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Abstract
We consider Euler’s equations for free surface waves traveling on a body of density 
stratified water in the scenario when gravity and surface tension act as restoring forces. 
The flow is continuously stratified, and the water layer is bounded from below by an 
impermeable horizontal bed. For this problem we establish three equivalent classical 
formulations in a suitable setting of strong solutions which may describe nevertheless 
waves with singular density gradients. Based upon this equivalence we then construct two-
dimensional symmetric periodic traveling waves that are monotone between each crest and 
trough. Our analysis uses, to a large extent, the availability of a weak formulation of the 
water wave problem, the regularity properties of the corresponding weak solutions, and 
methods from nonlinear functional analysis.
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1  Introduction

Stratification is a phenomenon that is common in ocean flows where in the presence of 
salinity and under the influence of the gravitational force a heterogeneity in the fluid is pro-
duced. Stratification corresponds to the formation of fluid layers, normally arranged hori-
zontally with the less dense layers being located on top of the denser ones. This phenom-
enon may be caused by many other factors including temperature, pressure, topography and 
oxygenation. Because of the plethora of effects resulting from stratification, such flows have 
received much attention, especially in geophysical fluid dynamics. In the setting of traveling 
stratified waves the problem is modeled by the stationary Euler equations for incompressible 
fluids, subject to natural boundary conditions, cf. (2.2). The study of two-dimensional strati-
fied flows dates back to the pioneering work of Dubreil–Jacotin. In 1937 Dubreil–Jacotin 
[23] constructed small-amplitude stratified traveling gravity waves by using power series 
expansions. Previously in [22] she showed that Gerstner’s explicit solution [10, 27] can be 
accommodated to describe exact traveling gravity waves with an arbitrary stratification. Fur-
thermore, related to Gerstner’s solution, there is a further exact solution describing an edge 
wave propagating along a sloping beach [9, 43, 48] allowing even for an arbitrary stratifica-
tion. Recently also other exact and explicit solutions of stratified flows in different geophysi-
cal regimes have been found, cf. [12, 16, 17, 29–31, 36].

Many of the papers dedicated to the stratified water wave problem consider the vertical 
stratification to be fairly smooth. Small-amplitude periodic gravity water waves possess-
ing a linear stratification have been constructed in [25]. These waves may contain critical 
layers and stagnation points and the authors in [25] provide also the qualitative picture of 
the flow beneath the constructed waves. Small-amplitude periodic capillary-gravity waves 
with sufficiently regular density which may still contain critical layers have been found in 
[34] by means of local bifurcation. The local bifurcation branches of solutions to the strati-
fied water wave problem have been extended by using global bifurcation theory to global 
branches in [32]. The papers [25, 32, 34] use the Long–Yih formulation [37, 56] (see (2.6)) 
of the problem whose availability is facilitated by the fact that the density is sufficiently 
regular. When excluding critical layers and stagnation points the stratified wave prob-
lem can be considered by using Dubreil–Jacotin’s formulation (see (2.10)–(2.11)). This 
approach has been followed in [52–54] where—by means of local and global bifurcation 
theory—small- and large-amplitude stratified periodic water waves of finite depth are con-
structed both in the presence and absence of surface tension. The existence of solitary free 
surface water waves with general regular density distribution, together with a qualitative 
study of such flows, has been provided only recently [8], using again Dubreil–Jacotin’s for-
mulation in their treatise. Qualitative properties of stratified water waves with regular den-
sity, such as symmetry, regularity, and the unique determination of the wave when knowing 
the pressure on the bed and the fluid stratification, have been addressed in [7, 33, 51, 55].

In ocean flows, however, the density varies strongly in thin layers called pycnoclines 
which exhibit sharp density gradients, cf., e.g., [21, 46, 47]. For this reason some of the 
research [3, 4, 14, 15, 21, 39, 40, 42, 49] is restricted to so-called layered models which con-
sider the flow as consisting of a finite number of vertical layers each of them having uniform 
density. These layers are separated by internal waves which are mainly driven by the density 
difference between the layers (some models also consider surface tension effects). In this 
paper we consider a general continuous stratification, but allow for solutions with a density 
gradient which is merely Lr-integrable with r ∈ (1,∞) arbitrarily close to 1. Furthermore, 
Bernoulli’s function, called vorticity function in the constant density case, is also a general 
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function and is assumed to be Lr-integrable too. A similar setting has been studied in [6] 
but in the absence of surface tension forces. The authors of [6] deal with a layered model 
with the density in each layer varying continuously in such a way that the density gradi-
ent is Lr-integrable, but with r > 2 . The choice r > 2 is related to the Sobolev embedding 
W1

r
(ℝ2) ↪ C1−2∕r(ℝ2). In this regime the different formulations of the water wave problem 

mentioned above are equivalent in the setting of periodic Sobolev solutions. Our first main 
result is an equivalence result for the three formulations of the problem in a suitable set-
ting of strong solutions, cf. Theorem 2.1 (see Theorem 2.5 for the case when surface ten-
sion is neglected). The equivalence in these theorems holds for r ∈ [1,∞) . For r ∈ [1, 2] the 
Sobolev regularity is too weak for the equations to be realized in Lr-spaces, and therefore 
our notion of strong solutions involves some complementary Hölder regularity. Here the 
Hölder exponent � = 1 − 1∕r ∈ [0,∞) results from the embedding W1

r
(ℝ) ↪ C1−1∕r(ℝ). 

The main result Theorem 2.3, which relies on the equivalence in Theorem 2.1, establishes 
the existence of infinitely many periodic solutions to the stratified water wave problem hav-
ing merely a Lr-integrable density gradient. Moreover, the wave profiles are symmetric with 
respect to crest and trough lines and strictly monotone in between them. The proof of Theo-
rem 2.3 uses the Crandall–Rabinowitz theorem [20, Theorem 1.7] on bifurcation from sim-
ple eigenvalues in the context of a weak interpretation of Dubreil–Jacotin’s formulation. For 
traveling water waves this idea was first used by Constantin and Strauss 19] to construct 
homogeneous periodic gravity water waves with discontinuous vorticity. The situation of 
heterogeneous water waves is slightly different as the equations in the bulk cannot be recast 
in divergence form, see also [6]. Due to the presence of surface tension we need to deal with 
a second-order nonlinear equation on the surface boundary corresponding to the dynamic 
boundary condition at the waves surface. Here we use a recent trick employed first in [41, 
44] (a similar idea appears also in [3, 32, 45]) to transform this equation into a Dirichlet 
boundary condition perturbed by a nonlinear and nonlocal part of order −1 . A particular 
feature of our analysis is that we fix both the fluid bed and the mean depth of the fluid 
(within a period). This fact in combination with the weak regularity of the density gradient 
reduces the number of possible bifurcation parameters. For this reason the best (probably 
only) choice for a bifurcation parameter is the wavelength � (the wavelength has also been 
used in [24] as one of the bifurcation parameters). It is worth pointing out that this choice 
provides a remarkable identity in (see (4.32)) that leads us to a very simple and elegant dis-
persion relation, cf. Lemma 4.9.

The paper is organized as follows: In Sect.  2 we introduce the three formulations 
of the problem and we establish their equivalence in Theorems 2.1 (and Theorem 2.5). 
Moreover, we state our main result in Theorem 2.3 on the existence of laminar and non-
laminar flow solutions and some qualitative properties. In Sect. 3 we first introduce the 
notion of a weak solution to Dubreil–Jacotin’s formulation and establish, by means of a 
shooting method, the existence of at least one laminar flow solution to this latter formu-
lation. This solution does not depend on the horizontal variable, having thus parallel and 
flat streamlines, and it solves the problem for each value of � . This set of laminar solu-
tions (we have a solution for each 𝜆 > 0 ) is then seen as the trivial branch of solutions 
to the problem. Merely the existence of the laminar solution imposes some restriction 
on the physical properties of the flows, cf. (3.10) and Example 3.4. In Sect. 4 we refor-
mulate the equations as an abstract bifurcation problem and identify, by using methods 
from nonlinear functional analysis, a particular value �∗ of the wavelength parameter 
where a local branch of nonlaminar weak solutions arises from the set of laminar solu-
tions. For this we need to impose a further, quite explicit restriction in (4.12). The proof 
of Theorem 2.3 is then completed by showing that the weak solutions that were found 
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are in fact strong solutions, cf. Proposition  4.17. This gain of regularity relies on the 
regularity result in Theorem 4.14, which is inspired by ideas presented in [13] and [26].

2 � Mathematical formulations and the main results

We now present three classical formulations of the steady water wave problem for 
stratified fluids. We start with the classical Euler formulation. The motion of an inviscid, 
incompressible, and stratified fluid is described by the Euler equations

where � is the fluid’s density, u is the horizontal velocity, v is the vertical velocity, P is the 
pressure, and g is the gravitational acceleration. The fluid domain is bounded from below 
by the impermeable flat bed y = −d , where d is a fixed positive constant, and y = �(t, x) 
denotes the wave surface. In addition to the conservation of momentum which is expressed 
by the first two equations of the system, the fluid is assumed to be incompressible and mass 
conserving (these properties correspond to the third and fourth equations, respectively). 
Our analysis is restricted to the physically relevant case of positive density, that is we 
assume throughout this paper that there exists a constant 𝜌0 > 0 such that

The equations in the fluid domain are subject to the following boundary conditions

where the atmospheric pressure is set to zero and � ≥ 0 denotes the surface tension 
coefficient. As we are interested in periodic waves we introduce the positive constant � to 
denote the associated (minimal) wavelength. Moreover, we require that

at each time t. This condition implies in particular that also the mean depth of the fluid 
is fixed. Traveling periodic waves correspond to solutions of the previously introduced 
equations that exhibit a (t, x)-dependence of the form

where c > 0 is the wave speed, and which are �-periodic in x. Observed from a frame that 
moves with the wave speed c, traveling waves appear to be steady and we are left with the 
free boundary value problem

⎧⎪⎨⎪⎩

�(ut + uux + vuy) = −Px

�(vt + uvx + vvy) = −Py − g�

�t + �xu + �yv = 0

ux + vy = 0,

(2.1)� ≥ �0.

⎧⎪⎨⎪⎩

P = −
��xx

(1+�2
x
)3∕2

on y = �(t, x),

v = �t + u�x on y = �(t, x),

v = 0 on y = −d,

∫
�

0

�(t, x) dx = 0

(u, v,P, �)(t, x, y) = (u, v,P, �)(x − ct, y) and �(t, x) = �(x − ct),
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where

We point out that since u and c appear only in terms of the difference u − c in (2.2), we 
may view the quintuplet (u − c, v,P, �, �) as being the unknown, each of these functions 
additionally being �-periodic with respect to the horizontal variable x.

In order to study problem (2.2) analytically it is useful to consider equivalent 
formulations. To this end we define the so-called stream function � by the relations

One may observe that in the moving frame the streamlines of the flow coincide with the 
level curves of the stream function. Moreover, the density � and the total hydraulic head

are both constant along the streamlines. In particular, if we require that

a condition which is a priori satisfied for homogeneous irrotational water waves, the 
hodograph transformation H ∶ Ω� → Ω defined by

is a bijection. Here Ω ∶= ℝ × (p0, 0) and p0 ∶= −�||y=−d is a negative constant. Using this 
property one can find two functions �, � ∶ [p0, 0] → ℝ , the so-called streamline density 
function and the Bernoulli function, respectively, such that

In particular �(x, y) = �(−�(x, y)) in Ω� . As the density usually increases with depth we 
restrict our considerations to the stably stratified regime defined by the inequality1 

(2.2)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�(u − c)ux + �vuy = −Px inΩ� ,

�(u − c)vx + �vvy = −Py − g� inΩ� ,

(u − c)�x + v�y = 0 inΩ� ,

ux + vy = 0 inΩ� ,

P = −
����

(1+��2)3∕2
on y = �(x),

v = (u − c)�� on y = �(x),

v = 0 on y = −d,

∫ �

0
�(x) dx = 0,

Ω𝜂 ∶= {(x, y) ∶ x ∈ ℝ, −d < y < 𝜂(x)}.

∇� ∶= (−
√
�v,

√
�(u − c)) in Ω� and � = 0 on y = �(x).

E ∶= P + �
(u − c)2 + v2

2
+ g�y inΩ�

(2.3)sup
Ω𝜂

(u − c) < 0,

(2.4)H(x, y) ∶= (q(x, y), p(x, y)) ∶= (x,−�(x, y))

�◦H−1 = � and − �p(E◦H
−1) = �.

(2.5)�
′ ≤ 0.

1  The assumption that the density is nondecreasing with depth is not needed for the equivalence result in 
Theorem 2.1 (or Theorem 2.5), but is used to a large extent in the proof of the bifurcation result in Theo-
rem 2.3.
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These considerations lead one to the Long–Yih [37, 56] formulation of the hydrodynamical 
problem (2.2):

Under the assumption (2.1) of positive density the condition (2.3) is equivalent to

The constant Q in Eq.  (2.6)4 is related to the energy E. Equation  (2.6)4 identifies Q for 
waves with zero integral mean as follows:

Using the (partial) hodograph transformation H , a further equivalent formulation of 
(2.2)–(2.3) may be derived in terms of the height function h ∶ Ω → ℝ that is defined by

The system (2.6) can then be recast in the fixed rectangular domain Ω in the following 
form:

the relation (2.3) taking the form

In virtue of (2.11) the quasilinear equation (2.10)1 is uniformly elliptic. This equation 
is complemented by a nonlinear and nonlocal boundary condition on p = 0 and a 
homogeneous Dirichlet condition on p = p0 . This formulation gives an insight into 
the flow as the streamlines in the moving frame are parameterized by the mappings 
[x ↦ h(x, p) − d]. In the setting of classical solutions it is not difficult to show that the 
three formulations (2.2)–(2.3), (2.6)–(2.8), and (2.10)–(2.11) are equivalent, cf., e.g., [11, 
52–54]. This feature remains true in the more general framework described below.

Equivalent formulations In Theorem  2.1 we present our first main result which 
establishes for capillary-gravity stratified water waves, that is for 𝜎 > 0 , the equivalence of 
the three formulations in a suitable setting of strong solutions. The case � = 0 is treated in 
Theorem 2.5. A strong solution of any of the three formulations possesses weak derivatives 
up to highest order (the order is required by the equations) that are Lr-integrable. Moreover 
the lower order derivatives enjoy some additional Hölder regularity to ensure that all 
equations are satisfied in Lr-spaces (in particular pointwise a.e.).

(2.6)

⎧
⎪⎪⎨⎪⎪⎩

Δ� = gy�
�
(−�) + �(−�) inΩ� ,

� = 0 on y = �(x),

� = −p0 on y = −d,

�∇��2 − 2����

(1+��2)3∕2
+ 2g�(0)y = Q on y = �(x).

(2.7)sup
Ω𝜂

𝜓y < 0.

(2.8)Q =
1

� ∫
�

0

|∇�|2(x, �(x)) dx.

(2.9)h(q, p) = y + d for (q, p) ∈ Ω.

(2.10)

⎧⎪⎨⎪⎩

(1 + h2
q
)hpp − 2hqhphpq + h2

p
hqq − [g�

�
(h − d) + �]h3

p
= 0 in Ω,

h = 0 on p = p0,

1 + h2
q
+ h2

p

�
2g�(0)(h − d) −

2�hqq

(1+h2
q
)3∕2

−
1

�
∫ �

0

1+h2
q

h2
p

(q, 0) dq

�
= 0 on p = 0,

(2.11)inf
Ω
hp > 0.
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Theorem 2.1  (Equivalence for 𝜎 > 0 ) Let 𝜎, 𝜆 > 0, and assume that (2.1) holds true. Given 
r ∈ [1,∞) , set � ∶= (r − 1)∕r ∈ [0, 1). Then, the following formulations are equivalent:

	 (i)	 The velocity formulation (2.2)–(2.3) for u − c, v,P ∈ W1
r
(Ω�) ∩ C�(Ω�) , � ∈ W2

r
(ℝ) , 

and � ∈ W1
r
(Ω�) ∩ C�(Ω�).

	 (ii)	 The stream function formulation (2.6)–(2.8) for � ∈ W2
r
(Ω�) ∩ C1+�(Ω�) , � ∈ W2

r
(ℝ) , 

� ∈ W1
r
((p0, 0)) , and � ∈ Lr((p0, 0)).

	 (iii)	 The height function formulation (2.10)–(2.11) for h ∈ W2
r
(Ω) ∩ C1+�(Ω) with 

tr0 h ∈ W2
r
(ℝ) , � ∈ W1

r
((p0, 0)) , and � ∈ Lr((p0, 0)).

The proof of Theorem 2.1 and the corresponding result for � = 0 are presented at the 
end of this section. It is worthwhile to add the following remarks.

Remark 2.2 

(a)	 Given r ≥ 1 , the Hölder coefficient � ∶= (r − 1)∕r ∈ [0, 1) corresponds to the one-
dimensional Sobolev embedding W1

r
(ℝ) ↪ C�(ℝ). It is worthwhile to note that W1

r
(ℝ2) 

is not embedded in a space of continuous functions if r ∈ [1, 2] . Therefore, the Hölder 
regularity required above is not implied by the Sobolev regularity.

(b)	 All function spaces in Theorem 2.1 consist only of functions that are �-periodic with 
respect to x and q, respectively.

(c)	 The symbol tr0 stands for the trace operator with respect to the boundary component 
p = 0 of Ω = ℝ × (p0, 0), that is tr0 h(q) = h(q, 0), q ∈ ℝ , for h ∈ C(Ω).

(d)	 Let Ω ⊂ ℝ
n with n ≥ 1 be open. In the proof of Theorem 2.1 (and also later on) we 

make use of the following properties 

 The properties (2.12) and (2.14) are classical results, while (2.13) is a direct 
consequence of (2.12).

Local bifurcation The main issue of this paper is the local bifurcation result stated 
below. Under the natural assumptions (2.1) and (2.5) on the fluid density and the following 
restrictions on the physical quantities2 

(2.12)
∙ �(uv) = u�v + v�u in D�(Ω) for u, v ∈ W1

1,loc
(Ω) with uv, u�v + v�u ∈ L1,loc(Ω);

(2.13)∙ W1
r
(Ω) ∩ BC�(Ω) is an algebra;

(2.14)
∙ If f ∈ W1

1,loc
(Ω) ∩ BC(Ω) has weak derivatives fi ∈ BC(Ω), 1 ≤ i ≤ n, then f ∈ BC1(Ω).

2  The relations (2.15) are satisfied for example if d is small compared to |p
0
| . Furthermore, if � = 0 = �

� , 
then �∗ = 0 and the first condition in (2.15) is trivially satisfied.
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where x∗ ≈ 1.9368 is the positive solution to ex − x = 5,

we prove that the water wave problem (2.2)–(2.3) possesses, for each 𝜆 > 0 , at least 
one laminar flow solution with flat streamlines. Besides, a critical wavelength 𝜆∗ > 0 is 
identified such that (2.2)–(2.3) has also other solutions with nonflat wave surface and with 
wavelength close to �∗ . More precisely, the following result holds true.

Theorem  2.3  Let �, d, −p0 ∈ (0,∞), r ∈ (1,∞) , and � ∶= (r − 1)∕r ∈ (0, 1) be given. 
Assume further that � ∈ W1

r
((p0, 0)) and � ∈ Lr((p0, 0)) satisfy (2.1), (2.5), and (2.15). 

Then there exists a local bifurcation curve

where 𝜀 > 0 is small, having the following properties:

	 (i)	 � is smooth, 𝜆(s) > 0 for all s > 0, and

where 𝜆∗ > 0 is defined in Proposition 4.11.
	 (ii)	 (u(0) − c, v(0),P(0), �(0), �(0)) is a strong solution to (2.2)–(2.3) for each 𝜆 > 0 , has 

flat streamlines, streamline density �, and Bernoulli function �.
	 (iii)	 Given s ∈ (−�, �) ⧵ {0} , (u(s) − c, v(s),P(s), �(s), �(s)) is a strong solution to (2.2)–

(2.3) with minimal period �(s), streamline density � , and Bernoulli function � . 
Moreover, the wave profile has precisely one crest and one trough per period, is 
symmetric with respect to crest and trough lines, and is strictly monotone between 
crest and trough.

	 (iv)	 The wave profile and all other streamlines are real-analytic graphs.

Remark 2.4 

(a)	 We point out that we do not impose any restrictions on the value of 𝜎 > 0, cf. (2.15). 
Nevertheless, the critical wavelength �∗ depends in an intricate way on �.

(b)	 The regularity of the parameterization of C and the asymptotic behavior of �(s) as s → 0 
are specified in the proof of Theorem 2.3 at the end of Sect. 4.

(c)	 The strong solution (u(0) − c, v(0),P(0), �(0), �(0)) to (2.2)–(2.3) found in (ii) is called 
laminar flow solution. Its existence is established in Proposition 3.5.

(d)	 The limiting case r = 1 remains open in the context of Theorems 2.3 and 4.14.

We conclude this section by proving the equivalence of the three formulations in the 
setting of strong solutions introduced above.

(2.15)
d +

p0(
𝜇∗ − 2 min

[p0,0]
B

)1∕2
< 0 and

gd3𝜌(p0)|p0|[
p2
0
−

(
𝜇∗ − 2min

[p0,0]
B

)
d2

]3∕2 ≤ x∗

2
,

(2.16)

�∗ ∶= 2

�
gd‖��‖L1((p0,0)) +max

[p0,0]
B

�
, and B(p) ∶= ∫

p

p0

�(s) ds, p ∈ [p0, 0],

C = {(�(s), u(s) − c, v(s),P(s), �(s), �(s)) ∶ s ∈ (−�, �)},

�(s) = �∗ + O(s) for s → 0,
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Proof of Theorem 2.1  We start with the implication (i) ⟹ (ii) . Let (u − c, v,P, �, �) be a 
solution to (2.2)–(2.3). In virtue of (2.1) and the weak chain rule [28, Lemma 7.5] it fol-
lows that 

√
� ∈ W1

r
(Ω�) ∩ C�(Ω�) . Relation (2.13) then yields

We note that the relations (2.2)3-(2.2)4 imply

For (x, y) ∈ Ω� we now define

where p0 < 0 is a constant to be fixed below. It is obvious that � is continuously 
differentiable with respect to y with �y = U. Moreover, making use of Fubini’s theorem, 
the generalized Gauß theorem in [1, Appendix A 8.8], and the relations (2.17) and (2.2)7 , 
we find for � ∈ C∞

0
(Ω�) that

where � ∈ C1(Ω�) is defined by the formula

Thus, ∇� = (−V ,U) and since these weak derivatives belong to W1
r
(Ω�) , we conclude that 

� ∈ W2
r
(Ω�). Moreover, (2.14) implies that � ∈ C1+�(Ω�).

The relation (2.7) is clearly satisfied in view of (2.3). Since � is constant on the fluid 
bed and by (2.2)6 also on the free surface y = �(x) , we infer from (2.7) that we may chose 
the negative constant p0 such that � = 0 on the free surface.

It is easy to see now that the mapping H defined in (2.4) satisfies H ∈ Diff1+�(Ω� ,Ω) , 
i.e., H ∶ Ω� → Ω is a C1+�-diffeomorphism, with

In view of � ∈ W1
r
(Ω�) it follows that �◦H−1 ∈ W1

r
(Ω) with

cf. (2.2)3 . Consequently, there exists � ∈ Lr((p0, 0)) with �◦H−1 = �. Moreover, it actually 
holds that � ∈ W1

r
((p0, 0)) with weak derivative �� = −(�y∕U)◦H−1.

U ∶=
√
�(u − c), V ∶=

√
�v ∈ W1

r
(Ω�) ∩ C�(Ω�).

(2.17)Ux + Vy = 0 in Lr(Ω�).

�(x, y) ∶= −p0 + ∫
y

−d

U(x, s) ds,

∫Ω�

�(x, y)�x(x, y) d(x, y) = ∫Ω�

U(x, s)

(
∫

�(x)

s

�x(x, y) dy

)
d(x, s) = ∫Ω�

U(x, s)�x(x, s) d(x, s)

= −∫Ω�

Ux(x, s)�(x, s) d(x, s) = ∫Ω�

Vs(x, s)�(x, s) d(x, s)

= −∫Ω�

V(x, s)�s(x, s) d(x, s) = ∫Ω�

V(x, s)�(x, s) d(x, s),

�(x, s) ∶= ∫
�(x)

s

�(x, y) dy, (x, y) ∈ Ω� .

(
�q

�x

�q

�y
�p

�x

�p

�y

)
=

(
1 0

V −U

)
and

(
�x

�q

�x

�p
�y

�q

�y

�p

)
◦H =

(
1 0
V

U
−

1

U

)
.

�q(�◦H
−1)◦H = �x +

V

U
�y = 0,
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We now consider the expression

which defines a function in W1
r
(Ω�) ∩ C�(Ω�) . Hence, E◦H−1 ∈ W1

r
(Ω) and

Appealing to (2.2)1–(2.2)3 , it follows that �q(E◦H
−1) = 0. This relation has at least two 

implications. Firstly, E is constant at the wave surface, which implies the existence of a 
constant Q such that

Secondly, in view of �q(�p(E◦H
−1)) = 0 , we may conclude that there exists a function 

� ∈ Lr((p0, 0)) such that −�p(E◦H
−1) = �. The relation (2.18) together with (2.2)5 and 

(2.2)8 shows that (2.6)4 holds true with Q as defined in (2.8). Finally, since Δ� = Uy − Vx , 
(2.2)2–(2.2)3 lead us to

which is the semilinear elliptic equation in (2.6). This completes this first step of the proof.
We now verify that (ii) ⟹ (iii) . Let thus (� , �) be a solution to (2.6)–(2.8) and let h be 

the height function introduced in (2.9). Then, it follows that h ∈ C1+�(Ω) with

With regard to [28, Lemma  7.5], property (2.7) shows that 1∕�y ∈ W1
r
(Ω�) ∩ C�(Ω�), 

and the algebra property (2.13) leads us to the conclusion that hq, hp ∈ W1
r
(Ω) , hence 

h ∈ W2
r
(Ω) . The relation (2.6)3 implies that h satisfies (2.10)2 , while (2.11) follows 

immediately from (2.7). Moreover, since

it follows from (2.6)1 that h is a solution to (2.10)1 . Let us also note that Eq. (2.6)2 yields 
�(q) = h(q, 0) − d , q ∈ ℝ , and therefore tr0 h ∈ W2

r
(ℝ) . The boundary condition (2.10)3 is 

a direct consequence of (2.6)4 . This completes the second step of the proof.
It remains to establish the implication (iii) ⟹ (i) . To begin we first define 

� ∶= h( ⋅ , 0) − d . Then � ∈ W2
r
(ℝ) and integrating (2.10)3 over one period of the wave we 

find that (2.2)8 is satisfied. Besides, (2.11) yields that 𝜂(x) + d = h(x, 0) > 0 for all x ∈ ℝ . 
We now associate with � the corresponding velocity, pressure, and density distribution. To 
this end we let Φ ∶ ℝ

2 × [2p0, 0] → ℝ be the function defined by

E ∶= P +
U2 + V2

2
+ g�y

�q(E◦H
−1)◦H = Ex +

V

U
Ey

=
�
�(u − c)ux + �vuy + Px

�
+

V

U

�
�(u − c)vx + �vvy + Py + g�

�

+ ((u − c)�x + v�y)
E − P√

�U
in Lr(Ω�).

(2.18)E = P +
|∇�|2

2
+ g�y =

Q

2
on y = �(x).

�◦H =
1

U
Ey = Δ� − gy�

�
◦H,

hq = −
�x

�y

◦H
−1 and hp ∶= −

1

�y

◦H
−1.

(2.19)�xx =
h2
p
hqq − 2hqhphqp + h2

q
hpp

h3
p

◦H and �yy =
hpp

h3
p

◦H,
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Then Φ ∈ C1+�(ℝ2 × [0, 2p0]) , Φ(x,−d, p0) = 0 for all x ∈ ℝ, and Φp ≤ − infΩ hp < 0 . For 
fixed, but arbitrary x ∈ ℝ , the implicit function theorem yields the existence of a function 
�(x, ⋅ ) which is continuously differentiable in [−d,−d + �) , for some 𝜀 > 0 , and satisfies 
�(x,−d) = −p0 as well as

Because �(x, ⋅ ) is strictly decreasing, we can extend this function continuously in −d + � 
if

The implicit function theorem then enables us to even extend �(x, ⋅ ) beyond −d + � . 
Hence, �(x, ⋅ ) has a maximal extension �(x, ⋅ ) ∈ C1([−d,A(x)),ℝ) with �(x,−d) = −p0 
and �(x,A(x)) = 0 . In view of A(x) + d = h(x, 0) = �(x) + d , we conclude that �(x) = A(x) . 
Therefore � ∶ Ω� → ℝ and  (2.7) is satisfied. Moreover, the implicit function theorem 
yields that � ∈ C1+�(Ω�) with

Since h ∈ C1+�(Ω), it now follows that � ∈ C1+�(Ω�) and the mapping H defined in (2.4) 
obviously satisfies H ∈ Diff1+�(Ω� ,Ω) . Since hq, hp ∈ W1

r
(Ω) ∩ C�(Ω) , we find in virtue 

of (2.12)–(2.13) and [28, Lemma 7.5] that � ∈ W2
r
(Ω) . Moreover, the derivatives �xx and 

�yy satisfy (2.19). We now define �, u − c, v ∶ Ω� → ℝ by setting

and we let P ∶ Ω� → ℝ be given by the relation

with Q defined according to (2.8). Then � ∈ W1
r
(Ω) ∩ C�(Ω) and, recalling (2.1), we may 

argue as above to conclude that u, v, and P belong to W1
r
(Ω) ∩ C�(Ω). It is now a matter of 

direct computation to see that all the equations of (2.2)–(2.3) are satisfied. This completes 
the proof. 	�  ◻

It follows from the proof of Theorem  2.1 that, when neglecting surface tension 
effects, the following equivalence result holds.

Theorem  2.5  (Equivalence for � = 0 ) Let, � = 0 , 𝜆 > 0 , and assume that (2.1) holds 
true. Given r ∈ [1,∞) , set � ∶= (r − 1)∕r ∈ [0, 1). Then, the following formulations are 
equivalent:

Φ(x, y, p) ∶=

{
y + d − h(x, p), p ∈ [p0, 0],

y + d + h(x, 2p0 − p), p ∈ [2p0, p0].

h(x,−�(x, y)) = y + d for all y ∈ [−d,−d + �).

lim
y→−d+𝜀

𝜓(x, y) < 0.

�x(x, y) =
hq(x,−�(x, y))

hp(x,−�(x, y))
and �y(x, y) = −

1

hp(x,−�(x, y))
.

� = �◦H,
√
�(u − c) = �y,

√
�v = −�x,

P(x, y) = −�
(u − c)2 + v2

2
(x, y) − g�(x, y)y − ∫

−�(x,y)

0

�(s) ds +
Q

2
,
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	 (i)	 The velocity formulation (2.2)–(2.3) for u − c, v,P ∈ W1
r
(Ω�) ∩ C�(Ω�) , � ∈ C1+�(ℝ) , 

and � ∈ W1
r
(Ω�) ∩ C�(Ω�).

	 (ii)	 The stream function formulation (2.6)–(2.8) for � ∈ W2
r
(Ω�) ∩ C1+�(Ω�) , 

� ∈ C1+�(ℝ) , � ∈ W1
r
((p0, 0)) , and � ∈ Lr((p0, 0)).

	 (iii)	 The height function formulation (2.10)–(2.11) for h ∈ W2
r
(Ω) ∩ C1+�(Ω) , 

� ∈ Lr((p0, 0)) , and � ∈ W1
r
((p0, 0)).

3 � A weak setting for Dubreil–Jacotin’s formulation

In this section we seek solutions to problem (2.10)–(2.11) under the general assumptions 
that

where � and � are arbitrary but fixed. Moreover, we restrict to the setting of stably stratified 
flows defined by (2.1) and (2.5). The reason for studying the height function formulation 
is twofold. Firstly, the equations have a single unknown, the height function h, and sec-
ondly, the Bernoulli function � and the streamline density � appear as coefficients in the 
equations.

Since we aim to formulate (2.10) as a bifurcation problem and to use the wavelength � 
as bifurcation parameter, we let

Then h̃ is 1-periodic3 and (2.10) may be rewritten (after dropping tildes) as

while (2.11) remains unchanged. Now not only h is unknown in (3.3) but also the wave-
length �.

In order to determine strong solutions to (3.3) and (2.11) as defined in Theorem 2.1(iii), 
we shall first find weak solutions to this problem and then improve their regularity. We now 
introduce a proper notion of weak solutions.

Definition 3.1  A function h ∈ C1(Ω) is called weak solution to (3.3) and (2.11) if h satis-
fies (2.11), the equation4 

(3.1)r ∈ (1,∞), � ∈ W1
r
((p0, 0)), and � ∈ Lr((p0, 0)),

(3.2)h̃(q, p) ∶= h(�q, p), (q, p) ∈ Ω.

(3.3)

⎧⎪⎨⎪⎩

(�2 + h2
q
)hpp − 2hqhphpq + h2

p
hqq − �2[g�

�
(h − d) + �]h3

p
= 0 in Ω,

h = 0 on p = p0,

�2 + h2
q
+ h2

p

�
2�2g�(0)(h − d) −

2��3hqq

(�2+h2
q
)3∕2

− ∫ 1

0

�2+h2
q

h2
p

(q, 0) dq

�
= 0 on p = 0,

3  Hereinafter all function spaces consist of functions which are 1-periodic with respect to q (provided that 
they depend on the variable q).
4  Recall that B denotes the primitive of the Bernoulli function, cf. (2.16).
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and the boundary conditions

and

In Definition 3.1 we have made use of the fact that

is an isomorphism.
Laminar flow solutions In the remainder of this section we show that, given any 

𝜆 > 0 , Eqs.  (3.3) and  (2.11) have at least one weak solution H that depends only on the 
variable p. This solution is then easily seen to be a strong solution to  (3.3) and  (2.11) 
(similar as defined in Theorem  2.1(iii)). This is the laminar flow solution mentioned in 
Theorem 2.3(ii).

Since the density is positive, it follows that H = H(p) is a weak solution to  (3.3) 
and (2.11) if and only if H′ > 0 on [p0, 0] and if H solves the system

We emphasize that the wavelength parameter does not appear in (3.4). Taking into 
account that H ∈ C1([p0, 0]) , we get that additionally H ∈ W2

r
((p0, 0)) . Moreover, setting 

𝜇 ∶= (H�(p0))
−2 > 0 , the function H satisfies the fixed point equation

Our goal is to show, by means of a shooting argument, that there exists a 𝜇 > 0 such that 
(3.5) has a solution which satisfies additionally H(0) = d . This solution then also solves 
(3.4). Let �∗ ≥ 0 and B be as defined in (2.16). As a first step we prove below that the fixed 
point equation (3.5) has a unique nonnegative solution H = H(⋅;�) for any 𝜇 > 𝜇∗.

Proposition 3.2  Given 𝜇 > 𝜇∗ , there is a unique solution H = H(⋅;�) ∈ W2
r
((p0, 0)) to the 

fixed point equation (3.5). It further holds that H′ > 0 in [p0, 0].

Proof  Let 𝜇 > 𝜇∗ be fixed. Given p1 ∈ (p0, 0] and H ∈ C([p0, p1], [0,∞)) , we define

(
hq

hp

)

q

−

(
�2 + h2

q

2h2
p

+ �2B + �2g�(h − d)

)

p

+ �2g�hp = 0 inD�(Ω),

h = (1 − �2
q
)−1 tr0

[
h −

(�2 + h2
q
)3∕2

2��3

(
�2 + h2

q

h2
p

+ 2�2g�(h − d) − ∫
1

0

�2 + h2
q

h2
p

dq

)]
on p = 0

h = 0 on p = p0.

(1 − �2
q
) ∶ C2(ℝ) → C(ℝ)

(3.4)

⎧⎪⎨⎪⎩

�
1

H�2

��

= −2[g�
�
(H − d) + �] in D

�((p0, 0)),

H(0) = d,

H(p0) = 0.

(3.5)H(p) = ∫
p

p0

(
� − 2∫

r

p0

[g�
�
(s)(H(s) − d) + �(s)] ds

)−1∕2

dr, p ∈ [p0, 0].

T1H(p) ∶= ∫
p

p0

(
� − 2∫

r

p0

[g�
�
(s)(H(s) − d) + �(s)] ds

)−1∕2

dr, p ∈ [p0, p1].
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We now show that T1 is a self-map. Indeed, recalling that �′ ≤ 0 , it holds that

and consequently T1H ∈ C([p0, p1], [0,∞)).

If p1 is sufficiently close to p0 , then T1 is a contraction. Indeed, given 
H, K ∈ C([p0, p1], [0,∞)) and p ∈ [p0, p1], (3.6) shows that

if

Observing that C([p0, p1], [0,∞)) is a complete metric space, the Banach contraction 
principle yields the existence and uniqueness of a nonnegative solution H1 ∈ W2

r
((p0, p1,�)) 

to (3.5). We next prove that as long as the right endpoint of the interval of existence does 
not reach 0, we may extend it to the right by the amount of

Indeed, assume that p1,𝜇 < 0 . Given p2 ∈ (p1,�, 0] and H ∈ C([p1,�, p2], [0,∞)) we set

for p ∈ [p1,�, p2]and

The same arguments as above yield

hence T2H ∈ C([p1,�, p2], [0,∞)) and (T2H)(k)(p1,�) = H
(k)

1
(p1,�) for k ∈ {0, 1}. 

Furthermore, given H, K ∈ C([p1,�, p2], [0,∞)) and p ∈ [p1,�, p2] , it holds that

(3.6)

𝜇 − 2�
r

p0

[g𝜌
�
(s)(H(s) − d) + 𝛽(s)] ds = 𝜇 − 2B(r) − 2 �

[H≤d]
g𝜌

�
(s)(H(s) − d) ds

− 2 �
[H>d]

g𝜌
�
(s)(H(s) − d) ds

≥ 𝜇 − 2max
[p0,0]

B − 2�
p1

p0

gd|𝜌�(s)| ds
≥ 𝜇 − 𝜇∗ > 0, r ∈ [p0, p1],

�T1H(p) − T1K(p)� ≤
g(p1 − p0)‖��‖L1((p0,0))

(� − �∗)
3∕2

‖H − K‖C([p0,p1]) ≤ 1

2
‖H − K‖C([p0,p1])

(3.7)p1 ≤ p1,� ∶= min

�
0, p0 +

(� − �∗)
3∕2

2g(‖��‖L1((p0,0)) + 1)

�
.

(� − �∗)
3∕2

2g(‖��‖L1((p0,0)) + 1)
.

T2H(p) ∶= H1(p1,�) + ∫
p

p1,�

(
c� − 2∫

r

p1,�

[g�
�
(s)(H(s) − d) + �(s)] ds

)−1∕2

dr

c𝜇 ∶= (H�
1
(p1,𝜇))

−2 = 𝜇 − 2∫
p1,𝜇

p0

[g𝜌
�
(s)(H1(s) − d) + 𝛽(s)] ds > 0.

c𝜇 − 2�
r

p1,𝜇

[g𝜌
�
(s)(H(s) − d) + 𝛽(s)] ds ≥ 𝜇 − 𝜇∗ > 0, p ∈ [p1,𝜇, p2],
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provided that

Hence, T2 possesses a fixed point H2 ∈ W2
r
((p1,�, p2,�)) . Thus, we may extend H1 to a 

solution to (3.5) which lies in W2
r
((0, p2,�)) and which equals H2 on (p1,�, p2,�) . Arguing 

in this way, if necessary, we may extend (in a finite number of steps) H1 onto the whole 
interval [p0, 0]. The uniqueness claim is obvious. 	�  ◻

We next show that the solution found in Proposition  3.2 depends smoothly on the 
parameter �.

Lemma 3.3  For any 𝜇 > 𝜇∗ , let H( ⋅ ;�) denote the solution to the fixed point equation (3.5) 
as given by Proposition 3.2. Then, the mapping

is smooth.

Proof  We prove that, given 𝜀 > 0 , the mapping (3.8) is smooth on (�∗ + 2�g‖��‖L1((p0,0)),∞). 
This claim follows by applying the implicit function theorem to the equation F(H,�) = 0 , 
where F ∶ U𝜀 × (𝜇∗ + 2𝜀g‖𝜌�‖L1((p0,0)),∞) ⊂ C([p0, 0]) ×ℝ → C([p0, 0]) is defined by

Here

is an open subset of C([p0, 0]) . Arguing as in the derivation of (3.6) it can be seen that the 
operator F  is well-defined. Moreover, F  is smooth. The partial derivative �HF(H,�)[H̃] 
of F  with respect to H at a given point (H,�) ∈ U� × (�∗ + 2�g‖��‖L1((p0,0)),∞) can be 
expressed as

where the operator K ∶ C([p0, 0]) → C([p0, 0]) is given by

One can easily verify that K actually maps continuously into W2
r
((p0, 0)) . Since the 

embedding of W2
r
((p0, 0)) into C([p0, 0]) is compact, it follows that K is a compact 

operator. Hence, �HF(H,�) is a compact perturbation of the identity. Using the Riesz–
Schauder theorem, we can conclude that �HF(H,�) is a Fredholm operator of index zero. 

�T2H(p) − T2K(p)� ≤
g(p2 − p1,�)‖��‖L1((p0,0))

(� − �∗)
3∕2

‖H − K‖C([p1,� ,p2]) ≤ 1

2
‖H − K‖C([p1,� ,p2])

p2 ≤ p2,� ∶= min

�
0, p1,� +

(� − �∗)
3∕2

2g(‖��‖L1((p0,0)) + 1)

�
.

(3.8)[� ↦ H( ⋅ ;�)] ∶ (�∗,∞) → C([p0, 0])

F(H,�)(p) ∶= H(p) − ∫
p

p0

(
� − 2∫

r

p0

[g�
�
(s)(H(s) − d) + �(s)] ds

)−1∕2

dr, p ∈ [p0, 0].

U𝜀 ∶= {H ∈ C([p0, 0]) ∶ H > −𝜀}

�HF(H,�) ∶ C([p0, 0]) → C([p0, 0]), H̃ ↦ H̃ −K[H̃],

K[H̃](p) = g∫
p

p0

(
� − 2∫

r

p0

[g�
�
(H − d) + �] ds

)−3∕2(
∫

r

p0

�
�
H̃ ds

)
dr, p ∈ [p0, 0].
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Furthermore, �HF(H,�)[H̃] = 0 if and only if H̃ = K[H̃] . In this case, H̃ satisfies the 
inequality

for all p ∈ [p0, 0] . Hence, applying Gronwall’s lemma, we obtain that H̃ = 0 on [p0, 0] . 
This means that ker

(
�HF(H,�)

)
= {0} and thus, according to Fredholm’s alternative, 

�HF(H,�) is an isomorphism from C([p0, 0]) to C([p0, 0]).
Due to the construction of F  it holds that

Since the solution to (3.5) is unique also in U� if 𝜇 > 𝜇∗ + 2𝜀g‖𝜌�‖L1((p0,0)) (this follows in a 
similar way as in Proposition 3.2), the implicit function theorem implies that [� ↦ H( ⋅ ;�)] 
is smooth in (�∗ + 2�g‖��‖L1((p0,0)),∞) for all 𝜀 > 0 . 	�  ◻

In order to establish the existence of a solution to (3.4) it remains to prove that there is a 
𝜇 > 𝜇∗ such that H(0;�) = d . To this end first note that (3.6) yields

and hence H(0;𝜇) < d for sufficiently large � . If we additionally show that H(0;𝜇) > d 
for � close to �∗ , then the continuous dependence of H on � (Lemma  3.3) implies that 
H(0;�) = d for some � . It turns out that this requires additional restrictions on the physical 
quantities. The following example illustrates the approach in the simplified case of constant 
density.

Example 3.4  Assume that �� = 0 and that �(p) = C(p − p0)
−1∕2 . Since the density is 

constant, the function � has to be interpreted as the vorticity function of the flow, cf. 
[18]. Unbounded vorticity functions are of relevance for example for flows in chan-
nels [5]. By Proposition 3.2, Eq.  (3.5) possesses a unique solution H = H(p;�) for each 
𝜇 > 𝜇∗ = 2C|p0|1∕2 . The solution is given by the explicit formula

Since H(0;𝜇) < H(0,𝜇∗) for 𝜇 > 𝜇∗ and because of

the condition H(0;𝜇∗) > d has to be imposed, otherwise H(0;𝜇) < d for all 𝜇 > 𝜇∗ and 
(3.4) has no solutions.

�H̃(p)� ≤ g�
p

p0

(� − �∗ − 2�g‖��‖L1((p0,0)))−3∕2 �
r

p0

���(s)� ⋅ �H̃(s)� ds dr

≤ g�p0�(� − �∗ − 2�g‖��‖L1((p0,0)))−3∕2 �
p

p0

���(s)� ⋅ �H̃(s)� ds

F(H( ⋅ ;�),�) = 0 for all� ∈ (�∗ + 2�g‖��‖L1((p0,0)),∞).

(3.9)H(p;�) ≤ |p0|
(� − �∗)

1∕2
for p ∈ [p0, 0]

H(p;�) = �
p

p0

1√
� − 2B(r)

dr, p0 ≤ p ≤ 0.

H(0;𝜇∗) = ∫
0

p0

1√
2B(0) − 2B(r)

dr =
1

2
√
C
∫

0

p0

√�p0�1∕2 + (r − p0)
1∕2

√
−r

dr < ∞,
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Let us now return to the more involved setting of stratified waves addressed in this 
paper. Given 𝜇 > 𝜇∗ , we define

Then recalling (3.9), we observe that p� = 0 and H(0;𝜇) < d if � is sufficiently large. The 
size condition that we require reads

Since H(p;�) ∈ [0, d] for p ∈ [p0, p�] and �′ ≤ 0 , it follows that

In view of (3.10) we conclude (by a contradiction argument) that p𝜇 < 0 for all � which are 
sufficiently close to �∗. Hence

Together with Lemma 3.3 we conclude the following result establishing the existence of at 
least one strong laminar flow solution to (3.3) and (2.11).

Proposition 3.5  Assume that (3.10) is satisfied. Then there is at least one solution 
H ∈ W2

r
((p0, 0)) to (3.4). Moreover, H′ is a positive function.

Proof  The proof follows from Proposition 3.2, Lemma  3.3, and the discussion preceding 
Proposition 3.5. 	�  ◻

4 � Local bifurcation

In the following we assume that the density and the Bernoulli function satisfy (2.1), (2.5), and 
(3.1), i.e.,

and that (3.10) holds true. This guarantees, in particular, the existence of a laminar flow 
solution to (3.3) and (2.11).

The first goal of this section is to recast the weak formulation of  (3.3) and  (2.11) as an 
abstract bifurcation problem. For this goal only the Hölder regularity of the strong solutions 
to (3.3) and (2.11) is needed. To proceed, we define the Banach space

p� ∶= min
(
{0} ∪ H(⋅ ;�)−1({d})

)
,

(3.10)
d +

p0(
𝜇∗ − 2 min

[p0,0]
B

)1∕2
< 0.

H(p�;�) = �
p�

p0

(
� − 2�

r

p0

[g�
�
(s)(H(s) − d) + �(s)] ds

)−1∕2

dr

≥ �
p�

p0

(
� − 2�

r

p0

�(s) ds

)−1∕2

dr ≥ p� − p0(
� − 2 min

[p0,0]
B

)1∕2
.

H(0;𝜇) > d for𝜇 sufficiently close to𝜇∗.

� ≥ �0, �
� ≤ 0 in [p0, 0], � ∈ W1

r
((p0, 0)), � ∈ Lr((p0, 0)), r ∈ (1,∞),



1940	 J. Escher et al.

1 3

which is endowed with the norm

and we set

We recall that these Banach spaces consist only of periodic distributions of period 
1. Furthermore, we fix a laminar flow solution H ∈ W2

r
((p0, 0)) ↪ � (as found in 

Proposition 3.5) and we let O denote the open subset of � defined by

The weak formulation of (3.3) and (2.11) can then be recast as the nonlinear and nonlocal 
equation

where F ∶= (F1,F2) ∶ (0,∞) ×O → � ∶= �1 × �2 is given by

We regard Eq. (4.1) as a bifurcation problem with bifurcation parameter � . Recalling that 
H solves (3.4), it holds that

We note that F  is smooth with respect to its variables, that is

The aim is to apply the Crandall–Rabinowitz theorem [20, Theorem  1.7] on bifurcation 
from simple eigenvalues to (4.1) to determine other solutions to (4.1) that depend on the 
variable q. To this end we need to determine 𝜆∗ > 0 such that the partial Fréchet derivative 
�hF(�∗, 0) is a Fredholm operator of index zero with a one-dimensional kernel. A certain 
transversality condition also needs to be satisfied, cf. Proposition 4.13.

�1 ∶=

{
� + �q�1 + �p�2 ∈ D

�(Ω) ∶
� ∈ L∞(Ω), �1, �2 ∈ C�(Ω),

�,�2 are even, �1 is odd in q

}

‖u‖
�1

∶= inf

�
‖�‖∞ + ‖�1‖� + ‖�2‖� ∶

u = � + �q�1 + �p�2,

� ∈ L∞(Ω), �1, �2 ∈ C�(Ω)

�

𝕐2 ∶= {� ∈ C1+�(ℝ) ∶ � is even},

𝕏 ∶= {h ∈ C1+�(Ω) ∶ h is even in q and h = 0 on p = p0}.

O ∶=

{
h ∈ � ∶ min

Ω

(hp + H�) > 0

}
.

(4.1)F(�, h) = 0,

F1(�, h) ∶=

(
hq

hp + H�

)

q

−

(
�2 + h2

q

2(hp + H�)2
+ �2B + �2g�(h + H − d)

)

p

+ �2g�(hp + H�),

F2(�, h) ∶= tr0 h − (1 − �2
q
)−1 tr0

[
h −

(�2 + h2
q
)3∕2

2��3

(
�2 + h2

q

(hp + H�)2
+ 2�2g�h

−∫
1

0

�2 + h2
q

(hp + H�)2
dq

)]
.

(4.2)F(𝜆, 0) = 0 for all 𝜆 > 0.

(4.3)F ∈ C∞((0,∞) ×O,� ).
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To begin, we observe that, given 𝜆 > 0 , the Fréchet derivative 
�hF(�, 0) = (L, T) ∈ L(�,� ) is expressed by

Lemma 4.1  Given 𝜆 > 0, it holds that �hF(�, 0) is a Fredholm operator of index zero.

Proof  According to [28, Theorem 8.34], the mapping

is an isomorphism (we recall that H′ is positive). Since (1 − �2
q
)−1 ∈ L(C(ℝ), C2(ℝ)) , it 

follows that the operator

is compact. Therefore, the desired claim follows. 	�  ◻

We want to determine special values �∗ of the wavelength parameter such that additionally 
the kernel of �hF(�∗, 0) is one-dimensional. Let thus w ∈ � be such that �hF(�, 0)[w] = 0 . 
From L[w] = 0 we find that the Fourier coefficient

satisfies the equation

Furthermore, since T[w] = 0 , we find that

and

respectively. Finally, since w ∈ � , it holds that

Hence, for k = 0 , we find that w0 ∈ W2
r
((p0, 0)) solves the system

L[h] =

(
hq

H�

)

q

+ �2
(

hp

H�3
− g�h

)

p

+ �2g�hp ∈ �1,

T[h] = tr0 h − (1 − �2
q
)−1 tr0

[
h +

�2

�

(
hp

H�3
− g�h − ∫

1

0

hp

H�3
dq

)]
∈ �2, h ∈ �.

[
h ↦

((
hq

H�

)

q

+ �2
(

hp

H�3

)

p

, tr0 h

)]
∶ � → �

[
h ↦

(
−�2g(�h)p + �2g�hp , −(1 − �2

q
)−1 tr0

[
h +

�2

�

(
hp

H�3
− g�h − ∫

1

0

hp

H�3
dq

)])]

wk(p) ∶= ∫
1

0

w(q, p) cos(2k�q) dq, k ∈ ℕ, p ∈ [p0, 0],

�2
(

1

H�3
w�
k
− g�wk

)�

+ �2g�w�
k
−

(2k�)2

H�
wk = 0 in Lr((p0, 0)).

(
�2g�(0) + �(2k�)2

)
wk(0) =

�2

H�3(0)
w�
k
(0), k ≥ 1,

w0(0) = 0,

wk(p0) = 0, k ∈ ℕ.
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where

Furthermore, given k ≥ 1, the function wk ∈ W2
r
((p0, 0)) solves the system

with � ∶= (2k�)2.
The remainder of this section is organized as follows. In the first paragraph we 

specify a condition under which (4.4) has only the trivial solution w0 = 0 . The objective 
of the second paragraph is twofold. On the one hand we determine special values �∗ 
of � such that (4.5) has a one-dimensional space of solutions for k = 1 , respectively 
� = (2�)2 . On the other hand we prove that (4.5) admits only the trivial solution wk = 0 
for � ∈ {(2k�)2 ∶ k ≥ 2} . The third paragraph treats the above mentioned transversality 
condition and the last paragraph is devoted to the proof of Theorem 2.3.

Conditions such that w0 = 0 . We now show that, under some additional restrictions 
(cf. (4.7)), the system (4.4) has only the trivial zero solution. Equivalently formulated, 
we show that the elliptic operator [u ↦ (a3u�)� − g�

�
u] , which is supplemented by 

homogeneous Dirichlet boundary conditions, does not have zero as an eigenvalue. 
We point out that the coefficient of u is positive and it may be unbounded, while the 
coefficient a3 is not explicitly determined. This is where the assumption (2.15)2 becomes 
important, as it constitutes an explicit relation in terms of d, p0 , � , and � which ensures 
that (4.7) is satisfied, see Example 4.3. We also emphasize that in the constant density 
case the assertion of Lemma 4.2 follows via maximum principles, hence (4.7) (or (4.12)) 
is then not needed. Moreover, the restriction (4.7) (or its weaker version (4.12)) is also 
used at several places in the paragraphs below in order to establish the existence of a 
bifurcation point. In particular, for homogeneous irrotational waves (that is � = � ∈ ℝ 
and � = 0 ), see Remark 4.10, the explicit condition (4.12) ensures, due to the fact that 
x∗ < 2 , that the dispersion relation (4.40) has at least a solution. Since x∗ ≈ 1.9368 , this 
shows that (4.12) is close to being optimal with respect to this issue.

Lemma 4.2  Let

and assume that

Then (4.4) has only the trivial solution w0 = 0.

(4.4)
{

(a3w�
0
)� − g�

�
w0 = 0 in Lr((p0, 0)),

w0(p0) = w0(0) = 0,

a ∶= 1∕H� ∈ W1
r
((p0, 0)).

(4.5)

⎧⎪⎨⎪⎩

�2(a3w�)� − �2g�
�
w − �aw = 0 in Lr((p0, 0)),�

�2g�(0) + ��
�
w(0) = �2a3(0)w�(0),

w(p0) = 0.

(4.6)A(p) ∶= ∫
p

p0

g�

a3
(s) ds, p ∈ [p0, 0],

(4.7)e2A(0) − 2A(0) ≤ 5.
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Proof  Let w0 be a solution to (4.4). Then, letting z0 ∶= a3w�
0
− g�w0 we may recast (4.4)1 

as a linear system of first-order ODEs with continuous coefficients, namely

To obtain a contradiction, we assume that z0(p0) = a3(p0)w
�
0
(p0) ≠ 0 as the solution to 

(4.8) that satisfies (w0, z0)(p0) = (0, 0) is the trivial one. Without loss of generality let 
z0(p0) =∶ 𝛼 > 0 . We next show that z0 > 0 in [p0, 0] if (4.7) holds true. Since, by (4.8)1,

this then contradicts the boundary condition w0(0) = 0 and the proof is complete.
To prove that z0 is positive in [p0, 0] , we assume there exists p1 ∈ (p0, 0] with z0 > 0 in 

[p0, p1) and z0(p1) = 0 . The relation (4.9) implies that w0 > 0 in (p0, p1] . Invoking (4.8)2 it 
holds that

Since A′ is positive, we find that z0eA is decreasing in [p0, p1] . Consequently

Since z0(p1) = 0, the relation (4.10) yields

and using (4.11) we arrive at

Since �(s) ≤ �(r) for p0 ≤ r ≤ s ≤ 0 and recalling the definition of A we get in view of 
(4.7) that

which is a contradiction. Our assumption is thus false and the proof complete. 	�  ◻

We now provide a quantitative condition which ensures that (4.7) is satisfied.

Example 4.3  Let �∗ be as defined in (2.15) and assume that (3.10) holds. If

(4.8)
{

w�
0
= A�w0 + a−3z0,

z�
0
= −g�A�w0 − A�z0.

(4.9)w0(p)e
−A(p) = ∫

p

p0

z0e
−A

a3
(s) ds, p ∈ [p0, 0],

(4.10)z0(p)e
A(p) = � − ∫

p

p0

g�(s)A�(s)e2A(s) ∫
s

p0

z0(r)e
−A(r)

a3(r)
dr ds, p ∈ [p0, 0].

(4.11)0 ≤ z0(p) < 𝛼e−A(p), p ∈ (p0, p1].

� = ∫
p1

p0

g�(s)A�(s)e2A(s) ∫
s

p0

z0(r)e
−A(r)

a3(r)
dr ds,

1 < ∫
p1

p0

g𝜌(s)A�(s)e2A(s) ∫
s

p0

e−2A(r)

a3(r)
dr ds.

1 < �
p1

p0

A�(s)e2A(s) �
s

p0

A�(r)e−2A(r) dr ds =
1

2 �
p1

p0

A�(s)(e2A(s) − 1) ds

≤ 1

4

(
e2A(0) − 2A(0) − 1

) ≤ 1,
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where x∗ ≈ 1.9368 is the positive solution to

then (4.7) is satisfied.

Proof  Recall that a = 1∕H� > 0 in [p0, 0] with H being the solution to (3.4) that we fixed 
earlier. Since H(p0) = 0 and H(0) = d , there exists p1 ∈ [p0, 0] such that H�(p1) ≤ d∕|p0|. 
Integration of (3.4)1 over [p1, p], with p ∈ [p0, 0] arbitrary, yields

the positivity of the constant on the right-hand side of this inequality being equivalent 
to (3.10). Consequently,

and, recalling that � ≤ �(p0) , we get

Hence (4.7) holds true. 	�  ◻

Relation (4.12) provides an explicit condition which ensures that the system (4.4) has 
only the trivial solution w0 = 0 . Consequently, for all 𝜆 > 0 , the kernel of �hF(�, 0) does 
not contain functions that depend only on the variable p (except for the zero function). 
We now address the second issue of determining 𝜆∗ > 0 such that �hF(�∗, 0) has a one-
dimensional kernel spanned by a function of the form w1(p) cos(2�q) , with w1 being 
(up to a multiplicative constant) the only nontrivial solution to (4.5) when � = �∗ and 
� ∈ {(2k�)2 ∶ k ∈ ℕ}.

The system (4.5) with � as a variable. We seek 𝜆 > 0 such that (4.5) has a one-dimen-
sional space of solutions for � = (2�)2 and only the trivial solution for 𝜗 > (2𝜋)2 . To this 
end we first determine the dimension of the space of solutions to (4.5). Given � ∈ (0,∞) 

(4.12)

gd3�(p0)|p0|[
p2
0
−

(
�∗ − 2min

[p0,0]
B

)
d2

]3∕2 ≤ x∗

2
,

(4.13)ex − x = 5,

a2(p) = a2(p1) − 2�
p

p1

[g�
�
(s)(H(s) − d) + �(s)] ds

≥ p2
0

d2
− 2�

0

p0

gd|��(s)| ds − 2B(p) + 2B(p1)

≥ p2
0

d2
−

(
�∗ − 2 min

[p0,0]
B

)
,

1

a(p)
≤ d√

p2
0
−

(
�∗ − 2min

[p0,0]
B

)
d2

, p ∈ [p0, 0],

(4.14)

A(0) = �
0

p0

g�(s)

a3(s)
ds ≤ g�(p0)�

0

p0

1

a3(s)
ds ≤ gd3�(p0)|p0|[

p2
0
−

(
�∗ − 2min

[p0,0]
B

)
d2

]3∕2 ≤ x∗

2
.
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and � ∈ ℝ , we let R�,� ∶ W2
r,0
((p0, 0)) → Lr((p0, 0)) ×ℝ denote the Sturm–Liouville-type 

operator

where we set

We associate with (4.5) the initial value problems

and

Lemma 4.4  Given 𝜆 > 0 and � ∈ ℝ , the operator  R�,� ∶ W2
r,0
((p0, 0)) → Lr((p0, 0)) ×ℝ 

defined in (4.15) is a Fredholm operator of index zero and dim kerR�,� ≤ 1 . Furthermore, 
dim kerR�,� = 1 if and only if the solutions w̃1 and w̃2 to (4.16) and (4.17) are linearly 
dependent. In this case it holds that

Proof  We first decompose R�,� = RI + Rc, where

It is clear that Rc is a compact operator. Furthermore, RI is an isomorphism. Hence, R�,� is 
a Fredholm operator of index zero.

We now set zi ∶= a3w̃�
i
− g�w̃i , i ∈ {1, 2} , where w̃1 and w̃2 denote the unknowns in 

(4.16) and (4.17), respectively. Recalling the definition of A in (4.6), Eqs.  (4.16)1 and 
(4.17)1 can be recast as a first-order system of linear ODEs with continuous coefficients:

and the classical theory, cf., e.g., [2, Proposition 7.8], ensures that each of the problems 
(4.16) and (4.17) has a unique solution w̃i ∈ W2

r
((p0, 0)) , i ∈ {1, 2} . Moreover, given 

wa, wb ∈ W2
r
((p0, 0)) solutions to (4.5)1 , it follows that

for some C ∈ ℝ . Hence wa and wb are colinear if they also belong to W2
r,0
((p0, 0)) . This 

proves in particular that dim kerR�,� ≤ 1 . It remains to establishing the last claim. Let 
dim kerR�,� = 1 and choose 0 ≠ w ∈ kerR�,� . Relation (4.19) implies that w and w̃1 are 

(4.15)R�,�[w] ∶=

(
�2(a3w�)� − �2g�

�
w − �aw

�2a3(0)w�(0) −
(
�2g�(0) + ��

)
w(0)

)
,

W2
r,0
((p0, 0)) = {w ∈ W2

r
((p0, 0)) ∶ w(p0) = 0}.

(4.16)
{

�2(a3w̃�
1
− g�w̃1)

� + �2g�w̃�
1
− �aw̃1 = 0 in Lr((p0, 0)),

w̃1(p0) = 0, w̃�
1
(p0) = 1,

(4.17)
{

�2(a3w̃�
2
− g�w̃2)

� + �2g�w̃�
2
− �aw̃2 = 0 in Lr((p0, 0)),

w̃2(0) = �2a3(0), w̃�
2
(0) = �2g�(0) + ��.

kerR�,� = span{w̃1} = span{w̃2}.

RI[w] ∶=

(
�2(a3w�)�

�2a3(0)w�(0)

)
and Rc[w] ∶=

(
−�aw − �2g�

�
w

−
(
�2g�(0) + ��

)
w(0)

)
.

(4.18)
{

w̃�
i
∶= A�w̃i + a−3zi,

z�
i
= (�−2�a − g�A�)w̃i − A�zi

for i ∈ {1, 2},

(4.19)a3(w�
a
wb − waw

�
b
) = C in [p0, 0]
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colinear. Invoking (4.15)2 and (4.17)2 , (4.19) shows that also w and w̃2 are colinear. Finally, 
if w̃1 and w̃2 are colinear, it is easy to see that they both belong to kerR�,�. 	�  ◻

We can now reformulate our task as the problem of determining 𝜆∗ > 0 such that the 
Wronskian

vanishes in [p0, 0] only for � = (2�)2 . Recalling (4.19), it follows that W(⋅;�,�) vanishes 
in [p0, 0] if and only if it vanishes at p = 0 . For this reason we consider the function 
W(0;⋅, ⋅) ∶ (0,∞) ×ℝ → ℝ defined by

where z1 = a3w̃�
1
− g�w̃1 is the new variable introduced in (4.18). By [2, Proposition 9.5] it 

holds that

We next prove that for each 𝜆 > 0 there exists at least one solution � to W(0;�,�) = 0 . As a 
first step we show that

This is a direct consequence of the following more general statement.

Lemma 4.5  Assume that (4.7) is satisfied. If � = 0 and 𝜆 > 0 , then z1 > 0 , �w′
1
> 0 in [p0, 0] 

and �w1 > 0 in (p0, 0].

Proof  Arguing as in the proof of Lemma 4.2 it follows that z1 > 0 in [p0, 0] . The remaining 
claims are direct consequences of the latter property. Indeed, the relations

imply

As z1 is positive, we conclude that �w1 > 0 in (p0, 0] and �w′
1
> 0 in [p0, 0] . 	�  ◻

In view of (4.21), for the existence of a solution � to W(0;�,�) = 0 it thus suffices to 
prove that W(0;�,�) → ∞ for � → ∞ . We first show that if �∕�2 is sufficiently large, then 
w̃′
1
 is a positive function. This property is not obvious because of the fact that �′ has not 

only the opposed sign in (4.5)1 but it can also be unbounded. However, when considering 
the equivalent formulation (4.18), this feature follows quite naturally.

Lemma 4.6  Let 𝜆 > 0 and assume that

W( ⋅ ;�, �) ∶=
||||
w̃1 w̃2

w̃�
1
w̃�
2

||||

(4.20)

W(0;�,�) = w̃1(0)w̃
�
2
(0) − w̃�

1
(0)w̃2(0) = (�2g�(0) + ��)w̃1(0) − �2a3(0)w̃�

1
(0)

= ��w̃1(0) − �2z1(0),

(4.21)W(0;⋅, ⋅) ∈ C∞((0,∞) ×ℝ).

(4.22)W(0;𝜆, 0) = −𝜆2z1(0) < 0.

w̃�
1
− A�w̃1 =

z1

a3
in [p0, 0], w̃1(p0) = 0,

(4.23)w̃1(p) = ∫
p

p0

z1(s)

a3(s)
eA(p)−A(s) ds, p ∈ [p0, 0].
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Then z1eA and w̃1 are increasing functions and it holds that

Proof  Integrating (4.18) (with i = 1 ) yields

and

for all p ∈ [p0, 0]. Hence, the assertions follow due to (4.24). 	�  ◻

Combining (4.20) and (4.26) yields

Lemma 4.7  Let 𝜆 > 0 be given and assume that condition (4.7) is satisfied. It then holds:

Proof  In the following, we assume that � is large enough to ensure (4.24). Recall that, by 
Lemma 4.6, the function z1 is positive and z1eA is increasing on [p0, 0]. Using (4.27), we 
obtain the estimate

with positive constants C1 and C2 independent of � . Therefore it suffices to show that

Let p1 ∈ [p0, 0] be an arbitrary number that is specified later. For � sufficiently large it 
holds that

for all p ∈ [p1, 0] with a positive constant C3 independent of � . We define

(4.24)
�

�2
≥ g2�

2
(p0)

min
[p0,0]

a4
.

(4.25)z1(p) ≥ a3(p0)e
−A(p) > 0, for all p ∈ [p0, 0].

w̃1(p) = ∫
p

p0

z1(s)

a3(s)
eA(p)−A(s) ds

(4.26)

z1(p) = a3(p0)e
−A(p) + ∫

p

p0

(
�a(s)

�2
− g�(s)A�(s)

)
eA(s)−A(p) ∫

s

p0

z1(r)

a3(r)
eA(s)−A(r) dr ds

(4.27)

W(0;�,�) = ��∫
0

p0

z1(s)

a3(s)
eA(0)−A(s) ds

− �2
[
a3(p0)e

−A(0) + ∫
0

p0

(�a(s)
�2

− g�(s)A�(s)
)
∫

s

p0

z1(r)

a3(r)

e2A(s)

eA(0)+A(r)
dr ds

]
.

(4.28)W(0;�,�) → ∞ as � → ∞.

(4.29)W(0;�,�) ≥ C1�

(
�

0

p0

z1(s) ds + C2 �
0

p0

sz1(s) ds

)
− �2a3(p0)e

−A(0)

(4.30)lim inf
𝜗→∞ ∫

0

p0

(1 + C2s)z1(s) ds > 0.

(
z1(p)e

A(p)
)�

=

(
�a(p)

�2
− g�(p)A�(p)

)
�

p

p0

z1(s)e
A(s)

a3(s)
e2(A(p)−A(s)) ds ≥ C3

�

�2 �
p

p1

z1(s)e
A(s) ds
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and observe that

Now, let U denote the solution of the initial value problem

Then, U is explicitly given by

for all p ∈ [p1, 0] . It is straightforward to check that Z ≥ U on [p1, 0] . As z1 is positive and 
A is increasing, we can conclude that

Now, we fix

Then, since z1 is positive and (z1eA) is increasing, we use (4.31) and the definition of p1 to 
derive the estimate

where C4 denotes a nonnegative constant that is independent of � . Hence, recalling (4.25), 
we observe that the right-hand side tends to infinity as � → ∞ . In particular, the assertion 
(4.30) directly follows. 	�  ◻

The relations (4.21), (4.22), and (4.28) ensure that the equation W(0;�,�) = 0 has at 
least one solution 𝜗 > 0 for any fixed 𝜆 > 0 . The next result provides a remarkable identity, 
cf. (4.32), that will enable us later to identify the largest solution �(�) to the above equation 
in a quite explicit way.

Z(p) ∶= ∫
p

p1

z1(s)e
A(s) ds for all p ∈ [p1, 0]

Z�� ≥ C3

�

�2
Z on[p1, 0], Z(p1) = 0, Z�(p1) = z1(p1)e

A(p1).

U�� = C3

�

�2
U on[p1, 0], U(p1) = 0, U�(p1) = z1(p1)e

A(p1).

U(p) =
z1(p1)e

A(p1)

�
sinh(�(p − p1)) with � ∶=

√
C3

�

�2

(4.31)�
0

p1

z1(s) ds ≥ e−A(0)Z(0) ≥ e−A(0)U(0).

p1 ∶= max

{
−

1

2C2

,
p0

2

}
.

�
0

p0

(1 + C2s)z1(s) ds = �
p1

p0

(1 + C2s)z1(s) ds + �
0

p1

(1 + C2s)z1(s) ds

≥ 1

2 �
0

p1

z1(s) ds − C4 �
p1

p0

eA(s)z1(s) ds

≥ 1

2

(
e−A(0)U(0) − C4|p0|eA(p1)z1(p1)

)

=
z1(p1)

2

(
eA(p1)−A(0)

�
sinh(�|p1|) − C4|p0|eA(p1)

)
,
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Lemma 4.8  Assume that (3.10) and (4.12) hold and that (�, �) ∈ (0,∞)2 satisfies 
W(0;�,�) = 0 . Then, it holds �w1(0)W𝜆(0;𝜆, 𝜗) < 0 and

Proof  Let w̃1 = w̃1( ⋅ ;�, �) denote the solution of (4.16) corresponding to � and � . We 
first consider the derivative W�(0;�,�). Using the algebra property of W1

r
((p0, 0)) we con-

clude that the partial derivative w̃1,� = ��w̃1( ⋅ , �, �) belongs to W2
r
((p0, 0)) and solves the 

problem

We multiply (4.161 by w̃1,�) and (4.33)1 by w̃1 and subtract the resulting equations. This 
yields

Integrating with respect to p from p0 to 0 and using integration by parts then gives

Recall that W(0;�,�) = (�2g�(0) + ��)w̃1(0) − �2a3(0)w̃�
1
(0) according to (4.20). Hence, 

the derivative with respect to � is given by

We point out that, since W(0;�,�) = 0 , the functions w̃1 and w̃2 are linearly dependent and 
not identically zero. This implies that w̃1(0) ≠ 0. Multiplying the latter identity by w̃1(0) 
and using (4.34) and the colinearity of w̃1 and w̃2 we then obtain

In view of

we conclude that

(4.32)
W𝜗(0;𝜆, 𝜗)

W𝜆(0;𝜆,𝜗)
= −

𝜆

2𝜗
< 0.

(4.33)

{
�2(a3w̃�

1,�
)� − �2g�

�
w̃1,� − �aw̃1,� = −2�(a3w̃�

1
)� + 2�g�

�
w̃1 in Lr((p0, 0)),

w̃1,�(p0) = 0, w̃�
1,�
(p0) = 0.

�2(a3w̃�
1
)�w̃1,� − �2(a3w̃�

1,�
)�w̃1 = 2�(a3w̃�

1
)�w̃1 − 2�g�

�
w̃2
1

in Lr((p0, 0)).

(4.34)

�2a3(0)w̃�
1
(0)w̃1,�(0) − �2a3(0)w̃�

1,�
(0)w̃1(0)

= 2�a3(0)w̃�
1
(0)w̃1(0) − 2�∫

0

p0

[
a3(p) (w̃�

1
)2(p) + g�

�
(p) w̃2

1
(p)

]
dp.

W�(0;�,�) = 2�g�(0)w̃1(0) + (�2g�(0) + ��)w̃1,�(0) − 2�a3(0)w̃�
1
(0) − �2a3(0)w̃�

1,�
(0).

(4.35)

w̃1(0)W�(0;�, �) = 2�

(
g�(0)w̃2

1
(0) − ∫

0

p0

a3(p)
(
w̃�
1
(p)

)2
dp − ∫

0

p0

g�
�
(p) w̃2

1
(p) dp

)
.

−�
0

p0

g�
�
(p) w̃2

1
(p) dp ≤ g(�(p0) − �(0))‖w̃1‖2C([p0,0])



1950	 J. Escher et al.

1 3

Finally, choosing p1 ∈ (p0, 0] such that �w̃1(p1)� = ‖w̃1‖C([p0,0]) , together with (4.14) (recall 
that the positive solution x∗ to (4.13) satisfies x∗ < 2 ) we get

and this proves that �w1(0)W𝜆(0;𝜆, 𝜗) < 0.
We next consider W�(0;�, �) . The partial derivative w̃1,� = ��w̃1( ⋅ , �,�) belongs to 

W2
r
((p0, 0)) and solves the problem

Multiplying (4.161 by w̃1,� ) and (4.361 by w̃1 ) and subtracting the resulting equations gives

Integrating with respect to p from p0 to 0 and using integration by parts, we infer that

The partial derivative W�(0;�, �) is given by

Multiplying this equation by w̃1(0) and using (4.37) and the colinearity of w̃1 and w̃2 we 
conclude that

Next, we multiply (4.16)1 by w̃1 , integrate from p0 to 0, and use once more the fact that w̃1 
and w̃2 are linearly dependent to obtain

w̃1(0)W�(0;�,�)

≤ 2�

�
g�(0)

�
w̃2
1
(0) − ‖w̃1‖2C([p0,0])

�
+ g�(p0)‖w̃1‖2C([p0,0]) − �

0

p0

a3(p)
�
w̃�
1
(p)

�2
dp

�

≤ 2�

�
g�(p0)‖w̃1‖2C([p0,0]) − �

0

p0

a3(p)
�
w̃�
1
(p)

�2
dp

�
.

g𝜌(p0)‖�w1‖2C([p0,0]) = g𝜌(p0)

�
�

p1

p0

�w�
1
(p) dp

�2

≤ g𝜌(p0)

�
�

0

p0

1

a3(p)
dp

��
�

0

p0

a3(p)(�w�
1
(p))2 dp

�

< �
0

p0

a3(p)(�w�
1
(p))2 dp,

(4.36)

{
�2(a3w̃�

1,�
)� − �2g�

�
w̃1,� − �aw̃1,� = aw̃1 inLr((p0, 0)),

w̃1,�(p0) = 0, w̃�
1,�
(p0) = 0.

�2(a3w̃�
1
)�w̃1,� − �2(a3w̃�

1,�
)�w̃1 = −aw̃2

1
in Lr((p0, 0)).

(4.37)�2a3(0)w̃�
1
(0)w̃1,�(0) − �2a3(0)w̃�

1,�
(0)w̃1(0) = −∫

0

p0

a(p) w̃2
1
(p) dp.

W�(0;�, �) = �w̃1(0) + (�2g�(0) + ��)w̃1,�(0) − �2a3(0)w̃�
1,�
(0).

w̃1(0)W�(0;�,�) = �w̃2
1
(0) − ∫

0

p0

a(p) w̃2
1
(p) dp.

�w̃2
1
(0) − ∫

0

p0

a(p) w̃2
1
(p) dp = −

�2

�

(
g�(0)w̃2

1
(0) − ∫

0

p0

a3(p)(w̃�
1
(p))2 dp − ∫

0

p0

g�
�
(p)w̃2

1
(p) dp.

)
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Hence, (4.35) implies that

which completes the proof. 	� ◻

Given 𝜆 > 0 , let �(�) denote the largest solution to W(0;�,�) = 0. In the following 
lemma we identify, using Lemma 4.8, the mapping

up to a positive multiplicative constant.

Lemma 4.9  There exists a constant CD > 0 such that 𝜗(𝜆) = CD𝜆
2, 𝜆 > 0.

Proof  Lemmas 4.7 and 4.8 ensure that W𝜗(0;𝜆, 𝜗(𝜆)) > 0 for all 𝜆 > 0 . The implicit func-
tion theorem applied at (�0, �(�0)) , with 𝜆0 > 0 , implies that in a small neighborhood of 
(�0, �(�0)) the solution set to W(0;�,�) = 0 coincides with the graph of a smooth curve 
�̃ ∶ (�0 − �, �0 + �) → ℝ . Differentiating the relation W(0;�, �̃(�)) = 0 it follows in virtue 
of (4.38) that

Hence there exists a constant CD > 0 such that �̃(�) = CD�
2 for all � ∈ (�0 − �, �0 + �). 

The desired claim follows now at once. 	�  ◻

Remark 4.10  Our analysis shows, under the assumptions (3.10) and (4.12), that the con-
stant CD found in Lemma 4.9 is the largest constant such that the solutions to

determined by the initial data

are linearly dependent. The constant CD depends only on Earth’s gravity g, the mass flux p0 , 
the water depth d, the surface tension coefficient � , the density function �, and on Bernoul-
li’s function � . In the homogeneous case � = � ∈ ℝ we obtain, under the assumption that 
the flow is irrotational (that is for � = 0 ), that CD is the largest positive solution to

We cannot exclude the possibility that there exist finitely many (since W(0;�, ⋅) ∶ ℝ → ℝ is 
real-analytic there cannot exist infinitely many) positive constants

for which the two solutions defined above are linearly dependent. Each of these constants 
defines a new function �i ∶ (0,∞) → ℝ with

(4.38)W�(0;�, �) = −
�

2�
W�(0;�,�),

(4.39)[� ↦ �(�)] ∶ (0,∞) → (0,∞)

�̃�(�) = −
W�(0;�, �̃(�))

W�(0;�, �̃(�))
=

2�̃(�)

�
.

(a3w�)� − g�
�
w − CDaw = 0 inLr((p0, 0))

(w,w�)(p0) = (0, 1) or (w,w�)(0) = (a3(0), g�(0) + �CD), respectively,

(4.40)tanh(d
√
CD) =

p2
0

√
CD

d2(g� + �CD)
.

CD,N < CD,N−1 < ⋯CD,1 < CD, N ≥ 1,
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which satisfies W(0;�,�i(�)) = 0 for all 𝜆 > 0 . This complicates the bifurcation analysis 
for (4.1) a lot as in this situation the dimension of ker �hF(�, 0) may be larger than 1 for 
certain � . However, this behavior is expected since, even in the case of constant density, 
phenomena like bifurcation from double eigenvalues or secondary bifurcation may occur 
when allowing for surface tension effects, cf. [35, 53, 54].

We now shortly discuss the dispersion relation (4.40) in the homogeneous irrotational 
case (that is for � = � ∈ ℝ and � = 0 ). Setting 

√
CD = x , the problem reduces to finding 

the positive zeros of the function f ∶ ℝ → ℝ with

Since f (0) = g𝜌d − p2
0
∕d2 < 0 (this inequality is a direct consequence of (4.12)) and 

f (x) → ∞ as x → ∞ , Eq.  (4.41) has at least a positive solution. Note that f is even. 
Furthermore, direct computations show that

Moreover, it can be shown that if f �(x) = 0 for some x > 0 , then f ��(x) > 0 (see, e.g., [38, 
Lemma 3]). Consequently, regardless of the sign of

the equation f (x) = 0 has a unique solution. Indeed, if 𝜎 > g𝜌d2∕3 , then f is strictly 
increasing on (0,∞) . If � = g�d2∕3 then f is again strictly increasing on (0,∞) since then 
f (4)(0) > 0 . Finally, if 𝜎 < g𝜌d2∕3 , then f has a unique global minimizer let’s say at x0 and f 
is strictly decreasing on (0, x0) and strictly increasing on (x0,∞).

We proceed with the following result.

Proposition 4.11  Let

Then, �hF(�∗, 0) is a Fredholm operator of index zero and with a one-dimensional kernel 
spanned by

where w̃1(⋅;�∗, (2�)
2) denotes the solution to (4.16) corresponding to (�, �) = (�∗, (2�)

2).

Proof  The proof follows from the results established in Lemmas  4.1,  4.2,  4.4,  4.9, and 
Remark 4.10. 	�  ◻

The transversality condition In order to apply [20, Theorem  1.7] to the bifurcation 
problem (4.1), we still have to check the transversality condition

�i(�) = CD,i�
2, 1 ≤ i ≤ N,

(4.41)f (x) ∶= (g� + �x2)
tanh(dx)

x
−

p2
0

d2
.

f ��(0) = 2d

(
� −

g�d2

3

)
and f (4)(0) = −8d3

(
� −

2g�d2

5

)
.

� −
g�d2

3
,

(4.42)�∗ ∶=
2�√
CD

.

(4.43)w∗(q, p) ∶= w̃1(p;�∗, (2�)
2) cos(2�q), (p, q) ∈ Ω,



1953Stratified periodic water waves with singular density gradients﻿	

1 3

with �∗ and w∗ introduced in (4.42) and (4.43), respectively. To this end we first characterize 
the set Im�hF(�∗, 0).

Lemma 4.12  A pair (f ,�) ∈ �  with f = � + �q�1 + �p�2 belongs to Im�hF(�∗, 0) if and 
only if

Proof  Let (f ,�) ∈ Im�hF(�∗, 0) and let w ∈ � satisfy (L, T)[w] = (f ,�). Testing the equa-
tion L[w] = f  with �mw∗ ∈ H1

0
(Ω) , where w∗ is defined in (4.43) and with �m defined by

we obtain, after passing to the limit m → ∞ , the following identity

Moreover, multiplying the relation T[w] = � by tr0 w∗ and integrating over [0, 1],  it follows 
that

Combining the relations (4.46) and (4.47) yields

Finally, multiplying L[w∗] = 0 by w and integrating by parts, we find in virtue of

cf. (4.43), that the left-hand side of (4.48) is zero and (4.45) follows. Observing that 
(4.45) defines a closed subspace of �  of codimension 1 which contains Im�hF(�∗, 0) , 
Proposition 4.11 leads us to the desired conclusion. 	�  ◻

We are now in a position to prove that the transversality condition (4.44) holds.

(4.44)��hF(�∗, 0)[w∗] ∉ Im�hF(�∗, 0),

(4.45)
∫Ω

(
�1w∗,q + �2w∗,p − �w∗

)
d(q, p) − ∫

1

0

tr0(�2w∗) dq − �(1 + (2�)2)∫
1

0

� tr0 w∗ dq = 0.

�m(p) ∶=

⎧⎪⎨⎪⎩

m(p − p0), p0 ≤ p ≤ p0 + 1∕m,

1, p0 + 1∕m ≤ p ≤ −1∕m,

−mp, −1∕m ≤ p ≤ 0,

p ∈ [p0, 0],
2

�p0� ≤ m ∈ ℕ,

(4.46)
∫Ω

(
wqw∗,q

H�
+ �2

wpw∗,p

H�3
+ �2g�

�
ww∗

)
d(q, p) − �2 ∫

1

0

tr0
wpw∗

H�3
dq

= ∫Ω

(
�1w∗,q + �2w∗,p − �w∗

)
d(q, p) − ∫

1

0

tr0(�2w∗) dq.

(4.47)
∫

1

0

tr0[(�(2�)
2 + �2g�)ww∗] dq − �2 ∫

1

0

tr0
wpw∗

H�3
dq = �(1 + (2�)2)∫

1

0

� tr0 w∗ dq.

(4.48)

∫Ω

(
wqw∗,q

H�
+ �2

wpw∗,p

H�3
+ �2g�

�
ww∗

)
d(q, p) − ∫

1

0

tr0[(�(2�)
2 + �2g�)ww∗] dq

= ∫Ω

(
�1w∗,q + �2w∗,p − �w∗

)
d(q, p) − ∫

1

0

tr0(�2w∗) dq − �(1 + (2�)2)∫
1

0

� tr0 w∗ dq.

tr0 w∗,p = tr0

[
(�(2�)2 + �2g�)

H�3

�2
w∗

]
,
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Proposition 4.13  Let �∗ and w∗ be as defined in Proposition 4.11. It then holds

Proof  We compute that

where

Hence, according to Lemma 4.12, ��hF(�∗, 0)[w∗] ∈ Im�hF(�∗, 0) if and only if

The left-hand side of this equation can be expressed as

which is positive according to Lemma 4.8. Thus, the assertion follows. 	�  ◻

Improved regularity and the proof of Theorem 2.3 With this preparation completed we 
may now apply the bifurcation result [20, Theorem 1.7] to (4.1). This provides us with a 
local branch of weak solutions to (3.3) and (2.11) which contains, apart from the laminar 
flow defined by (�∗, 0) only nonlaminar solutions which belong to � . We next prove that 
any weak solution h ∈ C1+�(Ω) to (3.3) and (2.11), corresponding to some 𝜆 > 0 , is in fact 
a strong solution as defined in Theorem (2.1)(iii).

To this end we need the following regularity result.

Theorem  4.14  Let 𝜆 > 0 , r ∈ (1,∞) , � = (r − 1)∕r , � ∈ Lr((p0, 0)) and � ∈ W1
r
((p0, 0)). 

Given a weak solution h ∈ C1+�(Ω) to (3.3) and (2.11), it holds that �m
q
h ∈ C1+�(Ω) for all 

m ∈ ℕ and there exists a constant L > 0 such that

The proof of Theorem  4.14 is quite technical, but very similar to that of [44, 
Theorem 5.1] and is therefore omitted.

Remark 4.15  The estimate (4.49) implies in particular that all the streamlines, including the 
wave surface, of the corresponding strong solution to (3.3) and (2.11), see Proposition 4.17 
and Theorem 2.1, are real-analytic graphs. Similar results for classical solutions to  (3.3) 
and  (2.11) have been obtained in [33, 55] under the more restrictive assumption that �′ , 
� ∈ C�([p0, 0]) . We point out that the study of the a priori regularity of homogeneous but 
rotational waves has been initiated in [13], see also [26].

The next lemma plays an important role in the proof of Theorem 2.3(iii).

��hF(�∗, 0)[w∗] ∉ Im�hF(�∗, 0).

��hF(�∗, 0)[w∗] = 2�∗(� + �p� ,�),

� = g�w∗,p, � =
w∗,p

H�3
− g�w∗, � = −

1

�(1 + (2�)2)
tr0 � .

∫Ω

(
�w∗,p − �w∗

)
d(q, p) − ∫

1

0

tr0(�w∗) dq − �(1 + (2�)2)∫
1

0

� tr0 w∗ dq = 0.

∫Ω

(
w2
∗,p

H�3
− g�(w2

∗
)p

)
d(q, p) =

1

2 ∫
0

p0

(
(w̃�

1
)2

H�3
− g�(w̃2

1
)�

)
dp = −

w̃1(0)

4�∗
W�(0;�∗, (2�)

2),

(4.49)‖�m
q
h‖

C1+� (Ω)
≤ Lm−2(m − 3)! for allm ≥ 3.
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Lemma 4.16  Given two solutions (�i, hi) ∈ (0,∞) ×� , i = 1, 2 , to (4.1), there exists a con-
stant C = C(�1, �2, ‖h1‖C1+� (Ω)

, ‖h2‖C1+� (Ω)
, ‖�qh2‖C1+� (Ω)

) such that

Proof  Since wi ∶= �qhi ∈ C1+�(Ω) , cf. Theorem  4.14, differentiation of the relations in 
Definition 3.1 shows that wi is a weak solution to the uniformly elliptic boundary value 
problem

where ai,k� , bi, ci, Ai, Bi, Ci ∈ C�(Ω) are given by

Hence, for the difference W ∶= w1 − w2, we find that

where

Using [28, Theorem 8.33], we estimate

where, in virtue of (1 − �2
q
)−1 ∈ L(C�∕2(ℝ), C2+�∕2(ℝ)) , it holds that

(4.50)‖�qh1 − �qh2‖C1+� (Ω)
≤ C(��1 − �2� + ‖h1 − h2‖C1+� (Ω)

).

⎧⎪⎨⎪⎩

�
ai,11wi,q

�
q
+
�
ai,21wi,p

�
q
+
�
ai,12wi,q

�
p
+
�
ai,22wi,p + biwi

�
p
+ ciwi,p = 0 in Ω,

wi − (1 − �2
q
)−1 tr0(Aiwi + Biwi,q + Ciwi,p) = 0 on p = 0,

wi = 0 on p = p0,

ai,11 =
1

hi,p
, ai,12 = ai,21 = −

hi,q

h2
i,p

, ai,22 =
�2
i
+ h2

i,q

h3
i,p

, bi = −�2
i
g�, ci = �2

i
g�,

Ai = 1 − g�
(�2

i
+ h2

i,q
)3∕2

��i
, Ci =

(�2
i
+ h2

i,q
)5∕2

��3
i
h3
i,p

,

Bi = −
3(�2

i
+ h2

i,q
)1∕2hi,q

2��3
i

(
�2
i
+ h2

i,q

h2
i,p

+ 2�2
i
g�(hi − d) − ∫

1

0

�2
i
+ h2

i,q

h2
i,p

dq

)
−

(�2
i
+ h2

i,q
)3∕2hi,q

��3
i
h2
i,p

.

⎧⎪⎨⎪⎩

�
a1,11Wq

�
q
+
�
a1,21Wp

�
q
+
�
a1,12Wq

�
p
+
�
a1,22Wp + biW

�
p
+ c1Wp = f inΩ,

W = � on p = 0,

W = 0 on p = p0,

f =
(
(a2,11 − a1,11)w2,q

)
q
+
(
(a2,21 − a1,21)w2,p

)
q
+
(
(a2,12 − a1,12)w2,q

)
p

+
(
(a2,22 − a1,22)w2,p + (b2 − b1)w2

)
p
+ (c2 − c1)w2,p,

� = (1 − �2
q
)−1 tr0(A1W + B1Wq + C1Wp + w2(A1 − A2) + w2,q(B1 − B2) + w2,p(C1 − C2)).

‖W‖
C1+� (Ω)

≤ C
�
‖W‖

C(Ω)
+ ‖�‖C1+� (ℝ) + ‖(c2 − c1)w2,p‖C(Ω) + ‖(a2,11 − a1,11)w2,q‖C� (Ω)

+‖(a2,21 − a1,21)w2,p‖C� (Ω)
+ ‖(a2,12 − a1,12)w2,q‖C� (Ω)

�

+‖(a2,22 − a1,22)w2,p + (b2 − b1)w2‖C� (Ω)

�

≤ C
�
‖W‖

C1+�∕2(Ω)
+ ‖�‖C1+� (ℝ) + ��1 − �2� + ‖h2 − h1‖C1+� (Ω)

�
,
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Hence

and the desired claim follows by the interpolation result 
C1+�∕2(Ω) = (C�(Ω), C1+�(Ω))1−�∕2,∞. 	�  ◻

We next prove that weak solutions to  (3.3) and (2.11) are in fact strong solutions (as 
defined in Theorem 2.1 (iii)).

Proposition 4.17  Let 𝜆 > 0 and let h ∈ C1+�(Ω) denote a weak solution to (3.3) and (2.11). 
Then h ∈ W2

r
(Ω) is a strong solution to (3.3) and (2.11).

Proof  In virtue of Theorem 4.14 we have hq ∈ C1+�(Ω), hence �qhp = �phq ∈ C�(Ω). This 
in turn implies that �qhp is the classical derivative of hp with respect to q. Recalling that

it follows that

and (2.14) in turn yields

Consequently,

and the repeated use of [28, Lemma 7.5] finally yields hp ∈ W1
r
(Ω) . Since hq ∈ C1+�(Ω) , it 

follows that h ∈ W2
r
(Ω) is a strong solution to (3.3) and (2.11) (as tr0 h is real-analytic, the 

condition tr0 h ∈ W2
r
(ℝ) is obvious). 	�  ◻

We complete this section with the proof of Theorem 2.3.

Proof of Theorem  2.3  Gathering (4.2), (4.3), Propositions  4.11, and 4.13 we find that 
all assumptions of the theorem on bifurcation from simple eigenvalues by Crandall and 

‖�‖C1+� (ℝ) ≤ C‖�‖C2+�∕2(ℝ)

≤ C‖A1W + B1Wq + C1Wp + w2(A1 − A2) + w2,q(B1 − B2) + w2,p(C1 − C2)‖C�∕2(Ω)

≤ C
�
‖W‖

C1+�∕2(Ω)
+ ��1 − �2� + ‖h2 − h1‖C1+� (Ω)

�
.

‖W‖
C1+� (Ω)

≤ C
�
‖W‖

C1+�∕2(Ω)
+ ��1 − �2� + ‖h2 − h1‖C1+� (Ω)

�
,

(
hq

hp

)

q

−

(
�2 + h2

q

2h2
p

+ �2B + �2g�(h − d)

)

p

+ �2g�hp = 0 inD�(Ω),

(
�2 + h2

q

2h2
p

+ �2B + �2g�(h − d)

)

q

∈ C�(Ω),

(
�2 + h2

q

2h2
p

+ �2B + �2g�(h − d)

)

p

∈ C�(Ω),

�2 + h2
q

2h2
p

+ �2B + �2g�(h − d) ∈ C1+�(Ω).

�2 + h2
q

2h2
p

∈ W1
r
(Ω) ∩ C�(Ω)
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Rabinowitz, cf. [20, Theorem 1.7], are satisfied in the context of the bifurcation problem 
(4.1). This abstract result yields the existence of a local smooth curve

where 𝜀 > 0 is in general a small number, such that F(�(s), h(s)) = 0 for all |s| < 𝜀 . 
Moreover, �(0) = �∗ and

with � ∈ C∞((−�, �),�) satisfying �(0) = 0 . Besides, there exists a ball in (0,∞) ×� , 
with center (�∗, 0) , which does not contain other solutions but those mentioned above or 
trivial solutions (�, 0) . Letting H denote the laminar flow solution fixed at the beginning 
of the section, it follows from Proposition 4.17 that H + h(s) is a strong solution to (3.3) 
and (2.11) having minimal wavelength 1 for s ≠ 0 . Each pair (�(s),H + h(s)) corresponds 
to a solution (u(s) − c, v(s),P(s), �(s), �(s)) to  (2.2)–(2.3) which lies on the curve C in 
Theorem  2.3 and which has minimal period �(s) (provided that s ≠ 0 ), cf. (3.2) and 
Theorem 2.1. This proves the claims (i), (ii), and (iv) of Theorem 2.3.

It remains to show that �(s) has, for s ≠ 0 , precisely one maximum and one minimum in 
[0, �(s)) and that �(s) it is strictly monotone between the points where the global extrema 
are attained. To this end we claim that

Indeed, Lemma 4.16 and (4.43) imply that there exists a constant C > 0 such that

for all |s| < 𝜀∕2 . Additionally, using the differentiability of h at s = 0 , we have

These relations together with the interpolation result C1+�∕2(Ω) = (C�(Ω), C1+�(Ω))1−�∕2,∞ 
immediately yield (4.53). Since h(s, ⋅, 0) = s(w∗(⋅, 0) + �(s, ⋅, 0)) and �(s, ⋅, 0) → 0 in 
C2(ℝ) for s → 0 , cf. (4.52)–(4.53), standard arguments show that the monotonicity 
properties of w∗ are inherited by h(s, ⋅, 0) provided that � is sufficiently small (see, e.g., 
[50]). Recalling that the wave profile is parameterized by the function �(s) = h(s, ⋅, 0) − d, 
we have established (iii) and the proof is complete. 	�  ◻
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(4.51)[s ↦ (�(s), h(s))] ∶ (−�, �) → (0,∞) ×�,

(4.52)h(s) = s(w∗ + �(s))

(4.53)�q�(s) →
s→0

0 in C1+�∕2(Ω).

‖�q�(s)‖C1+� (Ω)
≤ �����

�qh(s) − �qh(0)

s

�����C1+� (Ω)

+ ‖�qw∗‖C1+� (Ω)
≤ C

‖�q�(s)‖C� (Ω)
=
�����
�qh(s) − �qh(0) − s�qh

�(0)

s

�����C� (Ω)

≤ ����
h(s) − h(0) − sh�(0)

s

����C1+� (Ω)

→
s→0

0.
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