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Abstract
We generalize a method by L. Ambrozio, A. Carlotto, and B. Sharp to study the Morse 
index of closed f-minimal hypersurfaces isometrically immersed in a general weighted 
manifold. The technique permits, in particular, to obtain a linear lower bound on the Morse 
index via the first Betti number for closed f-minimal hypersurfaces in products of some 
compact rank one symmetric spaces with an Euclidean factor, endowed with the rigid 
shrinking gradient Ricci soliton structure. These include, as particular cases, all cylindric 
shrinking gradient Ricci solitons.

Keywords f-minimal hypersurfaces · Index estimates · Betti number · Shrinking Ricci 
solitons

Mathematics Subject Classification 53C42 · 53C21

1 Introduction

Throughout this note, we consider as ambient manifold an (m + 1)-dimensional weighted 
manifold Mf = (M, g, e−f dvolM) , namely a Riemannian manifold (Mm+1, g) endowed with a 
measure with smooth positive density e−f  with respect to the Riemannian volume measure 
dvolM . We are interested in closed isometrically immersed orientable f-minimal hypersur-
faces � in Mf  , namely critical points of the weighted volume functional

These are exactly those immersions with vanishing f-mean curvature

volf (�) = ∫�

e−f dvol� .
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Here H = trA , and A is the shape operator of the immersion, defined as AX = −∇M
X
N on all 

tangent vector X to �.
The connection between the geometry of the ambient weighted manifold and f-mini-

mal hypersurfaces occurs via the second variation of the weighted area functional. Given a 
f-minimal hypersurface and a normal variational vector field uN, this yields the quadratic 
form

where RicM
f
= RicM + HessM(f ) denotes the Bakry–Émery Ricci tensor of the ambient 

weighted manifold Mf  . It follows that stability properties of f-minimal hypersurfaces are 
taken into account by spectral properties of the following weighted Jacobi operator

whose leading term is the f-Laplacian Δf = Δ + ⟨∇f ,∇ ⟩ on �f  . Note that we are using the 
convention that Δ ≐ −div(∇) . Dealing with closed smooth hypersurfaces, the operator Lf  is 
self-adjoint with respect to the measure e−f dvol� and elliptic and hence has discrete spec-
trum which tends to infinity. We then define the f-index of � as

i.e., the maximal dimension of the space on which the index form Qf  is negative definite.
For a more detailed discussion about stability properties and estimates on the f-index 

of f-minimal hypersurfaces, we refer the reader to the introduction in [7, 8] and references 
therein.

1.1  Topological complexity implies high instability

The recent impressive developments in the existence theory for minimal immersions 
through min–max method have motivated a renewed interest in studying estimates on the 
Morse index of minimal immersions.

One possible way to control instability is through topological invariants (in particular 
the first Betti number) of the minimal hypersurface. This was first investigated by Ros [13] 
for immersed minimal surfaces in ℝ3 , or a quotient of it by a group of translations, and 
then, in higher dimension, by Savo when the ambient manifold is the round sphere [14]. 
The idea behind these works is to use harmonic 1-forms and some ambient structure to 
make some interesting functions out of those, permitting to get a lower bound on the index. 
This technique was recently extended and generalized by Ambrozio et al. [1], who showed, 
from a general perspective, that the Morse index is bounded from below by a linear func-
tion of the first Betti number for all closed minimal hypersurfaces in a large class of posi-
tively curved ambient manifolds. This comprises, for instance, all compact rank one sym-
metric spaces. In their work, the ambient structure is taken into account by the existence 
of some nice isometric immersion into an Euclidean space ℝd via which one can produce 
instability directions, again using harmonic 1-forms. For some other recent developments, 
see also [12].

Hf ≐ H +
�f

�N
= 0.

Qf (u, u) = ∫�

(
|∇u|2 −

(
RicM

f
(N,N) + |A|2

)
u2
)
e−f dvol� ,

Lf = Δf −
(
RicM

f
(N,N) + |A|2

)
,

Indf (𝛴) = ♯{negative eigenvalues of Lf },
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In the recent paper  [8], we related the Morse index and the first Betti number of 
self-shrinkers for the mean curvature flow and, more generally, of f-minimal hypersur-
faces in a weighted Euclidean space endowed with a convex weight. Following the ideas 
adopted in  [8] and motivated by the approach introduced in  [1], in this short note we 
want to study the same problem in the wider setting of f-minimal hypersufaces sitting in 
a general weighted manifold.

1.2  Main f‑index estimate

As in [8], in order to get our results we will produce good test functions for the quad-
ratic form Qf  using f-harmonic 1-forms of the f-minimal hypersurface. Recall that f-har-
monic 1-forms on compact hypersurfaces are exactly those 1-forms � which are simul-
taneously closed and f-coclosed, i.e.,

with �f� = �� + �(∇f ) the weighted codifferential.
Our main f-index estimate will follow from the following concentration of the spec-

trum inequality.

Theorem 1.1 Let Mf  be an (m + 1)-dimensional Riemannian manifold that is isometri-
cally embedded in some Euclidean space ℝd , d ≥ m + 1 . Let �m be a closed isometrically 
immersed f-minimal hypersurface of Mm+1 . Assume that there exists a real number � and a 
q-dimensional vector space V of f-harmonic 1-forms on �m such that for any � ∈ V�{0},

where II denotes the second fundamental form of Mm+1 in ℝd , 
{
e1,… , em

}
 is a local ortho-

normal frame on � , and N is a unit normal vector field on � . Then

As a corollary, when � = 0 , we obtain the following f-index estimate. Recall that by 
the Hodge decomposition in the weighted setting (see [2]), the dimension of the space 
of f-harmonic 1-forms still equals the first Betti number b1(�) of �.

Corollary 1.2 Let Mf  be an (m + 1)-dimensional Riemannian manifold that is isometri-
cally embedded in some Euclidean space ℝd , d ≥ m + 1 . Let �m be a closed isometrically 
immersed f-minimal hypersurface of Mm+1 . Assume that for any nonzero f-harmonic 1-form 
� on �,

d� = �f� = 0,

(1)

∫𝛴

(
m∑

k=1

|||II(ek,𝜔
♯)
|||
2

+

m∑

k=1

||II(ek,N)||
2|𝜔|2

)
e−f dvol𝛴

< ∫𝛴

(
RicM

f
(N,N)|𝜔|2 + RicM

f
(𝜔♯,𝜔♯)

−
⟨
RM(𝜔♯,N)𝜔♯,N

⟩)
e−f dvol𝛴 + 𝜂 ∫𝛴

|𝜔|2e−f dvol𝛴 ,

♯{eigenvalues of Lf < 𝜂} ≥ 2

d(d − 1)
q.
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Then

Remark 1.3 It should be pointed out that Zhu and Gan [16] also obtained an estimate in 
the same spirit of Corollary 1.2 above. In that paper, it is proved a similar estimate on the 
f-index assuming a different curvature condition. However, this condition turns out to be 
less fitting to the weighted setting and difficult to verify in applications. The novelty in 
our approach, first considered in [8], is that we use f-harmonic forms, instead of usual har-
monic forms.

1.3  Applications

Recently, there has been some interest in coupling two geometric flows in order to 
improve geometric and analytic properties of the flows with respect to those they had 
as themselves. One case of particular interest is that of the mean curvature flow of 
hypersurfaces in a moving ambient space. When the ambient manifold is evolving by 
the Ricci flow, the coupled evolution is known as Ricci-mean curvature flow. Inspired 
by Huisken’s monotonicity formula for hypersurfaces in the Gaussian shrinker, Magni 
et al. [10] and Lott [9] studied monotonicity formulas for mean curvature flow in a gra-
dient Ricci soliton background and introduced the concept of mean curvature soliton 
which can be regarded as a generalization of self-shrinkers for the mean curvature flow 
in the Euclidean space. By its definition, a mean curvature soliton is nothing but an 
f-minimal hypersurface isometrically immersed in a gradient Ricci soliton with f being 
the potential function of the ambient soliton. This fact motivated some recent works on 
f-minimal hypersurfaces in gradient Ricci solitons; see, e.g., [5, 6], where it is consid-
ered the particular case of f-minimal hypersurfaces in the cylindric shrinking gradient 
Ricci soliton with one-dimensional Euclidean factor (𝕊m(

√
(m − 1)∕�) ×ℝ, g,∇f ) , with 

g the product metric, f (x, t) = �

2
t2 , and 𝜆 > 0.

As a first application of our main result, we can obtain the following result concern-
ing f-minimal hypersurfaces in all cylindric shrinking gradient Ricci solitons. In the 
case of f-minimal hypersurfaces in the cylindric shrinking gradient Ricci soliton with 
one-dimensional Euclidean factor, a similar estimate was obtained in [16], but assuming 
an additional curvature assumption.

Corollary 1.4 Let � be a closed isometrically immersed f-minimal hypersurface in the 

weighted manifold Mm+1
f

=

(
𝕊
k

(√
(k−1)

�

)
×ℝ

m−k+1, gM , e
−f dvolM

)
 , where 2 ≤ k ≤ m , 

𝜆 > 0 , gM = g
�k(
√

(k−1)

�
)
+ dt2

1
+⋯ + dt2

m−k+1
 , g

�k(
√

(k−1)

�
)
 denotes the canonical round metric 

on the sphere, dvolM the Riemannian volume measure, and f (x, t) = �

2
|t|2 . Then

(2)
∫𝛴

(
m∑

k=1

|||II(ek,𝜔
♯)
|||
2

+

m∑

k=1

||II(ek,N)||
2|𝜔|2

)
e−f dvol𝛴

< ∫𝛴

(
RicM

f
(N,N)|𝜔|2 + RicM

f
(𝜔♯,𝜔♯) −

⟨
RM(𝜔♯,N)𝜔♯,N

⟩)
e−f dvol𝛴 .

Indf (�) ≥ 2

d(d − 1)
b1(�).
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Remark 1.5 For closed f-minimal hypersurfaces in the cylindric shrinking gradient Ricci 
soliton with one-dimensional Euclidean factor, it was proved in [5] that Indf (�) ≥ 1 and, 
indeed, equality holds if and only if � = �

m−1 × {0} . When the first Betti number is large, 
our estimate (3) improves this result.

Remark 1.6 Note that in some special situations, shrinking gradient Ricci solitons are nec-
essarily of cylindric type. For instance, we recall that Cao et al. [3] proved that any three-
dimensional complete non-compact non-flat shrinking gradient Ricci soliton is a finite 
quotient of the round cylinder 𝕊2 ×ℝ . In higher dimension, Z.-H. Zhang proved that any 
locally conformally flat complete non-compact gradient shrinking Ricci soliton must be a 
finite quotient of the Gaussian shrinking Ricci soliton ℝn or the cylindric shrinking gradi-
ent Ricci soliton 𝕊n−1 ×ℝ; [15].

More generally, one could apply Corollary  1.2 to obtain index bounds for f-mini-
mal hypersurfaces in products of almost all other compact rank one symmetric spaces 
(CROSSes) with an Euclidean factor, endowed with the rigid gradient Ricci soliton 
structure. Note that the compact rank one symmetric spaces, i.e., all compact symmetric 
spaces of positive sectional curvature, are the spheres, ℝℙk , ℂℙn with 2n = k , ℍℙp with 
4p = k and Caℙ2.

Corollary 1.7 Let P be either ℂℙn with k = 2n ≥ 4 , ℍℙp with k = 4p or Caℙ2 . Let � 
be a closed isometrically immersed f-minimal hypersurface in the weighted manifold 
Mm+1

f
=
(
Pk ×ℝ

m−k+1, gM , e
−f dvolM

)
 , gM = gP + dt2

1
+⋯ + dt2

m−k+1
 , with gP denoting the 

canonical metric on P, dvolM the Riemannian volume measure, and f (x, t) = �

2
|t|2 . Then

where

• d = m + 2 + 2n2 if P = ℂℙ
n , 2n = k;

• d = m + 2 + 2p2 − p if P = ℍℙ
p , 4p = k;

• d = m + 12 if P = Caℙ2.

Remark 1.8 Corollary 1.2 does not seem to apply directly to the case P = ℝℙ
k , since in 

this case we cannot produce an immersion of P ×ℝ
m+k−1 satisfying the integral curvature 

assumption (2). This difficulty is already encountered in the classical non-weighted case, 
but, in that case, one could overcome this by using the correspondence between immersed 
minimal hypersurfaces in the real projective space and immersed hypersurfaces of the 
sphere that are invariant under the antipodal map; see [1]. However, this kind of reason-
ing seems difficult to apply in our setting. More generally, it would be interesting to prove 
an analogous index estimate for closed f-minimal hypersurfaces in all the so-called rigid 
shrinking Ricci solitons, i.e., quotients N ×� ℝ

k with N Einstein with Einstein constant � 
and �  acting freely on N and by orthogonal transformations on ℝk , with f = �

2
d2 and d is 

(3)Indf (�) ≥ 2

(m + 2)(m + 1)
b1(�).

Indf (�) ≥ 2

d(d − 1)
b1(�),
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the distance in the flat fibers to the base; see [11]. The obvious difficulty is that in general 
we do not have such a good control on the embedding.

In another direction, a further situation in which we can apply Corollary 1.2 is when 
the ambient weighted manifold is a convex hypersurface of the Euclidean space with suf-
ficiently pinched principal curvatures. Indeed minor modifications to the proof of Theo-
rem 12 in [1] permit to obtain the following result.

Corollary 1.9 Let Mm+1
f

 be a weighted manifold isometrically embedded as an hypersur-
face in ℝm+2 in such a way that the principal curvatures k1 ≤ ⋯ ≤ km+1 with respect to the 
outward pointing unit normal � are positive and satisfy the pinching condition

Assume that HessMf > 0 . Then every closed embedded minimal f-hypersurface �m of Mm+1
f

 
is such that

2  Proof of the main estimate

Proof of  Theorem  1.1 Let k be the number of the eigenvalues of the Jacobi operator Lf  
that are below the threshold � and denote by �1,… ,�k the eigenfunctions associated with 
the k eigenvalues �1,… , �k . Let � be a f-harmonic 1-form in V ⊂ V ≐ H

1
f
(𝛴) and set 

uij ≐ ⟨N♭ ∧ 𝜔, 𝜃ij⟩ , where {𝜃ij}i<j is an orthonormal basis of 
⋀2

ℝ
d . Then the map

for 1 ≤ i < j ≤ d and 1 ≤ p ≤ k , is a linear map.
Assume by contradiction that q >

d(d−1)

2
k . Then there exists a nonzero � ∈ V such that

for all i < j and for all 1 ≤ p ≤ k . Thus, in particular

km+1

k1
<

√
m + 1

2
.

Indf (�) ≥ 2

(m + 2)(m + 1)
b1(�).

V → ℝ
d(d−1)

2
k

� ↦

(

∫�

uij�p e
−f dvol�

)
,

∫�

uij�pe
−f dvol� = 0
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On the other hand, given a local orthonormal frame {e1,… , em} on �m and denoting by D 
the connection of ℝd , one has

Hence, summing up on i < j,

Note that:

Recall the orthogonal decompositions:

As a consequence of the relations above, one has:

Inserting the previous relations in (4),

𝜂 �𝛴

|𝜔|2e−f dvol𝛴 ≤ 𝜆k+1 �𝛴

|𝜔|2e−f dvol𝛴

= 𝜆k+1

d∑

i<j
�𝛴

u2
ij
e−f dvol𝛴

≤
d∑

i<j

Qf (uij, uij).

�∇uij�2 =
m�

k=1

�Dek
uij�2 =

m�

k=1

⟨Dek
(N♭ ∧ 𝜔), 𝜃ij⟩2

(4)
d∑

i<j

|∇uij|2 =
m∑

k=1

|Dek
(N♭ ∧ 𝜔)|2.

�Dek
(N♭ ∧ 𝜔)�2 = �Dek

N♭ ∧ 𝜔 + N♭ ∧ Dek
𝜔�2

= �Dek
N�2�𝜔�2 + �Dek

𝜔♯�2 − ⟨𝜔♯,Dek
N⟩2 − ⟨Dek

𝜔♯,N⟩2.

Dek
N = ∇M

ek
N + II(ek,N) = −Aek + II(ek,N);

Dek
𝜔♯ = ∇ek

𝜔♯ + ⟨A𝜔♯, ek⟩N + II(ek,𝜔
♯).

�Dek
N�2 = �Aek�2 + �II(ek,N)�2;

�Dek
𝜔♯�2 = �∇ek

𝜔♯�2 + ⟨A𝜔♯, ek⟩2 + �II(ek,𝜔♯)�2;

⟨Dek
N,𝜔♯⟩ = −⟨A𝜔♯, ek⟩;

⟨Dek
𝜔♯,N⟩ = ⟨A𝜔♯, ek⟩.

(5)

d∑

i<j

|∇uij|2 = |∇𝜔|2 − |A𝜔♯|2 + |A|2|𝜔|2

+

m∑

k=1

|II(ek,𝜔♯)|2 +
m∑

k=1

|II(ek,N)|2|𝜔|2.
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Thus,

Since � is f-harmonic, combining the f-Bochner–Weitzenböck formula with the Gauss 
equation, we get

Integrating the previous equation and substituting in (6), we thus obtain

This is in contradiction with assumption (1). The result follows.   ◻

3  f‑minimal hypersurfaces in shrinking gradient Ricci solitons

3.1  Cylindric shrinking gradient Ricci solitons

Proof of Corollary 1.4 Let us denote by �
�k and �

ℝm−k+1 , respectively, the projection on the 
spherical factor and on the Euclidean factor of M, and by ⟨, ⟩ the metric on M. By a straight-
forward computation, one has that

for any V ,W ∈ TM , with � normal vector field of 𝕊k ×ℝ
m−k+1 in ℝm+2 . Moreover, we have 

that

(6)

d∑

i<j

Qf (uij, uij) =

d∑

i<j
∫𝛴

|∇uij|2 − (RicM
f
(N,N) + |A|2)u2

ij
e−f dvol𝛴

= ∫𝛴

m∑

k=1

|II(ek,𝜔♯)|2 +
m∑

k=1

|II(ek,N)|2|𝜔|2e−f dvol𝛴

+ ∫𝛴

|∇𝜔|2 − |A𝜔♯|2 − RicM
f
(N,N)|𝜔|2e−f dvol𝛴 .

−Δf

�𝜔�2
2

= �∇𝜔�2 + Ricf (𝜔
♯,𝜔♯)

= �∇𝜔�2 + RicM
f
(𝜔♯,𝜔♯) − ⟨RM(𝜔♯,N)𝜔♯,N⟩ − �A𝜔♯�2.

𝜂 �𝛴

�𝜔�2e−f dvol𝛴 ≤
d�

i<j

Qf (uij, uij)

= �𝛴

m�

k=1

�II(ek,𝜔♯)�2 +
m�

k=1

�II(ek,N)�2�𝜔�2e−f dvol𝛴

− �𝛴

RicM
f
(𝜔♯,𝜔♯) − ⟨RM(𝜔♯,N)𝜔♯,N⟩ + RicM

f
(N,N)�𝜔�2e−f dvol𝛴 .

HessMf = �(dt2
1
+⋯ + dt2

m−k+1
),

RicM
f
= �⟨ , ⟩,

⟨RM(V ,W)V ,W⟩ = ⟨II(V ,V), II(W,W)⟩ − �II(V ,W)�2,

II(V ,W) =

�
�

k − 1
⟨(�

�k )∗V , (��k )∗W⟩�,
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Hence, for any X ∈ T�,

Moreover,

Set

Then

For k ≥ 3 , this expression is strictly negative on nonzero vector fields. In case k = 2 , the 
expression is non-positive. However, it vanishes if and only if (�

ℝm−k+1 )∗N = 0 , and this is 
in contradiction with the fact that � is compact. Hence, condition (2) is satisfied and the 
conclusion follows.   ◻

3.2  Some other rigid gradient Ricci shrinking solitons

Proof of Corollary 1.7 Consider (Mm+1, gM) to be of the form Mm+1 = Pk ×ℝ
m+k−1 , with 

(Pk, gP) one of the projective spaces

endowed with their standard Riemannian metrics. In the case of ℂℙn , this is just the stand-
ard Fubini–Study metric. Note that the following properties do hold: 

 (i) Up to normalization, all these metrics have sectional curvatures bounded between 1 
and 4;

m�

i=1

⟨(�
�k )∗V , (��k )∗ei⟩2 = �(�

�k )∗V�2 − ⟨(�
�k )∗V , (��k )∗N⟩2.

m�

i=1

�
�II(ei,X)�2 + �II(ei,N)�2�X�2

�
=

�

k − 1

�
�(�

�k )∗X�2 − ⟨(�
�k )∗X, (��k )∗N⟩2

+ �X�2�(�
�k )∗N�2(1 − �(�

�k )∗N�2)
�
.

⟨RM(X,N)X,N⟩ = �

k − 1

�
�(�

�k )∗X�2�(��k )∗N�2 − ⟨(�
�k )∗X, (��k )∗N⟩2

�

R(X,N) ≐
m�

i=1

�
�II(ei,X)�2 + �II(ei,N)�2�X�2

�

+ ⟨RM(X,N)X,N⟩ − RicM
f
(N,N)�X�2 − RicM

f
(X,X)

R(X,N) = −
2�(k − 2)

k − 1
�X�2 − �

k − 1

�
�X�2�(�

ℝm−k+1 )∗N�4

+ �(�
ℝm−k+1 )∗X�2(2 − �(�

ℝm−k+1 )∗N�2)

+ 2⟨(�
ℝm−k+1 )∗N, (�ℝm−k+1 )∗X⟩2

�
.

ℂℙ
n (2n = k), ℍℙ

p (4p = k) Caℙ2 (16 = k),



2160 D. Impera, M. Rimoldi 

1 3

 (ii) There exists a nice family of isometric embeddings of these spaces into Euclidean 
spaces ℝq . In case of ℂℙn , q = (n + 1)2 , in case of ℍℙp , q = (p + 1)(2p + 1) , and for 
Caℙ2 , q = 27 . For more details and references, see [1, 4].

 (iii) For the embeddings in point (ii) it holds that the second fundamental form IIP satis-
fies 

 for all vector fields X ∈ TP.
Using (7), we have that for any X, Y ∈ TP

Analogously,

Summing up,

Hence, we get

Recall that by Gauss equation, for any X, Y ∈ TP , we have

Therefore, we obtain

Consider now the embedding of Mm+1 in ℝd , d = q + m + 1 − k , obtained by trivially 
extending the above embeddings of P in ℝq . Obviously, the only non-trivial part of the sec-
ond fundamental form II of this embedding is given by IIP.

Let �m be a closed oriented minimal hypersurface isometrically immersed in (Mm+1, gM) 
and, at any given point p ∈ � , consider an o.n. basis 

{
eh
}
 of Tp� . Let N be the unit normal 

(7)|IIP(X,X)|2 = 4|X|4,

4�X − Y�4 = �IIP(X − Y ,X − Y)�2 = �IIP(X,X) + IIP(Y , Y) − 2IIP(X, Y)�2

= �IIP(X,X)�2 + �IIP(Y , Y)�2 + 4�IIP(X, Y)�2 + 2
�
IIP(X,X), IIP(Y , Y)

�

− 4
�
IIP(X,X) + IIP(Y , Y), IIP(X, Y)

�

= 4�X�4 + 4�Y�4 + 4�IIP(X, Y)�2 + 2⟨IIP(X,X), IIP(Y , Y)⟩
− 4⟨IIP(X,X) + IIP(Y , Y), IIP(X, Y)⟩2.

4�X + Y�4 = 4�X�4 + 4�Y�4 + 4�IIP(X, Y)�2 + 2⟨IIP(X,X), IIP(Y , Y)⟩
+ 4⟨IIP(X,X) + IIP(Y , Y), IIP(X, Y)⟩2.

4(�X�4 + �Y�4) + 4�IIP(X, Y)�2 + 2⟨IIP(X,X), IIP(Y , Y)⟩
= 2

�
�X − Y�4 + �X + Y�4

�

= 2
�
�X�4 + �Y�4 + 4⟨X, Y⟩2 + 2�X�2�Y�2 − 4⟨X, Y⟩(�X�2 + �Y�2)

+�X�4 + �Y�4 + 4⟨X, Y⟩2 + 2�X�2�Y�2 + 4⟨X, Y⟩
�
�X�2 + �Y�2

��

= 4
�
�X�4 + �Y�4 + 4⟨X, Y⟩2 + 2�X�2�Y�2

�
.

(8)⟨IIP(X,X), IIP(Y , Y)⟩ + 2�IIP(X, Y)�2 = 4
�
�X�2�Y�2 + 2⟨X, Y⟩2

�
.

⟨RP(X, Y)X, Y⟩ = ⟨IIP(XX), IIP(Y , Y)⟩ − �IIP(X, Y)�2.

(9)�IIP(X, Y)�2 = 4

3

�
�X�2�Y�2 + 2⟨X, Y⟩2

�
−

1

3
⟨RP(X, Y)X, Y⟩.
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vector field to � and, for any U ∈ TM , let us denote by UP the projection of U on TP and by 
UR the projection of U on Tℝm+k−1 . Using (9), we have

Letting 
{
Fj

}
 be an o.n. basis of T�P(p)P , we compute:

Hence, substituting in (10), we get

In particular, for any � 1-form on �

Hence, using the same notations of the previous section, we have that

(10)

�II(eh,U)�2 = �IIP(eP
h
,UP)�2 = 4

3

�
�eP

h
�2�UP�2 + 2

�
eP
h
,UP

�2
�
−

1

3
⟨RM(eh,U)eh,U⟩.

�UP�2
�

h

�eP
h
�2 = �UP�2

�

h

k�

j=1

�
eh,Fj

�2

= �UP�2
k�

j=1

�
�Fj�2 −

�
Fj,N

�2�

= �UP�2
�
k − �NP�2

�
;

2
�

h

�
eP
h
,UP

�2
= 2

�

h

�
�

j

�
eh,Fj

��
U,Fj

�
�2

= 2
�

h

�

j

�
eh,Fj

�2�
U,Fj

�2
+ 4

�

h

�

i≠j
�
eh,Fj

�
⟨eh,Fi⟩

�
U,Fj

�
⟨U,Fi⟩

= 2

�
�

j

(�Fj�2 −
�
Fj,N

�2
)
�
U,Fj

�2
+ 2

�

i≠j
(
�
Fi,Fj

�
− ⟨Fi,N⟩

�
Fj,N

�
)
�
U,Fj

�
⟨U,Fi⟩

�

= 2

�
�

j

�
U,Fj

�2
−

�
�

j

�
Fj,N

�2�
U,Fj

�2
+ 2

�

i≠j
⟨Fi,N⟩

�
Fj,N

�
⟨U,Fi⟩

�
U,Fj

�
��

= 2�UP�2 − 2

�
�

j

�
Fj,N

��
U,Fj

�
�2

= 2(�UP�2 −
�
UP

,NP
�2

).

(11)

�

h

�II(eh,U)�2 = 4

3

�
�UP�2

�
k + 2 − �NP�2

�
− 2

�
UP,NP

�2
�
−

1

3

�

h

⟨RM(eh,U)eh,U⟩.

�

h

�II(eh,N)�2�𝜔2� = 4

3
�𝜔�2�NP�2

�
k + 2 − 3�NP�2

�
−

1

3
RicM(N,N)�𝜔�2;

�

h

�II(eh,𝜔♯)�2 = 4

3

�
�𝜔P�2

�
k + 2 − �NP�2

�
− 2⟨𝜔P,NP⟩2

�

−
1

3
RicM(𝜔♯,𝜔♯) +

1

3
⟨RM(𝜔♯,N)𝜔♯,N⟩.
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Let � be the Einstein constant of 
(
P, gP

)
 . Since

we get that

where

and in the last step, we have used that

Recalling now that the Einstein constants of ℍℙp , 4p = k , and Caℙ2 are, respectively 
� = k + 8 and � = 36 , we get that in these cases R(𝜔♯,N) < 0 . From this fact and Corol-
lary 1.2, the index estimate given in Corollary 1.7 immediately follows.

Let us now restrict our attention to the case Pk = ℂℙ
n , 2n = k ≥ 4 . In this case, the 

Einstein constant is � = k + 2 , and hence, we cannot determine the sign of the RHS in (13). 
However, by (13),

(12)

R(𝜔♯,N) ≐ �

h

�
�II(eh,N)�2�𝜔�2 + �II(eh,𝜔♯)�2

�
− RicM(N,N)�𝜔�2 − RicM(𝜔♯,𝜔♯)

+ ⟨RM(𝜔♯,N)𝜔♯,N⟩ − HessMf (N,N)�𝜔�2 − HessMf (𝜔♯,𝜔♯)

=
4

3

�
�𝜔�2�NP�2

�
k + 2 − 3�NP�2

�
+ �𝜔P�2

�
k + 2 − �NP�2

�

−2⟨𝜔P,NP⟩2 − RicM(N,N)�𝜔�2 − RicM(𝜔♯,𝜔♯) + ⟨RM(𝜔♯,N)𝜔♯,N⟩
�

− HessMf (N,N)�𝜔�2 − HessMf (𝜔♯,𝜔♯).

RicM(N,N) = 𝜆�NP�2,
RicM(𝜔♯,𝜔♯) = 𝜆�𝜔P�2,

⟨RM(𝜔♯,N)𝜔♯,N⟩ = ⟨RP(𝜔P,NP)𝜔P,NP⟩
= KP(𝜔 ∧ NP)�𝜔P ∧ NP�2

≤ 4
�
�𝜔P��NP�2 − ⟨𝜔P,NP⟩2

�
,

(13)

R(𝜔♯,N) ≤ 4

3

�
�𝜔�2�NP�2

�
k + 2 − 𝜆 − 3�NP�2

�
+ �𝜔P�2

�
k + 2 − 𝜆 − �NP�2

�

−6⟨𝜔P,NP⟩2 + 4�𝜔P�2�NP�2
�

− 𝜆�NR�2�𝜔�2 − 𝜆�𝜔R�2

≤ 4

3

�
�𝜔�2�NP�2

�
k + 4 − 𝜆 − 3�NP�2

�
+ �𝜔P�2

�
k + 4 − 𝜆 − �NP�2

��
− 𝜂,

� = 8⟨�P,NP⟩2 + ��NR�2���2 + ���R�2 ≥ 0,

4|�P|2|NP|2 ≤ 2|�P|2 + 2|�|2|NP|2.
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We now analyze the equality case. We begin by observing that R(𝜔♯,N) = 0 if and only if 

 (i) �R = NR = 0;
 (ii) 4|𝜔|2 = 4|𝜔P|2 = KP(𝜔P ∧ NP) = KP(𝜔♯ ∧ N) = |𝜔|2 + 3gP(𝜔, JN)

2  ,  where  J 
denotes the complex structure in P = ℂℙ

n.

In particular, note that (ii) is satisfied if and only if 𝜔♯ = hJN , for some h ∈ C∞(�).
Finally, note that if we are able to show that the previous conditions can be satisfied if 

and only if � vanishes identically on � , then the conclusion of the theorem follows at once. 
This is the content of the lemma below.   ◻

Lemma 3.1 Let Pk = ℂℙ
n with k = 2n ≥ 4 and let � be a closed isometrically immersed 

f-minimal hypersurface in the weighted manifold Mm+1
f

=
(
Pk ×ℝ

m−k+1, gM , e
−f dvolM

)
 , 

gM = gP + dt2
1
+⋯ + dt2

m−k+1
 , with gP denoting the canonical metric on P, dvolM the Rie-

mannian volume measure, and f (x, t) = k+2

2
|t|2 . Let � be any f-harmonic 1-form on � and 

suppose that 

 (i) �R = NR = 0;
 (ii) 𝜔♯ = hJN , for some h ∈ C∞(�) , where J denotes the complex structure in P = ℂℙ

n.

Then � ≡ 0.
Proof Step 1 h∇M

JN
N = ∇P

JN
N = −J∇h.

Since � = �P is a f-harmonic 1-form and ∇Mf = (k + 2)T  , with

we have that

In particular, � is a harmonic 1-form and the conclusion of Step 1 follows reasoning, with 
minor modifications, as in [1, Lemma A.1].
Step 2 Ricf (𝜔♯,𝜔♯) = (k − 2)|𝜔|2 − |∇h|2.
Note that, since �R = NR = 0 , we have

R(𝜔♯,N) ≤ 4

3

�
−3�𝜔�2�NP�4 − �𝜔P�2�NP�2 − 6⟨𝜔P,NP⟩2 + 4�𝜔P�2�NP�2

�

− (k + 2)�NR�2�𝜔�2 − (k + 2)�𝜔R�2

≤ 4�𝜔P�2�NP�2 − 4�𝜔�2�NP�4 − 8⟨𝜔P,NP⟩2 − (k + 2)�NR�2�𝜔�2 − (k + 2)�𝜔R�2

≤ 4�𝜔�2�NP�2
�
1 − �NP�2

�
− 8⟨𝜔P,NP⟩2 − (k + 2)�NR�2�𝜔�2 − (k + 2)�𝜔R�2

= �𝜔�2�NR�2
�
4�NP�2 − (k + 2)

�
− 8⟨𝜔P,NP⟩2 − (k + 2)�𝜔R�2

≤ 0.

T = t1
�

�t1
+⋯ + tm+k−1

�

�tm+k−1
,

0 = 𝛿f𝜔 = 𝛿𝜔 + ⟨𝜔♯,∇f ⟩ = 𝛿𝜔.
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Hence

and Step 2 follows immediately from Step 1.
Step 3 |∇h|2 ≤ |∇�|2.
Differentiating 𝜔♯ = hJN , we obtain, for any X ∈ T�,

Since ∇XJN and JN are orthogonal, we immediately get

Step 3 follows at once.
Step 4 Conclusion.
Since � is f-harmonic, by the f-Bochner–Weitzenböck formula and steps 2 and 3, we have 
that

Integrating over � , we conclude that

Since k > 2 , we conclude that � must vanish identically on � .   ◻
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