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Abstract
We deal with a notion of weak binormal and weak principal normal for non-smooth curves 
of the Euclidean space with finite total curvature and total absolute torsion. By means of 
piecewise linear methods, we first introduce the analogous notion for polygonal curves, 
where the polarity property is exploited, and then make use of a density argument. Both 
our weak binormal and normal are rectifiable curves which naturally live in the projective 
plane. In particular, the length of the weak binormal agrees with the total absolute torsion 
of the given curve. Moreover, the weak normal is the vector product of suitable parameteri-
zations of the tangent indicatrix and of the weak binormal. In the case of smooth curves, 
the weak binormal and normal yield (up to a lifting) the classical notions of binormal and 
normal. Finally, the torsion force is introduced: similarly as for the curvature force, it is a 
finite measure obtained by performing the tangential variation of the length of the tangent 
indicatrix in the Gauss sphere.

Keywords  Binormal · Total absolute torsion · Polygonals · Non-smooth curves

Mathematics Subject Classification  53A04

1  Introduction

In classical differential geometry, it sometimes happens that the geometry of a proof can 
become obscured by analysis. This statement by Penna [11], which may be referred, e.g., to 
the classical proof of the Gauss-Bonnet theorem, suggests to apply piecewise linear meth-
ods in order to make the geometry of a proof completely transparent.

For this purpose, by using the geometric description of the torsion of a smooth curve, 
Penna  [11] gave in 1980 a suitable definition of torsion for a polygonal curve of the 
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Euclidean space ℝ3 , and used piecewise linear methods and homotopy arguments to 
produce an illustrative proof of the well-known property that the total torsion of any 
closed unit speed regular curve of the unit sphere �2 is equal to zero.

Differently to the smooth case, the polygonal torsion is a function of the segments. 
His definition, in fact, relies on the notion of binormal vector at the interior vertices. 
Since the angle between consecutive discrete binormals describes the movements of the 
“discrete osculating planes” of the polygonal, binormal vectors naturally live in the pro-
jective plane ℝℙ2 , see Sect. 2.

We recall here that Milnor [8] defined the tangent indicatrix, or tantrix, of a polygo-
nal P as the geodesic polygonal �P of the Gauss sphere �2 obtained by connecting with 
oriented geodesic arcs the consecutive points given by the direction of the oriented seg-
ments. Therefore, the total curvature TC(P) , i.e., the sum of the turning angles of the 
polygonal, agrees with the length L

�2 (�P) of the tantrix, and the total absolute torsion 
TAT(P) agrees with the sum of the shortest angles between the geodesic arcs in �2 meet-
ing at the edges of �P.

From another viewpoint, Fenchel [6] in the 1950’s exploited the spherical polarity of 
the tangent and binormal indicatrix in order to analyze the differential geometric prop-
erties of smooth curves in ℝ3 . In his survey, Fenchel proposed a general method that 
gathers several results on curves in a unified scheme. We point out that Fenchel deals 
with C4 rectifiable curves (parameterized by arc length) such that at each point it is well 
defined the osculating plane, that is, a plane containing the linearly independent vectors 
� ∶= ċ and c̈ , such that its suitably oriented normal unit vector � , the binormal vector, is 
of class C2 , and the two vectors �̇ and �̇ never vanish simultaneously. He then defines the 
principal normal by the vector product

Since the derivatives of � and � are perpendicular to both � and � , the curvature � and tor-
sion � are well defined through the formulas:

As a consequence, one has

and hence the Frenet–Serret formulas hold true, but Fenchel allows both curvature and tor-
sion to be zero or negative. Related arguments have been treated in [2, 4, 5, 7, 14].

Content of the paper We deal with curves in the Euclidean space ℝ3 with finite total 
curvature and total absolute torsion. We address to Sullivan  [13] for the analysis of 
curves with finite total curvature, and also to our paper [10] for the BV-properties of the 
unit normal of planar curves.

By melting together the approaches by Penna and Fenchel previously described, in 
this paper we firstly define the binormal indicatrix �P of a polygonal P in ℝ3 as the arc-
length parameterization �P of the polar in ℝℙ2 of the tangent indicatrix �P , see Defini-
tion 2 and Fig. 1. Therefore, the total absolute torsion TAT(P) of P is equal to the length 
of the curve �P . We remark that a similar definition has been introduced by T. F. Ban-
choff in his paper [2] on space polygons.

However, differently from what happens for the length and the total curvature, the 
monotonicity formula fails to hold. More precisely, if P′ is a polygonal inscribed in P, 

(1.1)� ∶= � × �.

�̇ = �� , �̇ = −� �.

�̇ = −� � + � �
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by the triangular inequality we have L(P�) ≤ L(P) and TC(P�) ≤ TC(P) , compare, e.g., 
[13, Cor. 2.2], but it may happen that TAT(P�) > TAT(P) , see Example 1.

For that reason, the total absolute torsion TAT(c) of a curve c in ℝ3 is defined by follow-
ing the approach due to Alexandrov and Reshetnyak [1] that involves the notion of modulus 
�c(P) of a polygonal P inscribed in c, see (3.1).

As a consequence, by means of a density argument, a good notion of weak binormal 
indicatrix �c for a non-smooth curve with finite total curvature and absolute torsion is 
obtained in our first main result, see Theorem 1. In fact, we infer that for any sequence {Ph} 
of inscribed polygonals with �c(Ph) → 0 , one has TAT(Ph) → TAT(c) , see Proposition 1, 
and hence that the weak binormal �c only depends on the curve c.

For smooth curves, the total absolute torsion, which agrees with the length in the Gauss 
sphere of the smooth binormal curve � , actually agrees with the total geodesic curvature of 
the smooth tantrix � in �2.

In fact, on account of the density result from [11, Prop. 4], by Proposition 1 one readily 
obtains that

where �(s) is the torsion of the smooth curve c. This property is checked in Exam-
ple  2, referring to a helicoidal curve, where we exploit piecewise linear methods in the 
computation.

In Theorem 1, we show the existence of a curve �c of ℝℙ2 , parameterized by arc length, 
whose length is equal to the total absolute torsion:

The hypothesis TC(c) < ∞ in Theorem 1 may sound a bit unnatural, and actually a techni-
cal point, since it allows us to prove that �c has constant velocity one, so that (1.3) holds 
true.

(1.2)TAT(c) = ∫c

|�| ds

(1.3)L
ℝℙ

2 (�c) = TAT(c).

Fig. 1   An example of a polygonal curve with tangent indicatrix moving as in the left figure. The weak 
binormal indicatrix moves as in the right figure. Since the weak binormal indicatrix lives in the projective 
space ℝℙ2 , in the figure we have drawn one of its two possible liftings into the sphere �2
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To this purpose, we recall that the definition of complete torsion CT(P) of polygonals P 
given by Alexandrov and Reshetnyak [1], who essentially take the distance in �2 between 
consecutive discrete binormals, implies that planar polygonals may have positive torsion 
at “inflections points”. Defining the complete torsion CT(c) of curves c in ℝ3 as the supre-
mum of the complete torsion of the inscribed polygonals, they obtain in [1, p. 244] that 
any curve with finite complete torsion and with no points of return must have finite total 
curvature.

With our definition of torsion, the above implication clearly fails to hold, see Remark 9. 
On the other hand, equality (1.2) is violated if one considers the complete torsion from [1], 
since for a smooth planar curve with inflection points, one has CT(c) > 0.

We finally notice that a curve with finite total curvature and total absolute torsion may 
have infinite complete torsion in the sense of [1]: just take a smooth planar curve with a 
countable set of inflection points.

In Theorem 2, we show that for smooth curves whose torsion � (almost) never vanishes, 
the weak binormal �c obtained in Theorem 1, when lifted to �2 , agrees with the arc-length 
parameterization of the smooth binormal �.

Similar features concerning the tantrix are collected in Propositions 2 and 3. Our curve 
�c satisfies L

�2 (�c) = TC(c) and hence it is strictly related with the complete tangent indica-
trix in the sense of Alexandrov and Reshetnyak [1].

Now, when looking for a possible weak notion of principal normal, a drawback appears. 
In fact, in Penna’s approach [11], the curvature of an open polygonal P is a nonnegative 
measure �P concentrated at the interior vertices, whereas the torsion is a signed measure �P 
concentrated at the interior segments, see Remark 5. Since these two measures are mutu-
ally singular, in principle there is no way to extend Fenchel’s formula (1.1) in order to 
define the principal normal.

To overcome this problem, in Sect.  5 we proceed as follows. Firstly, we choose two 
suitable curves �̃P, �̃P ∶ [0,C + T] → ℝℙ

2 , where C = TC(P) and T = TAT(P) , that on one 
side inherit the properties of the tangent and binormal indicatrix �P and �P , respectively, 
and on the other side take account of the order in which curvature and torsion are defined 
along P. More precisely, one of the two curves is constant when the other one parameter-
izes a geodesic arc, whose length is equal to the curvature or to the (absolute value of the) 
torsion at one vertex or segment of P, respectively. As in Fenchel’s approach, by exploiting 
the polarity of the curves �̃P and �̃P , the weak normal of the polygonal is well defined by 
the inner product

compare Remark 16 and Fig. 2. Notice that by our Definition 3 we have:

As a consequence, in our second main result, see Theorem 3, using again an approxima-
tion procedure, the weak principal normal of a curve c with finite total curvature and finite 
complete torsion is well defined as a rectifiable curve �c in ℝℙ2 . We recall that condition 
CT(c) < ∞ is stronger than the more natural assumption TAT(c) < ∞ . It turns out that the 
product formula (1.1) continues to hold in a suitable sense, and we also have:

�P(s) ∶= �̃P(s) × �̃P(s) ∈ ℝℙ
2 , s ∈ [0,T + C]

L
ℝℙ

2 (�P) = TC(P) + TAT(P).

L
ℝℙ

2 (�c) = TC(c) + TAT(c).
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In particular, for smooth curves whose curvature (almost) never vanishes, the principal 
normal � agrees with a lifting of a suitable parameterization of the weak normal �c . More 
precisely, in Proposition 4 we obtain that

where s(t) is the inverse of the increasing and bijective function

In Sect.  6, we make use of an analytical approach in order to define the binormal and 
principal normal of smooth regular curves with inflection points. In fact, if |ċ(s0)| = 1 
but c̈(s0) = 0

ℝ3 , the first nonzero higher-order derivative c(n)(s0) of c at s0 satisfies 
ċ(s0) ⟂ c(n)(s0) and hence it plays a role in the definition of the binormal. Therefore, follow-
ing Fenchel [6] in order to define the normal as in (1.1), in Proposition 5 we get:

In general, the binormal and the normal fail to be continuous at inflection points, see 
Example 3. However, according to Proposition 5, it turns out that they are both continuous 
when seen as functions in ℝℙ2.

This feature confirms that the natural ambient of definition for both the binormal and 
principal normal is indeed the projective plane ℝℙ2.

Finally, in Sect. 7, we define a measure T  , that we call torsion force, that is obtained 
by performing the tangential variation of the length of the tangent indicatrix �c that we 
have built up in Proposition 2. Our torsion force may be compared with the curvature 
force K introduced in [3], that comes into the play by computing the first variation of 
the length of curves with finite total curvature. In fact, in the smooth case we have:

[�(s(t))] = �c(t) ∈ ℝℙ
2 ∀ t ∈ [0, TC(c) + TAT(c)]

t(s) ∶= ∫
s

0

(�(�) + |�(�)|) d� , s ∈ [0,L(c)].

�(s0) = ċ(s0) , �(s0) =
ċ(s0) × c(n)(s0)

‖ċ(n)(s0)‖
, �(s0) =

c(n)(s0)

‖c(n)(s0)‖
.

Fig. 2   The weak normal indica-
trix of the curve whose tangent 
and binormal indicatrix are those 
in Fig. 1. Again, for the sake of 
the illustration we consider one 
of the two liftings of the normal 
indicatrix into the sphere �2



2464	 D. Mucci, A. Saracco 

1 3

where in the second formula we have set k(s) ∶= ∫ s

0
�(�) d� , the primitive of the curvature 

of the curve.
In general, the curvature force K is a finite measure when the curve c has finite total 

curvature TC(c) , i.e., when the tantrix � = ċ is a function of bounded variation. The tor-
sion force T  , instead, is a finite measure when the arc-length derivative of the tantrix �c 
from Proposition 2 is a function with bounded variation. We shall see that this condition 
is satisfied if the curve c has finite complete torsion CT(c) in the sense of Alexandrov and 
Reshetnyak [1].

2 � Weak binormal and total torsion of polygonals

In this section, we introduce a weak notion of binormal indicatrix �P for a polygonal P in 
ℝ

3 , see Definition 2. It is a rectifiable curve in the projective plane ℝℙ2 whose length is 
equal to the total absolute torsion of P.

Let P be a polygonal curve in ℝ3 with consecutive vertices vi , i = 0,… , n , where n ≥ 3 
and P is not closed, i.e., v0 ≠ vn . Without loss of generality, we assume that every ori-
ented segment �i ∶= [vi−1, vi] has positive length L(�i) ∶= ‖vi − vi−1‖ , for i = 1,… , n , and 
that two consecutive segments are never aligned, i.e., the vector product �i × �i+1 ≠ 0

ℝ3 for 
each i = 1,… , n − 1.

Remark 1  If �i × �i+1 = 0
ℝ3 , we replace �i+1 with the oriented segment [vi, vj+1] , where j is 

the first index greater than i such that �j × �j+1 ≠ 0
ℝ3 . If �j × �j+1 = 0

ℝ3 for each j > i , we 
set bi = bi−1 in Definition (2.1).

Binormal vectors and torsion In the definition by Penna [11], the discrete unit binormal 
is the unit vector given at each interior vertex vi of P by the formula:

The torsion of P is a function �(�i) of the interior oriented segments �i defined as follows. 
Let i = 2,… , n − 1 . If the three segments �i−1, �i, �i+1 are coplanar, i.e., if the vector prod-
uct bi−1 × bi = 0

ℝ3 , one sets �(�i) = 0 . Otherwise, one sets

where �i denotes the angle between −�∕2 and �∕2 whose magnitude is the undirected 
angle between the binormals bi−1 and bi , and whose sign is equal to the sign of the scalar 
product between the linearly independent vectors bi−1 × bi and �i . Penna then defined the 
total torsion of P through the sum:

In a similar way, we define the total absolute torsion of P by:

K = �� dL1 , T = k#
(
� � dL1

)

(2.1)bi ∶=
�i × �i+1

‖�i × �i+1‖
, i = 1,… , n − 1.

�(�i) ∶=
�i

L(�i)

n−1∑

i=2

�(�i) ⋅ L(�i) =

n−1∑

i=2

�i.
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Remark 2  In the above definitions, one considers angles between unoriented osculating 
planes. In fact, it may happen that the planes span (�i−1, �i) and span (�i, �i+1) are almost 
parallel, but the directed angle between the binormal vectors bi and bi+1 is equal to � − � for 
some small 𝜀 > 0 . However, one gets |�i| = � . In facts, denoting by ∙ the scalar product, in 
general one obtains

An equivalent definition In the classical approach by [1, 8], one considers the tan-
gent indicatrix of P, i.e., the polygonal �P in the Gauss sphere �2 obtained by letting 
ti ∶= �i∕L(�i) ∈ �

2 , for i = 1,… , n , and connecting with oriented geodesic arcs �i the con-
secutive points ti and ti+1 , for i = 1,… , n − 1 . Therefore, one has L(�i) = d

�2 (ti, ti+1) , where 
d
�2 denotes the geodesic distance on �2.

Remark 3  The total curvature TC(P) of P is the sum of the turning angles �i at the interior 
vertices of P, compare, e.g., [13], and it is therefore equal to the length of �P , i.e.,

In particular, the arc-length parameterization �P ∶ [0,C] → �
2 , where C ∶= L(�P) = TC(P) , 

is Lipschitz continuous and piecewise smooth, with |�̇P| = 1 everywhere except to a finite 
number of points, the edges of the tangent indicatrix �P , which correspond to the interior 
segments of the polygonal P.

Remark 4  With the previous assumptions on P, see Remark 1, the total absolute torsion of 
P can be equivalently defined through the formula:

where �̃i ∈ [0,�∕2] is the shortest angle in �2 between the unoriented geodesic arcs �i−1 
and �i meeting at the edge ti of �P.

In fact, the geodesic arcs �i are unique, as the consecutive points ti and ti+1 are not 
antipodal. Moreover, we have �̃i = 0 exactly when bi−1 × bi = 0

ℝ3 , i.e., when bi−1 = bi 
or bi−1 = −bi , so that �(�i) = 0 . Otherwise, we now check that �̃i = |�i| for each 
i = 1,… , n − 1 . By similarity, and up to a rotation, we can assume that �i = (1, 0, 0) . 
Setting �i−1 = (�1, �1, �1) and �i+1 = (�2, �2, �2) , one has �i−1 × �i = (0, �1,−�1) and 
�i × �i+1 = (0,−�2, �2) , so that

where �i−1, �i, �i+1 are not coplanar provided that bi−1 × bi ≠ 0
ℝ3 . Now, the shortest angle 

�̃i between the geodesic arcs �i−1 and �i meeting at ti is equal to the angle between the planes 

TAT(P) ∶=

n−1∑

i=2

|�(�i)| ⋅ L(�i) =
n−1∑

i=2

|�i|.

(2.2)|�i| = min{arccos(bi−1 ∙ bi), arccos(−bi−1 ∙ bi)} ∈ [0,�∕2].

TC(P) =

n−1∑

i=1

L(�i) = L
�2 (�P).

TAT(P) ∶=

n−1∑

i=2

�̃i

bi−1 =
(0, �1,−�1)√

�2
1
+ �2

1

, bi =
(0,−�2, �2)√

�2
2
+ �2

2
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�−
i
 and �+

i
 spanned by the vectors (�i−1, �i) and (�i, �i+1) , respectively. But the correspond-

ing unit normals are bi−1 and bi , whence �̃i = |�i| , where |�i| is given by (2.2), as required.

Remark 5  In an analytical approach, it turns out that the total curvature and absolute tor-
sion of a polygonal P can be seen as the total variation of mutually singular Radon meas-
ures �P and �P in ℝ3 . In fact, with the above notation we have:

where

�vi being the unit Dirac mass at the vertex vi and  the restriction to the segment �i of 
the one-dimensional Hausdorff measure H1.

Remark 6  If the polygonal P is closed, i.e., v0 = vn , the above notation is modified in a 
straightforward way: the torsion is defined at all the n segments �i , whereas the tangent 
indicatrix �P is a closed polygonal curve in �2 , so that n angles are to be considered in both 
the equivalent definitions of TAT(P).

The projective plane We have seen that the torsion is computed in terms of angles 
between undirected unit normal vectors bi of ℝ3 , see Remarks 2 and 4. This implies that 
any reasonable notion of binormal (for non-smooth curves) naturally lives in the real pro-
jective plane ℝℙ2.

For this purpose, we recall that ℝℙ2 is defined by the quotient space ℝℙ2 ∶= 𝕊
2∕ ∼ , the 

equivalence relation being y ∼ ỹ ⟺ y = ỹ or y = −ỹ , and hence the elements of ℝℙ2 are 
denoted by [y]. The projective plane ℝℙ2 is naturally equipped with the induced metric

Similarly to (�2, d
�2 ) , the metric space (ℝℙ2, d

ℝℙ
2 ) is complete, and the projection map 

Π ∶ 𝕊
2
→ ℝℙ

2 such that Π(y) ∶= [y] is continuous. Let u ∶ A → ℝℙ
2 be a continuous 

map defined on an open set A ⊂ ℝ
n . If A ⊂ ℝ

n is simply connected, by the lifting theo-
rem, see, e.g., [12, p. 34], there are exactly two continuous functions vi ∶ A → �

2 such that 
[vi] ∶= Π◦vi = u , for i = 1, 2 , with v2(x) = −v1(x) for every x ∈ A.

The manifold ℝℙ2 is non-orientable. Moreover, the mapping g ∶ 𝕊
2
→ ℝ

6

induces an embedding

Notice that RP2   is a non-orientable, smooth, compact, connected submanifold of ℝ6 
without boundary, such that �z� =

√
2∕2 for every z ∈ RP2 . Also, g maps the equa-

tor �2 ∩ {y3 = 0} into a circle C of radius 1/2, covered twice, with constant velocity 
equal to one. The circle C is a minimum length generator of the first homotopy group 

TC(P) = |�P|(ℝ3) , TAT(P) = |�P|(ℝ3)

d
ℝℙ

2 ([y], [̃y]) ∶= min{d
𝕊2 (y, ỹ), d𝕊2 (y,−ỹ)}.

g(y1, y2, y3) =

�√
2

2
y1

2,

√
2

2
y2

2,

√
2

2
y3

2, y1y2, y2y3, y3y1

�

�g ∶ ℝℙ
2
→ RP2 , RP2 ∶= g(𝕊2) ⊂ ℝ

6 , �g([y]) ∶= g(y).
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�1(RP
2) ≃ ℤ2 . We also have H2(RP2) = 2� , where H2 is the two-dimensional Hausdorff 

measure, compare, e.g., [9, Prop. 2.3]. Moreover, g is an isometric embedding. If, e.g., a 
map u ∶ A → RP2 is given by u = g◦v for some smooth map v ∶ A → �

2 , we in fact have

for each partial derivative Di . Therefore, since ‖v‖ = 1 and 2 (v ∙ Div) = Di‖v‖2 = 0 a.e. for 
every i, we infer that ‖Du‖ = ‖Dv‖.

Polar curve Using the above notation, and following Fenchel’s approach [6], we 
now introduce the polar of the tangent indicatrix �P , a curve supported in the projective 
plane ℝℙ2 , in such a way that the length in ℝℙ2 of the polar is equal to the total abso-
lute torsion TAT(P).

For this purpose, we recall that the support of �P is the union of n − 1 geodesic arcs �i , 
where �i has initial point ti and end point ti+1 , for i = 1,… , n − 1 . Since we assumed that 
consecutive segments of P are never aligned, each arc �i is non-trivial and well defined. 
According to Definition (2.1), it turns out that the discrete unit binormal bi ∈ �

2 is the 
“north pole” corresponding to the great circle passing through �i and with the same ori-
entation as �i.

For any i = 2,… , n − 1 , we denote by Γi the geodesic arc in ℝℙ2 with initial point 
[bi−1] and end point [bi] . Then, Γi is degenerate when bi−1 = ±bi , i.e., when the three seg-
ments �i−1, �i, �i+1 are coplanar. We thus have L

ℝℙ
2 (Γi) = �̃i = |�i| for each i, and hence 

that

Also, for i < n − 2 the end point of Γi is equal to the initial point of Γi+1 . Finally, 
if TAT(P) = 0 , i.e., if the polygonal P is coplanar, all the arcs Γi degenerate to a point 
[b] ∈ ℝℙ

2 , which actually identifies the binormal to P.

Definition 1  Polar of the tangent indicatrix �P is the oriented curve in ℝℙ2 obtained by 
connecting the consecutive geodesic arcs Γi , for i = 2,… , n − 1.

Weak binormal Therefore, the polar of �P connects by geodesic arcs in ℝℙ2 the consecu-
tive discrete binormals [bi] of the polygonal P, and its length is equal to the total absolute 
torsion TAT(P) of P. In particular, it is a rectifiable curve. This property allows us to intro-
duce a suitable weak notion of binormal.

Definition 2  We denote binormal indicatrix of the polygonal P the arc-length param-
eterization �P of the polar in ℝℙ2 of the tangent indicatrix �P (see Fig. 1).

We thus have �P ∶ [0,T] → ℝℙ
2 , where T ∶= L

ℝℙ
2 (�P) = TAT(P) . Moreover, �P is Lip-

schitz continuous and piecewise smooth, with |�̇P| = 1 everywhere except to a finite num-
ber of points.

Remark 7  Differently from what happens for the length and the total curvature, the mono-
tonicity formula fails to hold. More precisely, if P′ is a polygonal inscribed in P, by the 
triangular inequality we have L(P�) ≤ L(P) and TC(P�) ≤ TC(P) , but it may happen that 
TAT(P�) > TAT(P) . This is due to the fact that the total absolute torsion of a polygonal P 

‖Diu‖2 = ‖v‖2 ⋅ ‖Div‖2 + (v ∙ Div)
2

n−1∑

i=2

L
ℝℙ

2 (Γi) = TAT(P).
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can be computed as the sum of min{�i,� − �i} , where �i is the turning angle of the tantrix 
�P at the i-th vertex.

Example 1  Let P be a polygonal made of six segments �i , for i = 1,… , 6 , where the first 
three ones and the last three ones lay on two different planes Π1 and Π2 . Then, the tantrix 
�P connects with geodesic arcs in �2 the consecutive points ti ∶= �i∕L(�i) , for i = 1,… , 6 , 
where the triplets t1, t2, t3 and t4, t5, t6 lay on two geodesic arcs, which are inscribed in the 
great circles corresponding to the vector spaces spanning the planes Π1 and Π2 , respec-
tively. If both the angles � and � of �P at the points t3 and t4 are small, then TAT(P) = � + �.

Let P′ be the inscribed polygonal obtained by connecting the first point of �3 with 
the last point of �4 . The tantrix �P′ connects with geodesic arcs the consecutive points 
t1, t2,w, t5, t6 , where the point w lays in the minimal geodesic arc between t3 and t4 . Now, 
assume that the turning angle � of �P′ at the point t5 satisfies 𝛼 < 𝜀 < 𝜋∕2 , and that the two 
geodesic triangles with vertices t2, t3,w and w, t4, t5 have the same area. By suitably choos-
ing the position of the involved vertices, and by using the Gauss-Bonnet theorem in the 
computation, it turns out that TAT(P�) − TAT(P) = 2(𝜀 − 𝛼) > 0.

Remark 8  For future use, we finally check the following inequality:

In fact, for closed polygonals in the Gauss sphere such that three consecutive vertices never 
lie on the same geodesic, it turns out that polarity is an involutive transformation. There-
fore, the polar of (a lifting of) the binormal indicatrix �P agrees with the polygonal in �2 
obtained by replacing any chain of consecutive geodesic segments �i of �P which lay on 
some maximum circle, with a single geodesic arc obtained by connecting the end points of 
the chain. In particular, the total curvature of �P in ℝℙ2 is bounded by the length of �P.

3 � Curves with finite total absolute torsion

In this section, we collect some notation concerning the total absolute torsion of curves in 
ℝ

3 . We thus let c be a curve in ℝ3 parameterized by c ∶ I → ℝ
3 , where I ∶= [a, b].

Any polygonal curve P inscribed in c, say P ≪ c , is obtained by choosing a finite 
partition D ∶= {a = 𝜆0 < 𝜆1 < ⋯ < 𝜆n−1 < 𝜆n = b} of   I, say P = P(D) , and letting 
P ∶ I → ℝ

3 such that P(�i) = vi ∶= c(�i) for i = 0,… , n , and P(�) is affine on each interval 
Ii ∶= [�i−1, �i] of the partition, so that P(Ii) = �i = [vi−1, vi] . The mesh of the polygonal is 
defined by meshP ∶= sup{L(�i) ∣ i = 1,… , n}.

The length L(c) and the total curvature TC(c) are, respectively, defined through the 
formulas:

Let c be a curve in ℝ3 with finite total curvature, i.e., TC(c) < ∞ . Then it is rectifiable, 
too, see, e.g., [13]. Assume that c ∶ [0,L] → ℝ

3 is its arc-length parameterization, whence 
L = L(c) < ∞ . Since c is a Lipschitz-continuous function, by Rademacher’s theorem it is 
differentiable a.e. in [0, L].

TC
ℝℙ

2 (�P) ≤ L
𝕊2 (�P) = TC(P).

L(c) ∶= sup{L(P) ∣ P ≪ c}

TC(c) ∶= sup{TC(P) ∣ P ≪ c}.
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As a consequence, the tangent indicatrix � ∶ [0, L] → �
2 is well defined by setting 

�(s) ∶= ċ(s) for a.e. s ∈ [0, L] . It is well-known that � is a function with bounded variation 
(see [10] for the notation on BV functions) and moreover that its essential variation in �2 
agrees with the total curvature of c, i.e., Var

�2 (�) = TC(c) . Notice that � is not continuous, 
as can be seen by taking a piecewise C1 curve: a discontinuity point of � appears at any 
edge point of c.

Moreover, by taking any sequence {Ph} of inscribed polygonal curves such that 
meshPh → 0 , on account of Remark 7, and by using a continuity argument, compare [13], 
one infers that L(Ph) → L(c) and TC(Ph) → TC(c).

Total absolute torsion Due to the lack of monotonicity described in Example  1, we 
define the total absolute torsion TAT(c) of c by means of the approach due to Alexandrov 
and Reshetnyak [1].

For this purpose, we recall that the modulus �c(P) of a polygonal P inscribed in c is the 
maximum of the diameter of the arcs of c determined by the consecutive vertices in P.

We also notice that if c is a polygonal curve itself, there exists 𝜀 > 0 such that any 
polygonal P inscribed in c and with modulus 𝜇c(P) < 𝜀 satisfies �P = �c , whence �P = �c 
and definitely we get TAT(P) = TAT(c) . It suffices indeed to take � lower than half of the 
mesh of the polygonal c, so that in every segment of c there are at least two vertices of P.

The above facts motivate the following definition:

Therefore, if TAT(c) < ∞ , for any sequence {Ph} of polygonal curves inscribed in c and 
satisfying �c(Ph) → 0 , one has suph TAT(Ph) < ∞ , and one can find an optimal sequence 
as above in such a way that TAT(Ph) → TAT(c).

Let now c be a curve with finite total curvature and total absolute torsion. In the next 
section, we shall see that it is possible to give a suitable weak notion of binormal indica-
trix, a curve �c in ℝℙ2 such that its length agrees with the total absolute torsion TAT(c) , see 
(4.1).

As a consequence of Theorem 1, see Remark 11, we also obtain:

Proposition 1  Let c be a curve in ℝ3 with both finite total curvature TC(c) and total 
absolute torsion TAT(c). Then for any sequence {Ph} of inscribed polygonal curves such 
that �c(Ph) → 0 , one has TAT(Ph) → TAT(c).

For this purpose, we first discuss here the regular case, i.e., when curvature and torsion 
are defined as in the usual way.

The smooth case Let c be a smooth regular curve in ℝ3 defined through the arc-length 
parameterization (so that |ċ| = 1 a.e.). Assuming c̈ ≠ 0 everywhere, and letting � ∶= ċ , 
� ∶= �̇∕|�̇| , � ∶= |�̇| , � ∶= � × � , the classical Frenet–Serret formulas for the spherical 
frame (�,�, �) of c give:

where � is the (positive) curvature and � the torsion of the curve.
By Proposition 1, and on account of the density result from [11, Prop. 4], one readily 

obtains:

Corollary 1  If c is a smooth regular curve in ℝ3, then

(3.1)TAT(c) ∶= lim
𝜀→0+

sup{TAT(P) ∣ P ≪ c , 𝜇c(P) < 𝜀}.

(3.2)�̇ = �� , �̇ = −� � + � � , �̇ = −� �
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Remark 9  Notice that a rectifiable curve may have unbounded total curvature but zero tor-
sion (just consider a planar curve). Conversely, by taking s ∈ [0, 1] and letting �(s) ≡ 1 and 
�(s) = (1 − s)−1 , solutions to the Frenet–Serret system (3.2) are rectifiable curves c such 
that ∫

c
� ds = 1 but ∫

c
|�| ds = +∞.

As the following example shows, the (absolute value of the) torsion may be seen as the 
curvature of the tantrix, when computed in the sense of the spherical geometry.

Example 2  Given R > 0 and K ≥ 0 , we let c ∶ [−L∕2, L∕2] → ℝ
3 denote the helicoidal 

curve

where we denote v ∶= (R2 + (K∕2�)2)1∕2 and choose L ∶= 2�v , so that |ċ| ≡ 1 and the 
length L(c) = L . Moreover, c(±L∕2) = (±R, 0,±K∕2) , and c(0) = (R, 0, 0) . We thus have

so that both curvature and torsion are constant, � ≡ Rv−2 , � ≡ v−2(K∕2�) . Therefore, the 
integral of the curvature and of the torsion of c are readily obtained:

We now compute the spherical curvature �
�2 (�) of the tantrix � , a closed curve embed-

ded in the Gauss sphere �2 and parameterizing (when K > 0 ) a small circle whose radius 
depends on R and K. We consider a sequence of (strongly converging) polygonal curves 
{�n} in �2 inscribed in the tantrix � . The total curvature of �n is equal to the sum of the 
width in �2 of the angles between consecutive segments. When n → ∞ , by uniform con-
vergence we obtain the total curvature of � in �2 . Actually, it agrees with the integral of the 
absolute torsion of c, i.e.,

To this purpose, for each n ∈ ℕ
+ , we let tn(i) ∶= �(si) , where si = (L∕n)i and 

i ∈ ℤ ∩ [−n, n] , and we consider the closed spherical polygonal generated by the consecu-
tive points tn(i) ∈ �

2.
The turning angle in �2 of two consecutive geodesic segments tn(i − 1)tn(i) and 

tn(i)tn(i + 1) agrees with the angle between the two planes in ℝ3 spanned by 0
ℝ3 and the end 

points of the above segments, i.e., between the normals tn(i − 1) × tn(i) and tn(i) × tn(i + 1) . 
By symmetry, such an angle �n does not depend on the choice of i, and will be computed at 
i = 0 . The total spherical curvature of the polygonal being equal to n ⋅ �n , we check:

TAT(c) = ∫
L

0

|�(s)| ds.

c(s) ∶= (R cos(s∕v),R sin(s∕v),Ks∕(2�v)) , s ∈ [−L∕2, L∕2]

�(s) = v−1(−R sin(s∕v),R cos(s∕v),K∕2�)

�(s) = (− cos(s∕v),− sin(s∕v), 0)

�(s) = v−1((K∕2�) sin(s∕v),−(K∕2�) cos(s∕v),R)

∫c

� ds = L ⋅ � =
2�R

v
, ∫c

|�| ds = L ⋅ � =
K

v
, v ∶= (R2 + (K∕2�)2)1∕2.

∫
�

�
�2 (�) ds =

K

v
= ∫c

|�| ds.

lim
n→∞

n ⋅ �n =
K

v
.
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In fact, in correspondence to the middle point we have

so that we get

Denoting for simplicity

and setting N±
n
∶= ±(tn(0) × tn(±1))∕Mn , we compute

By symmetry, the turning angle of the geodesic arcs connecting two consecutive points 
tn(i) does not depend on the choice of i and is equal to

Since for n → ∞ we have 2(1 − cos(2�∕n)) ∼ (2�∕n)2 and sin(2�∕n) ∼ 2�∕n , we get 
Mn ∼ R(2�∕n)v and finally n ⋅ �n ∼ n ‖N+

n
× N−

n
‖ → K∕v where, we recall, ∫

c
|�| ds = K∕v.

Remark 10  In the previous example, we have considered a sequence {�n} of polygonal 
curves in �2 inscribed in the tantrix � of c and converging to � in the sense of the Haus-
dorff distance. In general, each �n is not the tangent indicatrix of a polygonal inscribed in c. 
However, the total spherical curvature n ⋅ �n of �n clearly agrees with the length in ℝℙ2 of 
the polar of �n , which is constructed as in Sect. 2, see Definition 1.

Now, one may similarly consider a sequence {Ph} of polygonals inscribed in c, each 
one made of h segments with the same length, so that meshPh → 0 . The total absolute 
torsion TAT(Ph) of Ph agrees with the length in ℝℙ2 of the binormal indicatrix �Ph

 , see 
Definition 2. By means of a similar computation (that we shall omit), one can show that 
L
ℝℙ

2 (�Ph
) → K∕v as h → ∞ , in accordance with the formula in Corollary 1.

4 � Weak binormal of a non‑smooth curve

In this section, we consider rectifiable curves c in ℝ3 with finite total curvature TC(c) and 
finite (and nonzero) total absolute torsion TAT(c) . Using a density approach by polygonals, 
in Theorem 1 we show that a weak notion of binormal indicatrix of c is well defined. For 
smooth curves, we shall recover the classical binormal, see Theorem  2 and Remark  12. 
Finally, similar properties concerning the tangent indicatrix are discussed in Propositions 2 
and 3.

tn(0) = v−1(0,R,K∕2�) , tn(±1) = v−1(∓R sin(2�∕n),R cos(2�∕n),K∕2�)

tn(0) × tn(±1) =
R

v2
⋅

(
K

2�

(
1 − cos

2�

n

)
,∓

K

2�
sin

2�

n
,±R sin

2�

n

)
.

Mn ∶= ‖tn(0) × tn(±1)‖ =
R

v2
⋅

�
(K∕2�)22(1 − cos(2�∕n)) + R2 sin2(2�∕n)

�1∕2

N+
n
× N−

n
=

R2

Mn
2
(K∕2�) sin(2�∕n) 2(1 − cos(2�∕n)) ⋅ (0,−R, (K∕2�))

‖N+
n
× N−

n
‖ =

R2

Mn
2
(K∕2�) sin(2�∕n) 2(1 − cos(2�∕n)) v.

�n ∶= arcsin ‖N+
n
× N−

n
‖.
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More precisely, we shall define a Lipschitz-continuous function �c ∶ [0, T] → ℝℙ
2 , 

where T = TAT(c) , satisfying |�̇c| = 1 a.e. in [0, T]. Therefore, �c is a curve in ℝℙ2 with 
length equal to the total absolute torsion of c, i.e.,

This is the content of our first main result:

Theorem 1  Let c be a curve in ℝ3 with finite total curvature TC(c) and finite (and nonzero) 
total absolute torsion T ∶= TAT(c) . There exists a rectifiable curve �c ∶ [0,T] → ℝℙ

2 
parameterized by arc length, so that L

ℝℙ
2 (�c) = TAT(c), satisfying the following property. 

For any sequence {Ph} of inscribed polygonal curves, let bh ∶ [0,T] → ℝℙ
2 denote for 

each h the parameterization with constant velocity of the binormal indicatrix �Ph
 of Ph , see 

Definition 2. If �c(Ph) → 0, then bh → �c uniformly on [0, T] and L
ℝℙ

2 (bh) → L
ℝℙ

2 (�c).

Remark 11  Recalling that L
ℝℙ

2 (bh) = TAT(Ph) , Proposition 1 readily follows.

Furthermore, we shall see that if c is smooth in the sense of the previous section (so 
that the Frenet–Serret formulas (3.2) hold), the binormal �(s) of c agrees with the value 
of a suitable lifting of the weak binormal �c in �2 , when computed at the expected point.

Theorem  2  Let c ∶ [0,L] → ℝ
3 be a rectifiable curve of class C3 parameterized in arc 

length, so that L = L(c). Assume that c̈(s) ≠ 0 for each s ∈ [0, L], so that the spherical 
frame (�,�, �) of c is well defined. Let �c ∶ [0,T] → ℝℙ

2 be the rectifiable curve in ℝℙ2 
defined in Theorem 1, so that T = TAT(c). Then, for each s ∈]0, L[ there exists t(s) ∈ [0, T] 
such that

for a unique lifting �̃c of �c in �2. Moreover, t(s) is equal to the total absolute torsion 
TAT(c|[0,s]) of the curve c|[0,s] ∶ [0, s] → ℝ

3. In particular, we have:

where �(�) is the torsion of the curve c at the point c(�).

Remark 12  Notice that if the torsion � of c (almost) never vanishes, the func-
tion t(s) ∶ [0,L] → [0, T] in equation (4.2) is strictly increasing, and its inverse 
s(t) ∶ [0,T] → [0, L] gives

Therefore, in this case, the weak binormal �c in ℝℙ2 , when suitably lifted to �2 , agrees 
with the arc length parameterization of the binormal � of c.

Tangent indicatrix Similarly to Theorems 1 and 2, we also obtain the following prop-
erties concerning the tantrix.

(4.1)L
ℝℙ

2 (�c) = TAT(c).

�(s) = �̃c(t(s))

(4.2)t(s) = ∫
s

0

|�(�)| d� ∀ s ∈ [0, L]

�̃c(t) = �(s(t)) ∀ t ∈ [0, T] , T = TAT(c).
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Proposition 2  Let c be a curve in ℝ3 with finite total curvature C ∶= TC(c) and with no 
points of return. Then, there exists a rectifiable curve �c ∶ [0,C] → �

2, parameterized by 
arc length, so that L

�2 (�c) = TC(c), satisfying the following property. For any sequence 
{Ph} of inscribed polygonal curves such that meshPh → 0, denoting by th ∶ [0,C] → �

2 
the parameterization with constant velocity of the tangent indicatrix �Ph

 of Ph, then th → �c 
uniformly on [0, C] and L

�2 (th) → L
�2 (�c).

Remark 13  If c has points of return, i.e., if, e.g., for some s ∈]0, L[ we have �(s−) = −�(s+) , 
then the curve �c is uniquely determined up to the choice of the geodesic arc in �2 connect-
ing �(s−) and �(s+).

Proposition 3  Let c ∶ [0,L] → ℝ
3 be a curve of class C2 parameterized in arc length, 

so that L = L(c), and let �c ∶ [0,C] → �
2 be the rectifiable curve in �2 defined in Proposi-

tion 2, so that C = TC(c). Then, for each s ∈]0, L[ there exists k(s) ∈ [0,C] such that the 
tangent indicatrix � ∶= ċ satisfies

Moreover, k(s) is equal to the total curvature TC(c|[0,s]) of the curve c|[0,s] ∶ [0, s] → ℝ
3, 

whence:

where �(𝜆) ∶= ‖c̈(𝜆)‖ is the curvature of c at the point c(�).

Remark 14  As before, if the curvature � of c (almost) never vanishes, the func-
tion k(s) ∶ [0, L] → [0,C] in equation (4.3) is strictly increasing, and its inverse 
s(k) ∶ [0,C] → [0, L] gives

Proof  We now give the proofs of the previous results.

Proof of Theorem 1  It is divided into four steps.
Step 1. Choose an optimal sequence {Ph} of polygonal curves inscribed in c such that 

�c(Ph) → 0 and Th → T  , where Th ∶= TAT(Ph) and T = TAT(P) . For h large enough so 
that Th > 0 , the binormal indicatrix of Ph has been defined by the arc-length parameteri-
zation �Ph

∶ [0, Th] → ℝℙ
2 of the curve in ℝℙ2 given by the polar of the tangent indica-

trix �Ph
 , see Definition  2. Whence it is a rectifiable curve such that L

ℝℙ
2 (�Ph

) = Th and 
‖�̇Ph

‖ = 1 a.e. on [0,Th].
Define bh ∶ [0, T] → ℝℙ

2 by bh(s) ∶= �Ph
((Th∕T)s) , so that ‖ḃh(s)‖ = Th∕T  a.e., where 

Th∕T → 1 . By Ascoli-Arzela’s theorem, we can find a subsequence {bhk} that uniformly 
converges in [0,  T] to some Lipschitz-continuous function b ∶ [0, T] → ℝℙ

2 , and we 
denote b = �c.

Step 2. We claim that ḃh → ḃ = �̇c strongly in L1 . As a consequence, we deduce that 
‖�̇c‖ = 1 a.e. on [0, T], and hence that

�(s) = �c(k(s)).

(4.3)k(s) = ∫
s

0

�(�) d� ∀ s ∈ [0, L]

�c(k) = �(s(k)) ∀ k ∈ [0,C] , C = TC(c).

L
ℝℙ

2 (�c) = ∫
T

0

‖�̇c(s)‖ ds = T = TAT(c).
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In order to prove the claim, recalling from Sect. 2 that �g ∶ ℝℙ
2
→ RP2 ⊂ ℝ

6 is the iso-
metric embedding of the projective plane, we shall denote here f ∶= g̃◦f  , for any func-
tion f with values in ℝℙ2 , and we consider the tantrix �h of the curve bh ∶ [0, T] → RP2 , 
i.e., 𝜏h(s) = ḃh(s)∕‖ḃh(s)‖ . We have L

ℝℙ
2 (bh) = TAT(Ph) and ‖ḃh(s)‖ = Th∕T  , whereas by 

Remark 8

Therefore, it turns out that the essential total variation of �h in RP2 is lower than the sum 
TC(Ph) + TAT(Ph) . We thus get:

As a consequence, by compactness, a subsequence of {ḃh} converges weakly-* in the BV
-sense to some BV-function v ∶ [0,T] → RP2.

We show that v(s) = ḃ(s) for a.e. s ∈ [0, T] . This yields that the sequence {ḃh} converges 
strongly in L1 (and hence a.e. on [0, T]) to the function ḃ.

In fact, using that by Lipschitz-continuity

and setting

by the weak-* BV convergence ḃh ⇀ v , which implies the strong L1 convergence, we have 
bh → V  in L∞ , hence ḃh → V̇ = v a.e. on [0, T]. But we already know that bh → b in L∞ , 
thus we get v = ḃ.

Step 3. Let now {P̃h} denote any sequence of polygonal curves inscribed in c such that 
�c(P̃h) → 0 . We claim that possibly passing to a subsequence, the binormals �

P̃h
 converge 

uniformly (up to reparameterizations) to the curve �c.
In fact, we recall that the polar of the tantrix �P to a polygonal curve P is defined in 

terms of vector products of couples of consecutive points of its geodesic segments, the 
vector product being continuous. Moreover, the Frechét distance (see, e.g., [13, Sec. 1]) 
between the two sequences {�Ph

} and {�
P̃h
} goes to zero. This property follows from the 

equiboundedness of the total curvatures. Whence, the polars of �Ph
 and of �

P̃h
 must converge 

uniformly (up to reparameterizations) to the same limit function. Therefore, the sequence 
�
P̃h

 converges in the Frechét distance to the curve �c obtained in Step 1.
Step 4. Now, if {P̃h} is the (not relabeled) subsequence obtained in Step 3, by repeating 

the argument in Step 1 we infer that the limit function b = �c is unique. As a consequence, 
a contradiction argument yields that all the sequence {bh} uniformly converges to �c and 
that the limit curve �c does not depend on the choice of the sequence {Ph} of inscribed 
polygonals satisfying �c(Ph) → 0 . Therefore, the curve �c is identified by c. Arguing as in 
Step 2, we finally infer that L

ℝℙ
2 (bh) → L

ℝℙ
2 (�c) , as required. 	�  ◻

Proof of  Theorem  2  For any given s ∈]0, L[ , since ‖ċ(s)‖ = 1 and c̈(s) ≠ 0 , the binor-
mal is defined by �(s) ∶= �(s) × �(s) , with �(s) ∶= ċ(s) and �(s) ∶= c̈(s)∕‖c̈(s)‖ , so that 
ċ(s) × c̈(s) ≠ 0 and

TC
ℝℙ

2 (bh) ≤ L
𝕊2 (�Ph

) = TC(Ph).

sup
h

VarRP2 (𝜏h) ≤ TC(c) + TAT(c) < ∞.

bh(s) = bh(0) + ∫
s

0

ḃh(𝜆) d𝜆 ∀ s ∈ [0, T]

V(s) ∶= b(0) + ∫
s

0

v(�) d� , s ∈ [0, T]
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We thus may and do choose a sequence of polygonals {Ph} inscribed in c such that 
�c(Ph) → 0 and (with the notation from Sect. 2 for P = Ph ) the following properties hold 
for any h ∈ ℕ

+ large enough : 

(1)	 the four points vi−2 = c(s − 2h) , vi−1 = c(s − h) , vi = c(s + h) , vi+1 = c(s + 2h) are con-
secutive (and interior) vertices of Ph;

(2)	 the three segments �i−1 = vi−1 − vi−2 , �i = vi − vi−1 , �i+1 = vi+1 − vi satisfy 
�i−1 × �i ≠ 0

ℝ3 and �i × �i+1 ≠ 0
ℝ3.

By taking the second-order expansions of c at s, we get

and hence

On account of (2.1), we thus get for any h large:

so that in particular bi(h) → −�(s) as h → ∞.
Now, consider the polygonal Ph(s) given by the union of the segments �1,… , �i−1, �i of 

Ph . It turns out that the total absolute torsion of Ph(s) satisfies TAT(Ph(s)) = th(s) for some 
number th(s) ∈ [0, TAT(Ph)] . Since TAT(Ph) → TAT(c) ∈ ℝ

+ , possibly passing to a sub-
sequence, the sequence {th(s)} converges to some number t(s) ∈ [0, T] . By Theorem 1, we 
thus infer that bi(h) → �c(t(s)) as h → ∞ , whence we obtain �(s) = −�c(t(s)).

Moreover, since both the end points of the segment �i of Ph converge to c(s) as h → ∞ , 
whereas �c(Ph) → 0 , by Proposition  1 we deduce that TAT(Ph(s)) → TAT(c|[0,s]) , which 
yields the equality t(s) = TAT(c|[0,s]) . Since by smoothness of the curve c

recalling that �̇(𝜆) = −�(𝜆)�(𝜆) , we finally obtain the equality (4.2). 	�  ◻

Proof of Proposition 2  Following the proof of Theorem 1, we choose h large enough so that 
Ch ∶= TC(Ph) > 0 , and we denote by �Ph

∶ [0,Ch] → �
2 the arc-length parameterization 

of the tantrix �Ph
 , so that Ch = L

�2 (�Ph
) and ‖�̇Ph

‖ = 1 a.e. on [0,Ch] . Since meshPh → 0 , 
we have Ch → C− , where C ∶= TC(c) . Setting th ∶ [0,C] → �

2 by th(s) ∶= �Ph
((Ch∕C)s) , 

as in Step 1 we can find a subsequence {thk} that uniformly converges in [0, C] to some 
Lipschitz-continuous function t ∶ [0,C] → �

2 . Moreover, as in Steps 3-4 we deduce that t 

�(s) =
ċ(s) × c̈(s)

‖ċ(s) × c̈(s)‖ .

𝜎i−1 = − ċ(s) h +
3

2
c̈(s) h2 + o(h2) ,

𝜎i = 2 c̈(s) h2 + o(h2) ,

𝜎i+1 = ċ(s) h +
3

2
c̈(s) h2 + o(h2)

𝜎i−1 × 𝜎i = 2h2 c̈(s) × ċ(s) + o(h3) , 𝜎i × 𝜎i+1 = 2h2 c̈(s) × ċ(s) + o(h3).

bi−1(h) =
�i−1 × �i

‖�i−1 × �i‖
= −�(s) + o(h3), bi(h) =

�i × �i+1

‖�i × �i+1‖
= −�(s) + o(h3)

TAT(c�[0,s]) = ∫
s

0

‖�̇(𝜆)‖ d𝜆
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does not depend on the choice of {Ph} , and that all the sequence {th} uniformly converges 
to t, so that the curve �c ∶= t is identified by c.

We claim that L
�2 (�c) = C . As a consequence, since the equality ‖ṫh‖ = Ch∕C a.e. yields 

that ‖�̇c‖ ≤ 1 a.e., whereas L
�2 (�c) = ∫ C

0
‖�̇c(s)‖ ds , we infer that ‖�̇c‖ = 1 a.e., as required.

It remains to prove the claim. Since � = ċ is a function of bounded variation, for each h 
we can find a partition Dh of [0, L] in 2h intervals Ih

i
= [sh

i−1
, sh

i
] , for i = 1,… , 2h , satisfying 

the following properties: 

(1)	 Dh+1 is a refinement of Dh , and meshDh → 0 as h → ∞ ;
(2)	 for each i, the end points of the intervals Ih

i
 are Lebesgue points of � , with Lebesgue 

values �(sh
i−1

) and �(sh
i
) ;

(3)	 if fh ∶ [0, L] → �
2 is the piecewise constant function with fh(s) = �(sh

i
) for each 

s ∈]sh
i−1

, sh
i
[ and each i, then Var

ℝ3 (fh) → Var
ℝ3 (�) .

Let now �h denote the spherical polygonal in �2 obtained by connecting the consecutive ver-
tices �(sh

i
) . Then, L

�2 (�h) = Var
�2 (�h) → Var

�2 (�) = TC(c) . On the other hand, the Frechét 
distance between the two sequences {�Ph

} and {�h} goes to zero. Therefore, �h converges to �c 
in the Frechét distance. As a consequence, each polygonal �h is inscribed in �c , which yields 
that L

�2 (�h) → L
�2 (�c) , and hence that L

�2 (�c) = TC(c) , which completes the proof. 	�  ◻

Remark 15  It turns out that the essential total variation in �2 of the tantrix �h of th is lower 
than the complete torsion CT(Ph) in the sense of [1]. Therefore, if in addition the curve 
c has finite complete torsion in the sense of [1], CT(c) < ∞ , as in Step 3 of the proof of 
Theorem 1 we infer that the derivative �̇c is a function of bounded variation, and that ṫh 
converges to �̇c weakly-* in the BV-sense, and hence a.e. in [0, C]. We finally recall that 
a curve with finite total curvature and total absolute torsion may have infinite complete 
torsion.

Proof of  Proposition  3  Similarly to the proof of Theorem  2, for any s ∈]0, L[ we 
choose {Ph} inscribed in c such that meshPh → 0 and for any h ∈ ℕ

+ the two points 
vi−1 = c(s − h) and vi = c(s + h) are consecutive (and interior) vertices of Ph . We thus get 
𝜎i ∶= vi − vi−1 = 2ċ(s) h + o(h) , whence ti(h) ∶= 𝜎i∕‖𝜎i‖ → ċ(s) = �(s) as h → ∞ . Also, 
denoting again by Ph(s) the polygonal corresponding to the segments �1,… , �i−1, �i of 
Ph , we have TC(Ph(s)) = kh(s) ∈ [0, TC(Ph)] , where TC(Ph) → C ∈ ℝ

+
0
 , whence a subse-

quence of {kh(s)} converges to some k(s) ∈ [0,C] . Proposition 2 yields that ti(h) → �c(k(s)) 
as h → ∞ , whence we get �(s) = �c(k(s)) . We clearly have TC(Ph(s)) → TC(c|[0,s]) , which 
implies that

Recalling that �̇ = �� , we finally obtain the equality (4.3). 	�  ◻

5 � Weak normal of a non‑smooth curve

We have seen that the curvature of an open polygonal P is a nonnegative measure �P 
concentrated at the interior vertices of P, whereas the torsion is a signed measure �P con-
centrated at the interior segments, see Remark 5. Since these two measures are mutually 

k(s) = TC(c�[0,s]) = ∫
s

0

‖�̇(𝜆)‖ d𝜆.
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singular, in principle there is no analogous to the classical formula by Fenchel for the 
(principal) normal of smooth curves in ℝ3 , namely

In this section, following Banchoff [2], a weak notion of normal indicatrix of a polygonal is 
introduced, see Definition 3, in such a way that formula (5.1) continues to hold. As a con-
sequence, according to the cited Fenchel’s approach, the principal normal of a curve with 
finite total curvature and absolute torsion is well defined in a weak sense, see Theorem 3.

Weak normal of polygonals Let P be an open polygonal in ℝ3 with non-degenerate seg-
ments. Denoting C = TC(P) and T = TAT(P) , we first choose two suitable curves

which on one side inherit the properties of the tangent indicatrix and of the binormal indi-
catrix of P, respectively, and on the other side take account of the order in which curvature 
and torsion are defined along P. More precisely, we shall recover the properties

(where all equalities hold in the case of closed polygonals), which are satisfied (up to a lift-
ing) by the curves �P and �P defined in Sect. 2. Moreover, in accordance with the mutual 
singularities of the measures �P and �P , see Remark 5, one curve is constant when the other 
one parameterizes a geodesic arc, whose length is equal to the curvature or to the (absolute 
value of the) torsion at one vertex or segment of P, respectively.

Recalling the notation from Sect.  2, we let vi , i = 0,… , n , denote the vertices, and 
�i ∶= [vi−1, vi] , i = 1,… , n , the oriented segments of P. Also, we let ti ∶= �i∕L(�i) ∈ �

2 , 
for i = 1,… , n , and �i is a minimal geodesic arc in �2 connecting the consecutive points ti 
and ti+1 , for i = 1,… , n − 1 . Notice that �i is unique when ti+1 ≠ −ti , and it is trivial when 
ti+1 = ti . Finally, Γi is the geodesic arc in ℝℙ2 with initial point [bi−1] and end point [bi] , for 
any i = 2,… , n − 1 , where bi is the discrete binormal (2.1). Therefore, Γi is trivial when 
bi = ±bi−1 . We thus have

Remark 16  In order to explain our construction below, let us choose a lifting 
�̂P ∶ [0,T] → �

2 of the (continuous) curve �P from Definition 2, and let b̂i and Γ̂i denote 
the points and geodesic arcs corresponding to [bi] and Γi . For i = 1,… , n − 1 , we let 
�̃i = b̂i × �i , i.e., �̃i is the oriented geodesic arc in �2 obtained by means of the vector 
product of the lifted discrete binormal b̂i with each point in the support of the arc �i . For 
i = 2,… , n − 1 , we also let Γ̃i = Γ̂i × ti+1 , i.e., Γ̃i is the oriented geodesic arc in �2 obtained 
by means of the vector product of each point in the support of the lifted arc Γ̂i with the 
direction ti+1.

It turns out that for i = 1,… , n − 2 , the final point of �̃i agrees with the initial point of 
Γ̃i+1 , and that the final point of Γ̃i+1 agrees with the initial point of �̃i+1 . Using this order 
to join the geodesic arcs, one obtains a rectifiable curve in �2 whose total length is equal 
to the sum of the lengths of �P and of �P , i.e., to TC(P) + TAT(P) . However, since the 
curve depends on the chosen lifting of the binormal, it is more natural to work in the 

(5.1)� = � × �.

�̃P ∶ [0,C + T] → ℝℙ
2 , �̃P ∶ [0,C + T] → ℝℙ

2

(5.2)L
ℝℙ

2 (�̃P) = TC
ℝℙ

2 (̃�P) = TAT(P) , TC
ℝℙ

2 (�̃P) ≤ L
ℝℙ

2 (̃�P) = TC(P)

TC(P) =

n−1∑

i=1

L
𝕊2 (�i) , TAT(P) =

n−1∑

i=2

L
ℝℙ

2 (Γi).
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projective plane. Therefore, we shall consider the geodesic arcs [�i] ∶= Π(�i) with end 
points [ti] ∶= Π(ti) , where Π ∶ 𝕊

2
→ ℝℙ

2 is the canonical projection.

Recalling that C ∶= TC(P) and T = TAT(P) , we shall denote for brevity C0 ∶= 0 , 
T1 ∶= 0 , and

Notice that Ci = Ci−1 if �i is trivial, i.e., when ti+1 = ti , and that Ti = Ti−1 when Γi is trivial, 
i.e., when bi = ±bi−1.

We define �̃P ∶ [0,C + T] → ℝℙ
2 and �̃P ∶ [0,C + T] → ℝℙ

2 as follows: 

(1)	 �̃P parameterizes with velocity one the oriented geodesic arc [�i] on the interval 
[Ci−1 + Ti,Ci + Ti] , for i = 1,… , n − 1 such that �i is non-trivial;

(2)	 �̃P is constantly equal to [ti] on the interval [Ci−1 + Ti−1,Ci−1 + Ti] , for i = 2,… , n − 2 ;
(3)	 �̃P is constantly equal to [bi] on the interval [Ci−1 + Ti,Ci + Ti] , for i = 1,… , n − 1 ;
(4)	 �̃P parameterizes with velocity one the oriented geodesic arc Γi on the interval 

[Ci−1 + Ti−1,Ci−1 + Ti] , for i = 2,… , n − 2 such that Γi is non-trivial.

The functions �̃P and �̃P are both continuous, and property (5.2) is readily checked. 
Furthermore, it turns out that the unit vectors �̃P(s) and �̃P(s) are orthogonal, for a.e. 
s ∈ [0,C + T] . As a consequence, we are able to define the weak normal according to 
the formula (5.1).

Definition 3  Normal indicatrix of the polygonal P is the curve �P ∶ [0,C + T] → ℝℙ
2 

(see Fig. 2) given by the pointwise vector product

For closed polygonals, the above notation is modified in a straightforward way, argu-
ing as in Remark 6.

Remark 17  By the definition, it turns out that

Notice that, the curvature and torsion of P being mutually singular measures, see Remark 5, 
the above equality is the analogous in the category of polygonals to the integral formulas

for smooth curves c, which clearly follow from the Frenet–Serret formulas (3.2).
Moreover, we have ‖�̇P(s)‖ = 1 for a.e. s ∈ [0,C + T] . In fact, by the definition of �̃P 

and �̃P , we get: 

Ci ∶=

i∑

j=1

L
𝕊2 (�j) , i = 1,… , n − 1 , Ti ∶=

i∑

j=2

L
ℝℙ

2 (Γj) , i = 2,… , n − 1.

�P(s) ∶= �̃P(s) × �̃P(s) ∈ ℝℙ
2 , s ∈ [0,T + C].

L
ℝℙ

2 (�P) = L
ℝℙ

2 (̃�P) + L
ℝℙ

2 (�̃P) = TC(P) + TAT(P).

∫c

‖�̇(s)‖ ds = ∫c

√
�2(s) + �

2(s) ds ,

∫c

�(s) ds = TC(c) , ∫c

��(s)� ds = TAT(c)
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(1)	 for i = 1,… , n − 1 and s ∈]Ci−1 + Ti,Ci + Ti[ , we have �̃P(s) ≡ [bi] ∈ ℝℙ
2 and hence 

�̇P(s) = [bi] × �̇�P(s) , where ‖�̇�P(s)‖ = 1 and [bi] is orthogonal to �̇�P(s) , if �i is non-trivial;
(2)	 for i = 2,… , n − 2 and s ∈]Ci−1 + Ti−1,Ci−1 + Ti[ we have �̃c(s) ≡ [ti] and hence 

�̇P(s) =
�̇�P(s) × [ti] , where ‖�̇�P(s)‖ = 1 and [ti] is orthogonal to �̇�P(s) , if Γi is non-trivial.

Remark 18  Notice that the turning angle in ℝℙ2 of the curve �P is equal to �∕2 at each 
“non-trivial” vertex of �P . Indeed, from a vertex of �P we move by rotating either around �� 
or �� ( � = � or � = � − 1 ), where 𝔱� ⟂ 𝔟� , hence the two curves are orthogonal. More pre-
cisely, for i = 1,… , n − 1 , if both the geodesic arcs [�i] and Γi+1 are non-degenerate, they 
meet orthogonally at the vertex �P(Ci + Ti) of �P . Similarly, for any i = 2,… , n − 2 such 
that both the geodesic arcs Γi+1 and [�i+1] are non-degenerate, they meet orthogonally at the 
vertex �P(Ci + Ti−1).

Weak normal of curves In the same spirit as in Theorem  1, for non-smooth curves 
(that may have points of return or planar pieces) we now obtain our second main result. 
In view of Remark  15, we need the stronger assumption that the curve has finite com-
plete torsion CT(c) in the sense of [1]. To this purpose, we recall that the implica-
tion CT(c) < ∞ ⟹ TAT(c) < ∞ holds true in general, whereas the implication 
CT(c) < ∞ ⟹ TC(c) < ∞ is satisfied provided that the curve has no points of return.

Theorem 3  Let c be a curve in ℝ3 with finite total curvature C ∶= TC(c) , finite complete 
torsion CT(c) , and finite total absolute torsion T ∶= TAT(c). There exists a rectifiable 
curve �c ∶ [0,C + T] → ℝℙ

2 parameterized by arc length, so that L
ℝℙ

2 (�c) = C + T , sat-
isfying the following property. For any sequence {Ph} of inscribed polygonal curves, let 
nh ∶ [0,C + T] → ℝℙ

2 denote the parameterization with constant velocity of the normal 
indicatrix �Ph

 of Ph, see Definition 3. If �c(Ph) → 0, then nh → �c uniformly on [0,C + T] 
and L

ℝℙ
2 (nh) → L

ℝℙ
2 (�c).

Proof  We clearly may and do assume that each Ph has non-degenerate segments. By Defi-
nition 3, setting Ch = TC(Ph) and Th = TAT(Ph) , the normal indicatrix of Ph is the curve 
�Ph

∶ [0,Ch + Th] → ℝℙ
2 given by �Ph

(s) ∶= �̃Ph
(s) × �̃Ph

(s) , so that L
ℝℙ

2 (�Ph
) = Ch + Th , 

and ‖�̇Ph
‖ = 1 a.e. on [0,Ch + Th] . Also, condition �c(Ph) → 0 yields that Ch → C and 

Th → T .
Setting nh ∶ [0,C + T] → ℝℙ

2 by nh(s) ∶= �Ph
((Ch + Th)s∕(C + T)) , as before we 

deduce that possibly passing to a subsequence, {nh} uniformly converges to some Lip-
schitz-continuous function �c ∶ [0,C + T] → ℝℙ

2.
We claim that ‖�̇c‖ = 1 a.e. in [0,C + T] . This yields that

For this purpose, we note that by Definition  3 we have nh(s) = b̃h(s) × t̃h(s) for each 
s ∈ [0, T + C] , where

As in Theorem 1 and Proposition 2, using that (by Remark 8) we again have:

L
ℝℙ

2 (�c) = ∫
C+T

0

‖�̇c(s)‖ ds = C + T = TC(c) + TAT(c).

b̃h(s) ∶= �̃Ph
((Ch + Th)s∕(C + T)) , t̃h(s) ∶= �̃Ph

((Ch + Th)s∕(C + T)).
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we deduce that (possibly passing again to a subsequence) b̃h → b̃ and t̃h → t̃  
strongly in L1 (and uniformly) to some continuous functions with bounded variation 
b̃, t̃ ∶ [0,C + T] → ℝℙ

2 , and that the approximate derivatives �̇bh → �̇b and �̇th → �̇t  a.e. on 
[0,C + T] , see Remark 15. This yields that �c(s) = b̃(s) × t̃(s) and hence:

for a.e. s ∈ [0,C + T] . But we already know that ‖ṅh(s)‖ = (Ch + Th)∕(C + T) for a.e. s, 
where Ch → C and Th → T  , whence the claim is proved.

We now show that the limit function �c does not depend on the initial choice of the 
approximating sequence {Ph} . As a consequence, as before we conclude that the weak nor-
mal �c only depends on c, and that the whole sequence {nh} converges to �c.

In fact, if we choose another sequence of polygonals {P(1)

h
} , we know that the sequences 

{b̃
P
(1)

h

} and {̃t
P
(1)

h

} take the same limit as the one of the sequences {b̃Ph
} and {̃tPh

} , respec-
tively. Moreover, the corresponding limit function �(1)

c
 has length equal to the length of �c 

on each interval I ⊂ [0,C + T] , and hence the same property holds true for the correspond-
ing couples of functions b̃ , b̃(1) and t̃  , t̃(1) , respectively. These facts imply that �(1)

c
= �c , as 

required. 	�  ◻

Remark 19  On account of Remark 18, denoting by �h the tantrix of the curve n
h
∶= g̃(nh) 

in RP2 , in general we do not have suph VarRP2 (𝜏h) < ∞ . Therefore, we cannot argue as in 
Theorem 1 to conclude that the sequence ṅh converges weakly in the BV-sense (and hence 
strongly in L1 ) to the function �̇c . Actually, the derivative �̇c of the weak normal �c is not a 
function with bounded variation, in general.

The case of smooth curves We finally have:

Proposition 4  Let c ∶ [0,L] → ℝ
3 be a smooth curve satisfying the hypotheses of Theo-

rem 2, so that L = L(c) , C = TC(c), and T = TAT(c) are finite. Let s ∶ [0,C + T] → [0, L] 
be the inverse of the increasing and bijective function t ∶ [0, L] → [0,C + T] given by

where �(�) and �(�) are the curvature and torsion of the curve c at the point c(�). Then the 
principal normal � in �2 of the curve c, and the curve �c in ℝℙ2 given by Theorem 1, are 
linked by the formula:

Proof  For any given s ∈]0, L[ , we choose a sequence {Ph} as in the proof of Theorem 2, 
and we correspondingly denote:

L
ℝℙ

2 (b̃h) = TC
ℝℙ

2 (̃th) = TAT(Ph) , TC
ℝℙ

2 (b̃h) ≤ L
ℝℙ

2 (̃th) = TC(Ph) ,

lim
h→∞

ṅh(s) = lim
h→∞

(
�̇bh(s) ×�th(s) + �bh(s) × �̇th(s)

)

=
(
�̇b(s) ×�t(s) + �b(s) × �̇t(s)

)
= �̇c(s)

(5.3)t(s) ∶= ∫
s

0

(�(�) + |�(�)|) d� , s ∈ [0,L]

(5.4)[�(s(t))] = �c(t) ∈ ℝℙ
2 ∀ t ∈ [0,C + T].

bi(h) ∶=
�i × �i+1

‖�i × �i+1‖
, ti(h) ∶=

�i
‖�i‖

.
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Letting th(s) ∶= TC(Ph(s)) + TAT(Ph(s)) , this time we infer that (possibly passing to a sub-
sequence) th(s) → t(s) ∶= TC(c|[0,s]) + TAT(c|[0,s]) , so that t(s) satisfies the formula (5.3). 
As a consequence, arguing as in the proofs of Theorem 2 and Proposition 3, on account of 
Theorem 3 this time we get:

Since bi(h) → �(s) and ti(h) → �(s) , we also have bi(h) × ti(h) → �(s) , so that formula (5.4) 
holds. We omit any further detail. 	�  ◻

6 � On the spherical indicatrices of smooth curves

The trihedral (�,�, �) is well defined everywhere in the case of regular curves � in ℝ3 of 
class C2 such that � �(t) and � ��(t) are always independent vectors, and the Frenet–Serret for-
mulas (3.2) hold true if in addition � is of class C3.

Fenchel [6] used a geometric approach in order to define (under weaker hypotheses on 
the curve) the osculating plane. He chooses the binormal � as a smooth function. There-
fore, the principal normal is the smooth function given by � = � × � . The Frenet–Serret 
formulas continue to hold, but this time the curvature may vanish and even be negative. He 
also calls �-inflection or �-inflection a point of the curve where the curvature or the torsion 
changes sign, respectively.

By using an analytical approach, we recover some of the ideas by Fenchel in order to 
define the binormal (and principal normal). In general, it turns out that the binormal and 
normal fail to be continuous at the inflection points (see Example 3). However, both the 
binormal and normal are continuous when seen as functions in the projective plane ℝℙ2.

For this purpose, in the sequel we shall assume that � ∶ [a, b] → ℝ
3 satisfies the follow-

ing properties: 

(1)	 � is differentiable at each t ∈ [a, b] and � �(t) ≠ 0
ℝ3 , i.e., � is a regular curve;

(2)	 for each t0 ∈]a, b[ , the function � is of class Cn in a neighborhood of t0 , for some n ≥ 2 , 
and � (n)(t0) ≠ 0

ℝ3 , but � (k)(t0) = 0
ℝ3 for 2 ≤ k ≤ n − 1 , if n ≥ 3.

We thus denote by c(s) ∶= �(t(s)) the arc-length parameterization of the curve � , i.e., 
t(s) = s(t)−1 , with s(t) ∶= ∫ t

a
‖𝛾̇(𝜆)‖ d𝜆 ∈ [0, L] , where L ∶= L(�).

Proposition 5  Under the above assumptions, the Frenet–Serret frame (�, �,�) is well 
defined for each s0 ∈ [0, L] by:

where s0 = s(t0) and n ≥ 2 is given as above. Furthermore, c̈(s0) = 0
ℝ3 at a finite or count-

able set of points, and if c̈(s0) ≠ 0
ℝ3, then �(s0) = c̈(s0)∕‖c̈(s0)‖. Finally, [�] and [�] are 

continuous functions with values in ℝℙ2.

lim
h→∞

[bi(h) × ti(h)] = �c(t(s)).

(6.1)
�(s0) ∶= ċ(s0) , �(s0) ∶=

ċ(s0) × c(n)(s0)

‖c(n)(s0)‖
,

�(s0) ∶= �(s0) × �(s0) =
c(n)(s0)

‖c(n)(s0)‖
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Proof  We set �(s) ∶= ċ(s) for each s. If c̈(s0) = 0
ℝ3 , then for some n ≥ 3 and for h small 

(and nonzero) we have

This implies that c̈(s) = 0
ℝ3 only at isolated points s ∈ [0, L] , hence at an at most countable 

set.
If c̈(s0) ≠ 0

ℝ3 , one defines as usual �(s0) ∶= c̈(s0)∕‖c̈(s0)‖ and 
�(s0) ∶= ċ(s0) × c̈(s0)∕‖c̈(s0)‖ . In fact, the orthogonality property ċ(s0) ∙ c̈(s0) = 0 yields 
that (ċ(s0) × c̈(s0)) × ċ(s0) = c̈(s0).

If c̈(s0) = 0
ℝ3 , for h small we have ċ(s0 + h) ∙ c̈(s0 + h) = 0

ℝ3 . Letting 
h → 0 , we obtain that ċ(s0) ∙ c

(n)(s0) = 0
ℝ3 , whence ċ(s0) × c(n)(s0) ≠ 0

ℝ3 and 
‖ċ(s0) × c(n)(s0)‖ = ‖c(n)(s0)‖ > 0 . As a consequence, the binormal is well defined at s0 
such that c̈(s0) = 0

ℝ3 by the limit

and the principal normal is then defined by letting �(s0) ∶= �(s0) × �(s0) , where this time 
the orthogonality property ċ(s0) ∙ c(n)(s0) = 0

ℝ3 yields that

Finally, we observe that where c̈ ≠ 0
ℝ3 , both � and � are continuous (as functions valued 

in �2 , hence also as functions valued in ℝℙ2 ). Therefore, the problematic points are where 
c̈ = 0

ℝ3 , which is a set of isolated points. At one of these point, �(s0) is ideally given by the 
limit of c̈(s0 + h)∕‖c̈(s0 + h)‖ , as h → 0 . Using equation (6.2), it is easy to see that, depend-
ing on the parity of the derivative order n, either the right and left limits coincide (thus the 
limit exists, and � is continuous at s0 ) or they are opposite to one another. Hence, � and � 
may not be continuous as sphere-valued functions, but they are continuous as projective-
valued function, since their directions are well defined and continuous. 	�  ◻

Remark 20  If in addition we assume that � is of class C3 , it turns out that the Frenet–Serret 
formulas (3.2) hold true outside the at most countable set of inflection points. In fact, we 
have seen that c̈(s) = 0

ℝ3 only at isolated points s ∈ [0, L].

Example 3  Let c ∶ [−1, 1] → ℝ
3 be a regular curve with derivative

so that ‖ċ(s)‖ ≡ 1 and hence �(s) = ċ(s) . For s ∈] − 1, 1[ , we compute

Therefore, if 0 < |s| < 1 we have c̈(s) ≠ 0
ℝ3 and hence

(6.2)c̈(s0 + h) = c(n)(s0)
hn−2

(n − 2)!
+ o(hn−2).

�(s0) = lim
h→0

�(s0 + h) = lim
h→0

ċ(s0 + h) × c̈(s0 + h)

‖ċ(s0 + h) × c̈(s0 + h)‖ =
ċ(s0) × c(n)(s0)

‖c(n)(s0)‖

�(s0) =
(ċ(s0) × c(n)(s0)) × ċ(s0)

‖c(n)(s0)‖
=

c(n)(s0)

‖c(n)(s0)‖
.

ċ(s) =
1√
2

�
1, s2,

√
1 − s4

�
, s ∈ [−1, 1]

c̈(s) =

√
2s

√
1 − s4

�
0,
√
1 − s4,−s2

�
, c(3)(s) =

√
2
�
0, 1,

s2(s4 − 3)

(1 − s4)3∕2

�
.
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In particular, the normal and binormal can be extended by continuity at s = ±1 by letting 
�(±1) ∶= (0, 0,∓1) and �(±1) ∶= 2−1∕2(∓1,±1, 0).

Furthermore, for 0 < |s| < 1 we get:

and hence �(s) → 0 and �(s) → 0 as s → 0 , whereas both � and � are summable functions 
in L1(−1, 1) . Moreover, the Frenet–Serret formulas (3.2) hold true in the open intervals 
] − 1, 0[ and ]0, 1[.

Since �(0) = 2−1∕2(1, 0, 1) , c̈(0) = 0
ℝ3 , and c(3)(0) = 2−1∕2(0, 1, 0) , by using the formulas 

in (6.1) we get:

and hence both the unit normal and binormal are not continuous at s = 0 . However, since 
[�(s)] → [�(0)] and [�(s)] → [�(0)] as s → 0 , they are both continuous as functions with 
values in ℝℙ2.

We finally compute the total curvature and the total absolute torsion of c. With t = s2 , 
we have:

and similarly

In fact, c is regular at s = 0 , so that there is no turning angle at c(0), whereas 
�(0−) = −�(0+) , so that also the total absolute torsion is zero at c(0). On the other 
hand, due to the occurrence of an inflection point at c(0), the complete torsion in the 
sense of Alexandrov and Reshetnyak  [1] yields a contribution equal to � at c(0), so that 
CT(c) = TAT(c) + �.

Remark 21  We finally point out that with the above assumptions, the statements of Theo-
rem 2, Proposition 3, and Proposition 4 continue to hold. More precisely, using that the 
nonnegative curvature �(�) and the torsion �(�) may vanish only at a negligible set of 
inflection points, with our previous notation one readily obtains the following relations 
concerning the trihedral (�, �,�) from Proposition 5: 

(1)	 �(s1(k)) = �c(k) ∈ �
2 for k ∈ [0,C] , where s1 ∶ [0,C] → [0, L] is the inverse of the func-

tion 

�(s) =
s

�s�
�
0,
√
1 − s4,−s2

�
, �(s) =

s

�s�
1√
2

�
−1, s2,

√
1 − s4

�
.

�(s) ∶= ‖c̈(s)‖ =

√
2�s�

√
1 − s4

, �(s) ∶=

�
ċ(s) × c̈(s)

�
∙ c(3)(s)

‖c̈(s)‖2
= −

√
2s

√
1 − s4

�(0) ∶=
ċ(0) × c(3)(0)

‖c(3)(0)‖
=

1√
2
(−1, 0, 1) , �(0) ∶= �(0) × �(0) = (0, 1, 0)

TC(c) = ∫
1

−1

�(s) ds = ∫
1

−1

√
2�s�

√
1 − s4

ds =
√
2∫

1

0

1√
1 − t2

dt =
�√
2

TAT(c) = ∫
1

−1

��(s)� ds = ∫
1

−1

√
2�s�

√
1 − s4

ds =
�√
2
.
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(2)	 [�(s2(t))] = �c(t) ∈ ℝℙ
2 for t ∈ [0, T] , where s2 ∶ [0,T] → [0, L] is the inverse of the 

function 

(3)	 [�(s3(�))] = �c(�) ∈ ℝℙ
2 for � ∈ [0,C + T] , where s3 ∶ [0,C + T] → [0, L] is the 

inverse of the function 

Example 4  Going back to Example 3, we compute

and hence s1(k) = � cos(
√
2k)�1∕2 , where k ∈ [0,C] , with C = �∕

√
2 , so that

with k(0) = �∕(2
√
2) and �c(k(0)) = 2−1∕2(1, 0, 1) . Notice moreover that

so that �̇c(k(0)±) = (0,±1, 0) . We also get

where t(0) = �∕(2
√
2) and �c(t(0)) =

[
2−1∕2 (−1, 0, 1)

]
 . Finally,

so that �̇c(t(0)+) = �̇c(t(0)−) = [(0, 1, 0)] , whence �c has no corner points.

7 � Torsion force

The curvature force was introduced in [3], see also [13], as the distributional derivative 
of the tangent indicatrix of curves in ℝN with finite total curvature. It comes into the play 
when one computes the first variation of the length.

(6.3)k(s) ∶= ∫
s

0

�(�) d� , s ∈ [0,L] ;

(6.4)t(s) ∶= ∫
s

0

|�(�)| d� , s ∈ [0, L] ;

�(s) ∶= ∫
s

0

(�(�) + |�(�)|) d� , s ∈ [0, L].

k(s) ∶= ∫
s

−1

�(�) d� =
1√
2

�
�

2
+

s

�s� arcsin(s2)
�
, s ∈ [−1, 1]

�c(k) ∶= �(s1(k)) =
1√
2

�
1, � cos(

√
2k)�, sin(

√
2k)

�
, k ∈ [0,�∕

√
2]

�̇c(k) =

��
0,− sin(

√
2k), cos(

√
2k)

�
if k ∈ [0,𝜋∕(2

√
2)[�

0, sin(
√
2k), cos(

√
2k)

�
if k ∈]𝜋∕(2

√
2),𝜋∕

√
2]

�c(t) =
�
2−1∕2

�
−1, � cos(

√
2t)�, sin(

√
2t)

��
, k ∈ [0,T] , T = �∕

√
2

�̇c(t) =

���
0,− sin(

√
2k), cos(

√
2k)

��
if t ∈ [0,𝜋∕(2

√
2)[�

(0, sin(
√
2k), cos(

√
2k)

�
if t ∈]𝜋∕(2

√
2),𝜋∕

√
2]
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More precisely, a rectifiable curve c has finite total curvature if and only if the tantrix � 
is a function with bounded variation, i.e., the distributional derivative D� is equal to a finite 
measure, the curvature force K . Also, this property is equivalent to the requirement that the 
first variation ��L(c) of the length has distributional order one.

In this section, we shall see that a torsion force measure can be similarly obtained by 
means of the tangential variation of the length L

�2 (�c) of the tangent indicatrix �c that we 
built up in Proposition 2 for any curve c with finite total curvature.

In fact, the first variation ��L�2 (�c) has distributional order one if and only if the arc-
length derivative �̇c of the tantrix �c is a function of bounded variation, see (7.1). By the 
way, we recall that this condition is satisfied if in addition the curve c has finite com-
plete torsion, CT(c) < ∞ , see Remark 15.

In this case, there exists a finite measure, the torsion force T  , such that 
⟨T, 𝜉⟩ = ⟨D�̇c, 𝜉⟩ for each smooth tangential vector field � along �c.

Finally, the tangential variation of the length of the weak binormal �c from Theo-
rem 1 is briefly discussed.

Curvature force Let c ∶ [0,L] → ℝ
N denote a rectifiable curve parameterized in arc 

length s. Suppose that c� is a variation of c under which the motion of each point c(s) 
is smooth in time and with initial velocity �(s) , where � ∶ [0, L] → ℝ

N is a Lipschitz-
continuous function of arc length. The first variation formula gives

where �(s) = ċ(s) and 𝜉̇(s) are defined for a.e. s, by Rademacher’s theorem.
If c is of class C2 , integrating by parts one gets

where in terms of the (positive) first curvature � and first unit normal �(s) one has 
�̇(s) = �(s)�(s) , see (3.2) for the case N = 3.

More generally, if c is a curve with finite total curvature, then � is a function of 
bounded variation, the right and left limits �(s±) ∶= lim

�→s±
�(�) ∈ �

N−1 are well defined for 
each s ∈]0, L[ , and the distributional derivative D� is a finite vector-valued measure. 
Therefore, if in addition �(0) = �(L) = 0 one obtains

The measure K ∶= D� is called in [3] the curvature force, and in the smooth case one has 
K = �� ds . If c is a piecewise smooth function, one has the decomposition K = K

a +K
s , 

where the absolutely continuous component Ka is equal to  , whereas the 
singular component Ks is given by a sum of Dirac masses concentrated at the corner points 
of the curve c.

More precisely, taking for simplicity N = 3 , if s ∈]0, L[ is such that �(s−) ≠ �(s+) , 
then K({c(s)}) = (�(s+) − �(s−)) �c(s) . Therefore, if � ∈]0,�] is the shortest angle 
in the Gauss sphere �

2 between �(s±) , so that d
�2 (�(s+), �(s−)) = � , one has 

�K�({c(s)}) = ‖�(s+) − �(s−)‖ = 2 sin(�∕2).
As a consequence, comparing [13], denoting by TC∗(c) the total variation of the cur-

vature force K , in general one has TC∗(c) ≤ TC(c) , and the strict inequality holds true 

𝛿𝜉L(c) ∶=
d

d𝜀
L(c𝜀)|𝜀=0 = ∫

L

0

�(s) ∙ 𝜉̇(s) ds

𝛿𝜉L(c) = −∫
L

0

�̇(s) ∙ 𝜉(s) ds +
(
�(L) ∙ 𝜉(L) − �(0) ∙ 𝜉(0)

)

𝛿𝜉L(c) = ∫
L

0

�(s) ∙ 𝜉̇(s) ds = −⟨D�, 𝜉⟩.
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as soon has the curve c has an interior corner point. More precisely, by the previous 
computation one has

First variation of total curvature In Proposition 2, for any curve c in ℝ3 with finite total 
curvature C ∶= TC(c) we have constructed a rectifiable curve �c ∶ [0,C] → �

2 parameter-
ized in arc length that is strictly related with the complete tangent indicatrix in the sense of 
[1]. We wish to compute the tangential variation of the length L

�2 (�c) of �c , by considering 
in particular the smooth case.

For this purpose, we assume that �c, � is a variation of �c under which the motion of each 
point �c(k) is smooth in time and with initial velocity �(s) , where this time � ∶ [0,C] → ℝ

3 
is a Lipschitz-continuous function of arc length k, with �(0) = �(C) = 0 . Since we deal 
with tangential variations, we assume in addition that �(k) ∈ T�c(k)�

2 for each k. The first 
variation formula gives:

where �̇c(k) and 𝜉̇(k) are defined for a.e. k. Therefore, by the definition of distributional 
derivative, in general we obtain:

Assume now that c is of class C3 and c̈(s) ≠ 0
ℝ3 for each s ∈]0, L[ . In point  (1) of 

Remark  21, we have seen that �c(k) = �(s1(k)) for each k ∈ [0,C] , where �(s) = ċ(s) and 
s1 ∶ [0,C] → [0, L] is the inverse of the function k(s) in (6.3), so that

for each k ∈ [0,C] , by the first Frenet–Serret formula in (3.2). Therefore, by the second 
formula in (3.2) we compute for each k

Now, the tangential component to �2 of the second derivative �̈c(k) , i.e., the geodesic cur-
vature of �c at the point �c(k) , agrees with the quotient between the torsion and the scalar 
curvature of the initial curve c at the point c(s1) , where s1 = s1(k).

In fact, the Darboux frame along �c is the triad (�,�,�) , where �(k) ∶= �̇c(k) , 
�(k) ∶= �(�c(k)) , �(p) being the unit normal to the tangent 2-space Tp�

2 , and 
�(k) ∶= �(k) × �(k) is the unit conormal. The curvature vector �(k) ∶= �̇(k) = �̈c(k) is 
orthogonal to �(k) , and thus decomposes as

where �g ∶= � ∙ � and �n ∶= � ∙ � denote the geodesic and normal curvature of �c , 
respectively. By changing variable, we get

TC∗(c) = Var
ℝ3 (�) , TC(c) = Var

𝕊2 (�).

𝛿𝜉L�2 (�c) ∶=
d

d𝜀
L
�2 (�c, 𝜀)|𝜀=0 = ∫

C

0

�̇c(k) ∙ 𝜉̇(k) dk

(7.1)𝛿𝜉L�2 (�c) = ∫
C

0

�̇c(k) ∙ 𝜉̇(k) dk =∶ −⟨D�̇c, 𝜉⟩.

ṡ1(k) = �(s1(k))
−1 , �̇c(k) = �

�(s1(k)) ṡ1(k) = �(s1(k))

�̈c(k) = �
�(s1) ṡ1(k) = −�(s1) +

�(s1)

�(s1)
�(s1) , s1 = s1(k).

�(k) = �g(k)�(k) +�n(k)�(k)

�(k) = �(s1) , �(k) = �(s1) , �(k) = �(s1)
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and hence we obtain for each k ∈ [0,C]

As a consequence, integrating by parts in (7.1) we get

where, we recall, �(k) ∈ T�c(k)�
2 for each k. Therefore, by changing variable s = s1(k) , since 

ds = �(s1(k))
−1 dk we recover the expected formula:

Torsion force Denoting by T  the “tangential” component of the distributional derivative 
of �̇c , so that ⟨T, 𝜉⟩ = ⟨D�̇c, 𝜉⟩ for each smooth tangential vector field along �c , we have just 
seen that if c is smooth, then

i.e., T  is the push forward of the measure  by the function k(s) defined in 
(6.3), and its total mass is equal to ∫

c
|�| ds . For that reason, the measure T  may be called 

the torsion force.
More generally, it turns out that the torsion force T  is a finite measure provided that 

the derivative �̇c is a function of bounded variation. To this purpose, see Remark 15, we 
recall that this sufficient condition is satisfied if in addition the curve c has finite com-
plete torsion, CT(c) < ∞.

If c is piecewise smooth, we obtain again the decomposition T = T
a + T

s . By Propo-
sition 3, it turns out that the absolutely continuous component Ta takes the same form 
as in the right-hand side of the formula (7.2), where this time k(s) ∶= TC(c|[0,s]) . More-
over, using that �(s) = �c(k(s)) , if c is smooth at s we have ��(s) = �̇c(k(s)) ⋅ k

�(s) , with 
k�(s) = �(s) , hence by the first formula in (3.2) we get �̇c(k(s)) = �(s).

If c has a point of return at c(s), we have �(s−) = −�(s+) . In this case, see Remark 13, 
the curve �c (and hence the torsion force T  ) depends on the choice of the geodesic arc 
connecting the antipodal points �(s±) . However, the total mass of T  is finite and it does 
not depend on the choice of the geodesics.

If c has no points of return, the torsion force T  only depends on c. In fact, the sin-
gular component Ts is a sum of Dirac masses concentrated at the corner points x = �c(k) 
of the curve �c , with weight �̇c(k+) − �̇c(k−) . If � is the turning angle of �c at x, then 
‖�̇c(k+) − �̇c(k−)‖ = 2 sin(𝜃∕2).

In Example  4, at x = �c(k(0)) = 2−1∕2(1, 0, 1) we have �̇c(k(0)±) = (0,±1, 0) , so that 
� = � and ‖�̇c(k(0)+) − �̇c(k(0)−)‖ = 2.

First variation of total torsion In Theorem  1, we defined the weak binormal 
�c ∶ [0, T] → ℝℙ

2 , that satisfies |�̇c| = 1 a.e. and L
ℝℙ

2 (�c) = TAT(c) , and it turns out that 
the derivative �̇c is a function of bounded variation.

Moreover, in point (2) of Remark 21, we have seen that if c is smooth as above, then 
�c(t) = [�(s2(t))] for each t ∈ [0, T] , where s2 ∶ [0,T] → [0, L] , with T = TAT(c) , is the 
inverse of the function t(s) in (6.4). We have

�g(k) =
�(s1)

�(s1)
, �n(k) ≡ −1 , s1 = s1(k).

⟨D�̇c, 𝜉⟩ = ∫
C

0

�g(k) �(s1(k)) ∙ 𝜉(k) dk = ∫
C

0

�(s1)

�(s1)
�(s1) ∙ 𝜉(k) dk

⟨D�̇c, 𝜉⟩ = ∫
L

0

�(s) �(s) ∙ 𝜉(k(s)) ds.

(7.2)
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for each t, by the third Frenet–Serret formula in (3.2). Therefore, by the second formula in 
(3.2) we get

Arguing as above, the tangential variation of the length L
ℝℙ

2 (�c) yields to the “tangen-
tial” component of the distributional derivative D�̇c . In the smooth case, its lifting 
gives the measure  , with total mass ∫

c
|�| ds . If c is piece-

wise smooth, the singular component Ts is a sum of Dirac masses concentrated at the 
corner points x = �c(t) of the curve �c in ℝℙ2 , i.e., at the points where �̇c(t+) ≠ �̇c(t−) 
in ℝℙ2 . Notice however that in Example  4, at x = �c(t(0)) =

[
2−1∕2 (−1, 0, 1)

]
 we have 

�̇c(t(0)+) = �̇c(t(0)−) = [(0, 1, 0)] , whence �c has no corner points and the measure D�̇c has 
no singular part.
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(
�(s2(t))

)
[�(s2(t))]

d2

dt2
�(s2) = − sgn

(
�(s2)

)
�
�(s2)ṡ2(t) =

�(s2)

�(s2)
�(s2) − �(s2) , s2 = s2(t).
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