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Abstract
The notion of Kodaira dimension has recently been extended to general almost complex 
manifolds. In this paper we focus on the Kodaira dimension of almost Kähler manifolds, 
providing an explicit computation for a family of almost Kähler threefolds on the differen-
tiable manifold underlying a Nakamura manifold. We concentrate also on the link between 
Kodaira dimension and the curvature of the canonical connection of an almost Kähler man-
ifold and show that in the previous example (and in another one obtained from a Kodaira 
surface) the Ricci curvature of the almost Kähler metric vanishes for all the members of 
the family.
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1  Introduction

When studying complex manifolds, one of the first invariants one can attach to any 
given complex manifold is its Kodaira dimension. This invariant captures the geometry 
of the manifold X under consideration expressing the rate of growth of the plurigenera 
Pm(X) = dimℂ H0(X,K⊗m

X
) with respect to m. The definition of the Kodaira dimension has 

recently been extended by Chen–Zhang in the setting of almost complex manifolds (see 
[1]). Among the main points addressed in this paper, there are two which, according to us, 
deserve particular attention: first of all the proof that the spaces of sections of the plurica-
nonical bundles K⊗m

X
 are finite dimensional and then the attention one must pay to properly 

define what a pseudoholomorphic pluricanonical section is. Regarding these points, up to 
now the state of the art does not provide tools for the actual computations of the spaces of 
pluricanonical sections other than the definitions, which makes the determination of the 
Kodaira dimension of an almost complex manifold extremely challenging.

The aim of the present note is to show some of the features of this extended version 
of the Kodaira dimension, focussing in particular in the case of (non-integrable) almost 
Kähler manifolds. We present some results in complex dimensions 2 and 3: we endow the 
differentiable manifolds underlying a Kodaira–Thurston surface and a completely solvable 
Nakamura threefold with families of almost complex structures and Riemannian metrics 
turning them into families of almost Kähler manifolds. In particular, we prove the following

Theorem  (Theorem  5.5) There exists a family of almost complex structures Jt with 
t = (t1, t2, t3, t4) ∈ ℝ4 on the differentiable manifold N underlying the Nakamura threefold 
such that

It is known that almost Hermitian manifolds carry a canonical connection on their tan-
gent bundle (in the integrable case, it is the Chern connection). Our second aim is to study 
the relationship between the curvature of the canonical connection and the Kodaira dimen-
sion. In the integrable case, a theorem of Yau (see [12, Corollary 2]) states that on a com-
pact Kähler manifold the positivity of the total scalar curvature of the Chern connection 
forces the Kodaira dimension of the manifold to be −∞ ; a generalization of this result for 
almost Hermitian manifolds is provided in [10, Theorem 1.1], [11, Theorem 1.3] and [1, 
Proposition 9.5]. Our results show that the opposite implication does not hold in general: 
by computing explicitly the scalar curvature of the canonical connection of our examples, 
we find that it is possible for an almost Kählelr manifold to have vanishing scalar curvature 
and Kodaira dimension 0. More precisely, we prove the following

Theorem  (Theorems 4.6 and 5.9) There exist families Xa and Yt of almost Kähler mani-
folds (with a ∈ ℝ∖{0} and t ∈ ℝ4) whose members have Kodaira dimension −∞ on a dense 
subset of the parameter space and whose canonical connection ∇c has Ric(∇c) ≡ 0 (hence 
also scal(∇c) ≡ 0).

A final outcome of our work can be obtained by combining the previous two results. 
As we mentioned, different members of the families we consider have different Kodaira 
dimensions and vanishing scalar curvatures. More in detail, all the members have Kodaira 
dimension −∞ except those on a subvariety of the parameter space where the Kodaira 

�Jt (N) =

{
0 if t4 = 0,

−∞ if t4 ≠ 0.



1817Kodaira dimension of almost Kähler manifolds and curvature…

1 3

dimension jumps to 0; on the other hand, for all the members of these families the reason 
why the scalar curvature vanishes is that the canonical connection has trivial Ricci tensor. 
Hence, we show also that in the almost Kähler case it is possible for a manifold to have 
vanishing Ricci curvature (hence trivial first Chern class) but Kodaira dimension −∞.

The structure of the paper is as follows. In Sect. 2, we recall the definition of Kodaira 
dimension for almost complex manifolds from [1]. In Sect.  3, we collect some known 
results concerning the canonical connection on an almost complex manifold and its Ricci 
and scalar curvature, focussing in particular on the case of almost Kähler manifolds. In 
Sect. 4, we compute the curvature of the canonical connection on a family of almost Kähler 
structures on the family of almost complex manifolds introduced in [1, §6.1] on the dif-
ferentiable manifold underlying a Kodaira surface, showing our first main result (Theo-
rem 4.6). In Sect. 5, we consider the differentiable manifold underlying a Nakamura three-
fold and endow it with a family of almost Kähler structures: in Sect. 5.1, we compute the 
Kodaira dimension of these almost complex manifolds and prove that it can assume the val-
ues 0 or −∞ (Theorem 5.5); finally, in Sect. 5.2 we show that the Ricci and scalar curvature 
of the almost Kähler metrics on the member of this family always vanish (Theorem 5.9).

Finally, we observe that results in Theorem 4.6 can be compared with [5, Proposition 
7.18]. Our techniques are, however, different and can be used to study the behaviour of 
Kodaira dimension for the other (non-toral) 4-dimensional almost complex nilmanifolds. 
We will come back on this topic in a future paper.

2 � Kodaira dimension of almost complex manifolds

Let (M, J) be a compact 2n-dimensional smooth manifold endowed with an almost com-
plex structure J. Following [1], we recall briefly the definition of Kodaira dimension of 
(M, J).

Let Λp,q

J
M be the bundle of (p, q)-forms on (M, J) and denote by Ωp,q

J
(M) = Γ(M,Λ

p,q

J
M) 

the space of (p, q)-forms on (M, J). Denote by d the exterior differential, then

Consequently, d splits as

where AJ = �p+2,q−1
◦d , 𝜕̄J = 𝜋p,q+1

◦d . Let KX = Λn,0

J
M be the canonical bundle of the 

almost complex manifold X = (M, J) . Then, KX is a complex line bundle over X and the 𝜕̄J
-operator on (M, J) gives rise to a pseudoholomorphic structure on KX , i.e. a differential 
operator still denoted by 𝜕̄J,

satisfying the Leibniz rule

for every smooth function f and section �.
By Hodge Theory (see [1, Theorem 1.1]), H0(M,K⊗m

X
) is a finite dimensional complex 

vector space for every m ≥ 1.

d(Ω
p,q

J
(M)) ⊂ Ω

p+2,q−1

J
(M) + Ω

p+1,q

J
(M) + Ω

p,q+1

J
(M) + Ω

p−1,q+2

J
(M).

d = AJ + 𝜕J + 𝜕̄J + AJ ,

𝜕̄J ∶ Γ(M,KX) → Γ(M,T∗M0,1 ⊗KX)

𝜕̄J(f𝜎) = 𝜕̄Jf ⊗ 𝜎 + f 𝜕̄J𝜎,
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Definition 2.1  ([1, Definition 1.2]) The mth-plurigenus of (M, J) is defined as

The Kodaira dimension of (M, J) is defined as

In their paper, Chen and Zhang provide also another definition of Kodaira dimension 
for an almost complex manifold (see [1, Definition 1.5]): one uses a basis for the space of 
pseudoholomorphic sections of the pluricanonical bundle to produce a map

where B is the base locus of |KX| , and then, define

Remark 2.2  It is an open problem whether these two definitions actually coincide, but there 
are few cases where this is known. By definition, for an almost complex manifold (M, J) 
we have �J(M) = −∞ if and only if �J(M) = −∞ . It requires some moments more of think-
ing the fact that also �J(M) = 0 if and only if �J(M) = 0 . Anyway, it is a well-known fact 
that �J(M) = �J(M) if J is integrable.

3 � Recaps on the canonical connection on almost complex manifolds

In this section, we recall some basic facts and definitions concerning canonical connections 
on almost complex manifolds. The theory is well known, but we decided to include this 
section for the sake of completeness and to set up the notation we will use throughout the 
paper.

The interested reader may refer to [4] or [9] for a more detailed exposition.

3.1 � Generalities on connections

We begin recalling the definition of complex connection.

Definition 3.1  (Complex connection) Let M be a smooth manifold and let E be a complex 
vector bundle on M. A (complex) connection on E is a map

such that: 

(1)	 ∇ is ℂ-linear in each entry;

(2.1)Pm(M, J) ∶= dimℂ H
0(M,K⊗m

X
).

(2.2)�J(M) ∶=

⎧
⎪⎨⎪⎩

−∞ if Pm(J) = 0 for every m ≥ 1,

lim sup
m→+∞

logPm(J)

logm
otherwise.

Φ
K

⊗m

X
∶ X∖B ⟶ ℙ

n,

𝜅J(M) ∶=

{
−∞ if Pm(J) = 0 for every m ≥ 1,

maxm dimℂ ΦK
⊗m

X
(X∖B) otherwise.

∇ ∶ Γ(M, TℂM) × Γ(M,E) ⟶ Γ(M,E)
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(2)	 ∇fXs = f∇Xs for every (complex smooth) function f on M;
(3)	 ∇X(fs) = X(f ) ⋅ s + ∇Xs for every (complex smooth) function f on M.

If we have a real vector bundle E on the manifold M, endowed with a (real) connection 
D, then there is a canonical way to extend this connection to a complex connection Dℂ on 
the complexification Eℂ of E:

Let now consider a complex vector bundle on M. We can see our complex vector bundle as 
a pair (E, I), where E is a real vector bundle on M and I is an endomorphism of E such that 
I2 = − id E (cf. [2, Definition 1.1]). For this reason, we will refer to (E, I) as the complex 
vector bundle, while E will denote the underlying real bundle. Of course, there is a canoni-
cal isomorphism of complex vector bundles (E, I) ≃ E1,0 ⊆ Eℂ.

Let D be a (real) connection on E. We define

The following lemma is well known.

Lemma 3.2  In the above situation, ∇D is a (complex) connection on (E,  I) if and only if 
DI = 0 . In this case, ∇D coincides with the restriction of Dℂ to E1,0 under the canonical 
isomorphism

Lemma 3.2 essentially states that if (E, I) is a complex vector bundle and D is a connec-
tion of E such that DI = 0 , then we have a commutative diagram

where the vertical maps are isomorphisms. As a consequence, we have canonical bijections 
between the following sets: 

(1)	 {Real connections D on E such that DI = 0};
(2)	 {Complex connections on (E, I)};
(3)	

{
Complex connections on E1,0

}
.

3.2 � The type of a form with values in a bundle

In this section, we want to discuss some classical stuff on the type decomposition on almost 
complex manifolds. We restrict ourselves to the case of 2-forms as this is the only case we 
will consider in the sequel.

Dℂ

X+
√
−1Y

(s +
√
−1t) = DXs − DYt +

√
−1(DXt + DYs).

∇D ∶ Γ(M,TℂM) × Γ(M, (E, I)) ⟶ Γ(M, (E, I))

(X +
√
−1Y , s) ⟼ DXs + IDYs.

� ∶ (E, I) ⟶ E1,0

s ⟼
1

2
(s −

√
−1Is).
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Let (E, I) be a complex vector bundle on the almost complex manifold (M, J). From the real 
point of view, a 2-form on M with values in E is a section

When we extend this form by ℂ-linearity, we get then a section

It makes then sense to decompose

according to the type decomposition of the form part of 𝜔̂ . The relation between �p,q and � 
is outlined in the following lemma.

Lemma 3.3  Keep the notations as above. Then,

(1)	 the form 𝜔̂ is of pure type (2, 0) if and only if �(JX, Y) = I�(X, Y);
(2)	 the form 𝜔̂ is of pure type (1, 1) if and only if �(JX, JY) = �(X, Y);
(3)	 the form 𝜔̂ is of pure type (0, 2) if and only if �(JX, Y) = −I�(X, Y).

Proof  As the proof of each point is very similar (and these points should also be familiar), 
we give a proof only of (1).

Let X, Y ∈ Γ(M,TℂM) , and denote X1,0 (resp., X0,1 ) the (1, 0)-part (resp., the (0, 1)-part) 
of X and similarly for Y. Then, 𝜔̂ is of pure type (2, 0) if and only if

Assume this holds, and let X, Y ∈ Γ(M,TM) . Then, 𝜔(X, Y) = 𝜔̂(X, Y) , and so

A similar computation shows that

hence that �(JX, Y) = I�(X, Y).
Vice versa, observe that �(JX, Y) = I�(X, Y) implies that also �(X, JY) = I�(X, Y) . It 

then follows that

𝜔 ∈ Γ
(
M,

⋀2
T∗M ⊗ℝ E

)
.

𝜔̂ ∈ Γ
(
M,

⋀2
T∗
ℂ
M ⊗ℂ (E, I)

)
.

𝜔̂ = 𝜔2,0 + 𝜔1,1 + 𝜔0,2

𝜔̂(X, Y) = 𝜔̂(X1,0, Y1,0).

𝜔(X, Y) =𝜔̂(X1,0, Y1,0)

=
1

4
(𝜔̂(X −

√
−1JX, Y −

√
−1JY))

=
1

4
(𝜔(X, Y) − 𝜔(JX, JY) − I(𝜔(X, JY) + 𝜔(X, JY))).

�(JX, Y) =
1

4
(�(X, JY) + �(X, JY) + I(�(X,Y) − �(JX, JY))),



1821Kodaira dimension of almost Kähler manifolds and curvature…

1 3

	�  ◻

This lemma justifies the definition of type of a form with values in a complex bundle given 
in [4, Definition 1]. Here we provide the complex interpretation, comparing 𝜔̂ with the ‘usual’ 
complex extension

of � . It is in fact easy to see that there is a commutative diagram

where � denote the standard complex isomorphism (E, I) ≃ E1,0 as before.

3.3 � Connections on the tangent bundle

We now want to restrict to the case where (M, J) is an almost complex manifold. Let ∇ be a 
complex connection on T1,0M : our aim is to give a ‘good’ definition for the torsion of ∇.

Let D be the real connection on TM associated with ∇ , which is explicitly given by 
DXY = �−1(∇X�(Y)) and satisfies DI = 0 . The holomorphic torsion of ∇ is then defined as 
T∇ = T̂D , i.e.

3.4 � The case of almost Hermitian manifolds

Let (M, g, J) be an almost Hermitian manifold, i.e. (M, J) is an almost complex manifold and g 
is a Riemannian metric on M such that g(J⋅, J⋅) = g(⋅, ⋅) . Let �(⋅, ⋅) = g(J⋅, ⋅) be the associated 
fundamental 2-form. Then,

defines a Hermitian scalar product on (TM, J). Moreover, if we denote by gℂ the complex 
bilinear extension of g to TℂM , then for all X, Y ∈ Γ(M,TM)

𝜔̂(X1,0, Y1,0) =
1

4
(𝜔̂(X −

√
−1JX, Y −

√
−1JY))

=
1

4
(𝜔̂(X, Y) − 𝜔̂(JX, JY)

− I(𝜔̂(X, JY) + 𝜔̂(X, JY)))

=
1

4
(𝜔̂(X, Y) + 𝜔̂(X, Y) + 𝜔̂(X, Y) + 𝜔̂(X, Y)))

= 𝜔̂(X, Y).

𝜔ℂ ∈ Γ
(
M,

⋀2
T∗

ℂM ⊗ℂ Eℂ

)

T∇ ∶ Γ
�
M,

⋀2
TℂM

�
⟶ Γ(M,T1,0M)

(X, Y) ⟼ �1,0(Dℂ

X
Y − Dℂ

Y
X − [X, Y]).

h = g −
√
−1�
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i.e. 1
2
h coincides with the complex Hermitian extension of g via the canonical identification 

(TM, J) ≃ T1,0M provided by �.
Let now D be a real connection on TM, and assume that

An easy computation then shows that D� = 0 , from which we deduce that ∇Dh = 0.

Remark 3.4  We show now that there exists at least one such connection. Let D be a connec-
tion such that Dg = 0 , e.g. the Levi-Civita connection of g. Let D′ be another connection 
such that D�g = 0 : we have D�

X
Y = DXY + FXY  , and the condition on the metric is equiva-

lent to

We want to find a suitable F such that D�J = 0 . For this purpose, we see that D�J = 0 is 
equivalent to

So, if we choose

the resulting connection

is such that D�g = 0 and D�J = 0.

Let ∇LC denote the Levi-Civita connection of g, and consider the connection

on TM. It follows from the discussion in Remark 3.4 that Dg = 0 and DJ = 0 , and as a con-
sequence, we have the induced (isomorphic) complex connections ∇D and Dℂ on (TM, I) 
and T1,0M , respectively.

We want to compute the holomorphic torsion of these connections, so we begin with 
some remarks on the torsion of D.

Definition 3.5  Let J be an almost complex structure on the differentiable manifold M. The 
Nijenhuis tensor of J is

So NJ ∈ Γ
�
M,

⋀2
T∗M ⊗ TM

�
.

Lemma 3.6  Let (M, g, J) be an almost Hermitian manifold. Denote by ∇LC the Levi-Civita 
connection of g and by D the induced connection as in (3.1). Then,

h(X, Y) = 2gℂ(�(X), �(Y)),

Dg = 0, DJ = 0.

g(FXY , Z) + g(Y ,FXZ) = 0.

(DJ)XY = JFXY − FXJY .

FXY = −
1

2
DXY −

1

2
JDXJY

D�
X
Y =

1

2
(DXY − JDXJY)

(3.1)DXY =
1

2

(
∇LC

X
Y − J∇LC

X
JY

)
, X, Y ∈ Γ(M, TM)

NJ(X, Y) = [JX, JY] − J[JX, Y] − J[X, JY] − [X, Y], X, Y ∈ Γ(M,TM).
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where NJ is the Nijenhuis tensor of J.

Proof  This is just a computation. On the one hand, we have

on the other,

and the lemma follows. 	�  ◻

Definition 3.7  Let (M, g, J) be an almost Hermitian manifold, with associated fundamen-
tal form � . Then, (M, g, J) is said 

(1)	 almost Kähler if d� = 0;
(2)	 quasi-Kähler if 𝜕̄𝜔 = 0.

In particular, any almost Kähler manifold is quasi-Kähler.
Corollary 3.8  Let (M, g, J) be a quasi-Kähler manifold, and let ∇LC denote the Levi-Civita 
connection of g. Then, NJ(X, Y) = −2J((∇LCJ)XY − (∇LCJ)YX) , and so

where D is the connection defined by (3.1).

Proof  It follows from [4, Proposition 1(iv)] that (M,  g,  J) is quasi-Kähler 
if and only if (∇LCJ)JXY = −J(∇LCJ)XY  . But then Eq.  (3.3) simplifies to 
NJ(X, Y) = −2J((∇LCJ)XY − (∇LCJ)YX) . The result then follows from Eq. (3.2). 	�  ◻

Under the assumptions of Corollary 3.8, we can see that TD is of pure type (0, 2): this 
follows from the fact that the Nijenhuis tensor satisfies NJ(JX, Y) = −JNJ(X, Y) . We give 
now the complex version of the previous result.

Proposition 3.9  Let (M, g, J) be a quasi-Kähler manifold. Denote by ∇LC the Levi-Civita 
connection of g and by D the connection on TM induced by (3.1). Let ∇ be the complex 
connection on T1,0M induced by D. Then, the holomorphic torsion of ∇ is

2TD(X, Y) = NJ(X, Y) − (∇LCJ)JXY + (∇LCJ)JYX,

(3.2)

2TD(X, Y) = ∇LC
X
Y − J∇LC

X
JY − ∇LC

Y
X + J∇LC

Y
JX − 2[X, Y]

= −J∇LC
X
JY + J∇LC

Y
JX − ∇LC

X
Y + ∇LC

Y
X

= J(−∇LC
X
JY + J∇LC

X
Y + ∇LC

Y
JX − J∇LC

Y
X)

= −J((∇LCJ)XY − (∇LCJ)YX);

(3.3)

NJ(X, Y) = ∇LC
JX
JY − ∇LC

JY
JX − J(∇LC

JX
Y − ∇LC

Y
JX)

− J(∇LC
X
JY − ∇LC

JY
X) − ∇LC

X
Y + ∇LC

Y
X

= (∇LCJ)JXY − (∇LCJ)JYX + J(−(∇LCJ)XY + (∇LCJ)YX),

TD(X, Y) =
1

4
NJ(X, Y),

T∇(X, Y) =
1

4
�1,0Nℂ

I
(X, Y), X, Y ∈ Γ(M, TℂM).
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Remark 3.10  We can simplify the expression for T∇ further. It is in fact easy to see that for 
X, Y ∈ Γ(M,TℂM) one has

and as a consequence,

We can also observe that now it is evident that T∇ is a (0, 2)-form with values in T1,0M.

The connection ∇ we defined is the connection appearing in [4, §2.6] corresponding to the 
parameter t = 0 . It is uniquely determined by the following conditions: 

(1)	 ∇h = 0;
(2)	 T∇ has vanishing (2, 0)-part and its (1, 1)-part is anti-symmetric.

On the contrary, the canonical connection (which is the Chern connection if I is integrable) 
corresponds to the choice t = 1 of the parameter in Gauduchon’s paper, and it is character-
ized by the vanishing of the (1, 1)-part of its holomorphic torsion. What Proposition 3.9 and 
Remark 3.10 show is that, in the case of almost Kähler manifolds, these two connections actu-
ally coincide.

Notation  Let (M, g, J) be a quasi-Kähler manifold and let ∇LC be the Levi-Civita connec-
tion of g. We will denote by ∇c the induced canonical connection on T1,0M , i.e. the com-
plex connection

3.5 � The complex formalism

As we are dealing with almost complex manifolds, it is more convenient to work within the 
complex framework, rather than stay with the real formalism.

Let X = (M, g, J) be an almost Hermitian manifold and let h be the Hermitian scalar prod-
uct induced by g on T1,0M , namely h(Z,W) = gℂ(Z, W̄) , where Z,W ∈ Γ(M, T1,0M) and gℂ 
are the complex bilinear extension of g. Fix a (local) h-unitary frame 

{
e1,… , en

}
 for T1,0M 

with dual frame 
{
e1,… , en

}
.

Let ∇ be a connection on TM such that ∇g = ∇J = 0 and denote also by ∇ its extension to 
TℂM . The connection 1-forms of ∇ are then the 1-forms defined by

and they satisfy 𝜃j
i
+ 𝜃̄i

j
= 0 . Let � be the holomorphic torsion of ∇ , then we have 

𝜏 ∈ Γ
�
M,

⋀2
T∗
ℂ
M ⊗ℂ T1,0M

�
 and so we can write

Nℂ

J
(X, Y) = −4�1,0[�0,1X, �0,1Y] − 4�0,1[�1,0X, �1,0Y],

T∇(X, Y) =
1

4
�1,0Nℂ

J
(X, Y) = −�1,0[�0,1X,�0,1Y].

∇c
X
Y =

1

2

(
∇LC

X
Y − J∇LC

X
JY

)
, X ∈ Γ

(
M, TℂM

)
, Y ∈ Γ

(
M, T1,0M

)
.

∇ej =

n∑
i=1

�i
j
ei,
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The 2-forms Θi appearing in this expression are called the torsion forms of ∇ and they are 
related to the connection form by the first structure equation

Concerning the curvature, we can also decompose the holomorphic curvature of ∇ as 
follows:

for suitable 2-forms Ψi
j
 , known the as curvature forms of ∇ . The second structure equations

provide a direct link between the connection forms and the curvature forms.
We focus now on the case where ∇ is the canonical connection ∇c of X. Each curva-

ture form Ψi
j
 can be decomposed according to types into its (2, 0), (1, 1) and (0, 2) parts, 

and we can then define functions Ri

jkl̄
 by the relation

Definition 3.11  (Ricci and scalar curvature) The Ricci curvature of the canonical connec-
tion ∇c of an almost Hermitian manifold (M, g, J) is the tensor

The scalar curvature of ∇c is the function

4 � The Kodaira–Thurston manifold

Let us consider the differentiable manifold M = S1 × G , where S1 is a circle and G is the 
(left) quotient of the Heisenberg group

𝜏 =

n∑
i=1

Θi ⊗ ei.

(3.4)Θi = dei +

n∑
j=1

�i
j
∧ ej, i = 1,… , n.

R(X, Y)ej =

n∑
i=1

Ψi
j
(X, Y)ei

(3.5)Ψi
j
= d�i

j
+

n∑
k=1

�i
k
∧ �k

j
, i, j = 1,… , n

(Ψi
j
)1,1 =

n∑
k,l=1

Ri

jkl̄
ek ∧ ēl.

Ric(∇c) =

n∑
k,l=1

Rkl̄e
k ∧ ēl, with Rkl̄ =

n∑
i=1

Ri

ikl̄
.

scal(∇c) =

n∑
k=1

Rkk̄ =

n∑
i,k=1

Ri

ikk̄
.
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by its subgroup consisting of matrices with integral entries. Call t a coordinate on S1 , then 
M admits the following global fields of tangent vectors

whose duals are

We recall that the only non-trivial differential of the ei ’s is de4 = −e2 ∧ e3 , as the only 
non-trivial commutator among the global vector fields given above is easily seen to be 
[e2, e3] = e4.

Once we equip M with the complex structure J defined by

we obtain a complex manifold, which is known as a Kodaira surface. It is well known that 
�J(M) = 0.

In these notes, we want to focus on a different (non-integrable) almost complex structure 
on the same manifold, which was introduced in [1, §6.1]. For any a ∈ ℝ∖{0} , the almost com-
plex structure Ja is defined by

and it induces the almost complex structure

on the cotangent bundle T∗M . The Kodaira dimension �Ja (M) is known.

Proposition 4.1  (cf. [1, Proposition 6.1]) Consider the almost complex structure Ja on M. 
Then,

The 2-form

is a symplectic form on M, which is always compatible with Ja , meaning that 
�(Ja⋅, Ja⋅) = �(⋅, ⋅) . In the basis of tangent fields 

{
e1,… , e4

}
 , the symmetric bilinear form 

ga(⋅, ⋅) = �(⋅, Ja⋅) is represented by the matrix

⎧
⎪⎨⎪⎩

⎛⎜⎜⎝

1 x z

0 1 y

0 0 1

⎞⎟⎟⎠

�����
x, y, z ∈ ℝ

⎫
⎪⎬⎪⎭

e1 =
�

�t
, e2 =

�

�x
, e3 =

�

�y
+ x

�

�z
, e4 =

�

�z
,

e1 = dt, e2 = dx, e3 = dy, e4 = dz − xdy.

Je1 = e4, Je2 = e3, Je3 = − e2, Je4 = −e1,

Jae1 = e2, Jae2 = −e1, Jae3 =
1

a
e4, Jae4 = −ae3,

J∗
a
e1 = −e2, J∗

a
e2 = e1, J∗

a
e3 = −ae4, J∗

a
e4 =

1

a
e3

�Ja (M) =

{
−∞ for a ∉ �ℚ,

0 for a ∈ �ℚ.

� = e1 ∧ e2 + e3 ∧ e4
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hence, ga is a Riemannian metric on M if and only if a > 0 . So from now on we will restrict 
to the case a > 0 : we have then an almost Kähler manifold Xa = (M, ga, Ja) . We also see 
that if we let

then 
{
E1,E2,E3,E4

}
 is an orthonormal global frame on X. Its dual frame is

and we easily see that

Lemma 4.2  The Nijenhuis tensor NJa
 of Xa is given by

Proof  This is a standard computation. Using the definition, it’ is easy to see that

and so NJa
(E1,E3) = aE3 . The other expressions can be easily deduced from the fact that

Let now ∇c be the canonical connection on Xa = (M, ga, Ja) introduced in (3.1), and 
denote by T = T∇c its torsion. We denote by Θi the real torsion forms of ∇c , namely the 
2-forms, such that

Lemma 4.3  The real torsion forms of the canonical connection ∇c on the almost complex 
manifold Xa are given by

Proof  By Corollary 3.8, we know that T(X, Y) = 1

4
NJa

(X, Y) ; hence, the result follows from 
Lemma 4.2. 	�  ◻

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0
1

a
0

0 0 0 a

⎞
⎟⎟⎟⎠
;

E1 = e1, E2 = e2, E3 =
√
ae3, E4 =

1√
a
e4,

E1 = e1, E2 = e2, E3 =
1√
a
e3, E4 =

√
ae4,

dE4 = −aE2 ∧ E3, [E2,E3] = aE4.

NJa
(E1,E2) =0, NJa

(E1,E3) = aE3, NJa
(E1,E4) = −aE4,

NJa
(E2,E3) = − aE4, NJa

(E2,E4) = −aE3, NJa
(E3,E4) = 0.

JaE1 = E2, JaE2 = −E1, JaE3 = E4, JaE4 = −E3,

NJa
(JaX, Y) = NJa

(X, JaY) = −JaNJa
(X, Y).

T∇c

(X, Y) =
∑
i

Θi(X, Y)Ei.

Θ1 =0, Θ2 = 0,

Θ3 =
1

4
a(E1 ∧ E3 − E2 ∧ E4), Θ4 = −

1

4
a(E2 ∧ E3 + E1 ∧ E4).
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We now want to deduce the connection forms of ∇c . To set up the notation, we recall that 
the real connection forms of ∇c are the 1-forms �i

j
 such that ∇cej =

∑
i 𝜔

i
j
⊗ ej , and we can 

collect them in the connection matrix � = (�i
j
) (i is the row index, j is the column index).

Proposition 4.4  The real connection matrix for the canonical connection ∇c on the almost 
complex manifold Xa is

Proof  We can compute the connection forms �i
j
 using the Cartan structure equations

In fact, the second set of equations allows us to restrict to �i
j
 with j > i . Hence, the first set 

of equations reduces to

and it is then easy to verify that (4.1) is the solution of this system.

From the knowledge of the real connection matrix � , we can deduce the real curva-
ture matrix Ω of ∇c:

Theorem 4.5  The real scalar curvature of the canonical connection ∇c on the almost com-
plex manifold Xa is given by

Proof  From the expression of the curvature matrix Ω = (Ωi
j
) given in (4.2), we can com-

pute the components Ri
jkl

 of the curvature of ∇c , in fact by definition

As 
{
E1,…E4

}
 is an orthonormal frame, we have that Rijkl = Ri

jkl
 : the non-vanishing com-

ponents are then

(4.1)� =
1

4
a

⎛
⎜⎜⎜⎝

0 0 E3 − E4

0 0 E4 E3

−E3 − E4 0 − 2E2

E4 − E3 2E2 0

⎞
⎟⎟⎟⎠
.

�
dEi +

∑4

j=1
�i
j
∧ Ej = Θi

�i
j
+ �

j

i
= 0.

⎧⎪⎪⎨⎪⎪⎩

�1
2
∧ E2 + �1

3
∧ E3 + �1

4
∧ E4 = 0

−�1
2
∧ E1 + �2

3
∧ E3 + �2

4
∧ E4 = 0

−�1
3
∧ E1 − �2

3
∧ E2 + �3

4
∧ E4 =

1

4
a(E1 ∧ E3 − E2 ∧ E4)

−aE2 ∧ E3 − �1
4
∧ E1 − �2

3
∧ E2 − �3

4
∧ E3 = −

1

4
a(E2 ∧ E3 + E1 ∧ E4),

(4.2)

Ω = d� + � ∧ � =
1

8
a2

⎛
⎜⎜⎜⎝

0 − E3 ∧ E4 E2 ∧ E4 3E2 ∧ E3

E3 ∧ E4 0 − 3E2 ∧ E3 E2 ∧ E4

−E2 ∧ E4 3E2 ∧ E3 0 E3 ∧ E4

−3E2 ∧ E3 − E2 ∧ E4 − E3 ∧ E4 0

⎞
⎟⎟⎟⎠
.

scal(D) = −
1

8
a2.

Ωi
j
=
∑
k,l

Ri
jkl
⊗

(
Ek ∧ El

)
.
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As a consequence, the Ricci tensor Rij =
∑

k R
k
ikj

 is expressed by the matrix

and so the scalar curvature is

Observe that once again in this last computation we used the fact that 
{
E1,… ,E4

}
 is an 

orthonormal frame. 	�  ◻

4.1 � An alternative derivation of the connection forms

Recall from (3.1) that the canonical connection is explicitly given by

where ∇LC is the Levi-Civita connection of ga . From the Koszul formula expressing the 
Levi-Civita connection, we deduce that in the ga-orthonormal frame of global fields {
E1,E2,E3,E4

}
 we have

In our case, on the almost complex manifold Xa = (M, ga, Ja) we see that then 
ga(∇

LC
Ei
Ej,Ek) = 0 if both 2 and 3 do not appear among i, j, k, as the only non-trivial bracket 

is [E2,E3] = aE4 . Moreover, for the same reason we see that if 2 and 3 appear among i, j, k, 
then ga(∇LC

Ei
Ej,Ek) is a priori non-trivial only if the remaining index is 4. Hence, the only 

non-vanishing among the ga(∇LC
Ei
Ej,Ek) are

We can then use this to compute explicitly how the Levi-Civita connection acts on the 
basis vector:

R1234 = −
1

8
a2 R1324 =

1

8
a2 R1423 =

3

8
a2 R2323 = −

3

8
a2

R2424 =
1

8
a2 R3434 =

1

8
a2 R2134 =

1

8
a2 R3124 = −

1

8
a2

R3223 =
3

8
a2 R4123 = −

3

8
a2 R4224 = −

1

8
a2 R4334 = −

1

8
a2.

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 −
3

8
a2 0

0 0 0
1

4
a2

⎞
⎟⎟⎟⎟⎠
,

scal(D) = −
1

8
a2.

∇c =
1

2
(∇LC − Ja∇

LCJa),

ga(∇
LC
Ei
Ej,Ek) =

1

2
(ga([Ei,Ej],Ek) − ga([Ej,Ek],Ei) − ga([Ei,Ek],Ej)).

ga(∇
LC
E2
E3,E4) =

1

2
a ga(∇

LC
E2
E4,E3) = −

1

2
a ga(∇

LC
E4
E2,E3) = −

1

2
a

ga(∇
LC
E4
E3,E2) =

1

2
a ga(∇

LC
E3
E4,E2) =

1

2
a ga(∇

LC
E3
E2,E4) = −

1

2
a.

∇LC
E1
E1 = 0, ∇LC

E1
E2 = 0, ∇LC

E1
E3 = 0, ∇LC

E1
E4 = 0,

∇LC
E2
E1 = 0, ∇LC

E2
E2 = 0, ∇LC

E2
E3 =

1

2
aE4, ∇LC

E2
E4 = −

1

2
aE3,

∇LC
E3
E1 = 0, ∇LC

E3
E2 = −

1

2
aE4, ∇LC

E3
E3 = 0, ∇LC

E3
E4 =

1

2
aE2,

∇LC
E4
E1 = 0, ∇LC

E4
E2 = −

1

2
aE2, ∇LC

E4
E3 =

1

2
aE2, ∇LC

E4
E4 = 0.
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This result readily implies that

from which we can compute the connection matrix (4.1).

4.2 � Complex curvature of the canonical connection

It is easy to verify that

is a unitary global frame for T1,0M with respect to the Hermitian scalar product induced by 
the complex extension of the metric ga . Its dual frame is given by

Thanks to the work done in the previous subsections, we can write down the complex con-
nection forms �i

j
 for the canonical connection ∇c:

∇c
E1
E1 = 0, ∇c

E1
E2 = 0, ∇c

E1
E3 = 0, ∇c

E1
E4 = 0,

∇c
E2
E1 = 0, ∇c

E2
E2 = 0, ∇c

E2
E3 =

1

2
aE4, ∇c

E2
E4 = −

1

2
aE3,

∇c
E3
E1 = −

1

4
aE3, ∇c

E3
E2 = −

1

4
aE4, ∇c

E3
E3 =

1

4
aE1, ∇c

E3
E4 =

1

4
aE2,

∇c
E4
E1 =

1

4
aE4, ∇c

E4
E2 = −

1

4
aE3, ∇c

E4
E3 =

1

4
aE2, ∇c

E4
E4 = −

1

4
aE1,

z1 =

√
2

2

�
E1 −

√
−1E2

�
, z2 =

√
2

2

�
E3 −

√
−1E4

�

z1 =

√
2

2

�
E1 +

√
−1E2

�
, z2 =

√
2

2

�
E3 +

√
−1E4

�
.

∇cz1 =

√
2

2

�
∇cE1 −

√
−1∇cE2

�

=

√
2

8
a
�
−E3 ⊗ E3 +

√
−1E4 ⊗ E3 + E4 ⊗ E4 +

√
−1E3 ⊗ E4

�

=

√
2

8
a
�
(−E3 +

√
−1E4)⊗ (E3 −

√
−1E4)

�

= −

√
2

4
az̄2 ⊗ z2;

∇cz2 =

√
2

2

�
∇cE3 −

√
−1∇cE4

�

=

√
2

8
a
�
2E2 ⊗ E4 + E3 ⊗ E1 + E4 ⊗ E2 + 2

√
−1E2 ⊗ E3+

−
√
−1E3 ⊗ E2 +

√
−1E4 ⊗ E1

�

=

√
2

8
a
�
2
√
−1E2 ⊗ (E3 −

√
−1E4)+

+ (E3 +
√
−1E4)⊗ (E1 −

√
−1E2)

�

=

√
2

4
az2 ⊗ z1 ⊗ z2 +

√
2

4
a(z1 − z̄1).
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From this computation, we deduce that the connection matrix for ∇c is

hence, the curvature matrix is

From this, we infer that the only non-trivial coefficient Ri

jkl̄
 is

Theorem  4.6  The Ricci curvature Ric(∇c) on the almost Hermitian manifold 
Xa = (M, ga, Ja) vanishes. In particular, the scalar curvature scal(∇c) also vanishes.

Proof  The theorem follows directly from (4.3) and the definitions.

Remark 4.7  For a = −1 , it is possible to find a different computation of the Ricci tensor of 
the canonical connection on Xa in [8, §4].

5 � Kodaira dimension of completely solvable Nakamura manifolds

The Nakamura threefold was introduced in [6, Case III-(3b), p. 90]. In the same paper, 
Nakamura also describes the Kuranishi family of this manifold and computes the 
Kodaira dimension of its members. This example showed that the Hodge numbers hp,q , 
the plurigenera and the Kodaira dimension of a complex manifold are not deformation 
invariants (see [6, Theorem 2]). In this section, we endow the differentiable manifold 
underlying the Nakamura threefold with a family of non-integrable almost complex 
structures and compute the Kodaira dimension of its members in Theorem 5.5.

We briefly recall the construction of completely solvable Nakamura manifolds. Let 
A ∈ SL(2,ℤ) have two real positive distinct eigenvalues

Set

and let P ∈ M2,2(ℝ) be such that

Consider Γ ∶= Pℤ2 ⊕
√
−1Pℤ2 ; then, Γ is a lattice in ℂ2 . Let 𝕋 2

ℂ
= ℂ2∕Γ be a 2-dimen-

sional complex torus.
Then, the map

𝜃 =

√
2

4
a

�
0 z2

−z̄2 z1 − z̄1

�
;

Ψ = d𝜃 + 𝜃 ∧ 𝜃 =
1

8
a2
(

−z22̄ − 2z12 − z12̄ − 2z21̄ + z1̄2̄

−z12 − 2z12̄ − z21̄ + 2z1̄2̄ z22̄

)
.

(4.3)
R1

122̄
= −

1

8
a2 R1

112̄
= −

1

8
a2 R1

221̄
= −

1

4
a2

R2

112̄
= −

1

4
a2 R2

121̄
= −

1

8
a2 R2

222̄
=

1

8
a2,

�1 = e−� , �2 = e� , � ≠ 0.

Λ =

(
e−� 0

0 e�

)

Λ = PAP−1



1832	 A. Cattaneo et al.

1 3

induces a biholomorphism of 𝕋 2
ℂ
 by setting Φ̃([z]) = [Φ(z)].

First of all, Φ̃ is well defined, since if z′ and z are equivalent, i.e. if 
z� = z + P(�1 +

√
−1�2) , with �1 , �2 ∈ ℤ2 , then

so that Φ(z�) ∼ Φ(z) . Furthermore, Φ̃−1([z]) = [Φ−1(z)].
We identify ℝ × ℂ2 with ℝ5 by (s, z1, z2) ⟼ (s, y1, y2, y3, y4) , where z1 = y1 +

√
−1y3 , 

z2 = y2 +
√
−1y4 , and consider

then

Hence, T1 induces a transformation of ℝ × 𝕋 2
ℂ
 , by setting

Define

Then, we obtain a family of compact 6-dimensional solvmanifold of completely solvable 
type N, called Nakamura manifolds.

We give a numerical example. Let

so A ∈ SL(2,ℤ) . Then, �1,2 =
3±

√
5

2
 . We set

i.e. � = log
�

3+
√
5

2

�
 . Then,

Φ ∶ ℂ
2 ⟶ ℂ

2

Φ(z) = Λz, where z = (z1, z2)t,

Φ(z�) = Λz� = Λz + ΛP(�1 +
√
−1�2)

= Λz + PAP−1P(�1 +
√
−1�2)

= Λz + PA(�1 +
√
−1�2)

= Λz + P(�1 +
√
−1�2)

= Φ(z) + P(�1 +
√
−1�2) with �1, �2 ∈ ℤ

2,

T1 ∶ ℝ
5 ⟶ ℝ

5

T1(s, y
1, y2, y3, y4) = (s + � , e−�y1, e�y2, e−�y3, e�y4),

T1(s, y
1, y2, y3, y4) = T1(s, z

1, z2) = (s + � ,Φ(z1, z2)).

T1(s, [(z
1, z2)]) = (s + � , [Φ(z1, z2)]).

N ∶= 𝕊
1 ×

ℝ × 𝕋 2
ℂ

< T1 >
.

A =

(
3 − 1

1 0

)
,

�1 =
3 −

√
5

2
= e−� and �2 =

3 +
√
5

2
= e� ,
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and

and the lattice Γ is given by

Going back to the general setting and by using previous notations, it is straightforward to 
check that

gives rise to a global coframe on N, where dx is the global 1-form on �1 . Therefore, with 
respect to 

{
Ei
}
i∈{1,…,6}

 the structure equations are the following:

where as usual Eij ∶= Ei ∧ Ej . Set

then J∗ is an almost complex on T∗N , inducing an almost complex structure J on N. 
Furthermore,

is a complex coframe of (1, 0)-forms on Y = (N, J) ; one can compute

where Φij̄ = Φi ∧ Φj and so on.

P−1 =

�
3−

√
5

2

3+
√
5

2

1 1

�
,

P = −
1√
5

⎛
⎜⎜⎝

1 −
3+

√
5

2

−1
3−

√
5

2

⎞
⎟⎟⎠

Γ = Span ℤ <

⎡⎢⎢⎢⎢⎣

−
√
5

5√
5

5

0

0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

5+3
√
5

10
5−3

√
5

10

0

0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0

0
−
√
5

5√
5

5

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0

0
5+3

√
5

10
5−3

√
5

10

⎤⎥⎥⎥⎥⎦
> .

(5.1)
{

E1 ∶= ds, E2 ∶= dx, E3 ∶= esdy1,

E4 ∶= e−sdy2, E5 ∶= esdy3, E6 ∶= e−sdy4.

(5.2)
{

dE1 = 0, dE2 = 0, dE3 = E13,

dE4 = −E14, dE5 = E15, dE6 = −E16,

(5.3)

⎧⎪⎨⎪⎩

J∗E1 ∶= −E2,

J∗E3 ∶= −E4,

J∗E5 ∶= −E6,

⎧⎪⎨⎪⎩

Φ1 ∶= E1 +
√
−1E2,

Φ2 ∶= E3 +
√
−1E4,

Φ3 ∶= E5 +
√
−1E6.

⎧⎪⎨⎪⎩

dΦ1 = 0,

dΦ2 =
1

2
(Φ12̄ + Φ1̄2̄),

dΦ3 =
1

2
(Φ13̄ + Φ1̄3̄),
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Since b1(N) = 2 , b2(N) = 5 (see [3]), we obtain

The dual vector fields are given by

Let � be a section of KY . Then � = fΦ1 ∧ Φ2 ∧ Φ3 , where f is a smooth complex valued 
function on N.

Lemma 5.1  �� = 0 if and only if f = const.

Proof  Let f = u + iv , where u ∶ ℝ6
→ ℝ and v ∶ ℝ6

→ ℝ are smooth and Γ-periodic. 
Then, since �

(
Φ1 ∧ Φ2 ∧ Φ3

)
= 0 , we have that �� = 0 if and only if �f = 0 . This turns to 

be equivalent to the following PDE system

The first two equations imply that f = f (y1, y2, y3, y4) , since N is compact. The other equa-
tions imply that f = const since they form an elliptic PDE system. 	�  ◻

Therefore,

Similar computations give

Indeed, it is easy to see by induction that 𝜕̄((Φ1 ∧ Φ2 ∧ Φ3)⊗k) = 0 for every k ≥ 1 , so the 
condition 𝜕̄

(
f ⋅ (Φ1 ∧ Φ2 ∧ Φ3)⊗k

)
 is again equivalent to 𝜕̄f = 0.

Corollary 5.2  Let N be a Nakamura manifold of completely solvable type endowed with the 
(non-integrable) almost complex structure J. Then,

H1
dR
(N;ℝ) ≃ Span ℝ < E1,E2 >= Span ℝ <

1

2
(Φ1 + Φ1̄),

1

2
√
−1

(Φ1̄ − Φ1) >,

H2
dR
(N;ℝ) ≃ Span ℝ < E12,E34,E56,E36,E45 >

≃Span ℝ <
√
−1Φ11̄,

√
−1Φ22̄,

√
−1Φ33̄,√

−1(Φ2̄3 − Φ23̄),
√
−1(Φ23 − Φ2̄3̄) > .

(5.4)

{
E1 ∶=

�

�s
, E2 ∶=

�

�x
, E3 ∶= e−s

�

�y1
,

E4 ∶= es
�

�y2
, E5 ∶= e−s

�

�y3
, E6 ∶= es

�

�y4
.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

us − vx = 0,

ux + vs = 0,

e−suy1 − esvy2 = 0,

esuy2 + e−svy1 = 0,

e−suy3 − esvy4 = 0,

esuy4 + e−svy3 = 0.

P1(N, J) = 1.

Pm(N, J) = 1.

�J(N) = 0.
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5.1 � Kodaira dimension of a deformation of Nakamura manifolds

In this section, we will show that the Kodaira dimension is unstable under almost 
Kähler deformations (cf. [6, Theorem 2]). First of all, the following defines a symplectic 
structure on N

and g(⋅, ⋅) = �(⋅, J⋅) gives rise to an almost Kähler structure on N.
Let t = (t1, t2, t3, t4) ∈ ℝ4 , |t|2 < 𝜀 and Lt ∈ (End (TN)) be the endomorphism given by

Set

Then, by a direct computation, we can show the following

Lemma 5.3  The set 
{
Jt
}
t
 is a family of �-compatible almost complex structures on N such 

that J0 = J . Furthermore, setting

a (1, 0)-coframe for (N, Jt) is given by

With these notations, we have in fact

and we get also the relation −�2 − �� = −�2 − �� = 1.

(5.5)� ∶= E12 + E34 + E56,

{
Lt(E1) = −t1E1 − t2E2, Lt(E2) = −t2E1 + t1E2, Lt(E3) = E3,

Lt(E4) = E4, Lt(E5) = −t3E5 − t4E6, Lt(E6) = −t4E5 + t3E6.

Jt = (I + Lt)J(I + Lt)
−1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�(t) ∶=
2t2

t2
1
+t2

2
−1
,

�(t) ∶=
(1−t1)

2+t2
2

t2
1
+t2

2
−1

,

�(t) ∶= −
(1+t1)

2+t2
2

t2
1
+t2

2
−1

,

�(t) ∶=
2t4

t2
3
+t2

4
−1
,

�(t) ∶=
(1−t3)

2+t2
4

t2
3
+t2

4
−1

,

�(t) ∶= −
(1+t3)

2+t2
4

t2
3
+t2

4
−1

,

⎧
⎪⎨⎪⎩

Φ1
t
= E1 −

√
−1(�(t)E1 + �(t)E2),

Φ2
t
= E3 +

√
−1E4,

Φ3
t
= E5 −

√
−1(�(t)E5 + �(t)E6).

(5.6)Jt =

⎛
⎜⎜⎜⎜⎜⎜⎝

�(t) �(t) 0 0 0 0

�(t) − �(t) 0 0 0 0

0 0 0 − 1 0 0

0 0 1 0 0 0

0 0 0 0 �(t) �(t)

0 0 0 0 �(t) − �(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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Lemma 5.4  We have the following equalities:

By Lemma  5.3, we easily obtain the dual frame 
{
Vt
1
,Vt

2
,Vt

3

}
 of global (1,  0)-vector 

fields on (N, Jt):

More explicitly,

Let now � = fΦ123
t

 . Then, 𝜕̄𝜎 = 0 if and only if

which turns to be equivalent to the system

By the second and third equation in (5.8), we obtain

As Vt
2
V̄ t
2
+ Vt

3
V̄ t
3
 is a real operator, setting f = u +

√
−1v , the last complex equation is 

equivalent to the following two real equations:

By using (5.7), a direct computation shows that the second-order differential operator 
4(Vt

2
V̄ t
2
+ Vt

3
V̄ t
3
) is given by

and one can check that it is elliptic. Consequently, u = u(s, x) , v = v(s, x) , that is, f = f (s, x)

.
The first equation in (5.8) is then equivalent to the system

𝜕̄Φ1
t
= 0, 𝜕̄Φ2

t
=

1

2
Φ12

t
, 𝜕̄Φ3

t
=

1

2

�
(1 −

√
−1𝛿(t))Φ13

t
−
√
−1𝛿(t)Φ13

t

�
.

⎧
⎪⎪⎨⎪⎪⎩

Vt
1
=

1

2

��
E1 −

�

�
(t)E2

�
+

√
−1

�(t)
E2

�
,

Vt
2
=

1

2
(E3 −

√
−1E4),

Vt
3
=

1

2

��
E5 −

�

�
(t)E6

�
+

√
−1

�(t)
E6

�
.

(5.7)

⎧⎪⎪⎨⎪⎪⎩

Vt
1
=

1

2

��
�

�s
−

�

�
(t)

�

�x

�
+

√
−1

�(t)

�

�x

�
,

Vt
2
=

1

2
(e−s

�

�y1
−
√
−1es

�

�y2
),

Vt
3
=

1

2

��
e−s

�

�y3
−

�

�
(t)es

�

�y4

�
+

√
−1

�(t)
es

�

�y4

�
.

𝜕̄f ∧ Φ123
t

−
√
−1𝛿(t)fΦ1̄123

t
= 0,

(5.8)

⎧⎪⎨⎪⎩

V̄ t
1
f −

√
−1𝛿(t)f = 0,

V̄ t
2
f = 0,

V̄ t
3
f = 0.

(Vt
2
V̄ t
2
+ Vt

3
V̄ t
3
)f = 0.

(5.9)
{ (

Vt
2
V̄ t
2
+ Vt

3
V̄ t
3

)
u = 0(

Vt
2
V̄ t
2
+ Vt

3
V̄ t
3

)
v = 0.

4(Vt
2
V̄ t
2
+ Vt

3
V̄ t
3
) = e−2s

𝜕2

𝜕y2
1

+ e2s
𝜕2

𝜕y2
2

+ e−2s
𝜕2

𝜕y2
3

+
(1 + 𝛿2(t))

𝜆2(t)
e2s

𝜕2

𝜕y2
4

− 2
𝛿(t)

𝜆(t)

𝜕2

𝜕y3𝜕y4
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To resolve system (5.10), we begin by observing that it is equivalent to

hence to

Taking the derivative with respect to x of the first equation, and with respect to s of the sec-
ond one, we can then see that the following relation holds:

Observe that the operator in the left term is elliptic.
So, if �(t) = 0 (i.e. for t = (t1, t2, t3, 0) ), we obtain that v must be constant, which forces u 

to be also constant. This shows that P1(M, Jt) = 1 for t = (t1, t2, t3, 0) . We observe that a simi-
lar computation shows that u also satisfies

Since we are looking for periodic solutions of (5.11), we can work with Fourier series and 
assume that the solution u is of the form

Assume that u is such a solution, with Anm ≠ 0 for some pair (n, m): we deduce that the 
relation

holds, and since �(0) = −1 we can see this as an equation of degree 2 in the unknown m. 
The ‘key observation’ is that the discriminant of (5.12), which is − 4

�2

(
n2 +

�2�2

�2

)
 , must be 

non-negative as we are assuming u to be a solution, which forces n = �� = 0 . As �(0) = −1 
(and so �(t) ≠ 0 for |t| < 𝜀 ), the last relation reduces to � = 0 . In particular, this shows that 
if �(t) ≠ 0 , then the only solution to (5.11) and to (5.10) is the trivial one. Assuming instead 
that n = � = 0 , relation (5.12) implies that m = 0 : this means that a non-trivial solution for 
(5.11) must be constant.

We have then shown that

(5.10)

{
2�u =

�v

�s
−

�

�

�v

�x
−

1

�

�u

�x

2�v =
�u

�s
−

�

�

�u

�x
+

1

�

�v

�x
.

{ 1

�

�u

�x
=

�v

�s
−

�

�

�v

�x
− 2�u

�u

�s
= �

(
�v

�s
−

�

�

�v

�x
− 2�u

)
−

1

�

�v

�x
+ 2�v,

{
�u

�s
= �

�v

�s
+ �

�v

�x
− 2��u + 2�v

�u

�x
= �

�v

�s
− �

�v

�x
− 2��u.

(
�
�2

�s2
− 2�

�2

�s�x
− �

�2

�x2

)
v = 2��

�u

�s
− 2��

�u

�x
+ 2�

�v

�x
= 4��2v.

(5.11)
(
�
�2

�s2
− 2�

�2

�s�x
− �

�2

�x2

)
u = 4��2u.

u(s, x) =
�

n,m∈ℤ

Anme
2�

√
−1

�
nx+

m

�
s
�
.

(5.12)
�

�2
m2 − 2

�

�
nm − �n2 = −

��2

�2
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Finally, one can prove by induction that 𝜕̄
�
(Φ123

t
)⊗m

�
= −m

√
−1𝛿

2
Φ1̄

t
∧ (Φ123

t
)⊗m ; hence, it 

follows that 𝜕̄(f (Φ123
t

)⊗m) = 0 if and only if

so the same methods apply also for pluricanonical differentials (just replace � with m�).

Theorem 5.5  Let Yt = (N, gt, Jt) be the almost Kähler family of deformations the Nakamura 
manifold defined above, where gt(⋅, ⋅) = �(⋅, Jt⋅) . Take any t = (t1, t2, t3, t4) ∈ ℝ4 , |t|2 < 𝜀 . 
Then

5.2 � Ricci and scalar curvature of the deformed Nakamura manifold

In this section, we consider the almost complex manifolds (N, Jt) where Jt is given by 
(5.6). With the notations introduced in (5.1), let us consider the real (1, 1)-form

it is then easy to observe that

As a consequence, we can endow (N, Jt) with the structure of an almost Kähler manifold 
once we consider the Riemannian metric gt given as gt(⋅, ⋅) = �(⋅, Jt⋅).

A gt-orthonormal frame for Yt = (N, gt, Jt) is then provided by

and with respect to this frame the almost complex structure Jt takes the standard form:

We can then introduce the following complex frame, which is ht-unitary on T1,0N , where ht 
denotes the Hermitian extension of gt to TℂN:

P1(N, J) =

{
1 if �(t) = 0

0 if �(t) ≠ 0.

V̄ t
1
f − m

√
−1𝛿

2
f = 0, V̄ t

2
f = V̄ t

3
f = 0,

�Jt (N) =

{
0 if t4 = 0,

−∞ if t4 ≠ 0.

� = E1 ∧ E2 + E3 ∧ E4 + E5 ∧ E6 ∶

d� = 0, �(Jt⋅, Jt⋅) = �(⋅, ⋅).

E�
1
=

1√
�
E1, E�

3
= E3, E�

5
=

1√
�
E5,

E�
2
=

�√
�
E1 +

√
�E2, E�

4
= E4, E�

6
=

�√
�
E5 +

√
�E6,

JE�
1
= E�

2
JE�

3
= E�

4
, JE�

5
= E�

6
,

JE�
2
= −E�

1
, JE�

4
= −E�

3
, JE�

6
= −E�

5
.

z1 =
√
2

2

�
E�
1
−
√
−1E�

2

�
, z̄1 =

√
2

2

�
E�
1
+
√
−1E�

2

�
,

z2 =
√
2

2

�
E�
3
−
√
−1E�

4

�
, z̄2 =

√
2

2

�
E�
3
+
√
−1E�

4

�
,

z3 =
√
2

2

�
E�
5
−
√
−1E�

6

�
, z̄3 =

√
2

2

�
E�
5
+
√
−1E�

6

�
.
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Dually, we can define the coframe

to which corresponds the complex coframe

Lemma 5.6  The (real) torsion forms for the canonical connection ∇c on Yt are

where E′ij stands for Ei� ∧ Ej� and so on.

Proof  Thanks to Corollary 3.8, we only need to compute the Nijenhuis tensor of Jt , which 
can be done by a direct computation.

Corollary 5.7  The (complex) torsion forms for the holomorphic torsion of the canonical 
connection ∇c on Yt are

E1� =
√
�E1 −

�√
�
E2, E3� = E3, E5� =

√
�E5 −

�√
�
E6,

E2� =
1√
�
E2, E4� = E4, E6� =

1√
�
E6,

Φ1 =
√
2

2

�
E1� +

√
−1E2�

�
, Φ̄1 =

√
2

2

�
E1� −

√
−1E2�

�
,

Φ2 =
√
2

2

�
E3� +

√
−1E4�

�
, Φ̄2 =

√
2

2

�
E3� −

√
−1E4�

�
,

Φ3 =
√
2

2

�
E5� +

√
−1E6�

�
, Φ̄3 =

√
2

2

�
E5� −

√
−1E6�

�
.

Θ1 =0,

Θ2 =0,

Θ3 =
1

2
√
�
E�13 +

�

2
√
�
E�14 +

�

2
√
�
E�23 −

1

2
√
�
E�24,

Θ4 =
�

2
√
�
E�13 −

1

2
√
�
E�14 −

1

2
√
�
E�23 −

�

2
√
�
E�24,

Θ5 =
1

2
√
�
(1 − ��)E�15 +

1

2
√
�
(� + �)E�16 +

1

2
√
�
(� + �)E�25 −

1

2
√
�
(1 − ��)E�26,

Θ6 =
1

2
√
�
(� + �)E�15 −

1

2
√
�
(1 − ��)E�16 −

1

2
√
�
(1 − ��)E�25 −

1

2
√
�
(� + �)E�26,

Θ1� =0,

Θ2� =

√
2

2
√
𝛾
(1 +

√
−1𝛼)Φ̄1 ∧ Φ̄2,

Θ3� =

√
2

2
√
𝛾
(1 +

√
−1𝛼)(1 +

√
−1𝛿)Φ̄1 ∧ Φ̄3.
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Proof  From the relation

we can see that the complexified torsion of the canonical connection satisfies

So the torsion forms for the holomorphic curvature of the canonical connection are

and we can compute them from the knowledge of the real curvature forms. 	� ◻

Our next step is to compute the connection forms �i
j
 for the canonical connection ∇c , 

which can be done by solving explicitly the structure equations

This is a standard computation, so we prefer to skip all the details and present only the 
solution in the following lemma.

Lemma 5.8  Let Yt be the family of almost Kähler deformations of the Nakamura threefold 
under consideration. The complex connection forms for the canonical connection ∇c of Yt 
are then

From the knowledge of the connection forms, we can deduce the curvature forms via 
the second structure equations

E�
1
=

√
2

2

�
z1 + z̄1

�
, E�

2
=
√
−1

√
2

2

�
z1 − z̄1

�
,

E�
3
=

√
2

2

�
z2 + z̄2

�
, E�

4
=
√
−1

√
2

2

�
z2 − z̄2

�
,

E�
5
=

√
2

2

�
z3 + z̄3

�
, E�

6
=
√
−1

√
2

2

�
z3 − z̄3

�
,

T = Θ1 ⊗ E�
1
+ Θ2 ⊗ E�

2
+⋯ =

√
2

2

�
Θ1 +

√
−1Θ2

�
⊗ z1 +

√
2

2

�
Θ1 −

√
−1Θ2

�
⊗ z̄1 +⋯ .

Θ1� =

√
2

2

�
Θ1 +

√
−1Θ2

�
,

Θ2� =

√
2

2

�
Θ3 +

√
−1Θ4

�
,

Θ3� =

√
2

2

�
Θ5 +

√
−1Θ6

�

⎧⎪⎪⎨⎪⎪⎩

dΦ1 + 𝜃1
1
∧ Φ1 + 𝜃1

2
∧ Φ2 + 𝜃1

3
∧ Φ3 = Θ1�

dΦ2 + 𝜃2
1
∧ Φ1 + 𝜃2

2
∧ Φ2 + 𝜃2

3
∧ Φ3 = Θ2�

dΦ3 + 𝜃3
1
∧ Φ1 + 𝜃3

2
∧ Φ2 + 𝜃3

3
∧ Φ3 = Θ3�

𝜃i
j
+ 𝜃̄

j

i
= 0 (i, j = 1, 2, 3).

𝜃1
1
= 0, 𝜃1

2
= −

√
2

2
√
𝛾
(1 +

√
−1𝛼)Φ2,

𝜃2
2
= 0, 𝜃1

3
= −

√
2

2
√
𝛾
(1 +

√
−1𝛼)(1 −

√
−1𝛿)Φ3,

𝜃2
3
= 0, 𝜃3

3
=

√
2

2
√
𝛾
(𝛼 +

√
−1)𝛿Φ1 −

√
2

2
√
𝛾
(𝛼 −

√
−1)𝛿Φ̄1.

Ψ = (Ψi
j
) = d� + � ∧ �, where � = (�i

j
).
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The result is

and the other curvature forms are deduced from these thanks to the relation Ψi
j
+ Ψ̄

j

i
= 0.

Recall that the kl̄-component of the Ricci curvature of the canonical connection is 
expressed by

We have then no problems with proving the following result.

Theorem 5.9  Let Yt be the family of almost Kähler deformations of the Nakamura threefold 
under consideration. For every value of the parameter t, the canonical connection ∇c on Yt 
is Ricci flat, and in particular, its scalar curvature vanishes.

Remark 5.10  As it was mentioned in the Introduction, we can see that the family of almost 
Kähler structures on the differentiable manifold underlying the Nakamura threefold we are 
considering has the following properties: 

(1)	 there are members of this family having Kodaira dimension 0 and −∞;
(2)	 the canonical connection of all the members has vanishing Ricci curvature.

Such a behaviour in the integrable case was pointed out in by Tosatti in [7, Example 3.2], 
based on the original work of Nakamura (see [6]).

Acknowledgements  The authors express their gratitude to Weiyi Zhang for having introduced them to the 
subject of Kodaira dimension for almost complex manifolds. We also thank Tian-Jun Li for having brought 
to our attention the reference [5] and Valentino Tosatti for his comments on a previous version of this paper.

References

	 1.	 Chen, H., Zhang, W.: Kodaira dimensions of almost complex manifolds (2018). arXiv​:1808.00885​ 
[math.DG]

	 2.	 de Bartolomeis, P., Tian, G.: Stability of complex vector bundles. J. Differ. Geom. 43(2), 231–275 
(1996)

Ψ1
1
= −

1

2𝛾
(1 + 𝛼2)Φ2 ∧ Φ̄2 −

1

2𝛾
(1 + 𝛼2)(1 + 𝛿2)Φ3 ∧ Φ̄3,

Ψ1
2
= −

1

2𝛾
(1 + 𝛼2)Φ1 ∧ Φ̄2 −

1

2𝛾
(1 +

√
−1𝛼)2Φ̄1 ∧ Φ̄2,

Ψ1
3
=

1

2𝛾
(1 + 𝛼2)(1 + 𝛿2)Φ1 ∧ Φ̄2 +

1

2𝛾
(1 +

√
−1𝛼)2(1 + 𝛿2)Φ̄1 ∧ Φ̄3,

Ψ2
2
=

1

2𝛾
(1 + 𝛼2)Φ2 ∧ Φ̄2,

Ψ2
3
=

1

2𝛾
(1 + 𝛼2)(1 −

√
−1𝛿)Φ3 ∧ Φ̄2,

Ψ3
3
=

1

2𝛾
(1 + 𝛼2)(1 + 𝛿2)Φ3 ∧ Φ̄3,

Rkl̄ =

3∑
i=1

Ri

ikl̄
, with (Ψi

j
)1,1 =

∑
k,l

Ri

jkl̄
Φi ∧ ̄Phi

j
.

http://arxiv.org/abs/1808.00885


1842	 A. Cattaneo et al.

1 3

	 3.	 de Bartolomeis, P., Tomassini, A.: On solvable generalized Calabi–Yau manifolds. Ann. Inst. Fourier 
(Grenoble) 56(5), 1281–1296 (2006)

	 4.	 Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Unione Mat. Ital. B (7) 11(2, suppl), 
257–288 (1997)

	 5.	 Li, T-J: Symplectic Calabi–Yau surfaces. In: Handbook of Geometric Analysis, No. 3, vol. 14 of 
Advanced Lectures in Mathematics (ALM), pp. 231–356. Int. Press, Somerville (2010)

	 6.	 Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 
85–112 (1975)

	 7.	 Tosatti, V.: Non-Kähler Calabi–Yau manifolds. In: Analysis, Complex Geometry, and Mathematical 
Physics. In: Honor of Duong H. Phong, vol. 644 of Contemp. Math., pp. 261–277. Amer. Math. Soc., 
Providence (2015)

	 8.	 Tosatti, V., Weinkove, B.: The Calabi–Yau equation on the Kodaira–Thurston manifold. J. Inst. Math. 
Jussieu 10(2), 437–447 (2011)

	 9.	 Tosatti, V., Weinkove, B., Yau, S.-T.: Taming symplectic forms and the Calabi–Yau equation. Proc. 
Lond. Math. Soc. (3) 97(2), 401–424 (2008)

	10.	 Yang, X.: Scalar curvature, kodaira dimension and Â-genus (2017). arXiv​:1706.01122​ [math.DG]
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