

To finalize this section, we get two technical lemmas that will be necessary to show the 
regularity of the energy functional associated with our problem.

Lemma 3.4  For each p ≥ 1 , there exists C = C(p) > 0 such that

Proof  It suffices to proof that the limits

are finite, which is a direct consequence of the L’Hospital rule. 	�  ◻

Lemma 3.5  Let (un) be a sequence in W1,Φ(ℝN) strongly convergent. Then there exist a 
subsequence (unk ) of (un) and v ∈ W1,Φ(ℝN) such that unk (x) ≤ v(x) almost everywhere in 
x ∈ ℝ

N.

Proof  The arguments used to show this lemma follows the same lines of the proof of Prop-
osition 1 of [26] with slight modifications and we omit it. 	�  ◻

The energy functional associated with problem (1.1) is given by

Notice that by (f1) , Lemmas 3.3, 3.5 and Proposition 3.2, J is well defined on W1,Φ(ℝN) , 
and moreover, by using standard computations (see [18, Proposition 4.1]), we can see that 
J ∈ C1(W1,Φ(ℝN),ℝ) and its derivative is given by

for u, v ∈ W1,Φ(ℝN) . Consequently, critical points of J are precisely the weak solutions of 
(1.1).

4 � Mountain pass structure

In order to get Theorem 1.1, we shall use the mountain pass theorem due to Ambrosetti and 
Rabinowitz [9]:

Theorem 4.1  Let X be a Banach space and J ∈ C1(X;ℝ) with J(0) = 0. Suppose that there 
exist 𝜌, 𝜏 > 0 and e ∈ X, with ‖e‖ > 𝜌, such that

[
exp(t) − SN,�(t)

]p ≤ C
[
exp(pt) − SN,�(pt)

]
, for all t ≥ 0.

lim
t→0

[
exp(t) − SN,�(t)

]p
[
exp(pt) − SN,�(pt)

] and lim
t→+∞

[
exp(t) − SN,�(t)

]p
[
exp(pt) − SN,�(pt)

]

J(u) = ∫
ℝN

[Φ(|∇u|) + Φ(|u|)] dx − ∫
ℝN

W(x)F(u) dx.

⟨J�(u), v⟩ = ∫
ℝN

�
Φ�(�∇u�) ∇u

�∇u�∇v + Φ�(�u�) u

�u�v
�
dx − ∫

ℝN

W(x)f (u)vdx

(4.1)inf‖u‖=𝜌 J(u) ≥ 𝜏 and J(e) < 0.
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Then, J possesses a Palais–Smale sequence at level c characterized as

where Γ = {� ∈ C([0, 1];X) ∶ �(0) = 0 and �(1) = e}. Moreover, if J satisfies the Palais–
Smale condition at level c then J has a critical point u0 such that J(u0) = c.

The number c is called mountain pass level or minimax level of the functional J.
In the sequel, we show that the functional J has the mountain pass geometry, condi-

tion (4.1). This is proved in the next lemmas.

Lemma 4.2  Assume (f1) and (f2). Then, there exist 𝜌, 𝛽 > 0 such that

Proof  From (1.8), given 𝜖 > 0 , there exists 𝛿 > 0 verifying F(t) ≤ �Φ(t) for all |t| ≤ � . On 
the other hand, by using (f1) and taking p > c𝛼 we have

for some C = C(𝛿, p) > 0 . Therefore,

From (W2) , we obtain

Fixing � = 1∕2C1 , using Hölder inequality, Lemmas 3.1 and 3.4(c), we reach

Now, if 0 < 𝜌 < 1 is such that 2b𝜌𝛾 < KN,𝛼 then for ‖u‖ = � we obtain 
2b|∇u|𝛾

Φ
≤ 2b𝜌𝛾 < KN,𝛼 . Thus, by Lemma 3.3

Consequently, from Lemma 2.5, for ‖u‖ = � we get

c ∶= inf
�∈Γ

max
t∈[0,1]

J(�(t)) ≥ �,

J(u) ≥ �, for all ‖u‖ = �.

F(t) ≤ C|t|p[exp(b|t|𝛾 ) − SN,𝛼(b|t|𝛾 )], for all |t| > 𝛿,

(4.2)F(t) ≤ �Φ(t) + C|t|p[exp(b|t|� ) − SN,�(b|t|� )], for all t ≥ 0.

(4.3)
�
ℝN

W(x)F(u)dx ≤ �Ω+

W(x)F(u)dx

≤ �C1 �Ω+

Φ(u)dx + C2 �Ω+

|u|p[exp(b|u|� ) − SN,�(b|u|� )]dx.

J(u) ≥ �
1 − �C1

�
�
ℝN

[Φ(�∇u�) + Φ(u)]dx

− C2

�
�
ℝN

[exp(2b�u�� ) − SN,�(2b�u�� )]dx
� 1

2 �u�p
2p

≥ 1

2 �
ℝN

[Φ(�∇u�) + Φ(�u�)]dx

− C3

�
�
ℝN

�
exp

�
2b�∇u��

Φ

� �u�
�∇u�Φ

���
− SN,�

�
2b�∇u��

Φ

� �u�
�∇u�Φ

����
dx

� 1

2 ‖u‖p.

{
�
ℝN

[
exp

(
2b|∇u|�

Φ

( |u|
|∇u|Φ

)�)
− SN,�

(
2b|∇u|�

Φ

( |u|
|∇u|Φ

)�)]
dx

} 1

2 ≤ C.
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Choosing 𝜌 > 0 sufficiently small so that 2−(c𝛼+1)𝜌c𝛼 − C4𝜌
p =∶ 𝛽 > 0 , we conclude 

J(u) ≥ � for all ‖u‖ = � . 	�  ◻

Lemma 4.3  There exists v0 ∈ W1,Φ(ℝN) with ‖v0‖ > 𝜌 such that J(v0) < 0.

Proof  By (f2) , there exist constants C1,C2 > 0 such that

Since Ω+ ≠ � , taking 0 ≤ � ∈ C∞
0
(Ω+) such that K = supp(�) , we have

Since 𝜎 > c𝛼 , it follows that J(t�) → −∞ as t → +∞ . Thus, taking v0 ∶= t0� , with t0 large 
enough, the proof is finished. 	�  ◻

5 � On Palais–Smale sequences

First, we recall that (un) ⊂ W1,Φ(ℝN) is a Palais–Smale ( (PS)c for short) sequence at level 
c ∈ ℝ for the functional J if J(un) → c and J�(un) → 0 in the dual space [W1,Φ(ℝN)]� . We 
say that J satisfies the (PS)c condition if any (PS)c sequence has a convergent subsequence. 
In this section, our main objective is to prove the (PS)c condition for J with c in a conveni-
ent interval.

Lemma 5.1  If (un) ⊂ W1,Φ(ℝN) is a (PS)c sequence associated with J, then (un) is bounded 
in W1,Φ(ℝN).

Proof  Take � ∈ C∞(ℝN) given in (1.7). By condition (1.5), (f2) and Lemma 2.4, we have

J(u) ≥ 1

2

(|∇u|c�
Φ
+ |u|c�

Φ

)
− C4�

p ≥ 2−(c�+1)�c� − C4�
p.

F(t) ≥ C1t
� − C2, for all t ≥ 0.

J(t𝜑) ≤ 𝜉1(t)�Ω

[Φ(|∇𝜑|) + Φ(𝜑)] dx − C1t
𝜎 �

K

W(x)|𝜑|𝜎 dx + C2 �
K

W(x) dx

= C0t
c𝛼 − C3t

𝜎 + C4, for all t > 1.
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Thus,

On the other hand,

Combining (5.2) and (5.3) and using Lemma 2.5, we obtain

Now, we argue by contradiction. Suppose that, up to a subsequence, ‖un‖ → ∞ . We have 
three possibilities to consider: 

	 (i)	 |∇un|Φ → ∞ and (|un|Φ) is bounded;
	 (ii)	 (|∇un|Φ) is bounded and |un|Φ → ∞;
	 (iii)	 |∇un|Φ → ∞ and |un|Φ → ∞.

If item (i) occurs, then there exists n1 ∈ ℕ such that |∇un|Φ > 1 for all n > n1 . Thus, by the 
definition of �0 and inequality (5.4) we get

Dividing this estimate by |∇un|m�

Φ
 , we get a contradiction doing n → ∞ . Thus, (i) does not 

happen. Similarly, we can show that items (ii) and (iii) do not happen as well. Therefore, 
(un) should be bounded in W1,Φ(ℝN) and the proof is finalized. 	�  ◻

(5.1)

J(un) −
1

�
⟨J�(un), un�⟩

= �
ℝN

�
Φ(�∇un�) + Φ(�un�)

�
dx − �

ℝN

W(x)F(un) dx

−
1

� �
ℝN

Φ�(�∇un�)�∇un�� dx − 1

� �
ℝN

Φ�(�∇un�)
∇un∇�

�∇un� un dx

−
1

� �
ℝN

Φ�(�un�)�un�� dx + 1

� �
ℝN

W(x)f (un)un� dx

≥ �
1 −

c�

�

�
�
ℝN

�
Φ(�∇un�) + Φ(�un�)

�
dx − �Ω+

W(x)F(un) dx

−
1

�
K �

ℝN

Φ�(�∇un�)�un� dx + 1

� �Ω+

W(x)f (un)un dx

≥ �
1 −

c�

�

�
�
ℝN

�
Φ(�∇un�) + Φ(�un�)

�
dx

−
1

�
K

�
�
ℝN

Φ�(�∇un�)�∇un� dx + �
ℝN

Φ�(�un�)�un� dx
�
.

(5.2)J(un) −
1

�
⟨J�(un), un�⟩ ≥

�
1 −

c�

�
−

Kc�

�

�
�
ℝN

[Φ(�∇un�) + Φ(�un�)] dx.

(5.3)J(un) −
1

�
⟨J�(un), un�⟩ ≤ c + on(1) + on(1)‖un�‖ ≤ c + on(1) + on(1)‖un‖.

(5.4)c + on(1) + on(1)‖un‖ ≥
�
1 −

c�(1 + K)

�

�
[�0(�∇un�Φ) + �0(�un�Φ)].

(5.5)c + on(1) + on(1)|∇un|Φ ≥
(
1 −

c𝛼(1 + K)

𝜎

)
|∇un|m𝛼

Φ
, for all n > n1.
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Corollary 5.2  If (un) ⊂ W1,Φ(ℝN) is a (PS)c sequence for J, then

Proof  This estimate is a direct consequence of (5.4). 	�  ◻

Before to show that the functional J satisfies the Palais–Smale condition in a con-
venient interval, we shall need of the following convergence result:

Lemma 5.3  Let (un) be a Palais–Smale sequence for the functional J at any level c ∈ ℝ 
such that

Then, there exists u ∈ W1,Φ(ℝN) verifying

Proof  By Corollary 5.2, we have

Since �0(t) is increasing for t ≥ 0 , we can obtain n1 ∈ ℕ such that

for some 𝛿 > 0 sufficiently small. Choosing still s > 1 close to 1, we obtain

for some appropriate 𝛿1 > 0 . Now, by Lemma 5.1, there exists u ∈ W1,Φ(ℝN) such that, up 
to a subsequence, un ⇀ u in W1,Φ(ℝN) . Next, setting Qn ∶= [exp(b|un|� ) − SN,�(b|un|� )] , by 
assumption (f1) , Hölder inequality and Lemma 3.4, it follows that

�0(|∇un|Φ) ≤
(
1 −

c�(1 + K)

�

)−1

c + on(1).

c <

(
1 −

c𝛼(1 + K)

𝜎

)
𝜉0

(
K

1∕𝛾

N,𝛼

(r�b)1∕𝛾

)
.

∫
ℝN

W(x)f (un)(un − u) dx → 0.

𝜉0(|∇un|Φ) ≤
(
1 −

c𝛼(1 + K)

𝜎

)−1

c + on(1) < 𝜉0

(
K

1∕𝛾

N,𝛼

(r�b)1∕𝛾

)
+ on(1).

|∇un|Φ ≤ K
1∕𝛾

N,𝛼

(r�b)1∕𝛾
− 𝛿, for all n > n1,

(5.6)r�sb|∇un|𝛾Φ ≤ KN,𝛼 − 𝛿1, for all n > n1,
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By Proposition 3.2, we have

Hence, to finalize the proof, just to justify that

Indeed, we can write this integral as

and by (5.6), we have r�sb|∇un|𝛾Φ < KN,𝛼 − 𝛿1 < KN,𝛼 , for n > n1 . Therefore, invoking 
Lemma 3.3 we conclude that the above supreme is finite and the proof is complete. 	�  ◻

Lemma 5.4  The functional J satisfies the (PS)c condition for all

Proof  Let (un) be in W1,Φ(ℝN) such that J(un) → c and J�(un) → 0 in [W1,Φ(ℝN)]� with c 
satisfying (5.7). By Lemma 5.1, (un) is bounded in W1,Φ(ℝN) , and therefore, up to a sub-
sequence, un ⇀ u in W1,Φ(ℝN) . Since the functional I(u) ∶= ∫

ℝN [Φ(|∇u|) + Φ(|u|)] dx is 
convex, we get

|||�
ℝN

W(x)f (un)(un − u) dx
|||

≤ C �
ℝN

|W(x)||un|N−1|un − u| dx + C �
ℝN

|W(x)||un − u||Qn| dx

≤ C

(
�
ℝN

|W(x)||un|Ndx
) N−1

N
(
�
ℝN

|W(x)||un − u|N dx

) 1

N

+ C

(
�
ℝN

|W(x)||un − u| s

s−1 dx

) s−1

s
(
�
ℝN

|W(x)||Qn|s
) 1

s

≤ C|W|
N−1

N

r |un|N−1r�N

(
�
ℝN

|W(x)||un − u|N dx

) 1

N

+

+ C

(
�
ℝN

|W(x)||un − u| s

s−1 dx

) s−1

s |W|
1

s

r |Qn|r�s.

∫
ℝN

|W(x)||un − u|N dx → 0 and ∫
ℝN

|W(x)||un − u| s

s−1 dx → 0.

sup
n∈ℕ ∫ℝN

[exp(r�sb|un|𝛾 ) − SN,𝛼(r
�sb|un|𝛾 )]dx < ∞.

∫
ℝN

[
exp

(
r�sb|∇un|�Φ

( |un|
|∇un|Φ

)�)
− SN,�

(
r�sb|∇un|�Φ

( |un|
|∇un|Φ

)�)]
dx,

(5.7)c <

(
1 −

c𝛼(1 + K)

𝜎

)
𝜉0

(
K

1∕𝛾

N,𝛼

(r�b)1∕𝛾

)
.
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According to Lemma 5.3, we know that ∫
ℝN W(x)f (un)(u − un) dx → 0 . Thus, by (5.8) one 

has

and consequently,

Since I1(u) ∶= ∫
ℝN Φ(|∇u|) dx is a sequentially weakly lower semicontinuous functional on 

W1,Φ(ℝN) , the weak convergence un ⇀ u in W1,Φ(ℝN) implies that

The same reason shows that

By virtue of (5.9), we must have the equality in (5.10) and (5.11). Hence, up to 
subsequences,

Now, arguing as in [18, Lemma 6.2] we can see that, up to a subsequence, ∇un → ∇u 
almost everywhere in ℝN . Using a version of the Brezis–Lieb lemma (see [14, Theo-
rem 2]), we conclude

and according to Remark 2.8, it follows that ‖un − u‖ = �∇un − ∇u�Φ + �un − u�Φ → 0 and 
the proof is finalized. 	�  ◻

(5.8)

�
ℝN

[Φ(�∇u�) + Φ(�u�)] dx − �
ℝN

[Φ(�∇un�) + Φ(�un�)] dx

≥ �
ℝN

Φ�(�∇un�)
∇un
�∇un� (∇u − ∇un) dx

+ �
ℝN

Φ�(�un�)
un

�un� (u − un) dx

= ⟨J�(un), u − un⟩ + �
ℝN

W(x)f (un)(u − un) dx.

�
ℝN

[Φ(|∇u|) + Φ(|u|)] dx ≥ �
ℝN

[Φ(|∇un|) + Φ(|un|)] dx + on(1),

(5.9)lim sup
n→∞ �

ℝN

[Φ(|∇un|) + Φ(|un|)] dx ≤ �
ℝN

[Φ(|∇u|) + Φ(|u|)] dx.

(5.10)�
ℝN

Φ(|∇u|) dx ≤ lim inf
n→∞ �

ℝN

Φ(|∇un|) dx.

(5.11)�
ℝN

Φ(|u|) dx ≤ lim inf
n→∞ �

ℝN

Φ(|un|) dx.

∫
ℝN

Φ(|∇un|) dx → ∫
ℝN

Φ(|∇u|) dx and ∫
ℝN

Φ(|un|) dx → ∫
ℝN

Φ(|u|) dx.

∫
ℝN

Φ(|∇un − ∇u|) dx → 0 and ∫
ℝN

Φ(|un − u|) dx → 0,
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6 � Proof of Theorem 1.1

In order to apply Theorem 4.1 to find a nonzero critical point for J, we need to estimate the 
minimax level c of J, where

Before to state our next result, we need to fix some notations. We recall that 
B𝛿 ∶= B𝛿(0) ⊂⊂ Ω+ for some 𝛿 > 0 . We are going to consider a function �0 ∈ C∞

0
(Ω+) 

given by �0(x) = 1 if |x| ≤ �∕2 , �0(x) = 0 if |x| ≥ � , 0 ≤ �0(x) ≤ 1 for all x ∈ Ω+ and 
|∇�0(x)| ≤ 1 for all x ∈ Ω+ . Recalling that

where a0 ∶= min{W(x) ∶ x ∈ B�} , by (f3) we infer that if � ≥ �1 then

In particular,

Lemma 6.1  (Minimax Estimate). If condition (f3) holds with � ≥ �∗, where the number �∗ 
was defined in (1.9), then

Proof  By definition of c∗ , (f3) and (6.1), one has

A straightforward calculation shows that

c∗ ∶= inf
𝛾∈Γ

max
0≤t≤1 J(𝛾(t)) and Γ ∶=

{
𝛾 ∈ C([0, 1];W1,Φ(ℝN));𝛾(0) = 0 and J(𝛾(1)) < 0

}
.

�1 ∶=
2Φ(1)|B�|
a0|B�∕2| ,

J(𝜑0) ≤ �B𝛿

[Φ(|∇𝜑0|) + Φ(|𝜑0|)] dx − 𝜇1 �B𝛿

W(x)|𝜑0|𝜃 dx
< 2Φ(1)|B𝛿| − 𝜇1a0|B𝛿∕2| = 0.

(6.1)∫B𝛿

[Φ(|∇𝜑0|) + Φ(|𝜑0|)] dx < 𝜇1 ∫B𝛿

W(x)|𝜑0|𝜃 dx.

c ∗<

(
1 −

c𝛼(1 + K)

𝜎

)
𝜉0

(
K

1∕𝛾

N,𝛼

(r�b)1∕𝛾

)
.

c∗ ≤ max
t∈[0,1]

J(t�0)

≤ max
t∈[0,1]

[
tm� �B�

[Φ(|∇�0|) + Φ(|�0|)] dx − �t� �B�

W(x)|�0|� dx
]

≤ max
t∈[0,1]

[
tm��1 �B�

W(x)|�0|� dx − �t� �B�

W(x)|�0|� dx
]

≤ max
t≥0

[
�1t

m� − �t�
]
a1 �B�

|�0|� dx.

max
t≥0

[
�1t

m� − �t�
]
=

1

�
m�

�−m�

� − m�

m�

(�1m�

�

) �

�−m�
,
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and therefore,

Thus, by using that � ≥ �∗ , we reach the estimate

	�  ◻

Finalizing the proof of Theorem 1.1: According to Lemmas 5.4 and 6.1, J satisfies (PS)c 
condition. Moreover, since J has the mountain pass geometry, it follows by invoking moun-
tain pass theorem that there exists a nonzero critical u ∈ W1,Φ(ℝN) for J such that J(u) = c 
and the proof is finalized.
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